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Foreword 
 
  We are on the cusp of a very exciting era in brain research; emerging molecular and brain-

computer interface technologies increasingly enable us to directly observe and manipulate the 

physical mechanisms underlying mental processes. However, many of the brain’s most interesting 

and elusive abilities depend on inferred mental variables which are difficult to capture 

experimentally. For instance, while confidence enables a brain to make shrewd investments, learn 

optimal strategies and succeed in social exchanges, it strongly manifests to conscious human 

observers as a feeling which is reported verbally. How does one identify something as amorphous as a 

feeling amongst the brain’s electrical signals? What does a confidence signal look like? In this 

dissertation, I answer this fundamental question by relating human self-reports of the feeling of 

confidence to statistical confidence with a normative model that makes three strong predictions about 

how statistical confidence signals should look in different projections of data. I show that these 

signature patterns, one of which had not previously been reported in humans, robustly describe 

confidence in three markedly different contexts: verbal confidence reports from humans performing a 

range of decision making tasks, confidence-guided investment decisions in humans and rodents, and 

p-value confidence measures produced by common statistical hypothesis tests. With this 

understanding of what is being computed – an approximation of statistical confidence - I sought to 

determine which algorithm the brain uses to generate confidence reports. I developed a novel decision 

confidence reporting task, where confidence reports are based on high resolution, temporally 

structured evidence. Using these data, I was able to rule out five previously suggested algorithms, 

each predicting qualitatively different patterns in confidence and the history of evidence use. To 

account for our data, I developed a new algorithm – the Opportunistic Coupled Accumulator (OCA) - 

for computing choice and confidence from sensory evidence in real-time. I found that OCA is able to 

simultaneously fit patterns in human confidence reports and evidence use to within statistical error of 

our data in several key projections. The algorithm provides insight that may help relate measurements 

of functioning neural circuits to the emergence and usage of an abstract mental confidence variable. 

To enable observation of abstract mental variables like confidence in the brain, the brain must be 

engaged in the kind of sophisticated decision making behaviors that require abstract economic 

judgments. I developed a new device for capturing two-choice decisions in the head-fixed mouse, 

availing more sophisticated decision making behaviors to analysis by functional microscopy and 

related techniques. Our findings place mental confidence on the rigorous computational footing which 

is a necessary bridge from abstract variables to electrical impulses, and provide tools to study how 

confidence is physically computed in the neural circuits of humans and rodents.  
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Chapter 1 
Introduction 
  
 Decision confidence is an estimate of the probability that a decision maker is correct, given 

the evidence used to decide. It is a key mental variable, necessary for the brain to optimally exploit 

imperfect information about the state of its environment (Knill and Pouget 2004). Despite its overt 

similarity to the notion of confidence in statistical hypothesis testing, precisely indicating decision 

confidence remains a semantic challenge in neuroscience and cognitive science literature. Decision 

confidence is often introduced as a feeling (Insabato, Pannunzi et al. 2010), through examples 

(Moreno-Bote 2010) or else entirely  recast as “certainty” (Fimbel, Michaud et al. 2009), “subjective 

probability” (Kahneman and Tversky 1972) or “introspective accuracy” (Fleming, Weil et al. 2010). 

The lack of a unified language to indicate such a fundamental operation of the mind despite over a 

century of research illustrates the degree to which a clarifying framework is necessary, built upon a 

precise quantitative definition of decision confidence. 

The literature on modeling decision confidence in perceptual discrimination is surprisingly 

sparse – as recently as 2001, theorist Douglass Vickers noted that in the cognitive psychology of 

decision making, confidence is “relied on for its usefulness, but overlooked as an interesting variable 

in its own right” (Vickers 2001). However, research seeking to explain how organisms generate 

confidence estimates has experienced a resurgence in the past decade e.g. (Kepecs and Mainen 2012) 

– perhaps fueled by the growing appreciation that confidence estimates of various types confer an 

advantage to machine learning algorithms faced with similar perceptual challenges (Schapire and 

Singer 1999; Schwenk and Bengio 2000; Sollich 2002).  

A precise understanding of how the brain computes confidence is central to an understanding 

of how the brain functions. When equated terminologically with the Bayesian posterior of the 

decision process (an estimate of the probability that an option is correct given evidence), confidence 

is already acknowledged in neuroscience literature as a key ingredient in estimating the value of 
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outcomes (Behrens, Woolrich et al. 2007), learning (Courville, Daw et al. 2006) and perceptual 

decision making (Beck, Ma et al. 2008; Rao 2010). Knowledge of the brain’s mechanism for 

computing decision confidence will lend insight into how the brain accomplishes these important 

functions, and what goes wrong in diseases where they are impaired. 

 Our research was inspired by previous findings by Kepecs et al, that the firing patterns of 

neurons in the orbitofrontal cortex of rat show characteristics of a confidence signal (Kepecs, Uchida 

et al. 2008). In the same study, confidence patterns emerged in behavior when rats were permitted to 

save time by strategically re-initiating trials. In order to describe how confidence signals captured 

from the brain are used to drive behavior, we needed a quantitative model describing how a measure 

of behavior corresponds to an animal’s internal representation of decision confidence. More 

primarily, confidence is an abstract mental function traditionally associated with humans and to a 

lesser extent, lower primates. The burden of proof was upon us to establish that a rodent can be 

confident at all. While our first experiments showed that in a human analog of our rodent 

discrimination task, temporal wagers are strongly correlated with explicit confidence reports, we soon 

realized that even human explicit reports have not been captured by a model of discrimination and 

confidence that reproduces all of the patterns we observed in our data. 

This chapter begins by establishing the historical precedent for our profile of a confidence 

signal - three patterns that all representations of abstract confidence should match. I review ways in 

which an experimenter can measure an organism’s confidence, and how these measures might 

correspond to the abstract mental confidence value they are derived from. I then summarize prior 

algorithms describing how decision makers determine their choices and confidence. Looking beyond 

the algorithm, we would like to determine the mechanism used by the brain to compute confidence at 

the level of neural circuits. I review the challenges of studying the circuits underlying decision 

making with powerful new optogenetic and neuroimaging tools that require a head-fixed behavioral 

assay.  

 



 

3 
 

1.1 General properties of a decision confidence measure 
 

To identify a confidence signal in the brain, or to be aware when a subject who claims to be 

reporting confidence is actually reporting something else, we first need to know what a confidence 

report looks like. The confidence reports produced by a human decision maker have characteristic 

relationships to other common measures of decision making – accuracy, the quality of evidence used 

and evidence sampling time / reaction time. However, which patterns to expect from all confidence 

measures has not been established a priori. In practice, researchers rely on collections of prior 

generalizations about the empirical properties of confidence reports (Vickers 2001). To establish the 

fitness of a confidence measure beyond noting that its patterns resemble other measures, a clear set of 

predictions derived from a normative definition of decision confidence can establish which patterns to 

expect a priori. We provide this derivation in Appendix I, and argue for a profile of three patterns: 

that confidence predicts accuracy, that confidence reflects the strength of perceptual evidence, and 

that confidence informs accuracy despite a fixed level of external evidence. The first pattern has been 

consistently observed in confidence literature. The second pattern has been observed for pooled 

choice outcomes, and a slight positive correlation between confidence and evidence strength was 

sparsely reported. However, when separated by correct discrimination and errors, we found a pattern 

in errors that manifests in a wide array of confidence reports and had been ignored in literature prior 

to Kepecs et al 2008 – the lowest possible confidence occurs in the presence of the strongest absolute 

evidence. The third pattern, that confidence predicts accuracy for fixed evidence strength, had also 

been ignored. In the following three sections, I review a century of prior research characterizing the 

relationship of confidence to other decision measures. 
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1.1.1 Confidence predicts accuracy 

The fact that human confidence reports can forecast the accuracy of choices between two 

alternatives was first formalized over a century ago (Jastrow and Peirce 1884). Interchangeably 

termed “calibration” or “realism” (Lichtenstein, Fischhoff et al. 1981), the degree to which 

confidence reports predict outcome probabilities has been used as the field’s de facto measure of 

report fitness. Since calibration informs human calculation of economic risk (Kahneman and Tversky 

1979), finding patterned ways in which humans forecast inaccurately has been the focus of a 

considerable amount of research in economics.  

Calibration in a decision making task is a measure derived from the Brier score (Lichtenstein 

and Fischhoff 1980; Keren 1991; Baranski and Petrusic 1994; Koehler and Harvey 1997; Kvidera and 

Koutstaal 2008), a proper scoring rule for binary events originally introduced to compare the 

effectiveness of forecasting measures in meteorology (Brier 1950). While generally applicable to 

predictive measures, the Brier score for decision confidence reporting is given as: 

ܤ  ൌ
1
݊
ሺܿ െ ሻଶ


௧ୀଵ

 (1.1) 

where c is the subject’s confidence formulated as the predicted probability of a positive outcome, and 

o is the outcome (0 or 1), on trial t. Most studies of decision confidence use a confidence reporting 

scale with discrete report categories. A calibration score, Cs, is then evaluated by the following 

related formula (Lichtenstein and Fischhoff 1977; Björkman, Juslin et al. 1993): 

 

 Cs ൌ
1
݊
݊௧ሺܿ௧ െ ௧ሻଶ
்

௧ୀଵ

 (1.2) 

 

where n is the total number of trials, T is the number of divisions of the reporting scale, nt is the 

number of times the tth division of the scale was selected in the session, ct is the expected mean 

outcome probability for perfect calibration (derived from the definition of the boundaries of category 
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t) and ot is the actual mean outcome for all trials in category t. Calibration is thus a weighted mean of 

the difference between predictions and observations for each category on a confidence reporting 

scale. A calibration score of 0 implies that confidence in each category perfectly predicts outcome 

probability, while a score of 1 indicates that confidence reports have no predictive power. The score 

does not indicate cases where part of the scale is used sub-optimally, and cannot distinguish between 

overconfidence and under-confidence.  

To measure overconfidence or under-confidence, equation 1.2 is frequently used, though 

without squaring the term ctm - ot (Keren 1991; Jonsson and Allwood 2003). When subjects choose 

based on outcome history and/or general knowledge, the most consistently shown inaccuracies are 

overconfidence on difficult judgments and under-confidence on easy judgments (for a review of 

biases in non-perceptual confidence reports, see Lichtenstien, Fischhoff et al. 1981). However, when 

subjects choose based on classification of perceptual evidence, experimental findings are 

considerably more conflicted. Some perceptual discrimination studies find systematic under-

confidence (Keren 1988; Björkman, Juslin et al. 1993; Olsson and Winman 1996; Stankov 1998), 

others find over-confidence (Kvidera and Koutstaal 2008) and still others find that subjects can be 

overconfident or under-confident depending on difficulty as for non-perceptual judgments (Griffin 

and Tversky 1992; Baranski and Petrusic 1994; Bar-Tal, Sarid et al. 2001).  

Despite the range of methods in these perceptual tasks and disagreement about the direction 

of bias, the amount by which confidence reports diverge from perfect calibration in perceptual 

discrimination studies is consistently small. Below, I collected the range of typical calibration values 

for studies that provide calibration scores of separate experimental conditions and do not give an 

explicit speed instruction to their subjects (Figure 1.1). 
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Figure 1.1: Calibration scores for experimental conditions across studies. Each data point in the 
histogram represents the calibration score for an experimental condition reported. Sensory 
discrimination studies (drawn in blue) used experimenter-provided evidence as the basis for choice 
and confidence. In general knowledge studies (drawn in red), subjects were quizzed on general 
knowledge topics (vocabulary, the population of cities, etc.) and provided confidence reports for their 
responses.  Only studies of healthy subjects that provided calibration scores computed with equation 
1.2 were included. Sensory discrimination studies are: (Keren 1988; Björkman, Juslin et al. 1993; 
Baranski and Petrusic 1994; Winman, Juslin et al. 1998; Merkle and Van Zandt 2006). General 
knowledge studies are: (Lichtenstein and Fischhoff 1980; Koehler and Harvey 1997; Bornstein and 
Zickafoose 1999; Jonsson and Allwood 2003). 
 
 This overview of calibration scores is not exhaustive, and is only intended to provide an idea 

for the range of calibration values typically reported. These summary findings indicate that in 

reporting confidence, human decision makers have conscious access to an intriguing mental variable 

that explicitly predicts the likelihood of future events (outcomes). Especially in judgments where 

sensory evidence directly informs discrimination, confidence can be a nearly perfect likelihood 

estimate (Figure 1.1). How does the brain make these predictions? Our normative model in section 

3.1.1 suggests that confidence is computed using a mental estimate of the quality of the evidence used 

by the brain for choice. If correct, prior studies with graded discriminability should show that in 

addition to choice accuracy, confidence reflects perceptual evidence.  

 

1.1.2 Confidence reflects perceptual discriminability 

While the relation of confidence calibration to evidence strength has been studied 

extensively, how confidence reports directly correspond to evidence strength has received 

considerably less attention. A positive relationship between confidence reports and experienced 
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evidence was originally suggested by Charles S. Peirce in a philosophical investigation of subjective 

probabilities (Peirce 1877). A subsequent investigation showed that confidence reports entered on a 

5-point scale, correlate with discriminability in a line length discrimination task (Vickers and Packer 

1982). The study compared conditions with speed and accuracy instructions, showing that the 

correlation between confidence and evidence was stronger in the accuracy condition. Another study 

also using line length discrimination showed a weaker effect (Baranski and Petrusic 1998). Accuracy 

on the easiest and most difficult conditions tested ranged from 75% to 88%, corresponding to a small 

but significant difference of 0.2 in confidence on the 4-point scale. 

While confidence indeed correlates with the experimentally intended strength of evidence on 

correct trials in our data, it is anti-correlated with evidence on error trials such that the lowest 

confidence reports are generated in the presence of the evidence intended to be strongest. This 

counterintuitive trend in errors was first reported by Kepecs et al in the cells of rat orbitofrontal 

cortex, and in the probability that a rat will “reinitiate” a trial while waiting for a delayed reward 

(Kepecs, Uchida et al. 2008). The present research provides the first investigation of these trends in 

human explicit confidence reports (Section 3.1.4), and in several models of decision confidence 

(Chapter 5). This counterintuitive pattern has also been predicted by an artificial two-layer network of 

spiking neurons performing perceptual classification (Insabato, Pannunzi et al. 2010), and is a 

property of p-values in common two-sample statistical tests (section 3.2). 

 

1.1.3 Confidence reflects deliberation 

In our definition of confidence as a probability estimate conditioned on evidence, evidence is 

time invariant. Real-world decision makers sample evidence in time, and are often free to choose 

when to stop sampling (see section 1.4). Early researchers established that reaction time varies 

inversely with experimentally controlled strength of evidence in a sensory detection task (Cattell 

1886). That an inverse correlation between confidence and reaction time exists has also been long 

appreciated (Henmon 1911; Volkmann 1934), consistent with the idea that confidence is derived from 
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the strength of perceptual evidence. Anti-correlation with reaction time has even been suggested as a 

general property of confidence reports (Vickers 2001). However, several studies have reported 

circumstances under which confidence and reaction time are dissociable. 

Using a line length discrimination task, Baranski and Petrusic (1998) found that giving 

subjects a speed instruction virtually eliminated the correlation between confidence and reaction time, 

while this correlation was preserved for subjects with an accuracy instruction.  

Merkle and Van Zandt (2006), found that reaction time and confidence were correlated for 

half of the reporting scale used. Using a visual discrimination task where subjects were required to 

determine whether more or fewer dots were shown on a screen with respect to an experimentally 

imposed category boundary, confidence was only correlated with reaction time when confidence was 

between its lowest value (0.5) and the middle of its range (0.75) on their 10-division reporting scale. 

Reaction times for confidence reports between 0.75 and 1 were indistinguishable. 

Ascher (1979) found that confidence was positively correlated with reaction time, in a line 

length discrimination task where choices were entered on a 6 point bipolar scale, indicating high, 

medium or low confidence for each choice (1-3 = Strong…weak choice of hypothesis A, 4-6 = 

weak…strong choice of hypothesis B). This result raises the possibility that reaction time may be 

partially determined by the process of generating a confidence report. In a subsequent visual shape 

size discrimination task, subjects required to report confidence after choice had longer reaction times 

than subjects who were only required to discriminate. (Petrusic and Baranski 2003). The difference 

between the confidence and no-confidence reaction times was largest for easy trials, and smallest for 

difficult trials, suggesting that preparing for a post-decisional confidence report during choice is an 

active process that depends on the strength of evidence and contributes to reaction time. 

