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Abstract

During C. elegans development, microRNAs (miRNAs) function as molecular switches that define temporal gene expression
and cell lineage patterns in a dosage-dependent manner. It is critical, therefore, that the expression of miRNAs be tightly
regulated so that target mRNA expression is properly controlled. The molecular mechanisms that function to optimize or
control miRNA levels during development are unknown. Here we find that mutations in lin-42, the C. elegans homolog of
the circadian-related period gene, suppress multiple dosage-dependent miRNA phenotypes including those involved in
developmental timing and neuronal cell fate determination. Analysis of mature miRNA levels in lin-42 mutants indicates that
lin-42 functions to attenuate miRNA expression. Through the analysis of transcriptional reporters, we show that the
upstream cis-acting regulatory regions of several miRNA genes are sufficient to promote highly dynamic transcription that is
coupled to the molting cycles of post-embryonic development. Immunoprecipitation of LIN-42 complexes indicates that
LIN-42 binds the putative cis-regulatory regions of both non-coding and protein-coding genes and likely plays a role in
regulating their transcription. Consistent with this hypothesis, analysis of miRNA transcriptional reporters in lin-42 mutants
indicates that lin-42 regulates miRNA transcription. Surprisingly, strong loss-of-function mutations in lin-42 do not abolish
the oscillatory expression patterns of lin-4 and let-7 transcription but lead to increased expression of these genes. We
propose that lin-42 functions to negatively regulate the transcriptional output of multiple miRNAs and mRNAs and therefore
coordinates the expression levels of genes that dictate temporal cell fate with other regulatory programs that promote
rhythmic gene expression.
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Introduction

MicroRNAs (miRNAs) are non-coding RNA molecules that post-

transcriptionally regulate gene expression [1]. The maturation of

miRNAs is a stepwise process that begins with the RNA polymerase

II-dependent transcription of long capped and polyadenylated

primary miRNAs (pri-miRNAs) [2,3]. Most pri-miRNAs are then

endonucleolytically cleaved by the nuclear Microprocessor com-

plex, composed of Drosha (an RNase III enzyme) and its binding

partner Pasha, to yield a ,70 nt precursor miRNA hairpin (pre-

miRNA) [4]. After export to the cytoplasm, the pre-miRNA is

cleaved by Dicer (a second Type III RNase) yielding a ,22 nt

duplex that consists of the mature miRNA and its corresponding

passenger RNA [5,6]. The mature single-stranded ,22 nt miRNA

is then loaded into the Argonaute and GW182 to form the miRNA-

induced Silencing Complex (miRISC) [7–9]. Through partial

complementary base-pairing between the miRNA and target

mRNA, the miRISC complex negatively regulates gene expression

by either translational repression or mRNA degradation [7,10]. In
vivo, target mRNA down-regulation is directly proportional to the

amount of miRNA associated with miRISC [1].

Experimental and computational approaches indicate that an

individual miRNA can bind to and regulate hundreds of mRNAs

and that the majority of protein-coding genes are miRNA targets

[11–14]. As such, miRNAs have been implicated in a variety of

developmental and cellular processes including cell fate specifica-

tion, proliferation and apoptosis [15–19]. In many of these

scenarios, the expression of distinct miRNAs is tightly controlled

and/or the individual steps of miRNA biogenesis are actively

regulated at either the transcriptional or post-transcriptional level

by sequence-specific transcription factors or RNA-binding pro-

teins, respectively. For example, some regulatory proteins control

miRNA biogenesis by directly binding structural elements within

the pri- or pre-miRNA transcript whereas others broadly impact

global miRNA biogenesis by inhibiting enzymes required for

general miRNA processing and/or activity [20]. Importantly,

many of the proteins that regulate miRNA biogenesis are highly

conserved and mutations in these genes result in a variety of

developmental disorders and diseases [20].

The C. elegans heterochronic pathway has been instrumental to

our understanding of the principles of miRNA-mediated gene

regulation and for the identification of components that are
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required to control miRNA expression, metabolism and activity

[21]. Post-embryonic development in C. elegans proceeds through

a series of four larval stages, punctuated by molts, in which the

temporal and spatial patterns of cell division and differentiation

are tightly orchestrated and invariant [22]. Heterochronic genes

organize temporal patterns of development by controlling stage-

specific gene expression. Defects in heterochronic genes cause

animals to display temporal cell fate transformations including

either the inappropriate skipping or reiteration of stage-specific

patterns of cell divisions [23]. An overarching feature of the

heterochronic pathway is that many protein-coding genes that are

important for controlling temporal patterning are post-transcrip-

tionally regulated by miRNAs [16,24–28]. In this context,

miRNAs are expressed at defined times during post-embryonic

development and function as molecular switches to inhibit earlier

patterns of development and promote the emergence of later gene

expression profiles. Throughout post-embryonic development, the

expression of heterochronic miRNAs is regulated at both the

transcriptional and post-transcriptional levels [20,29–32]. In

addition, mutations that alter heterochronic miRNA expression

often display strong temporal patterning and behavioral pheno-

types [16,33–36].

While the regulatory strategies that dictate patterns of cell fate

specification have rapidly emerged through the identification of

conserved heterochronic genes, we still lack a deep understanding

of how the temporal expression of heterochronic genes are

coordinated with aspects of growth and behavior. This coupling is

especially important as many post-embryonic cell division and cell

fate specification events are intimately tied to the molting cycle

[37,38]. Surprisingly, most of the known genes required for

molting do not dramatically alter temporal cell fates and only a few

heterochronic genes disrupt the reiterative process of molting

[23,38–45]. The molting phenotypes associated with heterochro-

nic mutants usually result from inappropriate temporal cell fate

transformations that lead to either a cessation (for precocious

heterochronic mutants) or an inappropriate reiteration (for

retarded heterochronic mutants) of molting [16,23–

28,31,33,34,42–45]. To date, only a single heterochronic gene,

lin-42, is known to alter both temporal patterning of cell fate

specification and the precise timing of recurrent developmental

events [39]. lin-42 is the C. elegans homolog of human and

Drosophila PERIOD and was initially identified as a heterochronic

mutant that precociously executes adult-specific patterns of

development after the third larval molt [46–48]. The lin-42 locus

is complex and encodes three protein isoforms (LIN-42A, LIN-

42B and LIN-42C) that are expressed from two distinct promoters

(Figure 1A) [39,46–48]. During post-embryonic development, lin-
42 mRNA levels fluctuate over the molting cycles and peak once

during each larval stage [39,46–48]. While its precocious

developmental phenotypes are similar to other heterochronic

mutants, the periodic expression pattern of LIN-42 distinguishes it

from other monotonically expressed heterochronic proteins.

Therefore, lin-42 has been proposed to play a more iterative role

in developmental timing. However, its relationship to and

interplay with other heterochronic genes has been difficult to

establish at the molecular level. In addition to altering temporal

patterns of development, mutations that disrupt the expression of

LIN-42A and LIN-42B isoforms display dramatic defects in

behavior and molting [39]. Specifically, lin-42a/b mutants alter

the normally synchronous molting patterns displayed by wild-type

animals and these defects frequently result in lethality [39]. Given

that LIN-42 is a nuclear protein, an attractive hypothesis is that

LIN-42 coordinates gene expression programs that control the

molting cycles with regulatory pathways that mediate stage-

specific cell lineage programs [48]. However, this potential role for

LIN-42 remains elusive because 1) the molecular nature of LIN-42

activity is yet to be defined and 2) LIN-42 downstream targets that

mediate iterative (molting) and sequential (cell fate patterning)

gene regulatory programs are unknown.

In this study, we employed multiple forward genetic screens that

were collectively geared to identify negative regulators of miRNA

expression. As a product of this approach, we identified mutations

in lin-42 that suppress multiple stage-specific lineage defects

associated with heterochronic miRNAs. Analysis of miRNA

expression in lin-42 mutant animals suggests that LIN-42 broadly

functions to negatively regulate miRNA expression is therefore is

likely to act in a variety of pathways that require miRNAs for

proper cell fate specification. Consistent with this hypothesis, we

find that lin-42 also plays a role in the miRNA-mediated

specification of asymmetric gene expression patterns in gustatory

neurons. Analysis of LIN-42 interactions with chromatin suggests

that LIN-42 potentially regulates the transcription of both

miRNAs and mRNAs. We demonstrate, through the use of

transcriptional reporters, that lin-42 mutations alter the transcrip-

tion of lin-4 and let-7. Surprisingly, mutations that remove LIN-

42 isoforms containing the conserved PAS domains (required for

circadian gene regulation by human and Drosophila PERIOD) do

not uncouple miRNA expression from the molting cycle but,

instead, dramatically alter the transcriptional output of miRNA

genes. We conclude that a key molecular function of lin-42 is to

dynamically inhibit the transcription of post-embryonically

expressed miRNAs and mRNAs to ensure the robustness of

developmental gene expression.

Results

lin-42 functions during post-embryonic development to
ensure proper temporal cell fate specification mediated
by miRNAs

The inherent dependency of the heterochronic pathway on

precisely controlled miRNA activity provides a unique genetic

context to identify components that control aspects of miRNA

metabolism or expression. To accomplish this, we performed

forward genetic screens in either lin-4(ma161), alg-1(ma192) or

let-7(n2853) mutant backgrounds to identify novel heterochronic

mutations that correct the phenotypes associated with aberrant L1

Author Summary

MicroRNAs play pervasive roles in controlling gene
expression throughout animal development. Given that
individual microRNAs are predicted to regulate hundreds
of mRNAs and that most mRNA transcripts are microRNA
targets, it is essential that the expression levels of
microRNAs be tightly regulated. With the goal of unveiling
factors that regulate the expression of microRNAs that
control developmental timing, we identified lin-42, the C.
elegans homolog of the human and Drosophila period
gene implicated in circadian gene regulation, as a negative
regulator of microRNA expression. By analyzing the
transcriptional expression patterns of representative mi-
croRNAs, we found that the transcription of many
microRNAs is normally highly dynamic and coupled
aspects of post-embryonic growth and behavior. We
suggest that lin-42 functions to modulate the transcrip-
tional output of temporally-regulated microRNAs and
mRNAs in order to maintain optimal expression of these
genes throughout development.
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to L2 (early), L2 to L3 (middle) or L4 to adult (late) cell fate

transitions, respectively. These mutants are unique in that they

express miRNAs at a much lower level than wild-type animals but

do not completely eliminate their expression. lin-4(ma161) and

let-7(n2853) mutations alter the conserved seed sequence of the

mature miRNA and reduce levels of these miRNAs in vivo
[16,24]. Animals harboring lin-4(ma161) and let-7(n2853)
mutations are phenotypically indistinguishable from null mutants

and reiterate L1- and L4-specific cell fates, respectively (Table 1)

[16,24]. alg-1(ma192) mutations alter one of the two miRNA-

specific Argonautes and disrupt the ability of processed miRNAs to

repress downstream target mRNAs [49]. Animals harboring the

alg-1(ma192) mutation inappropriately express hbl-1 (the major

miRNA target of miR-48, miR-241, and miR-84) in the L3 stage

and reiterate L2-specific seam cell division patterns [49].

Consistent with the defects associated with the misregulation of

each of these stage-specific transitions, lin-4(ma161), alg-
1(ma192) and let-7(n2853) animals display highly penetrant

heterochronic phenotypes and fail to express adult-specific gene

regulatory programs, including the expression of the adult-specific

Pcol-19::GFP transcriptional reporter (Table 1). Suppressors of

the retarded heterochronic phenotypes in each of these genetic

backgrounds were identified as F2 progeny of mutagenized

animals that were able to restore normal development

(Figure 1C). Five mutants (ma206, ma208, csh1, csh4 and csh5)

were able to suppress multiple retarded heterochronic phenotypes

associated with all three mutant backgrounds. Each mutant

mapped to a single locus on chromosome II (Figure 1A and

Table 1), and subsequent SNP-SNP mapping and sequencing

results demonstrated that all five alleles contain mutations that lie

within lin-42 and would be predicted to create a premature

truncation of the lin-42b or lin-42c open reading frames

(Figure 1A and Table S1) [50]. Consistent with previous analyses

of lin-42 mutations, animals harboring the ma206, ma208, csh1,

csh4 or csh5 allele display highly-penetrant precocious hetero-

chronic phenotypes (Table 1) which were rescued with a fosmid

containing the genomic fragment of the wild-type lin-42 gene [46–

48]. Mutations in lin-42 have been demonstrated to suppress

heterochronic phenotypes associated with multiple heterochronic

mutants, including lin-4 and let-7 [16,46,47,51]. In these reports,

only terminal cell lineage phenotypes, including a correction of the

L4-to-adult vulval bursting phenotypes, restoration of adult-

specific expression of Pcol-19::GFP, and formation of adult-

specific alae were assayed.

We next sought to determine whether the lin-42 mutations we

isolated suppressed only terminal heterochronic phenotypes or if

they corrected additional stage-specific cell lineage defects

associated with lin-4(ma161), let-7(n2853) and alg-1(ma192)
mutations. To test if our new lin-42 mutants correct retarded cell

lineage phenotypes, we compared multiple hypodermal cell

lineages in lin-4(ma161), alg-1(ma192), and let-7(n2853) single

mutants to double mutants that also harbored the individual lin-

42 candidate suppressor mutations. lin-4 animals lack vulval

structures as a consequence of reiterating L1-specific develop-

mental programs in the hypodermis and failing to interpret

inductive cues from the anchor cell that initiate vulval morpho-

genesis at the L3 stage [40,52]. The vulvaless (Vul) phenotypes of

lin-4(ma161) animals are highly penetrant (Figure 1B, F) and are

almost completely suppressed by lin-42(ma206), lin-42(ma208),
lin-42(csh1), lin-42(csh4) and lin-42(csh5) (Figure 1B, F). These

results indicate that lin-42 functions to control cell fate specifica-

tion in at least the mid-L3 stage, when the vulval precursors are

spatially patterned.

The ability of several of these suppressors to alleviate

hypodermal cell lineage phenotypes in miRNA hypomorphic

mutants was not limited to the vulval cell lineage. The lateral seam

cells of lin-4(ma161), alg-1(ma192), and let-7(n2853) animals

display altered temporal cell fate specification and also fail to

terminally differentiate at the L4 molt. As a consequence, lin-
4(ma161), alg-1(ma192), and let-7(n2853) animals lack alae

structures as young adults (Table 1, Figure 1D). The alae

phenotypes in lin-4(ma161), alg-1(ma192), and let-7(n2853)
mutants was strongly suppressed by the lin-42(ma206) allele

(Table 1). alg-1(ma192) mutants reiterate L2-specific seam cell

division programs due to the inappropriate perdurance of hbl-1
expression at the L3 stage [49]. As a consequence, young adult

alg-1(m192) animals harbor supernumerary seam cells (23.5+/2

3.78; WT = 11) (Figure 1D, E). lin-42(ma206) mutations strongly

suppress the L2-to-L3 heterochronic phenotypes of alg-1(ma192)
mutants as lin-42(ma206); alg-1(ma192) animals exhibit a

significant reduction in the number of supernumerary seam cells

(11.9+/21.3) and display normal adult alae (Figure 1D and E).