In section 1.5.2, we will review a model of confidence and choice where confidence is 

determined causally by a quantitative assessment of reaction time. The fact that confidence has been 

shown to be dissociable from reaction time under some circumstances, casts serious doubt on the 

generality of this class of models. Additionally, these dissociations challenge the previously noted 
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presumption by Vickers et al (2001) that the confidence/reaction time anti-correlation is a general 

property of confidence reports. 

 

1.2 Explicit decision confidence measures available in humans 

The subjective experience of confidence contains a sense of magnitude, yet in providing a 

verbal confidence report, a subject must map this internal sense to some reporting scale designated by 

the experimenter. It is most straightforward to determine the calibration of confidence when subjects 

provide an explicit estimate of the probability that they are correct, often in the form of a percentage 

estimate (Lichtenstein, Fischhoff et al. 1981). With 51 divisions at single percentage resolution, the 

percent scale is closer to a true continuous scale than the 5-point scale we chose for our research. 

While studies directly comparing discretized and continuous confidence scales are scarce, one study 

of radiologists’ confidence in their diagnoses showed that use of a discretized 5-point scale does not 

distort calibration (Rockette, Gur et al. 1992). More generally, the question of how response scale 

resolution affects measurement has been most thoroughly studied for the bipolar Likert scale (Likert 

1932), a discrete scale used to capture self-reports of graded agreement or disagreement with a 

statement. A recent study of market surveys addressing the comparability of mean, variance, 

skewness and kurtosis for responses on Likert scales containing 5, 7 or 10 response divisions found 

their mean and variance statistics comparable with the only significant difference being a slightly 

lower mean on the ten point scale (Dawes 2008). Since decision confidence scales are usually 

unipolar in two-choice discrimination tasks (confidence in the chosen hypothesis), the 5 point 

confidence scale provides the same resolution in our range of interest as a bipolar Likert scale with 9 

options (4 graded positive choices and one neutral).  

The vast majority of studies specify a discretized confidence scale of 4-7 divisions, without 

disclosing the logic behind their choice. However, scales with more divisions are sometimes used. 

Adams and Adams (1961) use a verbally reported single percentage scale, with two justifications – 

that “performance can be compared with expectation at all points on the scale” (ignoring fractional 
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percentages) and that “individual differences on the meanings of different points on the scale are 

reduced” (Adams and Adams 1961) p.37. The authors do not cite evidence that individual differences 

in scale interpretation with fewer divisions can affect calibration. Despite the loss of resolution, 

reporting scales with as few as two divisions are common. Rahnev et al. (2012), in a study on the 

effect of visual cortical TMS on confidence reports, uses a two division scale “to keep the task as 

simple as possible and because a continuous confidence scale would have complicated our signal 

detection theoretic modeling” (Rahnev, Maniscalco et al. 2012) p1557.  

 

1.3 Implicit decision confidence measures in humans and animals 

While humans have the unique ability to consciously experience and verbally report their 

confidence, this type of report is not typical of how confidence is used by organisms to guide 

behavior. Confidence is used to inform risk taking, and in this role it is easier to isolate 

experimentally than in its other in roles regulating learning or emotion. A variety of behavioral tasks 

with risk taking decisions have been developed to measure confidence. Since a verbal report is not 

requisite, many of these tasks can be used to measure confidence in animal models as well as humans.  

 

1.3.1 Uncertain option 

Early studies of implicit confidence employed two-choice discrimination tasks with the added 

option to indicate uncertainty (for a small but guaranteed reward) instead of classifying the stimulus. 

Preferential selection of the uncertain option on difficult discriminations was considered a signature 

of confidence. While originally employed in human studies (Watson, Kellogg et al. 1973), studies 

using uncertain option tasks have found use of confidence in monkeys (Shields, Smith et al. 1997; 

Smith, Shields et al. 1997), dolphins (Smith, Schull et al. 1995) and pigeons (Sole, Shettleworth et al. 

2003). Uncertain option tasks have an important caveat; since the subjects receive more reward on 

average for choosing the uncertain option than for classifying when presented with difficult stimuli, 

the task can be solved by pairing the more difficult stimuli with the uncertain response using 
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reinforcement learning. In this scheme, a separate confidence estimate is not necessary and the task is 

in essence, a three choice discrimination task (Kepecs and Mainen 2012). To address this caveat, 

Smith et al designed a variant of the task where rewards were given following blocks of trials, based 

on performance within each block (Smith, Beran et al. 2006). However, the proper associations could 

still be learned by reinforcement learning paradigms with more sophisticated credit assignment 

procedures (Sutton and Barto 1998). More recent studies have generally employed confidence tasks 

with more sophisticated ways of isolating confidence. 

 

1.3.2 Decline option 

Decline option tasks are a variant of uncertain option tasks that provide a stimulus to classify 

and then two choices in series: 1. whether to solve the discrimination or decline for a small, certain 

reward, and 2. discrimination (if selected instead of the decline option). To control for whether the 

decline choice is simply paired with difficult stimuli, “forced” trials skip choice 1, and force the 

subject to enter their discrimination. If the decline choice was simply paired with difficult stimuli, for 

a given stimulus difficulty, accuracy on forced trials would not be different from accuracy on trials 

with the decline option. Rather, diminished accuracy on forced trials has been shown in monkeys 

(Hampton 2001; Kiani and Shadlen 2009) and rats (Foote and Crystal 2007), but not pigeons (Inman 

and Shettleworth 1999; Sutton and Shettleworth 2008), leaving open the possibility that acting based 

on confidence is an ability unique to mammals. 

Decline option tasks depend upon differential accuracy between forced trials and trials with 

the option to decline. However, the same differential accuracy would be expected if subjects 

preferentially declined when they were aware of their own inattention – a process distinct from 

confidence (Kepecs and Mainen 2012). Moreover, the binary resolution of confidence (Solve=high, 

Decline=low) is not ideal for more sophisticated analyses of confidence (for instance, calibration or 

chronometry). A further shortcoming of both decline option tasks and uncertain option tasks is that 
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individual “uncertain” or “decline” trials do not also provide choices, prohibiting trial by trial analysis 

of the relationship between choice evidence and decision confidence.  

 

1.3.3 Post-decision wager 

 One way to acquire both a choice and a confidence judgment on a single trial is to present 

these choices in series, as is generally done in human verbal decision confidence studies. An implicit 

equivalent of this is the post decision wager class of tasks. On each trial, the subject discriminates 

between two options, and subsequently casts a wager on their presumed reward. A post-decision 

wager task was used in humans by Persaud et al to study use of confidence information in primary 

cortical blindsight patient GY (Persaud, McLeod et al. 2007). On each trial, the subject was asked to 

indicate whether a grating pattern had been presented, and to wager either 50p or  £1 (low or high) on 

the hypothesis that he had indicated correctly. Wagers on stimuli presented in GY’s normal visual 

field were virtually all high for correct trials (24 trials high, 1 trial low, 96% detection accuracy) 

while wagers for correct trials in his blind hemifield were cast randomly (67 high, 74 low) despite 

70% accuracy, indicating that blindsight wagers were not calibrated to accuracy. While these results 

are consistent with a role for visual cortical processing in calculating confidence, the report is also a 

cautionary example of how design of a payoff matrix in a wagering task can be critical for 

interpreting wagers as confidence judgments. As the task was designed, if accuracy in this task is 

above chance, the optimal strategy is to always wager high (Clifford, Arabzadeh et al. 2008), making 

it difficult to discern between a suboptimal wagering policy and a corrupted confidence signal 

(Kepecs and Mainen 2012). Subsequently, Fleming et al. established that human subjects casting 

post-decision wagers in this task display loss aversion (Fleming and Dolan 2010). Loss aversion is the 

well-established tendency of humans to irrationally avoid risk in economic decisions (Kahneman and 

Tversky 1979), a factor that further complicates the isolation of a confidence signal from the discrete 

wager measure. A more sophisticated experimental design utilizing a continuous wagering scale 

tailored to each subject’s performance could potentially resolve these problems (Kepecs and Mainen 
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2012), providing a useful implicit confidence measure. Middlebrooks and Somer et al reported  that 

rhesus monkeys can learn to bet strategically in a post-decision wager task using a discrete wagering 

scale of “high” and “low” options affecting reward probability (Middlebrooks and Sommer 2011). 

However, a task requiring a discrete post-decision wager of individual reward amount has yet to be 

established in rodents. 

 

1.3.4 Post-decision temporal wager  

 In the context of a free response behavioral task organized as a session of individual trials, 

subjects seek to maximize their reward rate (Simen, Contreras et al. 2009). In a wagering task, a 

subject can affect reward rate (reward amount / time) by gambling to either maximize reward amount 

or minimize time invested per reward. A simple manipulation of two-choice discrimination that 

intuitively encourages a subject to gamble with their time is to delay reward delivery by a random 

interval once the subject has entered their response. While waiting for reward, the subject has the 

option to stop waiting and initiate the next trial at any time, making the optimal time investment 

proportional to their confidence in their choice. This style of confidence report was first used by 

Kepecs et al. to measure confidence in rats (Kepecs, Uchida et al. 2008), and is the implicit 

confidence measure characterized further in the present study. We show in chapter 4 that the post-

decision temporal wager (termed the “time investment” (TI) measure in all further references) can be 

used to compare confidence between human and rodent at the resolution of individual trials. 

However, to extract an abstract confidence value from a time investment measure, three additional 

transformations must be accounted for beyond computing a simple post-decision wager – the 

subject’s knowledge of the reward delay distribution, the subject’s cost-function for time and the 

subject’s imprecision in estimation of time. The relationship between abstract confidence and time 

investment is explored in the beginning of Chapter 4, followed by a demonstration that time 

investment can be lawfully derived from a confidence signal and matches patterns in human self-

reports of confidence. The availability of a task providing both a choice and a confidence measure on 
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the same trial in rodent models, provides researchers with access to this important decision making 

variable in a context amenable to recording and manipulation of neural circuitry. 

 

1.4 Models of perceptual discrimination and reaction time 

 In order to understand how the brain computes decision confidence at the level of neural 

circuits, it is instructive to first determine which algorithm it uses to assemble evidence for separate 

options and choose among them. Noisy accumulation of evidence for each option is typically 

modeled as a sequential sampling process (Wald 1947). Evidence is accumulated by a separate 

decision variable for each choice, until a stopping rule terminates the sampling process. Models of 

choice implement this process either using discrete time steps (LaBerge 1962), or in continuous time 

(Audley and Pike 1965). Different stopping rules characterize the two major classes of sequential 

sampling model: “accumulator” (or in more recent literature, “race”) models terminate accumulation 

when the absolute evidence collected for an option exceeds a fixed threshold, and “diffusion” models 

terminate when the difference in evidence accumulated among options exceeds threshold (Ratcliff 

and Smith 2004). To differing degrees, specific implementations of these models can explain 

psychometric performance, reaction time distributions and speed/accuracy tradeoff. With additional 

provisions reviewed in section 1.5, both classes of model can generate confidence reports. More 

recent models have proposed more sophisticated stopping rules that have mixed absolute and relative 

characteristics (Moreno-Bote 2010) or take the subjective cost of time into account (Drugowitsch, 

Moreno-Bote et al. 2012). 

 

1.4.1 Accumulator models 

 The earliest accumulator-class model of choice and reaction time was proposed by LaBerge 

et al as part of his recruitment theory of behavior (LaBerge 1962). This model operates by separately 

computing noisy sums of evidence supporting each choice at discrete time intervals, and terminates 

the choice process when the amount of evidence collected for one hypothesis exceeds a fixed 
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threshold. Noise sources affect the count of each counter as they progress towards threshold, and are 

independent for each count. Accumulation of evidence would proceed as follows for decision 

variables L and R: 

 
ାଵܮ ൌ ܮ  ܧ   ;,ߟ
ܴାଵ ൌ ܴ  ோܧ   ;ோ,ߟ

,ܮሺݔܽ݉ ܴሻ ൏ ܶ 
 

(1.3) 

 

where EL and ER are the mean strengths of evidence for left and right hypotheses respectively, ηL and 

ηR are noise vectors drawn independently from a standard Gaussian distribution with a free variance 

parameter, and T is a second free parameter; the choice threshold. Vickers et al improved upon this 

model, showing that a better reaction time fit could be achieved by drawing momentary evidence for 

each counter from separate Gaussian distributions for each hypothesis, where mean is equal to 

hypothesis evidence strength (Vickers 1979; Smith and Vickers 1988). An alternative variant, the 

Poisson race model, accrues discrete evidence for each hypothesis at random exponential intervals on 

a continuous time scale, for an improvement of reaction time fit under some conditions (Audley and 

Pike 1965; Van Zandt, Colonius et al. 2000).  

 Accumulator models have been used to model brain function during behavior. Most notably, 

an accumulator model applied to random dot motion discrimination in monkeys was used to explain 

firing of choice-selective neurons in area LIP, which ramp to an apparent fixed threshold at the 

moment of choice (Churchland, Kiani et al. 2008). However, drift diffusion models or “coupled 

accumulator” accumulator models with lateral inhibition (McClelland 2001), have been more 

frequently used in modeling, because the latter models can generate better predictions of subject 

reaction time in humans – especially in regard to the frequency of short-reaction time errors, and the 

shape of reaction time distributions in tasks with longer reaction times (Ratcliff and Smith 2004). A 

more recent accumulator variant, the Linear Ballistic Accumulator (LBA), resolves these concerns by 

dispensing with sequential sampling and within-trial noise (Brown and Heathcote 2005; Brown and 

Heathcote 2008), though partially at the expense of its relevance to implementation in nervous 

systems.  
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 An additional parameter specifying an exponential decay coefficient for the decision 

variables is often added to race models, to simulate imperfect memory (Usher and McClelland 2001). 

The effect of this parameter is that evidence early in the stimulus time course is weighted less heavily 

in computing choice than recent evidence. However, a recent study of rat and human two choice 

decision making with a fixed stimulus duration provided evidence that memory for early evidence can 

be nearly perfect (Brunton, Botvinick et al. 2013), obviating the need for this parameter in at least 

some conditions. 

 

1.4.2 Drift diffusion models 

 The drift diffusion class of choice models has arguably been favored in recent years, for their 

improved ability to model choice and reaction time across a broad range of discrimination tasks 

(Bogacz, Brown et al. 2006; Ratcliff and McKoon 2008; Resulaj, Kiani et al. 2009; Milosavljevic, 

Malmaud et al. 2010; Pleskac and Busemeyer 2010; Brunton and Brody 2013). In the drift diffusion 

model for a choice between two options, a single decision variable is continuously updated with 

signed evidence; evidence for the first choice adds value, and evidence for the second (null) choice 

subtracts value. Gaussian noise is added to the decision variable at each time step. When the absolute 

value of the decision variable exceeds a fixed threshold, the sign of the decision variable determines 

the choice (Ratcliff 1978). This single decision variable shorthand is equivalent to the case of two 

separate decision variables racing towards a fixed threshold, with perfectly anti-correlated evidence 

and noise (example trial shown in panel F of figure 1.3). Additional parameters are commonly added 

to the classic drift diffusion model to improve fit – most often two free parameters specifying a 

Gaussian decision variable starting point, to model choice bias or add response variability (Ratcliff 

and Rouder 1998).  

 To account for firing of choice-selective superior colliculus neurons in a monkey visual 

discrimination task, Ratcliff et al has developed a dual diffusion model of choice (Ratcliff, Hasegawa 

et al. 2007). In this variant of drift diffusion, two decision variables are used (to model separate, 
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competing populations of neurons accumulating evidence). Strength of evidence is scalar, and 

modeled as drift rate positively affecting one variable while negatively affecting the other by an 

equivalent amount, dispensing with the probabilistic component of sequential sampling of evidence. 

However, noise is modeled in time, and noise sources for two decision variables are independent. 

Which specific modifications to the classic drift diffusion model will ultimately explain the neural 

basis of decision making more generally – or whether a new class of models will be necessary, 

remains to be determined.  

 While classic drift diffusion models have been preferred to fit chronometric data in a wider 

array of studies than race models, Drugowitsch et al 2012 has shown that in a reaction time version of 

random dot motion discrimination, even better chronometric fits can be attained by modeling the 

temporal cost of continued sampling using a stopping rule with a collapsing threshold (Drugowitsch, 

Moreno-Bote et al. 2012) – an extension of the drift diffusion framework that had earlier been used to 

model urgency in monkeys (Churchland, Kiani et al. 2008). Apart from the drift diffusion framework, 

a similar collapsing threshold was learned from task contingencies by a reinforcement learning 

algorithm in an earlier study by Rajesh Rao (Rao 2010). A partially observable Markov decision 

process was implemented in an artificial neural network, and trained using temporal difference 

learning to perform the random dots task. One of the behavioral strategies the network learned was to 

adapt its decision making threshold as a function of sampling time, but only when the learning set 

was comprised of decisions under a deadline. It is not unreasonable that a decision maker interested in 

maximizing reward rate will strategically economize sampling time, much as economizing a different 

part of a trial (time investment) benefits decision makers in our temporal wager tasks (Section 1.3.4). 

However, introducing additional free parameters associated with constructing and using a cost 

function for time would add considerable complexity to our model of choice and confidence (Chapter 

5) and we show that reasonable fits in most projections of choice, confidence and reaction time can be 

attained with a fixed boundary drift diffusion model. In section 5.7, we apply a simple collapsing 

boundary to improve our model’s chronometric fit for one subject. 
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1.5 Models of perceptual discrimination and confidence 

 In the beginning of this chapter, I invoked a Bayesian definition of decision confidence as the 

probability that a decision maker is correct, given the evidence used to decide (Kahneman and 

Tversky 1972). In our case, the evidence is a pair of Poisson click trains, which cannot be directly 

plugged into our definition and solved with Bayes rule. First, the click trains must be reduced to a 

measure of the amount by which the magnitude of chosen evidence exceeds the next best alternative 

as viewed by the decision maker, and this measure depends on how evidence is processed. The 

previous section introduced sequential sampling models of evidence processing in decision making. 

Several variants of these models have been extended to provide confidence reports. Among these 

extensions, the most straightforward applies to both the Vickers race model and the coupled 

accumulator model (a model that has a stopping rule with mixed absolute and relative characteristics). 

The confidence measure is simple and intuitive; when one of the accumulators reaches threshold, the 

difference between the winning and losing accumulator values is a measure of confidence (Vickers 

1979). However, drift diffusion models cannot leverage the same measure; since the stopping rule is a 

fixed difference between decision variables, every trial would yield the same confidence value. Three 

alternative extensions have been proposed to provide confidence reports in drift diffusion: 1. to derive 

confidence from reaction time (Audley 1960; Ratcliff 1978), 2. to derive confidence from temporal 

variability in stimulus strength (Yeung and Summerfield 2012), and 3. to commit to a choice and 

sample additional evidence to determine confidence (Audley 1960; Pleskac and Busemeyer 2010). 

Example trials of high and low confidence illustrating each of these measures are drawn in figure 1.2. 

In the remainder of section 1.5, I will introduce each model, and review how they fit the evidence 

they were initially intended to explain. In section 4.1, we show that each of these models fails to 

explain a set of critical patterns in our dataset. 
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Figure 1.2: Measures of confidence in sequential sampling models of choice. For each measure of 
confidence, the time course of decision variables is drawn for one high confidence trial (top row of 
panels) and one low confidence trial (bottom row). The dotted line at T and/or -T indicates the 
decision threshold. The decision variable properties used to compute confidence are indicated in red. 
A,B: In the race and coupled accumulator models, confidence is computed from the difference 
between winning and losing decision variable values. C,D: The reaction time model computes 
confidence from the total time taken to decide. Shorter decisions produce higher confidence. E,F: In 
the variance model, consistent evidence during the decision process generates high confidence, while 
irregular evidence generates low confidence. G,H: The post-decisional evidence model proposes 
commitment to a decision at threshold during variable time interval tD, followed by an additional 
phase of evidence collection. The agreement between the value of the post-decision variable and the 
original choice after a fixed time period (tC) determines confidence. 
  
1.5.1 Accumulator model 
 
 In the sixth chapter of his 1979 book “Decision Processes in Visual Perception”, Vickers et 

al. proposes that confidence can be explained as the balance of evidence at the moment of choice in a 

fixed boundary accumulator model. Confidence is simply computed by equation 1.3, 

 

 C ൌ ܧ െ ܧ  (1.4) 
 

Where EC is the value of the decision variable accumulating evidence for the chosen hypothesis, and 

EAC is the same for the anti-chosen hypothesis.  
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 Without providing fits to data, his argument focuses on four key predictions of his model that 

had been observed in prior studies: 1. the relationship between confidence and strength of evidence is 

positive and monotonic though shallower than the psychometric function, 2. The relationship between 

confidence and accuracy is nearly linear, 3. Confidence on correct trials is higher than confidence on 

errors, and 4. Confidence is inversely correlated with reaction time. In a subsequent study, Vickers 

provides evidence qualitatively consistent with assertions 3 and 4 in both speed and accuracy 

conditions, using a two choice line length discrimination task with a post-decisional confidence report 

on a 5 point scale (Vickers and Packer 1982). However, a model fit to data is not shown. 

 A related model – the Poisson race model (section 1.4.1), also uses a fixed stopping rule and 

balance of evidence to compute confidence, but processes evidence as discrete units in continuous 

time instead of continuous evidence in discrete time-steps. Merkle and Van Zandt et al (2006) tested 

subjects in both “easy” and “hard” conditions, where each condition consists of a 450 trial block of 

only easy or difficult trials. Subjects determined whether a screen contained more or fewer points 

than a mental standard, and reported confidence at the same moment as choice, on a bipolar 10-point 

response scale (containing 5 confidence divisions for each hypothesis and no neutral option). The 

authors show that this variant of the model can fit confidence calibration functions under both easy 

and hard conditions (Merkle and Van Zandt 2006). 

 In our own data, the race model can simultaneously fit psychometric and confidence 

functions (confidence with respect to accuracy and discriminability). However, in chapter 5 we 

analyze reverse correlations of the time-course of evidence triggered on choice, and show that the 

race model predicts a fundamentally different reverse correlation than what is apparent in our human 

subjects. 

 

1.5.2 Coupled accumulator model 

 While the drift diffusion class of models is arguably favored over race models in decision 

making literature, it is unable to leverage the balance of evidence measure to compute confidence. 
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However, an intermediate class of models termed “coupled accumulator” or “hybrid” models improve 

upon classic drift diffusion chronometric fits (Usher and McClelland 2001) while retaining some 

usefulness of the balance of evidence confidence measure (Moreno-Bote 2010). The coupled 

accumulator confidence model functions as a race model, in that two stochastic integrators 

accumulate evidence towards a fixed boundary as in equation set 1.3. However, the two decision 

variables are correlated with a coupling constant ρ, such that evidence and noise arriving at one is 

partially subtracted from its opponent. This model is given as:  

 

 
ାଵܮ ൌ ܮ  ,ܧ  ,ߟ െ ோ,ܧሺߩ   ;ோ,ሻߟ
ܴାଵ ൌ ܴ  ோ,ܧ  ோ,ߟ െ ,ܧሺߩ   ;,ሻߟ

,ܮሺݔܽ݉ ܴሻ ൏ ܶ 

(1.5) 
 

 
where EL and ER are vectors of evidence for left and right hypotheses at each time point, ηL and ηR are 

noise vectors drawn independently from a standard Gaussian distribution with a free variance 

parameter, and T is the choice threshold and ρ is the coupling coefficient. When ρ = 0, the model is 

equivalent to a race model, and when ρ = 1, it is equivalent to a drift diffusion model as illustrated in 

figure 1.3.  

 

 
 
Figure 1.3: Processing of evidence in coupled accumulator models. Upper panels show a 
schematic of how two accumulators supporting hypotheses HA and HB use evidence from streams 
EA and EB. In lower panels, the time course of the winning decision variable is plotted in blue, and 
the losing variable in red. The dotted line at T and/or -T indicates the decision threshold. A,B: The 
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race/accumulator model (ρ=0). Decision variables integrate evidence streams independently. The 
losing accumulator is a pure measure of evidence collected against the winning hypothesis. C,D: A 
coupled accumulator model (ρ=0.5). Lateral inhibition between the evidence streams diminishes the 
degree to which the final position of the losing decision variable represents the magnitude of evidence 
in stream EB (note the partial symmetry). E,F: With a purely relative stopping rule as in drift 
diffusion models, the losing decision variable is always the inverse of the winner, and its final 
position contains no information about the magnitude of losing-stream evidence. 
 
 The coupled accumulator model was tested in two discrimination tasks by Zylberberg et al, 

with emphasis on explaining the time course of evidence (Zylberberg, Barttfeld et al. 2012). 

Following initial experiments using a fixed duration random dot motion stimulus, the authors 

reproduced their results using a two choice luminance discrimination task similar to our Poisson click 

task (section 2.1). In the luminance discrimination task, subjects viewed two patches whose 

luminance was sampled every 40ms from Gaussian distributions with equal variance and different 

means. Subjects were free to respond by lateral eye movement once they determined which patch was 

brighter, and provided a post-decision confidence report with an eye movement to the desired position 

on a continuous confidence scale. The authors aligned chosen and anti-chosen stimuli to stimulus 

onset, and showed that the chosen patch was brighter than average, while the anti-chosen patch was 

dimmer than average, though this effect returned to baseline within the first 250ms of sampling. The 

authors then separated both time series by high and low confidence, and compute a “confidence 

kernel” for each evidence stream as the difference between high and low confidence time series. This 

analysis appears to show that only evidence from the chosen side is used to compute confidence. 

They then fit the choice and confidence “kernels” with race, coupled accumulator and drift diffusion 

models, determining that a coupled accumulator model is the best fit. 

 Their fits yielded a surprising result – the race and drift diffusion “choice kernels” looked 

identical (see our conflicting result in section 5.4). We suspect that the effect in their study may have 

been attributable to a methodological error – that the stimulus-aligned averages contained stimulus 

data that was never observed by the subjects, since the authors did not crop the stimulus-aligned 

vectors to response time. A choice-aligned re-analysis (provided by the authors in personal 
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communication) yielded a symmetrical reverse correlation when aligned to choice as in our study, 

indicating either a drift diffusion process, or a hybrid process with a very high coupling coefficient. 

The authors do not show model fits to psychometric or chronometric functions, or to confidence 

reports in any projection. We tested the fitness of balance of evidence in the race/coupled 

accumulator/drift diffusion spectrum in section 5.6, and show that these models can reproduce either 

the correct reverse correlation or the correct slope of errors in confidence v. discriminability, but not 

both. 

  

1.5.3 Reaction time model 

 The reaction time (RT) model of confidence for drift diffusion was originally proposed by R. 

Ratcliff in his 1978 Theory of Memory Retrieval (Ratcliff 1978). This theory models a memory 

item’s match or mismatch to a sensory probe as a drift diffusion process, and was subsequently 

adapted to explain two choice perceptual discrimination (Ratcliff and Rouder 1998). To test how well 

this theory fits human subject “familiar” or “novel” classifications, reaction times and confidence 

judgments, the authors used a recognition memory procedure. Four subjects were required to 

memorize lists of 16 words, and determine whether or not words had been shown previously, in a 

later probe session interleaving the 16 familiar words with 16 novel words. Subjects entered their 

“familiar” or “novel” classifications on a 6 point confidence scale, with three divisions for “familiar” 

and three for “novel” – similar to a Lickert scale though without a neutral option. Four difficulty 

conditions were created by adjusting how long the subjects had to memorize each list item; 0.5, 1, 1.5 

or 2 seconds. The authors show that classification, reaction time and discriminability can be fit 

qualitatively by a drift diffusion model. In describing what predictions drift diffusion makes for these 

confidence ratings, Ratcliff notes that “In terms of the theory presented here, the only information 

available about the "strength" of the item during the recognition processes is the comparison time. 

Thus, if a comparison is taking a long time, the subject may reduce his confidence and respond on a 

lower confidence key.” (Ratcliff 1978). While confidence reports were found to be correlated with 
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reaction time and a “schematic” of the model prediction is provided, a confidence v. reaction time fit 

of subject data to the drift diffusion model is not provided; nor is the relationship of confidence to 

accuracy or difficulty shown for either the subject or the model. The decision variable time course on 

individual high and low confidence trials with this measure were illustrated in figure 2.1c-d. 

 While Ratcliff was the first to propose that confidence arises as a result of direct interrogation 

of the subject’s perceptual estimate of their reaction time, a similar view had been suggested earlier 

by R.J. Audley (Audley 1960) – that confidence may be determined by counting the number of 

“vacillations” in a stream of perceptual evidence. For instance, a subject who experienced “ABAAA” 

would be more confident than a subject who experienced “ABABAABAA”, where A and B are units 

of evidence for each of two hypotheses. If a relative stopping rule is used and evidence arrives in 

discrete pulses as in Audley’s model, this is equivalent to the reaction time model – though it suggests 

that the time (and thus confidence) estimates are derived by observing the evidence itself rather than a 

separate mental judgment of elapsed time. 

 Several ensuing studies (reviewed in section 1.1.3) have established conditions under which 

confidence and reaction time are dissociable. Nonetheless, the RT model of confidence has been 

debated in subsequent reports, (Usher and Zakay 1993; Vickers 2001; Wilimzig, Tsuchiya et al. 2008) 

with none featuring an argument that conclusively rules out reaction time. We show in chapter 5 that 

in our data, confidence is also correlated with inverse reaction time for all subjects. However, we also 

show that inverse reaction time in a drift diffusion model is not anti-correlated with discriminability 

on error trials, a robust pattern we observe in human and rodent confidence reports, in our normative 

model and in statistical confidence.  

 

1.5.4 Variance model 

 As an alternative way to acquire a confidence measure despite use of a relative stopping rule, 

Yeung and Summerfield proposed a Bayesian model of decision confidence, posited in sequential 

sampling terms but independent of the drift diffusion model. In this model, a decision maker actively 



 

25 
 

samples evidence and forms Bayesian posterior estimates of the probability that each possible 

hypothesis is supported by the experienced evidence stream until some stopping rule terminates the 

process, while in parallel, updating an internal measure of the variance of evidence in the stimulus 

(Yeung and Summerfield 2012). The variance measure then directly translates to decision confidence, 

while the greatest posterior determines choice.  

 While the variance model was not explicitly tested by its authors, precise control over the 

time course of stimulus information in our task affords an excellent opportunity to determine whether 

variance in provided evidence can account for confidence. In chapter 5, we explored this possibility, 

showing that the variance of click intervals between individual stimuli is not correlated with 

confidence in a consistent way. We also tested the variance of decision variable position along its 

course to threshold in the drift diffusion model, and found similar results. 

 

1.5.5 Two stage dynamic signal detection (2DSD) model 

 Previous models of choice and confidence based on drift diffusion had attempted to extract a 

confidence measure from properties of the trial that are not direct measures of evidence strength, such 

as experienced stimulus variance or reaction time. The two-stage Dynamic Signal Detection model 

(2DSD) revives an alternative way to acquire a direct measure of stimulus strength from a drift 

diffusion process (Pleskac and Busemeyer 2010). The central proposal is that once the decision 

variable crosses a boundary, a second stage of evidence collection is commenced (illustrated in red, in 

figure 1.2g-h). During this second stage, evidence either supports or contradicts the initial choice, and 

the magnitude of agreement determines confidence. Since evidence in this phase is not terminated 

with a relative stopping rule, this relative evidence can reflect the statistics of the stimulus. Deriving 

confidence from post-decisional evidence as an alternative to reaction time in drift diffusion models 

had been suggested half a century earlier by Audley et al, though a specific model was not provided 

or tested (Audley 1960). 
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 The authors tested how well the 2DSD model fits human data using two tasks; a perceptual 

task (line length discrimination) and a general knowledge task (city population comparison). Each 

task was separately tested under speed and accuracy instructions. The model was fit to subject choice, 

reaction time and confidence simultaneously using a modification of the QMP estimation method 

(Heathcote, Brown et al. 2002), originally developed to fit reaction time distributions. The best fit 

confidence calibration functions produced by the model provide reasonable fits to data in the 

accuracy condition, however data points in the speed condition on both tasks are almost all outside of 

95% confidence intervals for subject data (Pleskac and Busemeyer et al 2010, figure 3). The authors 

report reasonable fits for the relationship between confidence and reaction time, but do not investigate 

other properties of confidence, such as the relationship between confidence and discriminability on 

error trials, or the time-course of patterned evidence contribution to confidence. 