Therefore, lin-42 has a role in controlling L2-to-L3 temporal cell

fate transitions.

lin-42 mutations do not suppress lineage defects and
lethal phenotypes associated with lin-4(0) and let-7(0)
alleles

We asked whether our new lin-42 alleles could suppress the

heterochronic phenotypes associated with lin-4(e912) and let-
7(mn112) null mutants to a level similar to that observed with the

hypomorphic alleles used in our initial screens. To test this, we

compared aspects of vulval cell proliferation and morphogenesis at

the early L4 stage in lin-4(ma161), lin-42(csh5) lin-4(ma161),
lin-4(e912) and lin-42(csh5) lin-4(e912) mutants to those of

similarly staged wild-type and lin-42(ma205) animals. Lowering

lin-42 function in the context of the hypomorphic lin-4(ma161)
background results in a strong restoration of vulval development

with 85% of animals exhibiting induction/proliferation and

invagination of P cells from the larval cuticle (Figure 1B and F).

Surprisingly, 42% percent of lin-42(csh5) lin-4(ma161) animals

exhibited morphologically normal adult vulva and were competent

for egg laying (n = 100). In contrast, reducing lin-42 activity in lin-

Figure 1. Mutations in lin-42 suppress defects in temporal gene expression and cell lineage phenotypes of heterochronic miRNA
mutants. (A) The genomic locus of lin-42 and the corresponding location of the mutations identified in this screen. Red labeled alleles were
identified in lin-4(ma161), blue in alg-1(ma192) and green in let-7(n2853) genetic backgrounds. Alleles labeled in black have been previously described
[39,47,48]. (B) Defects in vulval cell fate specification in lin-4 mutant animals are corrected by lin-42 mutations. (C) Adult-specific Pcol-19::GFP
expression patterns in wild-type, alg-1(ma192) and lin-42(ma206); alg-1(ma912) animals. (D) Adult-specific alae phenotypes and seam cell phenotypes
of wild-type, alg-1(ma192) and lin-42(ma206); alg-1(ma192) animals. Solid yellow lines indicate complete alae whereas dashed yellow lines indicate an
absence of alae structures. Yellow arrowheads indicate lateral seam cells. (E) Quantification of seam cell numbers of young adult wild-type, lin-
42(ma206), alg-1(ma192) and lin-42(ma206); alg-1(ma192) animals. Red error bars indicate standard deviation from the mean (SD) (F and G) lin-42
mutations suppress vulval cell lineage and lethality phenotypes of hypomorphic alleles of heterochronic miRNAs but not null mutations of these
genes. For E, F and G, four asterisks (****) indicate a highly significant association (the two-tailed P value is less than 0.0001) between groups and/or
outcomes as measured by Fisher’s exact test and n.s. equals no statistical significance.
doi:10.1371/journal.pgen.1004486.g001
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4(e912) animals has little or no effect on P cell proliferation and

vulval morphogenesis (Figure 1F). lin-42 exhibits a similar genetic

relationship to let-7 mutations. Both hypomorphic (n2853) and

null (mn112) alleles of let-7 display highly penetrant vulval

bursting phenotypes at the L4-to-adult transition (Figure 1G)

[16,28]. lin-42 mutations almost completely suppress the lethality

associated with larval-to-adult transitions in let-7(n2853) animals

but do not statistically improve the viability of let-7(mn112) adults

(Figure 1G). These results strongly suggest that lin-42 mutations

are not bypass suppressors of lin-4 or let-7 mutant phenotypes but

likely require a minimum level of lin-4 or let-7 activity for

suppression.

lin-42 loss-of-function mutations lead to an
overproduction of many C. elegans miRNAs

One mechanism by which lin-42 mutations could suppress

multiple hypomorphic miRNA mutants would be that lin-42
normally functions to repress some aspect of miRNA metabolism.

To directly test this hypothesis, we measured the abundance of

several mature miRNAs when lin-42 function is compromised.

Northern blot analysis of total RNA extracted from morpholog-

ically-staged, young adult animals demonstrates that the total

amount of lin-4 and let-7 miRNAs in alg-1(ma192) mutants is 1–

1.5 fold lower than the levels found in wild-type animals (Figure 2A

and B). In addition to reducing the levels of mature let-7 miRNA,

alg-1(ma192) animals display a slight reduction in pre-miRNA

processing and accumulate the pre-let-7 hairpin precursor. This

under-accumulation phenotype of mature lin-4 and let-7 miRNAs

in alg-1(ma192) mutants is suppressed when lin-42 function is

compromised (Figure 2A). Consistent with our hypothesis that lin-
42 normally inhibits miRNA biogenesis, similarly-staged lin-
42(ma206) mutants over-accumulate both lin-4 and let-7
miRNAs (Figure 2A). While the amount of mature let-7 miRNA

increases in lin-42(ma206); alg-1(ma192) double mutants, the

ratio of pre-let-7 to mature let-7 miRNA is similar to that detected

in alg-1(ma192) single mutants (Figure 2A). Therefore, although

mature let-7 miRNA over-accumulates in lin-42(ma206) mutants,

there is no change in pre-let-7 to mature let-7 processing efficiency

as compared to wild type. These data suggest that lin-42
mutations alter aspects of miRNA expression upstream of pre-

miRNA processing.

To determine if lin-42 plays a more broad role in modulating

miRNA expression, we employed real-time quantitative PCR to

measure the expression levels of additional miRNAs in morpho-

logically-staged, young adult wild-type, lin-42(ma206), alg-
1(ma192) and lin-42(ma206); alg-1(ma192) animals. We

measured a variety of miRNAs that display tissue-specific and

temporal expression patterns that are distinct from lin-4 and let-7
miRNAs [35,53–58]. For comparison, we also assayed the

expression of two additional small nuclear RNAs (U18 and

sn2343) as well as two 21U RNAs that associate with PRG-1, a

distinct Argonaute involved in the C. elegans piRNA pathway

[59–61]. Consistent with the observation that alg-1(ma192)
mutations broadly affect miRNA expression, the abundance of all

miRNAs tested (lin-4, miR-48, miR-241, miR-84, let-7, miR-1,

miR-46, miR-58 and miR-79) was decreased in alg-1(ma192)
mutants (Figure 2B). The general miRNA under-accumulation

phenotype displayed in alg-1(ma192) mutants was suppressed by

removing lin-42 function (Figure 2B). Importantly, the expression

levels of the 21U-RNA transcripts were not significantly altered

in lin-42(ma206) mutants (Figure 2B). Examination of miRNA

expression in lin-42(ma206) mutants indicate that all tested

miRNAs were overexpressed from ,1.8 to ,3.2 fold when

compared to similarly-staged wild-type animals (Figure 2B).

miRNA stability is dependent on a variety of factors, including

the expression levels of the Argonaute components of miRISC

[62]. To determine if the increase in miRNA levels in lin-42
mutant backgrounds was due to the overexpression of the C.
elegans miRNA-specific Argonautes (ALG-1 and ALG-2), we

quantified the levels of functional ALG-1 and ALG-2 fluorescent

reporters in animals with reduced lin-42 activity. The results of

this analysis, presented in Figure S1, indicate that ALG-1 and

Figure 2. lin-42 mutations lead to the overexpression of several miRNAs. (A) Small RNA northern analysis of 20 mg of total RNA extracted
from morphologically staged, young adult wild-type, lin-42(ma206), alg-1(ma192) and lin-42(ma206); alg-1(ma192) animals. Blots were probed
sequentially for the indicated miRNAs. tRNAGly serves as a loading control. (B) The results of miR-TaqMan assays to quantify the levels of mature
miRNAs in wild-type, lin-42(ma206), alg-1(ma192) and lin-42(ma206); alg-1(ma192) animals. Notice that lin-42(ma206) displays the highest levels of
miRNAs relative to the other genotype backgrounds. Data represent 3 biological replicates with 3 technical replicates each. Heat map colors are
shown as log 2 scale as indicated and within each individual assay. Red indicates an increase in miRNA expression and blue indicates a reduction in
mature miRNA levels. Numbers within each box indicate standard fold change when compared to wild-type samples.
doi:10.1371/journal.pgen.1004486.g002
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ALG-2 expression is not altered in lin-42(RNAi) animals.

Collectively, these results indicate that lin-42 functions to

negatively regulate the expression of a wide range of miRNAs.

lin-42 suppresses dosage-dependent phenotypes of non-
heterochronic miRNA mutants

Because lin-42 regulates the abundance of many miRNAs, we

asked if lin-42 functions in other gene regulatory pathways where

controlling the expression levels of specific miRNAs is critical for

proper cell fate determination. To test this idea, we examined how

mutations in lin-42 affected the cell fate specification of two

bilaterally symmetric gustatory neurons, ASE left (ASEL) and ASE

right (ASER). Normally, a complex gene regulatory network

composed of miRNAs and transcription factors form a bi-stable,

double-negative feedback loop that ensures mutually exclusive

gene expression programs in ASEL and ASER neurons [63,64]. A

major determinant of the exclusive gene expression programs in

these two neurons is the ASEL-specific expression of the lsy-6
miRNA and the resulting down-regulation of its target, cog-1.

Animals completely lacking lsy-6 fail to down regulate COG-1 in

ASEL, and, as a consequence, ASEL neurons in lsy-6(ot71) null

mutants adopt an ASER cell fate [63]. These phenotypes can be

monitored by a failure to express the Plim-6::GFP transcriptional

reporter in ASEL in lsy-6 mutants (Figure 3A). Importantly, lsy-6-

mediated repression of cog-1 is dosage-dependent; weak alleles of

lsy-6, such as ot150, under-accumulate lsy-6 miRNA as a

consequence of reduced lsy-6 transcription and result in a partially

penetrant ASEL-to-ASER cell fate transformation phenotype

(Fig. 3B) [64]. The ot150 allele of lsy-6 has been used in a variety

of contexts as a sensitized genetic background to identify gene

products that function in the miRNA pathway [65–67]. While

13% of animals harboring only the lsy-6(ot150) allele fail to

maintain Plim-6::GFP in ASEL, the penetrance of this phenotype

is partially suppressed in lin-42(ma206); lsy-6(ot150) double

mutants (Figure 3B), suggesting that lin-42 may play a modulatory

role in neuronal cell fate specification. To further explore a

potential role for lin-42 in assuring proper neuronal cell fate

specification, we developed a more sensitive assay for the lsy-6-

mediated repression of cog-1. As previously mentioned, alg-
1(ma192) mutants display defects in variety of miRNA-mediated

processes, including developmental timing [49]. While the alg-
1(ma192) mutation alone does not alter Plim-6::GFP expression

in ASEL, combining alg-1(ma192) with lsy-6(ot150) results in a

dramatic increase in ASEL to ASER cell fate mis-specification

(Figure 3B). As with the suppression of alg-1(ma192) hetero-

chronic phenotypes, reducing lin-42 function significantly restores

normal ASEL cell fate specification in lsy-6(ot150); alg-1(ma192)
animals (Figure 3B). Because lsy-6-mediated cell fate specification

is established during embryonic development, we conclude that

lin-42 functions throughout development and is critical for

multiple miRNA-mediated developmental processes.

miRNAs display dynamic expression patterns that are
coupled to the molting cycles

To characterize the spatial and temporal expression patterns of

lin-42-regulated miRNAs, we generated a series of engineered

transcriptional reporters that contain between 2 and 5 kB of

genomic upstream regulatory sequence that drives the expression

of GFP fused to an optimized proline-glutamate-serine-threonine-

rich (PEST) sequence. PEST domains have been demonstrated, in

a variety of heterologous systems, to accelerate the degradation of

target proteins via the nuclear and cytoplasmic 26S proteasome

[41,68–71]. In contrast to transcriptional reporters that drive the

expression of stable GFP, analysis of GFP-pest expression in Plin-
4::GFP-pest, Plet-7::GFP-pest or PmiR-1::GFP-pest transgenic

animals indicates that the expression of each transcriptional

reporter is highly dynamic, with peak GFP-pest expression

occurring once each larval stage (n.30 animals per time

point)(Figure 4A) [29,53,55]. The highly dynamic nature of each

expression pattern was then monitored in a population of worms

that were transiently arrested at the L1 diapause and then

developmentally synchronized by restoring bacterial food. For

each of the mir::GFP-pest reporters, post-embryonic GFP-pest

expression was first detected at approximately 14 hours (Figure 4B,

D and F). Once transcriptionally activated, Plin-4::GFP-pest and

Plet-7::GFP-pest reporters peak in expression by 18–20 hours and

diminish with similar kinetics (Figure 4B and D). For animals

expressing the Plet-7::GFP-pest reporter we monitored GFP-pest

expression for longer periods after release from L1 arrest.

Consistent with the highly pulsatile nature of this expression

pattern, GFP-pest expression was reinitiated at 30 hours, which

correlates with the later portions of the L2 stage (Figure S3). While

transcriptional activation of the Pmir-1::GFP-pest reporter was

also initiated at 14 hours post-L1 arrest, the peak of Pmir-1::GFP-
pest expression occurred at a later time point, and diminished with

slower kinetics, as compared to Plin-4::GFP-pest and Plet-
7::GFP-pest expression (Figure 4F).

Figure 3. lin-42 suppresses neuronal phenotypes associated
with lsy-6 miRNA-mediated cell fate specification. (A) A diagram
of a C. elegans larva illustrating the location of the gustatory neurons,
ASEL and ASER, whose asymmetric patterns of gene expression are
controlled by the ASEL-specific expression of the lsy-6 miRNA.
Mutations in lsy-6 result in animals that fail to express the ASEL-specific
cell fate reporter Plim-6::GFP. (B) Quantification of Plim-6::GFP expression
phenotypes of lsy-6, lin-42, alg-1, and lin-42; alg-1 compound mutants.
Four asterisks (****) indicate a highly significant association (the two-
tailed P value is less than 0.0001) between groups and/or outcomes as
measured by Fisher’s exact test. Two asterisks (**) indicate a statistically
significant association (P = 0.0242).
doi:10.1371/journal.pgen.1004486.g003
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We then asked whether the temporal expression pattern of each

Pmir::GFP-pest reporter was synchronized with defined stages of

the molting cycle, specifically lethargus and ecdysis. To accomplish

this, we isolated late-L3-staged transgenic animals and cultured

them on separate nematode growth media (NGM) plates at 20uC.