 The second stage of the 2DSD model was explored by comparing two stopping rules; a fixed 

duration rule (used for the fits described previously), and an “optional stopping model” approximated 

with a Markov chain, whereby stopping is probabilistic and based on evidence strength. The fixed 

duration rule makes a strong prediction; information in the final part of a choice-aligned stimulus will 

be highly correlated with confidence and not with choice, while information earlier in the stimulus 

will correlate with choice and not confidence. We examine this prediction in chapter 5, and show that 

humans gather information for confidence from early moments of choice, while post-decision 

evidence is not as informative as predicted by 2DSD with respect to evidence collected during choice. 

 

1.6 Head-fixed behaviors for studies of perceptual discrimination in rodent 

 Guided by insight about the abstract computation and the algorithm which the brain performs 

when determining confidence, we hoped to advance our understanding of the circuit mechanism 

underlying confidence in the brain.  An array of emerging molecular tools hold great promise for the 

neuroscience of decision making, in their ability to isolate and manipulate elements of neural circuits. 

However, these tools are most easily used in a head-fixed mouse assay, a preparation that lacks a 
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precedent for the advanced multiple choice behaviors available in monkey and rat. In this section, we 

argue for the ideal of developing behaviors for head-fixed mice that are as complex and informative 

as freely moving behaviors previously available in rat. In chapter 6, we introduce a novel response 

device and behavior that constitute a step towards this ideal. 

 

1.6.1 Advantages and disadvantages of the mouse model for behavior 

 In order to probe the neural circuits underlying behavior, the mouse has emerged as an ideal 

model system due to its genetic flexibility. Mice can be engineered to express fluorescent reporters of 

neural activity in genetically targeted circuit elements (Li, Burrone et al. 2005; Zariwala, Borghuis et 

al. 2012). In addition, cre-driver mouse lines targeting specific cell-types (Lindeberg, Usoskin et al. 

2004; Tanahira, Higo et al. 2009; Taniguchi, He et al. 2011; Zariwala, Borghuis et al. 2012) have 

made a growing array of circuit components genetically targetable for studies seeking to examine 

their respective roles in neural computation. In recent years, experiments combining use of imaging 

techniques with behavior in mice have exploited these advantages using various head-fixed 

preparations (Dombeck, Khabbaz et al. 2007; Andermann, Kerlin et al. 2010; Komiyama, Sato et al. 

2010). Studies conducted in awake head-fixed mice that require a behavioral choice readout have 

previously been limited to Go/No-Go behavioral responses (Mehta, Whitmer et al. 2007; Andermann, 

Kerlin et al. 2010; Komiyama, Sato et al. 2010; Histed, Carvalho et al. 2012) or virtual navigation 

(Harvey, Collman et al. 2009). Although considerable progress has been made using these classes of 

behavior in the rodent, epochs of disengagement and impulsivity in Go/No-Go tasks complicate the 

interpretation behavioral choices (Stuttgen and Schwarz 2008; Schwarz, Hentschke et al. 2010). 

 

1.6.2 Go/NoGo and 2AFC task designs 

 While previously unavailable for head fixed mouse, two alternative forced choice (2AFC) 

behaviors have been favored in the neuroscience of decision making. The 2AFC design permits more 

informative interpretation of incorrect choices. In Go/No-go tasks, impulsive response behavior 
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appears as a bias towards the “Go” choice, while impulsivity in a 2AFC discrimination task can cause 

performance to decrease without affecting the readout of choice preference. Likewise, epochs of 

relative disengagement in Go/No-Go tasks are difficult to differentiate from a preference for No-Go 

responses. For these reasons, the process of making an active choice response on each trial makes 

behavior in 2AFC tasks considerably easier to interpret (Schwarz, Hentschke et al. 2010). Moreover, 

the symmetric reward contingencies of 2AFC tasks enable reaction time measurements that are not 

confounded by choice-specific motivational factors typical in Go/No-Go task designs (Zariwala et al. 

2006). Indeed, a growing number of studies in freely moving rodent have taken advantage of 2AFC 

tasks using choice ports for choice readout with high temporal resolution. Rat 2AFC tasks using ports 

have been used to study the neural correlates of mental variables in decision making (Kepecs, Uchida 

et al. 2008), sensory processing (Otazu, Tai et al. 2009; Cury and Uchida 2010; Yoshida and Katz 

2011) and motor control (Felsen and Mainen 2008; Erlich, Bialek et al. 2011). Similar 2AFC tasks 

have also been developed for freely moving mice (Rinberg, Koulakov et al. 2006; Busse, Ayaz et al. 

2011). However, due to the small size of the mouse, head-fixed behavior greatly facilitates the use of 

contemporary techniques such as brain imaging, awake patch electrode recordings, high channel 

count microdrives and optogenetics. 

 
1.7 Outline of chapters  
 
Chapter 2. This chapter describes the methodology employed, especially for cases where a technique 

was relevant across chapters. I describe our auditory stimuli and other behavioral task contingencies, 

training protocols, technologies developed in support of research, data analysis and statistics. 

 
Chapter 3. We examined the relationship between the feeling of confidence reported by human 

subjects, and statistical confidence. While relationships between decision confidence and other 

decision measures have been described, there is no clear set of properties that define a measure of 

confidence a priori, which could be used to interpret a behavioral or neural confidence signal. First 
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we derived signature interrelations between confidence and other decision variables from a normative 

definition of confidence – the Bayesian posterior probability of a choice, given the evidence used to 

decide. We then showed that Frequentist statistical confidence values (p-values) robustly show all 

three of these patterns in several statistical tests and noise regimes. Based on these results, we were 

able to show that the feeling of confidence reported by our subjects exhibits the signature patterns of a 

statistical confidence value. This result places confidence on a rigorous computational footing which 

is a necessary bridge from abstract variables to algorithms, by identifying the class of computation 

that generates confidence in the human brain. 

 

Chapter 4. In order to understand the mechanism of confidence computation in the brain, 

Neuroscience research must rely on animal models. However, animals lack the linguistic ability to 

report confidence, forcing researchers to employ implicit measures that are captured as part of 

decision making behaviors. Investment decisions benefit from calibrated confidence, and can be 

precisely measured. We developed a time investment task which could be performed by humans and 

rats, to establish the relevance of an implicit confidence measure to both the human feeling of 

confidence and statistical confidence. This task was unique in allowing direct within-trial comparison 

of implicit and explicit confidence in humans. We determined that time investment in both humans 

and rodents strongly exhibited the signature patterns which we formally ascribed to statistical 

confidence in the previous chapter. We also determined that on a trial by trial basis, time investment 

was strongly correlated with verbal confidence in humans. Taken together, these results establish time 

investment as a behavior derived from confidence, forming an empirical basis for understanding 

confidence in rodents. 

 

Chapter 5: Several conflicting models of choice and confidence were reviewed previously in chapter 

1, which make differing predictions about how evidence is processed. To determine which algorithm 

is used by the human brain to classify evidence and compute confidence, we designed a new 
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confidence reporting task where choices were made based on high resolution temporally structured 

evidence – acoustically isolated streams of Poisson clicks. Depending on which algorithm the subject 

used to process evidence, different patterns in the temporal structure of clicks preceding each choice 

and confidence report should be evident. We tested five previous algorithms, and determined that 

none of them could simultaneously account for robust patterns in human confidence and in the history 

of evidence. To address this, we developed a new model – the Opportunistic Coupled Accumulator 

(OCA). We showed that OCA was capable of simultaneously approximating choice, reaction time, 

confidence, discriminability and evidence history data in several key projections for which previous 

models made qualitatively incorrect predictions. By describing a treatment of evidence on a moment-

to-moment basis that is consistent with choice and confidence measures, this result provides crucial 

insight for studies investigating the circuit mechanisms that compute confidence in the brain. 

 

Chapter 6. Genetically encoded molecular imaging tools hold great promise for functional dissection 

of neural circuit mechanisms contributing to behavior - and are most easily implemented in the 

genetically flexible head-fixed mouse. However, the go/no-go decision making behaviors previously 

available in head-fixed mice lack several key advantages of the two-choice behaviors available in 

freely moving rodents and monkeys, which make interpretation of behavior on individual trials more 

meaningful. To bridge this gap, we developed Choice Ball, a multiple choice response interface with 

which mice can report their decisions by sliding their front paws in opposing directions. Using this 

interface, we trained mice to make the same Poisson click stream classification decisions that were 

the basis of our decision confidence tasks, to determine how well this mode of response could capture 

the behavior of a deciding mouse. 

 

Chapter 7. In the general discussion, I place the results of the individual chapters in the context of 

prior research, and discuss implications of our framework for future research. 
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Chapter 2  
Methodology 

 
 Decision confidence has been studied for over a century, using a wide range of behavioral 

tasks, reporting scales and models. To determine which computational model best describes how the 

brain computes confidence, we developed a novel confidence reporting task that leverages high 

resolution, temporally structured sensory evidence to gain insight into how subjects compute 

confidence. A simple adaptation of this task enabled us to study confidence-guided time investment in 

rats, for the first time linking an implicit confidence measure available in multiple species to explicit 

confidence. In doing this, I developed two novel, open source instruments that will be useful in a 

wide range of behavior and stimulation applications. This chapter reviews the techniques used in the 

present confidence studies, with particular focus on novel methods. Methodology for the choice ball 

assay is introduced separately in Chapter 6. 

 

2.1 Development of decision confidence reporting tasks for humans and rats 

 We had two primary goals in designing the tasks used in our study: 1. We sought to design a 

task that would provide insight into how evidence is used to generate choices and confidence reports. 

2. We wanted to relate the human subjective notion of confidence to the time investment measure, 

and therefore constrained our task design to accommodate subjects of both species with appropriate 

provisions for capturing motor responses. We report on our realization of these goals in the remainder 

of this section. 

 

2.1.1 The random click stimulus  

 An ideal stimulus for a decision making study contains attributes that give the experimenter 

insight into the decision process, and can be delivered precisely on each trial. Stimuli can be 

categorized as static or dynamic, depending upon whether the stimulus changes in a predetermined 
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way during sampling. Static stimuli have the disadvantage that subject errors are entirely the result of 

noise introduced in the perceptual, memory access and decision processes. How specific instances of 

categorically identical static stimuli were classified offers experimenters little insight into decision 

mechanisms that process evidence with respect to a choice threshold. Dynamic stimuli address this 

problem by providing evidence with a variable time course, generated by the experimenter. Looking 

back in time from the moment of choice, decisions can be explained by patterns in recent evidence, 

lending insight into how evidence is processed in time (Nienborg and Cumming 2009).  In primate 

vision, the random dot motion (RDM) stimulus is a dynamic stimulus that has been used extensively 

to study the neural correlates of choice (Newsome, Britten et al. 1989; Roitman and Shadlen 2002; 

Gold and Shadlen 2007).  Studies using RDM have taken advantage of the known time course of 

stimulus information (Adelson and Bergen 1985; Zylberberg, Barttfeld et al. 2012). We developed the 

random click stimulus as an auditory analog of RDM (Sanders and Kepecs 2012), while the same 

stimulus was independently developed by Brunton et al. (Brunton, Botvinick et al. 2013).  

 The random click stimulus, shown in figure 2.1, consisted of two independent streams of 

Poisson clicks, whose underlying rates were estimated and compared by the subject to solve each 

trial. Individual clicks were bipolar square pulses lasting 200µs, and were presented to our human and 

rat subjects at ~70dB SPL, to ensure a high signal to perceptual noise ratio. Click streams were pre-

computed for three-second trains by drawing click intervals from an exponential distribution whose 

mean was determined by the intended click rate. Click streams were truly Poisson; we did not force 

the click trains to contain the exact ratio of clicks needed for a perfect estimate of underlying rate. 

This allowed us to preserve the instantaneous expected rate for analyses where we averaged the 

stimulus across trials.  The onset time and waveform information for each click in the stream pair was 

computed in MATLAB (Mathworks) and transmitted to the Pulse Pal device (section 2.1.6) prior to 

each trial. When triggered, Pulse Pal directly played the click train into speakers or headphones. In 

RDM tasks, subtle variation in a subject’s visual fixation may affect how the subject perceived the 

intended stimulus on a given trial. However, click streams in our assay did not have the constraint of 
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mechanical visual fixation, and could be delivered reliably to the sensory periphery using a pair of 

ambient noise attenuating headphones (HD-280; Sennheiser). This level of stimulus control was not 

possible in untethered freely moving rat – instead, speakers (HP 5187-2105; Harman Kardon) were 

used on either side of the animal, presumably requiring an additional stream localization computation 

to assign each perceived click to a stream (Bregman 1994) in discriminating the higher rate. The 

difference between rates of the two streams was manipulated to adjust discriminability. For both rats 

and humans, underlying rates always summed to 100Hz, and precise rate pairs were determined by 

subject performance as described in section 2.1.3.  

 

 
 
Figure 2.1: Time course of the random click stimulus. Subjects compared the rates of Poisson 
click streams delivered from left (L) and right (R) auditory channels. A: Example of a high 
discriminability (easy) stimulus, featuring a large difference between left and right channel rates. B: 
Example of a low discriminability (difficult) stimulus. Actual rates were adjusted to subject 
performance. 
 
2.1.2 Human perceptual confidence task design 

Subjects and compensation 

 Human subjects were recruited from the general population of Cold Spring Harbor 

Laboratory, using public notices. Subjects accepted into the study verbally agreed to participate for at 
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least eight 60 minute sessions, and signed a statement of informed consent. All subjects reported 

normal or corrected-to-normal vision and did not have hearing deficits to the best of their knowledge. 

Subjects were technicians or graduate students, including 2 males and 5 females, ranging from 23 to 

30 years of age. Two of seven subjects were left handed. Five additional subjects participated, but 

none completed more than three sessions before voluntarily departing the study. One further subject 

was eliminated post-hoc for using a “first-click” detection strategy (section 3.1.2). 

 Subjects were paid $0.07 for each correct response in the Explicit-only variant of the task 

(see below), and $0.10 for each correct response in the Implicit variant. Prior to participation, subjects 

were informed that random guessing would earn them at least $7 per hour if they sampled each entire 

stimulus, and that accurate responses could earn them in excess of $20/hr. Such large incentives were 

necessary to encourage subjects to use time within trials optimally. Subjects were periodically paid in 

cash, when they requested a payment or when their balance exceeded $200. 

 An online calendar (Google) was used to coordinate participation among subjects. 

Participants were free to schedule sessions at their own convenience, and were given unique 8-digit 

subject ID codes to log in and start the experiment. The calendar was monitored to ensure that 

subjects completed at least 2 sessions per week.  

 

Apparatus 

 A single apparatus was available for all subjects, in a dark room with 24 hour lab ID 

cardholder access. A personal computer (Inspiron 660, Dell) powered the experiment using the 

Windows 7 operating system (Microsoft). Instrument control and data collection were accomplished 

in MATLAB r2011a (Mathworks), with two software extensions: the MATLAB statistics toolbox 

(Mathworks) and the Psychophysics toolbox (Brainard 1997). Commercial computer peripherals 

relevant to the experiment included a USB joystick (ST290, Saitek), and a standard USB keyboard 

(Dell) and an LCD monitor (G245HQ, Acer) positioned at eye level, ~70cm in front of the subject. 
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For confidence reporting, custom-printed adhesive labels were placed over keys on the keyboard’s 

keypad as shown in Figure 2.2.  

 

 
 
Figure 2.2: Layout of the confidence response keypad. Subjects entered confidence on a 5 point 
scale, which was presented vertically to capture intuition about high and low, and to discourage 
confidence-side associations in our sided response task. Subjects were instructed that “5” indicated 
high confidence, and “1” indicated a random guess. Since decision confidence is confidence in the 
hypothesis that a choice was correct, the “Err” button was provided to indicate that the subject was so 
uncertain that they believed their previous choice was likely to be wrong.  
 