Individual animals were then monitored for GFP-pest expression

in relation to the induction and termination of both lethargus and

ecdysis (Figure 4C, E, and G). We find that the majority of animals

which harbor the Plin-4::GFP-pest transgene cease GFP-pest

expression by L3 ecdysis and resume expression by the mid-L4

stage. The pulse of Plin-4::GFP-pest expression at the L4 stage

extends through the early portion of young adulthood and

completely overlaps with the lethargus period in all animals

(Figure 4C). Plet-7::GFP-pest expression followed a similar

pattern (Figure 4E). However, GFP-pest expression was more

variable at the L3-to-L4 transition and L4-specific induction of this

transgene was primarily restricted to the lethargus period

(Figure 4E). In contrast to the expression profiles of the lin-4
and let-7 reporters, induction of Pmir-1::GFP-pest expression

began during, or immediately after, L3 ecdysis and persisted into

Figure 4. The promoters of three different miRNAs display dynamic expression patterns that are coupled to the larval molting
cycle. (A) Transcriptional reporters for lin-4, let-7 and miR-1 drive GFP-pest expression in an oscillatory manner during C. elegans post-embryonic
development. For each reporter, a single pulse of GFP expression is seen near the end of each inter-molt period of animals grown at 20uC (eL1, early
L1 stage; lL1, late L1 stage). (B–K) GFP or mCherry expression profiles of animals expressing the indicated reporters. For panels B, D, F, H and J, larvae
were synchronized by starvation-induced L1-diapause, fed and cultivated at 20uC. For panels C, E, G, I and H, a single animal in L3 lethargus (as
judged by reduced movement and lack of pharyngeal pumping) was placed on an individual NGM plate seeded with OP50, grown at 20uC, and
monitored for GFP or mCherry expression (yellow dots), the lethargus period (grey bars) or ecdysis (red bars). Plin-4::GFP-pest and col-12::mCherry-pest
expression were monitored simultaneously in HML168, which co-expresses both reporters. (L) Representative fluorescent images of individual
animals expressing the Plin-4::GFP-pest reporter at the indicated stage at 20uC. (M) Graphical representation of the percentage of animals expressing
the Plin-4::GFP-pest reporter in any of the hyp7, seam or muscle cells at the indicated stage (n = 20 for each stage).
doi:10.1371/journal.pgen.1004486.g004
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Figure 5. LIN-42 binds to the putative regulatory regions of both miRNAs and mRNAs. (A) Plet-7::GFP-pest expression is elevated in late L3-
staged lin-42(n1089) animals compared to the expression in similarly-staged wild-type animals. (B) Quantification of whole-animal GFP expression in
late L3-staged wild-type (n = 20) and lin-42(n1089) animals (n = 20). Error bars indicate the standard deviation from the mean (SD). (C) A representative
image of the LIN-42::GFP binding sites within the let-7 genomic region from ChIP-Seq experiments. (D) A pie chart indicating the distribution of the
413 high confidence LIN-42::GFP peaks that were assigned to a RefSeq list of gene models for C. elegans (ce10). (E) LIN-42::GFP binding sites are
enriched upstream of the putative transcriptional start sites of both coding and non-coding regions of the genome.
doi:10.1371/journal.pgen.1004486.g005
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the L4 stage. A second pulse of Pmir-1::GFP-pest expression

completely overlapped with the L4 lethargus period and continued

into early adulthood (Figure 4G). Collectively, these results suggest

that the expression patterns of lin-4, let-7 and mir-1 are dynamic

throughout development and that the cyclical transcription of

these miRNAs is mediated by their cognate promoter sequences.

Furthermore, these data show that, while each of the Pmir::GFP-
pest reporters display pulsatile expression patterns, the transcrip-

tional dynamics for each gene do not display a complete unity of

phase in their expression profiles.

To compare the temporal expression patterns of these three

miRNAs with that of lin-42, we constructed transgenic strains that

expressed either Plin-42a::GFP-pest or Plin-42b::mCherry-pest
and subjected these animals to the same time course analyses. It

has been previously demonstrated that two independent promoters

drive the expression of LIN-42A, LIN-42B and LIN-42C isoforms

[39]. Consistent with these findings, Plin-42a::GFP-pest and Plin-
42b::mCherry-pest reporters displayed highly pulsatile expression

during the L1 stage with initiation and termination of expression

at 12 and 28 hours post L1 arrest, respectively (Figure 4H). In

addition, we find that Plin-42a::GFP-pest expression peaks at

16 hrs, immediately preceding the expression of the Pmir::GFP-
pest reporters, while the peak of Plin-42b::mCherry-pest expression

occurs at 20 hrs (Figure 4H). Detailed analysis of individual L3-to-

adult animals indicates that Plin-42a::GFP-pest expression

displays a temporal expression pattern that is highly similar to

Plin-4::GFP-pest and Plet-7::GFP-pest expression (Figure 4I).

Specifically, in all three reporters, GFP-pest expression diminishes

prior to L3 ecdysis, resumes prior to the L4 lethargus period, and

terminates immediately after L4 ecdysis (Figure 4I). In striking

contrast to our mir and lin-42 transcriptional reporters, Pcol-
12::mCherry-pest expression does not occur during the molting

cycle, but rather is exclusively expressed after each ecdysis

(Figures 4J and 4K).

Previous analysis of lin-4 and let-7 expression indicates that

these miRNAs are expressed in a variety of tissues, including the

Figure 6. lin-42 controls the output of lin-4 and let-7 transcription. (A) Representative expression patterns of the Plin-4::GFP-pest and Plet-
7::GFP-pest transcriptional reporters in morphologically-staged wild-type and lin-42(n1089) animals grown at 20uC (early L3 to young adult). See
Figure S4 for details. (B and C) A quantitative representation of gene expression profiles measured at the cellular level for both transcriptional
reporters. GFP intensities for Plin-4::GFP-pest and Plet-7::GFP-pest were measured in the nuclei of hypodermal cells and seam cells, respectively. For
Plin-4::GFP-pest, each data point in the graph represents the average from 200 nuclei. For Plet-7::GFP-pest, each data point represents the average
from 50 seam cells. Error bars indicate the standard deviation from the mean (SD). (D) Quantitation of Pmlt-10::GFP-pest reporter expression in the
hyp7 cells of lL4-staged F1 animals that have been exposed to bacteria expressing control RNAi (pDP129.36) or bacteria expressing dsRNAs against
two isoforms of the lin-42 gene (n = 20 for each experiment). Error bars indicate the standard error of the mean (SEM). (E) Quantitation of Pcol-
12::mCherry-pest reporter expression in seam cells of young adult, wild-type (n = 20) or lin-42(n1089) animals (n = 20). Error bars indicate the standard
error of the mean (SEM).
doi:10.1371/journal.pgen.1004486.g006
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hypodermis, intestine and muscle [29,35,53,57]. To determine if

Plin-4::GFP-pest displays differential temporal expression pat-

terns in a subset of these tissues, we conducted a detailed

examination of GFP-pest expression from the early-L3 to the

young adult stage. Twenty animals from each of eight morpho-

logically-defined stages were imaged (Figure 4L and Figure S4)

and then qualitatively scored for GFP-pest expression in seam

cells, hyp7 cells or lateral muscle cells (Figure 4M). Expression of

the Plin-4::GFP-pest reporter peaked in hyp7 and seam cells at

the mid- and late-L3 stage and then again at the late-L4 stage. In

addition, the majority of animals exhibited a cessation of hyp7 and

seam cell Plin-4::GFP-pest expression immediately after L4

ecdysis (Figure 4M). In contrast, Plin-4::GFP-pest expression in

muscle cells displayed a different transcriptional profile. In the

majority of animals, expression of GFP-pest in muscles peaked at

L3 ecdysis, gradually diminished throughout the remainder of the

L4 stage, and increased again at the young adult stage (Figure 4M).

These results suggest that, while lin-4 is dynamically expressed

once each larval stage, its promoter activity may be differentially

regulated in distinct tissues.

LIN-42 is enriched at promoters of coding and non-
coding genes

Analysis of the Plet-7::GFP-pest and Plin-4::GFP-pest report-

ers in lin-42 loss-of-function (lf) animals demonstrated that

mutants that alter either lin-42 b/c (lin-42(n0189)) or lin-42a/b
(lin-42(ok2385)) isoforms display elevated Pmir-GFP-pest expres-

sion in late larval development (Figure 5A, B and Figure S2).

These altered temporal expression patterns suggested that lin-42
may normally function to modulate aspects of miRNA transcrip-

tion. To investigate the potential interactions between LIN-42 and

transcriptional regulatory elements, we performed chromatin

immunoprecipitation coupled to high throughput sequencing

(ChIP-seq) using extracts prepared from animals harboring a

functional, GFP-tagged allele of lin-42 (Figure 5C). From two

independent biological ChIP-seq replicates derived from separate

L4-staged extracts, we obtained 413 high confidence peaks

corresponding to chromosomal regions in which LIN-42 is

enriched (see Table S2 and Materials and Methods). In agreement

with the hypothesis that LIN-42 regulates let-7 transcriptional

activity, we find LIN-42 binding sites at conserved let-7 promoter

regions that have been previously demonstrated to control let-7
expression (Figure 5C) [31,35,57]. Annotation of additional high

confidence peaks revealed that 38% (158/413) of LIN-42 peaks

fell within the promoters (defined as 2 kb upstream of each gene)

of either coding or non-coding genes, 24% (99/413) fell within the

introns of coding genes, 8% (34/413) fell within gene bodies and

29% (121/413) fell within other intergenic regions (Figure 5D).

Comparison between LIN-42 peak frequency and their distribu-

tion relative to the closest annotated transcription start site (TSS)

revealed that LIN-42 has two major regions of enrichment: 1)

directly at TSSs and 2) at approximately 750 bp upstream of a

TSS (Figure 5E). Of these high confidence peaks, 323 were also

detected in LIN-42 ChIP-seq samples obtained using an antibody

against endogenous LIN-42, suggesting that this list forms a short,

but high confidence, group of LIN-42 target genes. A list

describing all high-confidence annotated LIN-42 peaks is provided

in Table S2. Using the Generic Gene Ontology Term Mapper, we

found that numerous genes with high-confidence LIN-42 peaks

can be categorized into groups that function in many diverse

biological processes, including development, transport, small

molecule metabolism, embryogenesis and growth (Table S3).

Collectively, these results strongly suggest that LIN-42 plays a role

(either directly or indirectly) in a broad range of biological

processes and that it predominately interacts with the promoter

regions of coding and non-coding genes to regulate their

expression.

lin-42 negatively regulates the transcriptional output of
lin-4 and let-7

The genetic and regulatory relationships between lin-42 and

lin-4 or let-7, as well as the overlapping temporal expression

patterns of these three genes, suggest that lin-42 may play a

role in modulating the dynamics of lin-4 and let-7 transcrip-

tional activity. To directly test the idea that lin-42 regulates

miRNA levels at the transcriptional level, we quantified the

transcriptional profiles of Plin-4::GFP-pest and Plet-7::GFP-
pest reporters in wild-type animals and lin-42(n1089)
mutants. The n1089 allele of lin-42 deletes genomic sequences

that eliminate the coding potential of the lin-42b and c
isoforms (Figure 1A) and displays strong heterochronic

phenotypes [39,46,47]. Importantly, these isoforms contain

the domains, PAS-A and PAS-B, that most closely link LIN-42

to PERIOD, a protein involved in controlling the cyclical

expression patterns of circadian-regulated genes

[39,47,48,72,73]. We focused on quantifying the GFP inten-

sities of 1) the hypodermal cells in L3-to-adult-staged Plin-
4::GFP-pest animals and 2) the seam cells of similarly-staged

Plet-7::GFP-pest animals. These tissues and stages were

selected for analysis because the majority of well-characterized

heterochronic phenotypes are detected in these tissues

[16,24,39,42,46–48]. Expression levels for each transcriptional

reporter were analyzed throughout eight defined and sequen-

tial stages that spanned from early L3 to young adult

(Figure 6A–C and Figure S4). In agreement with our previous

observations, expression of Plin-4::GFP-pest in hypodermal

cells of wild-type animals is dynamic throughout development

and displays two main peaks of GFP expression: one at the

late-L3 stage and the other at the L4 molt (Figure 6A, B).

Similar results are also observed in the seam cells of wild-type

animals expressing the Plet-7::GFP-pest reporter (Figure 6B,

C). One exception, however, is that that the first peak of Plet-
7::GFP-pest expression occurs at the mid-L3 stage (Figure 6B,

C). Surprisingly, we find that the cyclical pattern of expression

of these reporters is not affected in animals carrying the lin-
42(n1089) mutation; both lin-42(n1089) and wild-type

animals display nearly identical Plin-4::GFP-pest and Plet-
7::GFP-pest temporal expression patterns (Figure 6A, B and

C). In contrast, the abundance of GFP-pest expression for each

reporter is universally higher in lin-42(n1089) mutants as

compared to similarly-staged wild-type animals (Figure 6 A, B

and C). In the case of the Plin-4::GFP-pest reporter, higher

levels of GFP-pest intensity are observed in hypodermal cells

throughout all developmental stages, with the greatest differ-

ence occurring between the late-L3 and L3-molt stages (3.1

and 4.3 fold respectively)(Figure 6B). Interestingly, although

Plet-7::GFP-pest expression in lin-42(n1089) mutants is also

greater in seam cells between the late-L3 and L3-molt stages (2

fold each), Plet-7::GFP-pest expression in lin-42(n1089) and

wild-type animals is practically indistinguishable from wild-

type during the mid-L4 to the young adult stages (Figure 6C).

Taken together, these results suggest that mutations that

abolish the expression of PAS domain-containing LIN-42

isoforms do not alter the cyclical expression patterns of

miRNA genes during development. Rather, these mutations

alter the transcriptional output of miRNAs that display

oscillatory expression patterns.
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As demonstrated in Figure 5D and Table S2, LIN-42 binds the

putative regulatory regions of multiple protein coding genes. This

observation raises the possibility that LIN-42 may modulate the

transcriptional output of other developmentally regulated genes,

including those whose expression, like that of lin-4 and let-7, is also

linked to the molting cycle. To determine if lin-42 mutants alter

the transcriptional output of other cyclically expressed mRNAs, we

observed the expression of two transcriptional reporters for

genes involved in the molting process, Pmlt-10::GFP-pest and

Pcol-12::mCherry-pest. In wild-type animals, Pmlt-10::GFP-pest
transcription begins at the end of each larval period when the new

cuticle is being synthesized [39,41]. We monitored the expression

of Pmlt-10::GFP-pest in F1 animals that had been exposed to

control RNAi or two RNAi constructs that target all major

isoforms of lin-42 and induce precocious expression of Pcol-
19::GFP and adult alae [74]. As with the expression of Plin-
4::GFP-pest and Plet-7::GFP-pest reporters, the Pmlt-10::GFP-
pest reporter maintained its normal, oscillatory pattern of

expression in lin-42(RNAi) animals. Quantification of Pmlt-
10::GFP-pest reporter expression at the late-L4 stage (where

Pmlt-10::GFP-pest normally peaks [39,41]) indicates that lin-42
depletion does not alter the transcriptional output of the mlt-10
promoter (Figure 6D). In addition, quantification of the Pcol-
12::mCherry-pest reporter in young adult lin-42(n1089) animals

also indicates that mutations in lin-42 do not alter the temporal

expression patterns or levels of the col-12 promoter (Figure 6E).

Therefore, while lin-42 mutations alter the transcriptional output

of the lin-4 and let-7 genes, lin-42 does not play an essential role

in controlling the oscillatory expression patterns or transcriptional

output of all genes whose expression is tied to the molting cycle.