A real-time click generator and response capture device (Pulse Pal, section 2.1.6) interfaced with the 

computer by USB. Prior to each trial, it received the trial’s initial delay, timeout and click times from 

the governing computer. During each trial, it returned button press and release events. Following each 

trial, it returned reaction time and a temporal wager (if applicable, Figure 2.3) each with 50µs 

resolution. In the explicit-only task variant, the time between the choice and confidence report was 

measured by the PC clock, using low level keyboard polling and timing functions in the 

psychophysics toolbox to attain maximal temporal precision. A pair of headphones (HD-280, 

Sennheiser) was connected to the real-time click generator’s output channels with appropriate wire 

adapters, for stimulus delivery. A pair of PC speakers was connected to the computer’s motherboard 

sound port, and positioned on either side of the subject beneath the monitor, for feedback sounds.   

  To encourage long term human participation and aid with recruitment, a custom appetitive 

reward system was installed above the computer. Three servo motors (HSR125-CR, Hitec) powered 

and controlled by a USB servo controller (Micro Maestro, Pololu) were governed with custom 
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software written in MATLAB. Each servo motor was connected to the crank of a confection 

dispenser (Mini Bean Machine, Jelly Belly USA), and was secured in place using wire ties. Plastic 

pipes converged the dispensed product from the dispensers, through a PVC slanted cross fitting 

(Lipson International) into a Tupperware container positioned on the subject’s left side at arm level. 

The appetitive reward system was only used in the break periods between blocks of trials. 

 Data were automatically stored by the behavior computer on a network drive (Google) 

labeled by subject ID code to ensure anonymity, were the data to be compromised. The key relating 

subject ID codes to subject identities was encrypted, and stored on a removable drive by the 

experimenter. Data analysis was performed in MATLAB using custom scripts. 

 

Procedure and training 

 Two variants of the human perceptual confidence task were designed. Figure 2.3 shows 

illustrations of the flow of events for each task variant.  
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Figure 2.3: Flow of trial events for explicit-only and implicit tasks. Once a trial was initialized by 
the subject, the subsequent event flow through five types of states is shown: Initial delay, stimulus 
sampling, choice, confidence report and reward feedback. A: The explicit-only task. B: The implicit 
task. 
 
 The purpose of the explicit-only task variant was two-fold: to acquire explicit reports 

immediately after choice, and to acquire a large amount of data for in-depth analysis of confidence 

properties (since this task variant did not rely on omission trials at 10% prevalence). In the explicit-

only variant, subjects were notified that each trial was ready with a chime played over the PC 

speakers, and they subsequently initialized each trial by squeezing the joystick trigger. On 

initialization, temporal control of the trial was delegated to modified firmware on the pulse pal device 

(section 2.1.5). Following an exponential random delay (µ=1.5s), the click train was presented. 

Subjects listened to the click train, and entered their choice of which click train had a faster 

underlying rate (left or right) on the response device by pressing left or right response buttons. If 
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sampling time exceeded 3 seconds, the click train was automatically terminated, and the subject was 

informed visually that they had timed out. Within 50µs after a response button was depressed during 

sampling, the click train was terminated. Subjects were then visually prompted to enter a confidence 

rating. The visual prompt was a drawing of the red-labeled keys as shown in Figure 2.2, with two 

additional notations: “High confidence” above the “5” key, and “Random guess” below the “1” key. 

No time limit was imposed on confidence reports. When subjects entered their confidence, they were 

immediately informed if their choice was correct by a visual animation, accompanied by a “payoff” 

sound played over the PC speakers. Subjects were given no feedback if they erred. The total 

accumulated reward in the current block was displayed in the upper-right corner of the screen. 

Subjects entered their confidence following each choice on a labeled keypad (Figure 2.2).  

 Since decision confidence is confidence in the hypothesis that a choice was correct, the “Err” 

button was provided to indicate that the subject believed their previous choice was an error. None of 

our subjects predicted their errors with greater than chance probability, determined by a 95% 

binomial confidence interval evaluated on the outcomes of “Err” trials. Since subjects could not 

predict their errors, perceived error responses were counted as lowest confidence responses. In total, 

190/17788 confidence reports were “Err”.   

 Contrary to the explicit-only task variant, the implicit task was a low-throughput assay for 

humans (since it acquired confidence reports on correct trials only 10% of the time). However, this 

task variant was very similar to the rodent task, and allowed implicit measures available across 

species to be directly compared with explicit reports.  The Implicit task variant shared the same flow 

of events as the Explicit-only variant, with three changes: 1. Instead of an explicit confidence report 

after making a choice, subjects pressed and held their response key, waiting for the “correct” 

feedback to be presented. The reward delay was drawn from an exponential distribution (µ=1.25s) 

with a minimum cutoff at 0.5s to discourage impulsivity. If the subject was incorrect, the system 

would wait indefinitely until they released the choice button, indicating the end of their time 

investment in the expected reward. 2. Ten percent of trials were “catch trials”, on which reward and 
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reward feedback for correct decisions were omitted. On these trials, even if correct, subjects were 

eventually forced to abort their wait for reward, providing a measure of willingness to wait given a 

correct choice. How long a subject would wait before giving up is the measure referred to as “time 

investment”. 3. Subjects were prompted to enter explicit confidence reports following time 

investment, but before feedback on 30% of error trials and on all catch trials.  

 Three levels of stimulus difficulty were randomly interleaved, and a neutral evidence 

stimulus was added randomly at 10% prevalence with the constraint that two neutral evidence trials 

could not occur sequentially. In the first several sessions, the click ratios of the three difficulty levels 

were adjusted manually between sessions, to achieve target accuracies of 60%, 75% and 95%. 

Though initially a staircase procedure (Cornsweet 1962) had been implemented for this purpose in 

our pilot study, it was found to take longer than manual adjustment. 

 Subjects were first introduced to the apparatus by demonstration, and were given an 

instruction sheet explaining usage of the apparatus, which was available in the testing room for the 

remainder of the study. Subjects were encouraged to use the entire confidence scale, and advised that 

they may need to “re-map” their initial range of experienced confidence to span the scale divisions. 

Subjects were not given explicit speed or accuracy instructions. Rather, in the interest of similarity to 

the rodent task, they were instructed to earn as much payment as they could in the time allotted. The 

first two sessions were used for training and to adjust stimulus discriminability to subject 

performance. These sessions were not included in the remainder of the analysis. Following each of 

these training sessions, subjects were given written feedback about side bias, scale usage and 

performance. Once performance levels were within 5% of target accuracies (typically after 2 or 3 

sessions), this type of feedback was no longer given. Subjects typically learned the instructions 

immediately, reached peak performance within two sessions, and did not substantially improve their 

performance for the remainder of the experiment (section 3.1.2). 
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Game interface rationale and implementation 

 In a pilot study, all but two of 9 human subjects had poorly calibrated implicit confidence, 

and often withdrew from the study after a few sessions. We attributed these shortcomings to several 

factors: 1. Since our analysis of the time investment measure relied on catch trials at 10% efficiency, 

we needed datasets of thousands of redundant trials. The students enrolled were often too busy or 

unmotivated to participate regularly. 2. Confidence is a measure of the quality of perceptual evidence, 

requiring sustained alertness during long sessions. Subjects reported difficulty remaining alert. 3. 

Economizing time investment provides an advantage in terms of rewards accrued. A water-restricted 

rodent from whose perspective water is an essential for survival, is supremely motivated to 

economize time investment. The same motivation is usually not true of human subjects by default.  

 To address these issues, I designed a video game surrounding 15 identical five-minute blocks 

of trials. Video game interfaces for psychophysics tasks have been used previously to encourage 

focus and participation in children (Abramov, Hainline et al. 1984; Soderquist and Shilling 1992). 

Since the subjects were comparing Poisson click streams, similar to the task of comparing distant 

Geiger counters to localize a radiation source, the game was titled “Plutonium Miner” on subject 

recruitment materials and consent forms.  

 On logging in to the study with their subject ID, subjects controlled a sprite avatar of a miner 

using a joystick, who could walk between mining sites and buildings on a game map (Figure 2.4a) 

where each site represented a block of trials. In order to access each site, the subject needed to 

purchase access at a “land office” building on the map. The land office provided a way to verbally 

remind subjects to gain as much reward as possible in the time allotted for each block, and to 

explicitly equate game currency with block-time. On entering a site, the subject committed to a five 

minute block of trials. Few visual animations were shown during the trial. During self-initiation and 

the initial delay, a sign post in a static field of random dots was shown (Figure 2.4b). The dot field 

was generated randomly on each trial. Once the initial delay had completed, the sign post disappeared 

and the subject’s avatar was shown. No visual changes occurred during sampling of evidence and 
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choice. In the explicit task, the choice was immediately followed by the confidence report prompt. In 

the implicit task, the avatar was shown facing the chosen direction at a fixed position in the center of 

the screen, while a field of random dots scrolled in the opposite direction. This animation was 

intended to give the sense that the avatar was actively exploring the chosen direction while the subject 

held the button down. If rewarded, the avatar would jump repeatedly and the reward amount was 

shown flashing above its head. For each correct trial, the subject earned 200 units of currency, and the 

cost to purchase access to the next block of trials was determined as ¼ of the subject’s total profit 

from the previous block (though this ratio was not explicitly disclosed to the subject). Subjects could 

spend currency between blocks, by moving their character to a “business center” on the map, where 

they could construct M&M, Skittles or Reece’s factories of varying efficiencies for fixed prices. 

During each inter-block map navigation time, subjects were verbally notified that each of the factories 

they had built had completed a quantity of product, which was then delivered to the subject by the 

appetitive reward apparatus. Subjects were given the choice to opt out of the appetitive reward 

delivery, though none chose to exercise this option. 

 

 

Figure 2.4: Game elements to encourage alertness and long-term participation. Subjects 
performed the task in blocks with identical trial parameters, lasting 5 minutes each. A: Completed 
blocks were represented on a “map” screen as dark pick-axe icons with white check marks. The next 
available block was shown as a lighter, slightly larger unchecked icon (near figure bottom). Subjects 
started each block by moving a miner avatar to the next available mining site, after purchasing rights 
to the site at the land agency (near map center) with in-game currency. Between blocks, currency 
could be spent at the business center (upper-left) to make purchases as indicated in the main text. B: 
Visualizations were shown during each trial. To prompt the subjects to self-initiate each trial with a 
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button press, a bidirectional sign post was shown on a randomly generated white field of black points 
(left-most panel). After a random delay, the subject was shown their avatar in a static field of dots 
while listening to click streams and choosing a direction. In the time investment task, the avatar was 
shown facing the chosen direction in the center of the screen while random dots moved in the 
opposite direction, to create the illusion of motion as the avatar searched for plutonium. If a trial was 
rewarded, after both implicit and explicit confidence measures had been acquired, a correct outcome 
was indicated with a two second sprite animation of the miner jumping alongside a pile of plutonium, 
while the static reward amount of 200 was indicated in green text above its head. 
 
 While I do not have comparative data to determine which (if any) of the game elements were 

responsible for improved  subject retention and performance between our initial attempts at 

measuring confidence and the principal study, I took measures in the game design to minimize 

interaction with the decision making and confidence reporting processes. The only phase of a trial 

that is concurrent with changing visual game elements is the time investment period in the implicit 

study, during which the avatar is shown running against a field of randomly generated dots. All other 

dynamic game elements are shown between blocks, and ought to preferentially affect responses in the 

trials following a block interval. The subjects accrue virtual currency over the course of the session, 

much as our rats accrue relief from thirst. The stability of measures within sessions is investigated in 

section 3.1.7. However, unlike rodents, subjects spend currency between blocks to access subsequent 

blocks, and develop game assets. We show that mean performance, explicit confidence and time 

investment for blocks are uncorrelated with currency spent in the previous block interval (Figure 2.5). 

 

 
 
Figure 2.5: Spending game currency does not affect block mean performance or confidence. 
Data shown are means for 5 test subjects who performed both explicit-only and implicit tasks. The 
“currency spent” value for each trial denotes game currency spent in the inter-block interval prior to 
the current block. A: Choice accuracy as a function of currency spent in the prior block interval. B: 
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Time investment as a function of currency spent. C: Explicit confidence report as a function of 
currency spent. Errors show 95% CI of the mean. 
 
 
2.1.3 Rodent perceptual confidence task design 
 
Subjects 

 Data are reported from six male Long Evans hooded rats, aged 8 weeks at the onset of 

training. Rats were housed in pairs on a 12-h reversed light/dark schedule. Food was available ad 

libitum, and the rats were placed on a liquid restriction schedule with daily body weight monitoring to 

ensure that body mass remained within 85% of mass before restriction. For 30 minutes each day 

following training, rats were given free access to water. Two additional rats were used, but did not 

learn to suppress impulsivity as required to wait for delayed rewards at the apparatus response ports. 

These rats were excluded from the study after 1 month.  

 

Apparatus 

 Sessions were conducted in a custom operant conditioning chamber, enclosed in a ventilated 

acoustic isolation chamber (Industrial Acoustics). Three walls of the operant chamber were 

featureless 40cmx40cm black acrylic panels. The fourth wall was fitted with three custom ports, 

containing infrared photo-gates to measure snout entry and exit. Sounds were delivered using a set of 

speakers (HP 5187-2105; Harman Kardon) positioned behind the acrylic panels adjacent to the 

response port wall. Speakers were calibrated to 70-dB sound pressure level (SPL) for the click 

stimulus using a pressure-field microphone (Brüel & Kjær, Sound & Vibration Measurement, 

Nærum, Denmark). Water reward was dispensed from reservoirs above the box into the outer two 

ports through silicone elastic tubing. Water flow was controlled using a solenoid pinch valve 

(NResearch) with pulse timing calibrated such that a single reward measured 20µl. Behavior was 

governed by a PC (Island Motion Corp) running the Windows XP operating system (Microsoft) and 

MATLAB r2009b (Mathworks). An infrared camera affixed to the ceiling of the acoustic chamber 
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was used for observation of behavior on the PC. A top-down drawing of the port wall of the behavior 

box is shown in Figure 2.6. 

 

 
 
Figure 2.6: Rodent interface port configuration. Rats entered the central stimulus port to initialize 
each trial. Sound was delivered from speakers on either side of the rat until it withdrew from the 
stimulus port. The rat then provided its classification of the sound by entering the left or right choice 
port. If correct, 20µl of water was delivered from a drink tube in the choice port. 
 
 The experiment was programmed and implemented using a custom real-time behavior system 

I developed (Bpod, Appendix II). In brief, each trial in the experiment was programmed in MATLAB 

as a matrix of states and state transition conditions. This matrix was sent to the Bpod device, which 

executed the matrix in real-time (directly controlling lights and solenoid valves, triggering sound 

delivery and recording timestamps of port entry and exit events). During trials, event byte codes were 

sent to the PC as they occurred. When trials finished, timestamps of events were returned to the Bpod 

client on the computer, which saved data and displayed relevant statistics for online monitoring. 

 The Poisson click stimulus was delivered to the speakers by Pulse Pal (section 2.1.5), a 

triggered arbitrary waveform playback device I developed with support for parametric pulse stimuli 

commonly used in neuroscience. Pulse parameters were sent to Pulse Pal at the beginning of each 

session, and click times were sent prior to each trial via USB. Firmware changes from the public 

default were unnecessary since unlike the human variant of the task, the Bpod device measured 

behavioral responses and Pulse Pal was only used for sound delivery. Bpod triggered Pulse Pal by 

TTL pulse, over a BNC cable connecting the two devices. A subsequent TTL pulse delivered during 

stimulation stopped the ongoing stimulus within 50µs. 
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Procedure and training 

 The flow of trial events is shown in Figure 2.7. A trial was initialized when the rat broke the 

stimulus port photo-gate. Following a random delay (drawn from exponential distribution, µ=200ms, 

re-drawn if < 50ms or > 500ms), the click train was delivered from the speakers until the rat exited 

the stimulus port. It then had 3 seconds to enter a response port in order to continue the trial. On 

entering a response port, the rat waited for reward. Reward was delayed by an interval drawn from an 

exponential distribution (µ=2s, re-drawn if < 500ms or > 8s). If the rat exited the response port, it had 

a 500ms grace period to re-enter and continue its wait. 10% of trials were catch trials, on which 

reward was omitted even if the rat was correct. Sessions continued until the rat stopped performing 

trials by visual inspection, or until 2 hours had elapsed. 