Discussion

Using an unbiased genetic approach, we sought to identify

factors that modulate the expression of miRNAs that are critical

for controlling temporal patterns of development throughout post-

embryonic development. Our strategy was two-fold: 1) we sought

to identify suppressors of heterochronic miRNA mutant pheno-

types characterized by stage-specific alterations in temporal

patterning and 2) we focused on identifying suppressors that

preferentially alleviate phenotypes that result from a reduction in,

rather than a complete loss of, miRNA expression. These efforts

identified lin-42, the C. elegans homolog of the circadian period
gene, as a component that not only modulates heterochronic

miRNA expression, but also regulates the expression of a wide

range of broadly expressed, and functionally distinct, C. elegans
miRNAs. Previous genetic analyses implicated lin-42 as a

heterochronic gene that normally inhibits the precocious expres-

sion of adult characteristics [39,46–48]. The precise placement of

lin-42 in the developmental timing pathway has been difficult to

incorporate due to the observation that lin-42 mutations alter cell

lineage programs that occur exclusively in late development,

namely the transition from the L3 to the L4 stage [46–48,51]. In

addition, epistasis experiments with other developmental timing

mutants suggest that its interaction with other heterochronic genes

is complex [46,47,51,75,76]. Furthermore, unlike other compo-

Figure 7. A model for lin-42 function in regulating post-embryonic miRNA expression. (A) In wild-type animals, transcriptional activation
of miRNAs and lin-42-regulated mRNAs is pulsatile and displays a peak of expression once each larval stage. The temporal expression of these miRNAs
and mRNAs begins in the later portions of each stage and are coincident with behavioral and morphological events that demarcate the end of each
larval stage. Several temporally-regulated miRNAs and mRNAs share similar patterns of expression that are coupled to the molting cycle. By ecdysis
and initiation of a new larval stage, periodic expression of miRNAs, mRNAs and lin-42 ceases. (B) The oscillatory expression patterns of miRNAs and
mRNAs are maintained in animals that lack expression of LIN-42 isoforms containing the PAS domains. Only the transcriptional output of lin-42-
regulated genes is altered, leading to the precocious phenotypes observed in these lin-42 mutants. (C) Analyses of LIN-42 ChIP data and the
expression patterns of the lin-4 and let-7 transcriptional reporters in lin-42 mutants indicate that LIN-42 negatively regulates the transcriptional output
of miRNA genes. We hypothesize that LIN-42 normally counteracts the transcriptional activity of one or more sequence-specific transcription factors
(TF) that normally promote temporal expression. We would also predict that LIN-42 alters multiple aspects of transcription through its direct
interaction with the TF or by binding to other cis-regulatory elements or to components of the transcriptional machinery. Mutations that alter only
PAS domain-containing isoforms of LIN-42 fail to dampen transcriptional output. Importantly, this class of LIN-42 mutants would leave LIN-42A
expression intact. Expression of LIN-42A would ensure normal periodic transcription of target genes and normal molting cycles and behaviors.
doi:10.1371/journal.pgen.1004486.g007
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nents that control discrete aspects of temporal patterning and

display monotonic expression patterns, lin-42 expression is highly

dynamic, suggesting a reiterative role for it in the heterochronic

pathway.

Results from our screens have identified five new alleles of lin-
42 that suppress the adult-specific gene expression defects of

hypomorphic alleles of heterochronic miRNAs. We also find that

lin-42 corrects stage-specific cell fate specification defects present

throughout larval and adult development in these miRNA

mutants. These results indicate that lin-42 functions iteratively

to control temporal cell fate specification by controlling the

transcription of distinct miRNAs. In addition, we demonstrate that

our newly-identified lin-42(lf) mutants precociously express adult-

specific programs and that these defects are suppressed by

mutations in components of the miRNA machinery. Accordingly,

these data suggest that lin-42(lf) heterochronic phenotypes are

due to an overexpression of specific miRNAs that control temporal

patterning. Also, our results demonstrate that lin-42 mutations are

not bypass suppressors of the heterochronic phenotypes displayed

by lin-4 and let-7 null mutants, suggesting that lin-42 suppresses

retarded heterochronic phenotypes by increasing the expression of

heterochronic miRNAs or enhancing their effectiveness in

regulating miRNA targets.

Multiple lines of evidence described in this manuscript support

the conclusion that LIN-42 regulates the transcription of a wide

array of miRNAs. First, we investigated how our lin-42 suppressor

alleles affected the overall levels of a subset of miRNAs involved in

developmental timing. alg-1(ma192) animals display profound

defects in temporal cell fate specification and also under-

accumulate both lin-4 and let-7 miRNAs. Genetic and molecular

experiments indicate that lin-42 suppresses alg-1(ma192)-depen-

dent phenotypes by increasing the available amount of mature

miRNAs. Second, lin-42(ma206) mutants over-accumulate mul-

tiple miRNAs, including those with no apparent role in

developmental timing. Consistent with the hypothesis that lin-42
functions in additional gene regulatory pathways that require

miRNA activity, we demonstrated that lin-42(lf) mutants suppress

phenotypes associated with the under-accumulation of a miRNA

that is essential for proper neuronal cell fate specification. Because

lsy-6-mediated regulation of cog-1 expression is dosage-dependent,

we speculate that lin-42(lf) mutations suppress neuronal cell fate

specification defects by de-repressing lsy-6 transcription in ASEL

neurons.

In order to understand how lin-42 may modulate miRNA

expression, we pursued two lines of inquiry. First, we constructed a

series of reporters that allowed us to measure, in detail, the

transcriptional dynamics of multiple miRNAs in developing

animals. Using these reporters, we found that several hetero-

chronic miRNAs, such as lin-4 and let-7, exhibit highly dynamic

expression patterns that are synchronized with the expression of

genes required for each molting cycle. Importantly, the expression

of the Plin-4::GFP-pest and Plet-7::GFP-pest reporters coincided

with the transcriptional activation of lin-42. Further analysis of the

lin-4 and let-7 reporters in a lin-42 mutant background indicated

that one function of lin-42 is to negatively regulate the

transcriptional output of miRNA promoters. Therefore, LIN-42

functions in a manner similar to the human and Drosophila
PERIOD proteins, which inhibit the transcription of circadian

regulated genes [77,78]. Second, it has previously been shown that

LIN-42 is a nuclear protein, which suggests that it may play a role

in directly regulating the pulsatile expression patterns of its

downstream targets [48]. In order to explore potential roles for

LIN-42 in directly controlling aspects of miRNA transcription, we

performed ChIP-seq experiments to determine if LIN-42 interacts

with the putative regulatory regions thought to control the

expression of miRNAs and mRNAs. These experiments demon-

strated that LIN-42 interacts with the promoters of non-coding

genes (including let-7) as well as protein-coding genes, suggesting

that lin-42 may regulate the temporal expression of broad class of

genes.

Given the role of human and Drosophila period in regulating

circadian gene expression, we were surprised to find that animals

harboring the lin-42(n1089) allele, which abolishes the expression

of PAS-containing lin-42 isoforms, maintained lin-4 and let-7
periodic expression patterns in later larval development. The PAS

domains of human and Drosophila PERIOD are absolutely

required to maintain the oscillatory expression patterns of

circadian-regulated genes [72,77,78]. In our experiments, peak

expression of the lin-4 and let-7 transcriptional reporters occurred

at roughly the same developmental stages in both wild-type and

lin-42(n1089) animals. Interestingly, although the temporal

expression patterns were similar, the levels of each reporter were

elevated (as high as four fold) in lin-42(n1089) mutants as

compared to wild-type animals (Figure 7A and B). Notably, lin-
42(n1089) mutations do not alter the expression of the lin-42a
isoform, which has been implicated in controlling the periodicity

of the molting cycle [39]. While the dissection of lin-42 function

will require further study, these findings are consistent with the

modular nature of LIN-42 activities and suggest a novel role for

the PAS domains of LIN-42 in regulating the transcriptional

output of periodically expressed genes.

Based on our current observations, we propose a model in

which each of the lin-42 isoform functions to sculpt the dynamic

transcription of both miRNAs and mRNAs. In out model, cis-

regulatory elements within the promoters of specific miRNAs and

mRNAs would be sufficient to drive periodic transcription.