 

 
 
Figure 2.7: Flow of trial events in the rat implicit confidence task. Each trial can be considered to 
have four phases, each of which contained several events. In the stimulus phase, the animal initialized 
the trial by entering the stimulus port. Following a delay, the click train was delivered until the rat left 
the port. In the response phase, the rat entered one of the two response ports. In the temporal wager 
phase, the rat waited in the response port for reward. In the outcome phase the rat was either 
rewarded, or it aborted its attempt by leaving the port. 
 
 The training protocol included 5 phases: 1. Operant conditioning. 2. Sampling duration 

conditioning. 3. Simple two-choice discrimination. 4. Psychometric discrimination. 5. Adaptive 

reward-delay training. Each phase is described below. Training was conducted daily, and typically 

took 1 month to reach our training criterion. 
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Operant conditioning 

 Following one day on the liquid restriction schedule, naïve rats were introduced to the 

conditioning chamber after a brief handling period. The stimulus port was covered with masking tape, 

permitting them to explore only the response ports. Response ports delivered water on an intermittent 

reinforcement schedule when the rat entered either of them with its snout. The ratio of pokes to drops 

delivered proceeded as follows: for the first 50 rewards, the number of pokes required to elicit a drop 

increased by one poke every 10 trials (starting with 1 poke per drop at trial 1, 2 pokes per drop at trial 

11, and so forth). Following trial 50, the poke ratio for each reward varied randomly until the rat was 

sated. If the rat did less than 200 trials before becoming disinterested, the Operant protocol was 

repeated on the subsequent day. 

 

Sampling duration conditioning  

 Rats were placed in the conditioning chamber. No tape was placed on the stimulus port, 

allowing the rat to explore it for the first time. For the first 20 trials, a drop of water was delivered to 

each of the response ports automatically, at the moment the rat entered the stimulus port. Following 

trial 20, the rat had 5 seconds to enter a response port after exiting the stimulus port in order to get 

reward. Following trial 40, Poisson clicks were delivered at 50Hz from the speakers. The click trains 

did not instruct reward location, and could be ignored. Following trial 50, the minimum duration the 

rat had to remain in the stimulus port in order to be rewarded was increased from its starting point at 

0ms, by 100ms every 50 rewarded trials. Rats that reached 500ms delays were advanced to the two 

choice discrimination task. Rats that did not were trained on this stage once each day until they met 

the criterion for advancement. 
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Simple two-choice discrimination 

 In this stage, the rat entered the stimulus port to initiate a trial. On each trial, a Poisson click 

stream was delivered from either the left or right side. The rat was required to remain in the stimulus 

port for 200ms before responding. If the rat exited before this minimum sampling time or classified 

the stimulus incorrectly, a 5 second punishment interval was enforced, during which the ports were 

non-responsive. The rat could only receive reward for entering the response port on the same side as 

the sound. When rats performed a single session with above 90% accuracy, they were advanced to the 

next stage of training. 

 

Psychometric discrimination 

 The flow of trial events on psychometric discrimination was identical to two-choice 

discrimination, except that stimuli of graded discriminability were used. Rats were first introduced to 

95Hz/5Hz stimuli. Once performance exceeded 90% for one session, the 95/5 stimuli were randomly 

interleaved with 75/25 stimuli with equal probability. Once performance exceeded 80% for one 

session, 65/35 stimuli were added with equal probability. Exact click rate ratios were then adjusted 

manually between sessions for each rat to create three difficulty categories: easy trials (95% 

classification accuracy), medium trials (75% accuracy) and difficult trials (60% accuracy). Since 

performance at these levels was not requisite for the subsequent stage of training, rats were advanced 

as soon as the 65/35 trials were added. 

 

Adaptive reward-delay training 

 Rats performing psychometric discrimination were trained to wait for reward at the goal port. 

The governing computer automatically increased reward delay from 0ms to 6s in 200ms increments, 

incrementing each time the rat waited for long enough to be rewarded on 80% of the previous 50 

correct trials. This was typically the longest phase of training, taking several weeks in most rats. 
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Rat auditory confidence task 

 Following training, the intended task was repeated daily for several months to measure 

behavior. Since rats had successfully learned that rewards could be delayed for long periods, we 

reduced the mean time investment to 2s and varied the reward delay by an exponential distribution. 

To prevent impulsive withdrawal, the minimum reward delay was set at 0.5s. To prevent 

unrealistically long waits, a maximum delay was set at 8 seconds. Sessions contained two new types 

of trial: neutral evidence trials (50Hz/50Hz) which were rewarded randomly, and catch trials which 

were not rewarded at all. Neutral evidence trials occurred at 5% prevalence, and catch trials at 10% 

prevalence. For several weeks, rats were tested with mean time investment set to 2 seconds. 

Following this period, we reduced mean time investment to 1.25 seconds as was true for our human 

subjects, and captured several more weeks of data.  

 

 

2.1.4 A quiz to study the role of sensory pipeline noise in confidence 

 

  We wondered whether the patterns we observed in confidence reports in the Poisson click 

tasks would persist in a regime where all errors were attributable to non-sensory cognitive 

mechanisms. To this end, we designed a confidence reporting task where we could confirm that 

perceptual noise did not corrupt the signal used to make a choice. The task required subjects to 

determine the larger of two quantities that are general knowledge – the populations of countries, and 

provide an explicit report of their confidence in their choice.  

 

Subjects and compensation 

 Since longitudinal data and high temporal precision were unnecessary to answer our question, 

I formulated the task as a MATLAB geography quiz that could be distributed by email to potential 

student participants in our department. The recruitment email explained that the quiz would take 15 
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minutes, that the results would be anonymous apart from age, gender and handedness, and that there 

was no monetary compensation. It also specified supported computing platforms and provided 

installation instructions. Finally, the recruitment email requested that subjects not deliberately study 

geography or demographics prior to taking the quiz, to maintain that the quantities being compared 

were general knowledge and not dependent on a recent learning event. In addition to the subjects 

recruited via email, two visitors of our lab requested to participate. 

 24 subjects including the author returned data. Subjects ranged from age 20 to 50, and 

included 15 males and 6 females. Three subjects were excluded from analysis for mean session 

performance below 60% accuracy. Only one subject reported left-handedness, and none were 

ambidextrous. Each subject viewed a PDF copy of the study’s informed consent document, and was 

required to fill a checkbox indicating that they had read and understood it before proceeding. 

 

Apparatus 

 Since the subjects used their own computers to run the task, it was critical to ensure that the 

software worked as intended on a wide variety of platforms. Short sessions of 10 trials were run on 

the following operating systems prior to distribution: Windows 7, Windows Vista, Windows XP, 

OSX 10.6 and 10.7 and Ubuntu 12.10. The software was also validated on MATLAB r2009b, r2010a, 

r2011a and r2012a, though not every possible combination of platforms and software was tested prior 

to release. Reaction time measurements were made with the system clock command in MATLAB 

(now), and thus vary with respect to the moment when the word pairs were made visible to the 

subject. Uncontrolled factors were the monitor refresh rate, the program loop execution speed on 

different systems, and variable processing jitter determined by the host’s operating system. We report 

trends in reaction time which occurred on the order of seconds, and were averaged across hundreds of 

trials. 

 Subjects controlled the task with the computer keyboard. The task instruction screen 

presented to the subjects is shown in figure 2.8.  
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Figure 2.8: Confography subject instruction screen. Subjects were asked to compare the 
populations of two countries within three seconds and provide a post-decision confidence report. 
 
 Country population data for the year 2012 was downloaded from the World Bank’s Open 

Data database at http://data.worldbank.org/indicator/SP.POP.TOTL and modified before inclusion in 

the quiz data file. To produce a continuous range of discriminability, countries with greater than 500 

million or less than 10 million people were excluded. To reduce sensory processing time, I manually 

replaced countries with long official names with my estimation of their vernacular names (for 

instance, “Arab Republic of Egypt” was replaced with “Egypt” and “Democratic People’s Republic 

of Korea” was replaced with “North Korea”). 

 The confidence reporting scale was entered using the 1-5 keys on the computer keyboard as 

shown in Figure 2.8. As with the click train task, an “error” response was available if subjects had 

such low confidence they believed they had erred. The outcomes on these responses were not 

statistically differentiable from chance accuracy using a binomial 95% confidence interval. Since 

subjects could not predict their errors, perceived error responses were counted as lowest confidence 

responses. Of 1600 trials, only 34 were “error” responses. 
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 To encourage participation by reducing the clerical demand on subjects, I programmed the 

quiz to automatically Email the results back to a dedicated Email account for the study (Gmail, 

Google). The software checked for an Internet connection on launch, and if not detected, informed the 

subject that Internet access was required to participate.  

 On the first run of the program on a new computer, the software created a unique client ID 

file that contained a randomly generated ID number. All subsequent sessions from the same computer 

would be marked with the ID code. Subjects were requested not to share their computer, and were 

given instructions explaining how to delete the client ID file if sharing was necessary. 

 

Procedure 

 Subjects viewed an animated title screen introducing the quiz while it loaded. Subjects were 

then required to register for the study by entering their age, gender, handedness and indicating that 

they had read the informed consent document. Subjects then read the instructions (figure 2.8) and 

clicked the arrow to begin the session.  

 Each session was 100 trials in length. No subject completed more than one session. 

Individual countries for comparisons were selected randomly without replacement from the list of 51 

countries, while ensuring that no comparison was shown twice within a session. No feedback was 

given about whether choices were correct or incorrect, to maintain that the quantities being compared 

were general knowledge and not related to recent learning within the session. The time course of trial 

events is shown in figure 2.9.  
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Figure 2.9: Flow of trial events for Confography task. Subjects initialized trials by pressing the 
space bar. After a random delay (Gaussian, mean = 3s, var = 1s) two countries were displayed. The 
subject had three seconds to indicate the larger country using the “o” and “p” keys to indicate left and 
right respectively. Subjects then entered either entered a confidence report, or recapitulated the names 
of the countries they had just compared.  
 
 To verify that subjects had perceived the correct countries, 10% of trials were probe trials 

where subjects were asked to type the names of the countries they had just compared in lieu of 

providing a confidence report. The probe trials were randomly chosen with the constraint that no two 

sequential trials could be probe trials. If subjects did not respond within three seconds, the screen 

displayed “Too slow” accompanied by a negative feedback sound. Upon completing the game, 

subjects were informed that their data was being transmitted. Subjects were then notified if the 

transmission was successful, and the quiz automatically closed. We provide the results of the 

Confography study in section 3.4. 

 

2.1.5 Design of a real-time click generator and response capture device 

 A wide range of applications in Neuroscience require patterns of precisely timed electrical 

pulses. Some of these are classical electrical stimulation, control of lasers in optogenetics, control of 

sensory stimuli in psychophysics and synchronization of ensembles of instruments in 

electrophysiology. Often, these pulse patterns must be initiated with high precision by a signal from a 

governing instrument. In some cases, this can be accomplished with high end computer I/O cards (i.e. 
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National Instruments), commercial stimulators (i.e. Master 8, AMPI) or arbitrary waveform 

generators (i.e. 53200A, Aligent) – but each of these solutions can cost thousands of dollars, posing a 

challenge for high throughput assays in settings with limited funding. More importantly, the latter two 

options are difficult to interface with MATLAB based experimental control systems.  

 To provide a better option for these applications, I developed Pulse Pal, a programmable 

pulse and waveform generator. Pulse Pal can be assembled at a soldering bench in under an hour for a 

cost of under $250 in common electronic parts available from major industry suppliers (figure 2.10a). 

The Pulse Pal design files and software are open source, and publically available at 

https://bitbucket.org/LucidBiosystems/pulsepal. The device was intended to be part of a larger open 

source bioscience instrumentation project I termed Lucid Biosystems in web based documentation.  

 Pulse Pal delivers trains of monophasic or polyphasic square pulses ranging from -10V to 

10V with 8 bits (256 divisions) of voltage resolution. Pulses as short as 50µs can be reliably delivered 

with less than 2µs of jitter. Pulse Pal has two optically isolated digital trigger channels and four 

analog output channels. Trigger channels sense TTL triggers, and can be arbitrarily mapped to control 

specific output channels in software. Each output channel can be independently programmed with a 

different pulse train, and each trigger channel can be programmed to respond differently to logic.  

 Pulse Pal communicates directly with a client in MATLAB, which allows easy programming 

and software triggering. Using the client, researchers can easily create parametric pulse trains by 

specifying pulse width, amplitude, inter-pulse interval, playback delay and train duration, and several 

more advanced parameters for common physiology assays. In cases where parametric pulse trains are 

constraining, it is also possible to specify the onset time and voltage of each pulse in two arbitrary 

trains of 1,000 pulses, which can be loaded for playback on any output channel. Arbitrary pulse trains 

can be looped to create continuous sine waves, white noise or other simple acoustic stimuli for 

behavioral feedback. Using an EEPROM memory chip, Pulse Pal is programmed to retain 

programming between power cycles. It can be operated as a stand-alone device, drawing all of its 

power from an AC USB accessory charger or a USB battery. In this mode, Pulse Pal is programmed 
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by a clickable mini-joystick for navigating menus and changing parameters displayed on an OLED 

screen (Figure 2.10b). Its enclosure is cut from a single acrylic sheet on a commercial laser cutter, and 

assembled with screws, nuts and stand-offs. The enclosure can be ordered online from most laser 

cutting services. 

 

 
Figure 2.10: The Pulse Pal device and custom interface for human responses. A: Pulse Pal can be 
assembled at a soldering bench in one hour, using common parts. B: A bench test of Pulse Pal, 
showing different trains of 1ms unipolar and bipolar pulses simultaneously delivered on each of two 
channels. C: The response device for the human experiments was a modified computer mouse. Wires 
were run from Pulse Pal’s 5VDC supply to the proximal contacts on the two lateral buttons, and from 
the distal button contacts back to Pulse Pal’s trigger channels. Subjects used the buttons to indicate 
left and right responses. The red trackball component was unused. 
 
 A detailed account of Pulse Pal’s circuit design is available in the repository. In brief, Pulse 

Pal is controlled by an open source ARM Cortex M3 microcontroller platform (Maple, Leaf Labs). 

The microcontroller interfaces with the Pulse Pal MATLAB client via a virtual serial port, and writes 

voltage instructions in serial byte streams to a bipolar digital to analog converter IC (MAX500, 

Maxim) to control the four output channels. To power the DAC, An integrated boosting voltage 

regulator module (PT5061A, Texas Instruments) provides a bipolar 12VDC power supply from the 

unipolar USB 5V supply. 

 Pulse Pal was used in our human and rodent decision making experiments to generate 

precisely timed trains of Poisson clicks. Prior to each trial, the onset times and durations of each click 

were uploaded to the two memory slots for custom pulse trains. Pulses were specified to be bipolar, 

with each phase lasting 100µs, and amplitude was calibrated to equalize click volume for the speakers 
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in each apparatus. Trigger channels were set to “toggle mode”, which interpreted incoming pulses 

during stimulation as stop signals. When triggered by the behavior system via TTL pulse, Pulse Pal 

delivered sound directly to speakers until the rat withdrew, causing the behavior system to send the 

second TTL stop signal. 

 For the human study (section 2.1.2), no real-time behavior system was used. A custom 

modification to the default Pulse Pal firmware allowed it to fulfill this role. Pulse Pal was outfitted 

with a two button response device (figure 2.10c) and programmed with three additional functions: 1. 

to receive the stimulus delay, reward delay and correct response from the governing computer, 2. to 

terminate the click train on button press and enter a “time investment” mode which was terminated by 

a timer if the subject chose correctly, or otherwise by release of the response button, and 3. to return 

the choice, reaction time and time investment to the governing computer after each trial. Since Pulse 

Pal’s main loop cycles exactly every 50µs, the same resolution applies to these measurements with 

respect to the click train heard by the subject – a standard that is virtually impossible with purely 

software based tools. 

 At the time of this report, 21 Pulse Pal devices have been adopted to empower 9 research 

projects in 3 different research groups. In some of its present roles in ongoing research, commercial 

alternatives at the scale deployed would have been cost prohibitive, demonstrating the capacity of 

open source hardware like Pulse Pal to change which possibilities researchers think to entertain. I 

anticipate that with time and associated publications, Pulse Pal and related open source 

instrumentation projects (such as Open Ephys; Josh Siegle and Jakob Voigts, MIT) will become 

transformative technologies in our field. 

 
2.2 Data analysis 
 
 Our decision confidence experiments in humans and rats were designed with the intent to 

relate measures between species. Raw measures describing each trial were: a stimulus onset delay, 

two vectors of click times, a reaction time, a time investment, a choice outcome and indication 
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whether reward was delivered. Specialized data in the human task variants included explicit 

confidence reports and explicit confidence response time. Human data lacked click times in the case 

of the Confography task (section 2.1.4) and instead had country populations as evidence.  

 Statistical analysis of our data had two overarching goals: 1. to characterize the relationship 

of decision confidence to raw and derived measures of behavior, and 2. to evaluate the fitness of a 

computational model that can explain these relationships in our data. Establishing relationships 

between variables (for instance, confidence and reaction time) generally relied on standard statistical 

tests for mean differences and linear regression (section 2.2.1). Determining model fitness required 

methods described in section 2.2.2. 

 All data were analyzed with MATLAB R2011a (Mathworks) using the MATLAB statistics 

toolbox and custom analysis code.  

 

2.2.1 Statistics 
 
 Statistical tests often make assumptions about the shape of the distribution from which a 

sample was drawn, in order to exploit properties of that distribution. In virtually every analysis in the 

present work, I was fortunate to have sufficient computational power to use bootstrap methods in lieu 

of parametric tests or confidence interval estimates – avoiding the caveat of unknown distribution 

shape, and vastly simplifying the complexity of some analyses. In this section, I briefly describe how 

each bootstrap statistic was computed. 

 
Bootstrap confidence intervals 
 We frequently needed to determine our confidence that a true parameter ߠ is within a fixed 

interval of a sample parameter estimate ߠ. We first describe how this is accomplished for the error of 

means, and then generalize to more complex statistics.  

 We computed bootstrap confidence intervals for means using the Monte Carlo method 

described in (Efron and Tibshirani 1993). A brief description of this method is as follows: 1. from our 
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sample distribution of measurements, we drew measurements independently and with replacement to 

create a new sample distribution of measurements the same size as our original sample. We repeated 

this process B = 1,000 times (unless otherwise indicated) to create a distribution of 1,000 bootstrap 

samples, X*, as an estimate of the empirical distribution of samples ܲ that would arise as B → ∞: 

 

ଵܺ
∗ሺሻ, . . . , ܺ

∗ሺሻ~ ܲ ܾ ൌ 1, . . . ,  (2.2) ܤ
 

 
2. We computed the mean of each sample, to generate a distribution of replicate means.  
 

∗ሺሻߠ ൌ ݉݁ܽ݊൫ܺ∗ሺሻ൯ ܾ ൌ 1, . . . ,  (2.3) ܤ
 

where ߠ∗ is the distribution of replicate means. 
 

3. To compute confidence intervals from this distribution, we computed the interval of ߠ∗ containing 

the central 95% (unless otherwise indicated) of the density of means.  

 Often, we needed to determine confidence in a statistic computed from multiple paired 

measurements (for instance, averaged across all sessions, the slope of the best linear regression fit of 

reaction time vs. accuracy, or the significance of AUC in ROC analysis). To compute confidence in 

these cases, we drew trials at random with replacement to create B bootstrap samples of trials, each 

the same size as our entire dataset. For each bootstrap sample dataset, we computed the statistic of 

interest, and iterated to create a replicate distribution of B replicate statistics, determining confidence 

from the interval containing 95% of the replicate statistic density. 

 
Bootstrap test for difference between means 
 
 A test for the difference between means of two samples yields a p-value describing the 

probability that the difference in means of the two underlying distributions is not equal to 0. Unlike 

the case of statistics computed from paired measurements, computing the significance of the 

difference between a parameter in two conditions requires bootstrap samples, ܺ1∗ሺሻ and ܺ2∗ሺሻ  to be 

drawn independently from each condition’s original sample. The size of each bootstrap sample was 
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equal to the total number of measurements for each condition. After iterating to create B total samples 

(X*), we computed the difference between means of each pair of bootstrap samples to create a 

distribution of replicate differences: 

 

∗ሺሻߠ ൌ ݉݁ܽ݊൫ܺ1∗ሺሻ൯ െ ݉݁ܽ݊ሺܺ2∗ሺሻሻ ܾ ൌ 1, . . . ,  (2.4) ܤ
 

The test passed if an interval containing 95% of the density of replicate mean differences did not 

contain 0. To compute the p-value of the test, we subtracted the mean of ߠ∗ and computed the 

absolute value of the resulting distribution, to create a distribution of differences between replicate 

mean differences and their average. The fraction of this distribution greater than abs(0-mean(ߠ∗ሻ) is 

the p value of the two-tailed, two-sample test for difference between means[]. 

 
2.2.2 Model fitting and measuring goodness of fit 
 
Fitting psychometric data 
 Psychometric data relating discriminability to choice accuracy are typically fit with Weibull 

functions using maximum likelihood, to determine classification performance and choice bias 

(Wichmann and Hill 2001). For modeling a two-choice decision (chance accuracy = 50%), a Weibull 

function can be expressed in terms of two free parameters defining the threshold for 80% 

performance and slope (Fine 2009): 

 

ݕ ൌ 0.5 ∗ ݁ିሺ
ೖೣ

ሻ್; k ൌ െlogሺ

ଵି

.ହ
ሻ
భ
್  (2.5) 

 
 
where a is the performance level that defines threshold (0.8), and free parameters t and b define the 

threshold and slope of the function. For a given set of parameters, a likelihood function was evaluated 

with respect to data to determine the likelihood of the fit for subsequent maximization. Likelihood 

was computed as log value using the following equation:  

ܮ ൌ 	ݎ logሺ ܹሻ  ሺ1 െ ሻlogሺ1ݎ െ ܹሻ 
(2.6) 
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Where Wi is the value of the Weibull function evaluated at the stimulus intensity of trial i, and ri is the 

trial’s outcome (1 if correct, 0 if incorrect). Thus, if a correct trial co-occurred with a high probability 

predicted by the Weibull function, or an incorrect trial was co-occurred with a low probability 

prediction, a large value was added to L. To determine the best fit parameters, the negative 

Likelihood was minimized using the Nelder-Mead simplex algorithm (Lagarias, Reeds et al. 1998) 

(default for MATLAB r2011a function fminsearch).   

 In cases where a bipolar psychometric function was used (probability of classification vs. 

balance of intended evidence), curves were fit with probit regression using MATLAB function glmfit. 

 
2.2.3  Reverse correlation analysis 
 
 Reverse correlation is a method used in neurophysiology to determine the receptive fields of 

neurons, by computing the average stimulus that preceded an action potential (Aertsen and 

Johannesma 1981; Ringach and Shapley 2004). This method was subsequently adopted in decision 

making research to determine which features in spatially or temporally structured evidence 

contributed to choice (Neri, Parker et al. 1999; Nienborg and Cumming 2009; Zylberberg, Barttfeld et 

al. 2012). To compute the reverse correlation of Poisson click stream evidence, chosen and anti-

chosen click trains were separately aligned to the moment of choice on evidence-neutral trials 

(50Hz/50Hz). On each trial, these evidence streams were partitioned into 100ms bins, the number of 

clicks in each bin was counted, and the baseline click rate (5 clicks/100ms bin) was subtracted from 

the count to compute excess clicks. On each trial, one bin was partially visited since reaction time did 

not fall precisely on the edge of a bin boundary. For this bin, a corrected baseline was computed as 

50Hz multiplied by the fraction of the bin visited. Once excess clicks in each bin were computed for 

each trial, we computed the mean and 95% confidence interval of excess clicks in each bin. The 

resulting time courses for chosen and anti-chosen evidence were plotted, showing epochs with 

statistically significant enrichment or paucity of clicks (Section 5.4). To determine how evidence 

contributed to confidence, separate reverse correlations were computed and superimposed for high 
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and low confidence trials, showing epochs where evidence differed between these conditions (Section 

5.5).  

2.2.4  ROC analysis to determine how well evidence predicts behavior 
 
 Receiver Operator Characteristic (ROC) analysis is a method used in signal detection theory 

to determine how well a binary classifier makes predictions (Peterson, Birdsall et al. 1954; Green and 

Swets 1966). For a set of trials belonging to either categories A or B with a predictive characteristic C 

for each trial in a continuous range, the classifier determines which category each trial belongs to by 

comparing each trial’s C value to a threshold. As the threshold is varied across the range of inputs, the 

ROC curve is constructed by plotting the fraction of correctly classified group A trials (true positive, 

ordinate), against the fraction of group B trials which were mislabeled group A (false positive, 

abscissa). The area under the curve (AUC) then provides a measure of the classifier’s performance, 

where 0.5 = chance discrimination accuracy, and 1 = perfect discrimination. We used ROC analysis 

to determine how well the balance of left and right clicks predicted left and right choice, and how 

well the balance of chosen-side and anti-chosen side clicks predicted confidence in different time 

windows. Time preceding choice was divided into windows, typically 100ms in size. For each 

window, the ROC curve was constructed and AUC estimated from the curve by trapezoidal 

approximation (using the MATLAB function trapz). To determine the confidence interval of the AUC 

statistic, bootstrap replicates of the AUC were calculated for 1,000 datasets the same size as our 

original, consisting of trials (click train-confidence pairs) drawn with replacement (see section 2.2.1). 

Time windows with AUC values significantly larger than 0.5 indicated that click balance during that 

time predicted choice (or confidence) with greater than chance accuracy. 
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Chapter 3 
Verbal confidence recapitulates the brain’s statistical confidence in its assertions 
 
 The brain is fundamentally an information processing engine, which must constantly 

approximate the true state of the world using samples of noisy sense data. In this, the brain’s 

challenge is fundamentally statistical, and can be solved in the abstract using Bayesian inference – a 

process that generates a measure of confidence in a prior classification. We wondered whether the 

human feeling of confidence provides conscious access to a mental variable that is equivalent to 

confidence in statistical inference. To test this, we evaluated human subjects in a pair of tasks that 

measure confidence in a subject’s classification of quantities in different modalities. From the 

normative definition of confidence as a conditional probability, we derived predictions describing the 

interrelationships between confidence, evidence, and classification accuracy. Among these 

predictions is a counterintuitive property of confidence – that the lowest average confidence occurs 

when classifiers err in the presence of the strongest evidence. We show that these predictions are true 

of p-values generated by parametric and non-parametric statistical tests, using a range of noise 

patterns to corrupt primary evidence. We also report that these same predictions characterize human 

verbal confidence reports in two markedly different decision making tasks, revealing a novel and 

counterintuitive property of confidence in humans.   

 

3.1. Normative confidence predicts interrelationships of confidence, evidence and accuracy 
 
  The title of the present thesis is “A framework for understanding decision confidence”. The 

premise of our framework is a normative model of confidence which relates confidence to evidence 

with a conditional probability. We take as first principles that confidence is a probability estimate 

describing a belief, and that confidence is related to the available evidence supporting the same belief 

by a conditional probability (Kahneman and Tversky 1972). As such, Bayes rule provides a way to 
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understand confidence in terms of quantifiable evidence (Ferrell and McGoey 1980; Griffin and 

Tversky 1992). 

 

C ൌ ሻܧ|ܦሺ ൌ
ሻܦ|ܧሺ ∗ ሻܦሺ

ሻܧሺ
 

(3.1) 
 

 
In terms of decision confidence, C is confidence expressed as a probability estimate that the chosen 

option is correct, D is the hypothesis that the chosen option is correct, and E is the perceptual 

evidence used to decide.  

 From this normative definition of confidence, equations describing the predicted 

interrelationships between confidence, choice accuracy and evidence were formally derived by Balazs 

Hangya, a postdoctoral fellow in our research group. These derivations, provided in Appendix I as 

supplementary material, make several predictions about confidence describing choices among 

options. In brief, these equations show that when confidence describes a set of two-choice decisions 

made with a continuous range of evidence strengths that does not vary in time, the following 

predictions hold: 1. Confidence is directly correlated with choice accuracy. In instances where the 

confidence signal has not been scaled or transformed, this relationship is an exact identity. 2. 

Confidence is correlated with discriminability for correct classifications, and anti-correlated with 

discriminability for incorrect classifications, where discriminability is defined for a given stimulus 

and category boundary as an ideal observer’s probability of classifying the stimulus correctly. 3. Even 

at a fixed discriminability, confidence predicts choice accuracy. To visualize these properties of 

confidence, a simulation using the equations derived in Appendix I was further contributed by Balazs 

Hangya. The patterns produced by the simulation are shown in Figure 3.1. 
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Figure 3.1: Three patterns in decision confidence derived from the normative model. Individual 
simulations of the equations in appendix 1 produced a profile of three patterns in confidence. A: 
Confidence predicts accuracy. Here, confidence is shown as a probability estimate that a choice is 
correct. At 0.5, confidence is lowest, and predicts chance accuracy. At 1, confidence is highest and 
predicts perfect accuracy. B: Across the range of the strength of evidence provided to a decision 
maker, confidence is correlated with discriminability for correct classifications, and anti-correlated 
with discriminability for incorrect classifications. Evidence strength for each hypothesis on individual 
decisions was modeled as a value drawn from a Gaussian distribution with variance 0.6, and mean 
differences (Discriminability on figure axes) ranging from 0 to 2.5. On trials where the weakest 
evidence is delivered (0), mean confidence is counterintuitively half of its maximum value. Also 
counterintuitively, the lowest confidence is predicted to occur on errors in the presence of the 
strongest provided evidence. C: When a psychometric function relating evidence strength to accuracy 
is split by the high and low halves of the range of confidence values, confidence still predicts 
accuracy for a given evidence strength – high confidence predicts high accuracy and low confidence 
predicts low accuracy. When evidence is very strong, no errors are made and the curves converge. 
When evidence is neutral, no information is available to inform choice regardless of confidence, and 
the curves also converge. 
 
 Two aspects of the second pattern are counterintuitive. Firstly, if confidence and accuracy are 

an identity as per the first derived pattern, when provided with neutral evidence that results in chance 

accuracy, intuition suggests that confidence should be lowest – not averaging half its range. Secondly, 

when provided with the strongest evidence in a given range, intuition suggests that confidence will be 

highest regardless of the choice outcome (which is not yet available when confidence is computed).  

 The key to understanding these patterns is that in a confidence computation, there are two 

measures of evidence strength – 1. the strength of provided evidence supplied to a decision maker, 

and 2. The strength of perceptual evidence, the evidence apparent in the decision maker’s frame of 

reference, which occurs when an imperfect copy of the provided evidence is acquired by sampling. 
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Both intuitions are true for perceptual evidence – when the strength of perceptual evidence used by a 

discriminator is weakest, confidence is lowest and when strongest, confidence is highest.  

 To understand the first of these counterintuitive properties, that confidence is not lowest 

when provided evidence is lowest, it may be helpful to consider the case of a decision maker provided 

with perfectly neutral evidence for each decision in a series. While the provided evidence is precisely 

neutral, the decision maker only has access to samples of the perfectly neutral evidence, which 

individually have a value different from neutral. The decision maker learns that any experienced 

strength in the resulting distribution of perceptual evidence strengths predicts chance accuracy, and 

thus he has the lowest possible confidence for all strengths resulting from neutral evidence. In a 

different instance, the decision maker is only provided with evidence of a precisely fixed positive 

strength. The decision maker learns that the distribution of experienced evidence from this source 

predicts accuracy 65% of the time. When provided evidence strengths are delivered at random from a 

continuum that ranges from neutral evidence to evidence that is classified nearly perfectly, the 

perceived strength of evidence experienced on a trial when neutral evidence is provided overlaps with 

the distributions of perceptual evidence strength produced by informative stimuli. Thus the 

appropriate reward probability estimate for perceptual evidence strengths generated by neutral stimuli 

is greater than chance, and increases linearly with delivered evidence strength to an asymptote at p=1 

as the decision maker stops making errors.  

 The second counterintuitive property, that confidence is lowest in the presence of strong 

evidence when a decision maker errs, results from dividing the distribution of perceptual evidence 

strengths into separate groups for correct and incorrect classifications. In the subset of perceptual 

evidence strengths generated on trials with very strong provided evidence, the perceptual evidence 

will support the wrong hypothesis with a very low probability. The average amount by which 

perceptual evidence supports the wrong hypothesis when it does so, declines with increasing strength 

of provided evidence as the probability of these rare events also declines. Thus an error on a trial with 
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very strong delivered evidence produces weak perceptual evidence almost always, while a neutral 

evidence error produces a higher average strength of perceptual evidence. 