Regulatory elements within these sequences would be bound by

a sequence-specific transcription factor (TF) that would promote

the periodic transcription of these genes near the end of each larval

stage (Figure 7C). Based on the role of PERIOD in other

organisms and our data demonstrating that LIN-42 binds to the

putative cis-regulatory elements of several miRNAs and mRNAs,

we propose a model in which distinct isoforms of LIN-42 function

to regulate the activity of the TF at multiple, genetically separable

levels. Our evidence suggests that mutations that specifically

disrupt isoforms containing the PAS domain (LIN-42B and LIN-

42), fail to properly limit the transcriptional output of genes

regulated by the temporal specific TF (Figure 7C). As a

consequence, although these mutants display essentially normal

temporal patterns of miRNA transcription, the elevated levels of

heterochronic miRNAs lead to precocious developmental pheno-

types. Importantly, mutations that only alter PAS-domain

containing isoforms of LIN-42 retain the expression of LIN-42A

(Figure 7B) [39]. Our model would also predict that mutations that

disrupt LIN-42 isoforms that contain the conserved SYQ/LT

domains (LIN-42A and LIN-42B) would have complex pheno-

types with regard to periodic transcription. Indeed, animals

harboring the lin-42(ok2385) allele, which disrupts the expression

of the LIN-42A isoform (containing the SYQ/LT domains only)

and deletes portions of the LIN-42B isoform (containing both the

PAS and SYQ/LT domains), precociously execute stage-specific

gene expression, fail to maintain periodic molting cycles and

overexpress Pmir::GFP-pest transcriptional reporters [39](Figure

S2). We interpret the complex phenotypes of lin-42(ok2385)
animals as a reduction of the two modular activities of LIN-42

domains. Specifically, a reduction of LIN-42 PAS domain

expression alters transcriptional output and deletion of LIN-42

isoforms which contain the SYQ/LT domains results in defects in
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periodic transcription. Further studies will be needed to define a

specific molecular role for LIN-42 isoforms in maintaining normal

periodic transcription.

Recent reports suggest that a significant portion of the C.
elegans transcriptome is dynamically expressed [79–81]. The

combined interpretation of these studies suggests that the post-

embryonic expression of 5–20% of mRNAs is synchronized with

the molting cycles. The conservation of this process implies that

these temporal gene expression patterns confer fitness to an

organism and raise a number of interesting questions regarding the

nature of developmental gene regulation [81]. Because many

genes whose oscillatory expression patterns are coupled to the

molting cycle control cell fate decisions and cell metabolism in a

dosage-dependent manner, it is interesting to speculate how their

temporal expression patterns, and levels, are coordinated with

their targets. We suggest that lin-42 plays a fundamental role in

this process for a wide range of non-coding and protein-coding

genes. Because many of the transcriptional targets of lin-42
include miRNAs, each of which may regulate a vast array of genes,

the impact on the dynamic nature of the C. elegans transcriptome

during development may be immense.

Materials and Methods

Nematode maintenance and genetics
C. elegans strains were grown under standard conditions and

mutagenized as previously described [82]. Positional cloning of

each suppressor was performed using standard methods [50].

Transformation of animals and integration of extrachromosomal

arrays were performed as previously described [83]. See Text S1

for details of transgenic animals used in this manuscript.

Microscopy
Lineage analysis and scoring of adult alae phenotypes were

performed by picking staged animals of the indicated genotypes

and monitoring seam cells derived from the V lineage as

previously described [22]. All images were taken with an Axio

Scope.A1 microscope equipped with a monochrome camera

(Diagnostic Instruments Inc) and SPOT imaging software (SPOT

Imaging Solutions). GFP images of the hypodermal and seam cells

were used for further quantification of Pmir::GFP-pest intensity.

The average GFP intensity per area (arbitrary units) was

quantified using ImageJ64. For each reporter, 20 individual

animals were analyzed per developmental stage. For Plin-4::GFP-
pest, 10 hypodermal cell nuclei per animal per stage, or a total of

200 nuclei per time point, were used to calculate the average GFP

intensity. For Plet-7::GFP-pest, 5 seam cells per animal per stage,

or a total of 100 cells per time point, were used to calculate the

average GFP intensity.

Northern blots and TaqMan assays
Total RNA was isolated from staged populations of worms, and

northern blots were performed as previously described [27].

Multiplex microRNA TaqMan assays were performed according

to the manufacturer’s specifications (Life Technologies) and

quantified using the ABI 7900HT Fast Real-Time PCR system

(Applied Biosystems). For each biological replicate (3 total), the

means and standard deviations of the raw Ct values were

calculated and the representative heatmap demonstrating the fold

change signal was created using R packages (www.r-project.org).

Developmental and behavioral assays
For the characterization of behavioral and GFP/mCherry

reporter expression, animals were prepared in one of two ways.

For analysis of L1-stage expression, embryos were bleached and

staged according to standard protocols and then plated on

standard NGM media with OP50 [84]. At indicated times after

the release from L1 synchronization, L1-staged animals were

imaged with an Axio Scope.A1 microscope. For analysis of the

molting cycle and GFP/mCherry-pest reporter expression, indi-

vidual animals (non-motile, non-pharyngeal pumping) were picked

to fresh NGM plates seeded with 20 mL of OP50. Time courses

were initiated for each animal after each animal ecdysed. To

determine the active and lethargic periods of animals at each stage,

the pumping rates of individual animals were observed for 30 s of

every hour. GFP/mCherry-pest expression was then monitored

using a Zeiss SteREO Discovery V12 microscope with appropriate

filters. To prevent photo-bleaching, each animal was exposed to ,

3 s of UV light.

Chip-Seq methods
See Text S1 for details.

Supporting Information

Figure S1 Reduction of lin-42 activity does not alter the levels

of the C. elegans microRNA-specific Argonautes, ALG-1 and

ALG-2. Parental animals (MJS13: alg-1(gk214) In[alg-
1p::rfp::alg-1::alg-1 39UTR; alg-2p::gfp::alg-2::alg-2 39UTR;
pRF4]) were fed bacteria expressing the indicated dsRNA and

young adult F1 progeny were photographed with a CCD camera.

(A) Representative images of both reporters in each RNAi

experiment. (B) Quantitation of the average fluorescence for each

reporter in the various RNAi experiments (n = 20 for each RNAi

experiment).

(TIF)

Figure S2 lin-42 mutants lead to the elevated expression of the

Plin-4::GFP-pest reporter. Representative images of Plin-
4::GFP-pest reporter expression in wild-type, lin-42(n1089) and

lin-42(ok2385) animals. Each image was photographed with

identical exposure times.

(TIF)

Figure S3 Plet-7::GFP-pest reporter expression is highly

dynamic. Plet-7::GFP-pest expression begins at ,14–

15 hours, peaks by 19 hrs (near the end of the L1 stage) and

ends after ,21 hours. The peak of GFP-pest expression

precedes the expression of the Pcol-12::mCherry-pest reporter.

By 31 hours post-L1 arrest, the Plet-7::GFP-pest reporter is

induced again.

(TIF)

Figure S4 Vulval morphologies used to stage animals in this

manuscript. (A–H) Representative images of stage-specific vulval

morphology used to classify animals in the transcriptional reporter

activity assays. White triangles represent p-cells. White asterisk

represents the anchor cell. Red triangle represents the initial

invagination observed in L3 molting animals.

(TIF)

Table S1 Alleles of lin-42, origin and predicted alterations of

lin-42 isoforms.

(XLSX)

Table S2 List of high confidence LIN-42 ChIP peaks.

(XLSX)

Table S3 Annotation of GO terms for predicted LIN-42 ChIP-

associated genes.

(XLSX)
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Text S1 Includes details of transgenic animal construction,

ChIP-Seq and data analysis for ChIP-Seq data.

(DOCX)
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