 According to the derivation, the three patterns in Figure 3.1 are initially true of all realizations 

of decision confidence. However, actual confidence signals captured from environmental sources can 

be expected to display various transforms of these patterns.  For instance, a continuous confidence 

signal mapped onto a discrete reporting scale may exhibit apparent compression along the confidence 

axis in the first two projections of Figure 3.1, if the mapping function does not map confidence to the 

full range of the scale. Furthermore, if a sufficient amount of noise is added to a confidence signal, it 

will be undetectable. To confirm the generality of the predicted patterns in uncorrupted confidence 

signals, we chose to determine whether these patterns apply to common statistical confidence values: 

p-values of two-sample significance tests. 

 

 
3.2. Statistical confidence measures are characterized by normative model predictions 
 
 In statistical hypothesis testing, p-values are fundamentally confidence values which are 

inverted to describe uncertainty by convention; estimates of the likelihood that a null hypothesis is 

correct. We reasoned that if the patterns we derived from the normative model are general properties 

of confidence, they should also describe the behavior of (1 – p) -values. Two common tests provide p-

values which: 1. estimate the likelihood that a sample was drawn from a distribution whose mean is 

either larger than a fixed value (one-sided one sample t-test) or 2. estimate the likelihood that a 

sample was drawn from a distribution whose mean is larger than the mean of an alternative sample 

(one-sided two-sample t-test, one-sided bootstrap test for difference between means (Manly 2007)). 

The t-tests are parametric tests and require that the populations and samples be normally distributed, 

while the bootstrap test is non-paramteric and makes no assumptions about the sample and population 

distributions. 



 

66 
 

 I created simulations to determine whether these tests exhibit the patterns predicted from the 

normative model. For the one sample t-test, on each of 10 million trials, a sample of 30 measurements 

was drawn from a distribution. On each trial, the mean of the distribution was offset from 0 by a 

random amount drawn from a uniform distribution between -0.325 and 0.325. The absolute difference 

between the population mean and 0 was defined as discriminability. Trials were scored as correct if 

both the population mean and sample mean had the same ordinal relationship with respect to 0. On 

each trial, a one-tailed single sample t-test was performed to measure the probability that the ordinal 

relationship informing choice was correct (that population mean had the same ordinal relationship 

with respect to zero as the sample mean). The p-value produced by this test is shown with respect to 

discriminability and outcome in Figure 3.2a-c, showing unambiguously that this statistical confidence 

measure displays the predicted interrelationships with the choice outcome and discriminability 

measures. 

 For the two-sample t-test, on each of 10 million trials, two samples of 30 measurements were 

drawn from two normal distributions of variance 1 (A and B). The means of distributions A and B 

were offset from 0 by random amounts drawn from a uniform distribution between -0.5 and 0.5. For 

each trial, the absolute difference between these offsets was a measure of discriminability. On each 

trial, if the mean of sample A was larger than the mean of sample B, we tested the hypothesis that the 

mean of distribution A is larger than the mean of distribution B and vice versa. I scored each trial as 

correct if this was true of the population based on our offsets, and incorrect if false. On each trial, a p-

value was computed using one-tailed variants of each of the two-sample hypothesis tests listed above, 

providing confidence that the ordinal relationship between sample means was also true of the 

population means. The results of this simulation are shown in Figure 3.2d-f. 

 Since the bootstrap test does not depend on an assumption that evidence is normally 

distributed, I used underlying distributions A and B which were exponentially distributed. Offsets for 

the population means were uniform, ranging between 0 and 1, and the bootstrap sample size was 
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1,000. Due to computational constraints, only 2 million trials were simulated. The resulting patterns 

relating bootstrap p-value to accuracy and discriminability are shown in Figure 3.2g-i. 

 

 
 

Figure 3.2: Statistical confidence measures reproduce patterns predicted by the normative 
model. A-C: A simulation of 10 million trials evaluated the one-sided, one sample Student’s t-test p-
value with respect to accuracy and discriminability. Discriminability was defined as the absolute 
difference between the population mean and zero. Population distributions were Gaussian, with 
means ranging from -0.325 to 0.325. Trials were scored as correct if both the population and sample 
mean had the same ordinal relationship with respect to 0. Since estimated probability p is an 
uncertainty measure by convention, it is displayed as 1-p to indicate confidence. In this form, the p-
value displays an identity relationship with accuracy and is both correlated with correct-trial 
discriminability, and anti-correlated with error-trial discriminability. A pair of psychometric functions 
was evaluated for trials with greater and less than average confidence values (solid and dotted lines 
respectively in panel C) showing that p-values contain predictive information about outcome even at 
fixed discriminability. D-F: The two-sample Student’s t-test p-value was evaluated with Gaussian 
evidence as for the one sample analysis with two changes: discriminability was defined as the 
absolute difference between the two population means, and outcome was scored correct if the sample 
means preserved the ordinal relationship between population means. G-I: A similar simulation 
evaluated the p-value in a one-sided bootstrap test for an ordinal relationship between means. The p-
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value is shown with respect to accuracy and discriminability. Population distributions were 
exponential, with means ranging from 0 to 1. As in the parametric example, the p-value is correlated 
with accuracy and correct-trial discriminability, and anti-correlated with error-trial discriminability. 
Plot E is shown at higher resolution than plot B to demonstrate that correct and error p-values 
converge as discriminability approaches 0. As with the t-test, bootstrap test p-values contain 
information about outcome even at fixed discriminability (panel I).  
 
3.3. Human verbal confidence in percept classifications approximates statistical confidence 
 
 We found our set of three derived patterns to be an excellent descriptor of trends in both 

normative Bayesian confidence and Frequentist p-values. The latter two tests shown in Figure 3.2 

explicitly estimated the likelihood that an inferred ordinal relationship between two samples is true of 

their underlying populations. In two-choice perceptual decision making, the decision maker is tasked 

with a similar statistical problem – to gather noisy samples of perceptual evidence supporting each 

alternative, and using the greater measurement, infer the ordinal relationship between their 

environmental sources. We wondered whether the patterns of statistical confidence would be evident 

in the feeling subjects individually identify as “confidence”, when asked to provide this report after 

making a choice among two options. To test this, we designed two markedly different decision 

making tasks – one basing choices on two independent streams of precisely controlled sensory 

evidence, and the other requiring subjects to gather evidence from memory, to compare two quantities 

that are common knowledge. We present our findings from the sensory task in this section.  

 To determine whether human verbal confidence reports also reproduce normative model 

predictions, we tested four human subjects, designated Subject H1 – Subject H4, in the explicit-only 

variant of our confidence task (section 2.1.2). On each trial, following a random delay, subjects 

listened to a pair of Poisson click streams, one stream delivered to each ear, and indicated which 

stream was clicking faster on average by pressing one of two horizontally oriented buttons. The click 

streams were terminated the instant the choice button was pressed. Subjects could sample up to three 

seconds of clicks before deciding, and forfeited the trial’s reward if they responded after this deadline. 

Immediately after pressing the choice button, subjects were prompted to report their feeling of 
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confidence in their choice on the 1-5 scale by pressing a button on a keypad (Figure 2.2). Following 

the report, subjects were visually informed if they were correct, and had to initialize the next trial by 

pressing a button. 

 To measure decision confidence based on evidence of varying strength, we generated Poisson 

click stream pairs with 100 clicks per second summed between left and right channels, and a range of 

click rate balances from 50Hz/50Hz (zero discriminability) to a typical balance of ~65Hz/45Hz at 

which the subject chose the faster click train with 90% accuracy.  

  In this section, we first determine a metric of the strength of evidence actually delivered to 

subjects on individual trials, as a more meaningful measure of the discriminability of evidence 

contributing to individual confidence reports than intended Poisson rate (section 3.3.1). We then 

determine how much of the final moments of a click stream was ignored because subjects had 

committed to a button press response, to provide a more relevant window for computing our 

discriminability metric, and estimate what fraction of the post-commitment window was actually 

required for the button press motor response (section 3.3.2). To determine how accurately and reliably 

subjects performed, and to what extent biases contributed to individual decisions apart from sensory 

evidence, we measured psychometric performance in section 3.3.3 and chronometric performance in 

section 3.3.4. In this precisely characterized behavior, we show the robust presence of statistical 

confidence patterns in human confidence reports, and characterize these reports further in the 

remainder of section 3.3.  

 
3.3.1 Discriminability measures with free-response Poisson click evidence  

 To characterize the relationship of discriminability to confidence, reaction time and choice, 

we sought to determine the best metric of Poisson click stream evidence to relate these measures on 

individual trials. For our perceptual confidence tasks, we implemented graded evidence strength in a 

manner similar to the olfaction based decision making studies of Kepecs et al 2008 and Felsen et al 

2008, by creating several discriminability categories (neutral-evidence, hard, medium and easy). We 
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adjusted the evidence strength for each subject, until performance in each of the 3 non-neutral 

categories was as evenly spaced as possible between 50 and 100% choice accuracy. For studies with 

static stimuli, this method permits a researcher to analyze the relationship of discriminability to other 

variables in a limited size dataset without needing to create discriminability bins of arbitrary size. 

However, the use of discrete categories posed a problem for our precise, temporally structured 

stimulus as illustrated by the example stimulus in figure 3.3. 

 

 
Figure 3.3: In a free response task, underlying rate may not capture the strength of Poisson 
evidence gathered on individual trials. Two three-second Poisson click trains are shown in an 
example trial where the subject responded after 350ms. In this 350ms window (combined yellow and 
red shade), provided evidence strongly supports the incorrect decision; click count for the 40Hz 
Poisson train is over 50% larger than for the 60Hz train. Additionally, the subject may not have made 
use of the final moments of evidence (shaded in red, supporting evidence discussed below), due to the 
time needed to execute a motor response following choice. However, evidence collected during this 
“post-decisional” period could have contributed to subsequent confidence reports. 
 
 The example in figure 3.3 is atypical, since such a large click count difference in the opposite 

direction of the intended rates ought to occur with low probability. We sought to determine the extent 

to which underlying rate was a useful discriminability category boundary in our dataset. A metric of 

the balance of sampled evidence, β, was computed for an ideal observer with equation 3.2, 

 

β ൌ
ܮ݊ െ ܴ݊
ܮ݊  ܴ݊

 
(3.2) 
 

 
where nL is the number of left clicks in the evidence stream, and nR is the number of right clicks. If 

all clicks occur on the left side, β = 1 (or on the right side, β = -1); and β = 0 if left and right click 

counts are equal. This measure is useful for evaluating both experienced evidence, and also for 
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evaluating intended evidence since the 3-second click streams computed were truly Poisson (section 

2.1.1). Thus unlike in Kepecs et al 2008, where odor mixtures are delivered at precise ratios to the 

sensory periphery on each trial, even our full length stimuli have experimentally designed variability. 

 If the evidence experienced on a trial by trial basis perfectly reflected the intended difficulty 

categories on individual trials, the distribution of the absolute value of β (excluding neutral-evidence 

trials) would consist of only three values. With a small amount of variability on individual trials, the 

expected distribution would be tri-modal. With a sufficiently large amount of noise to obscure the 

category boundary definitions, the distribution would appear unimodal. This measure is shown for the 

entire 3 second evidence streams pre-computed (Figure 3.4a), and separately for the portion of those 

same streams actually experienced (Figure 3.4b). 

 

 
 

Figure 3.4: The balance of experienced evidence forms a continuum despite intended difficulty 
categories. For a single example subject, evidence balance metric β is shown for the 3 second 
Poisson click trains generated with intended easy, medium and hard evidence strengths (A) and for 
the portions of the same trains actually experienced (B).  
 
 We sought to determine a post-hoc measure of discriminability that reflected the strength of 

evidence used by the subject. Since experienced evidence does not reflect intended categories on 

individual trials, we sought to exploit the ability of a binned measure to capture the range of 

discriminability at higher resolution. In figure 3.5, I show psychometric functions for two example 

subjects using each of these measures, showing how using β as an evidence measure allows us to 

study trials with intermediate levels of discriminability.  
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Figure 3.5: A measure of post-hoc discriminability, β captures the full range of graded 
performance. Data from two human test subjects (panels A and B) are shown. The red line shows a 
7-point psychometric function using underlying rates as evidence. The value of β was calculated for 
underlying rates using equation 2.1, with left and right rates replacing nL and nR respectively.  The 
black line shows β calculated using experienced evidence (as in equation 3.2). Error bars show 95% 
binomial confidence interval.  
 
3.3.2     Estimating the time of motor response commitment and motor response latency 
 
 Since our task is a free response task, the button press or snout withdrawal motor responses 

we capture can be assumed to occur shortly after the instant of a subject’s commitment to a choice. 

Thus, decisions may be insensitive to evidence in the final moments of the ongoing stimulus, which is 

terminated by the motor response. To measure the evidence that informed individual decisions in our 

task, we wanted to compute a derivative measure of β using only the click balance experienced by the 

subject, and disregarding the clicks that did not contribute to choice. We refer to this measure as β'. 

For this reason, we sought to approximate which portion of the final moments of the stimulus did not 

contribute to choice. I partitioned the choice-aligned click train stimulus into bins on neutral-evidence 

trials (50Hz/50Hz), and determined on average, how well the balance of left and right clicks in each 

bin predicted the same trial’s choice. Data are shown for our human and rat populations in figure 

3.6a-b.  
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Figure 3.6: Evidence in the final moments of sampling does not predict choice. On each 
evidence-neutral (50Hz/50Hz) trial, click train pairs were aligned to choice and divided into 25ms 
bins. In each bin, the predicted choice was determined by the greater click count and compared with 
the subject’s choice on the same trial. Bins where click count predicts choice are indicated with a red 
asterisk (where 95% binomial confidence intervals do not intersect with 50%). A: 5 Human subjects 
(n=6,886 evidence-neutral trials). Subjects listened to a pair of Poisson click streams and indicated 
their choice at time 0 as shown by pressing a response button. B: For the related rodent task discussed 
in Chapter 4, 6 rats (n=3,262 evidence-neutral trials). Rats listened to a pair of click streams and 
withdrew their snout from a port at time 0 as shown, stopping the stimulus. Some additional time 
elapsed while the rats moved to the response port, allowing them to make use of evidence in the 
sensory pipeline to reverse their initial judgments, while in contrast, the human button press instantly 
stopped the sound, and was a final commitment to choice. Our estimate of the earliest detectable time 
at which humans were totally committed to a response as measured by the last non-significant bin is 
150ms. Due to using inter- port movement to register choices and our inability to distinguish between 
reversals and slow movement during this interval, the same estimate is not applicable to our rat study. 
 
 Our ROC analysis of the time course for which evidence predicts choice in section 5.4 further 

supports our estimate that evidence from the final 150ms does not contribute to choice. We chose to 

end the evidence window for computing β' at 150ms pre-choice. The β' measure is used in the 

following three chapters to describe the balance of experimentally delivered Poisson click evidence in 

analyses of choice. Since confidence reports were given following choice, the β measure (including 

the committed response period) was used for relating confidence to evidence. For analyses where 

sidedness is irrelevant, we show unsigned discriminability as |β|. 

 We wondered whether any part of this post-decision period of sampling represented 

voluntary commitment to a motor response preceding a physically imposed motor latency. If subjects 

were physically unable to inform choice using evidence in the final 150ms of the stimulus, trials 
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where they responded sooner than 150ms would have an equal probability of being correct or 

incorrect. Only three trials in our human data set had reaction times below 150ms (Figure 3.7a). Our 

subjects were verbally instructed to earn as much reward as possible, learning a balance between 

speed and accuracy – and prolonged sampling times are consistent with this strategy. They also knew 

they would have to provide confidence reports, and may have adjusted their sampling strategy to 

include a post-decision evidence collection period that only informed confidence after commitment to 

choice, in accordance with the post-decision confidence model reviewed in section 1.5.5.  We 

wondered whether with a speed instruction and training, subjects could adjust their commitment time 

to make use of evidence closer to our detected button press response time. We tested three subjects on 

a new variant of our decision making task. After a random delay on each trial, subjects were 

presented with a binaural Poisson click stream with perfect evidence (100Hz/0Hz), and asked to 

indicate which side was clicking as quickly as possible. Trials were interleaved randomly between left 

and right. Perfect evidence was used to discourage strategic integration, and no confidence reports 

were requested. The time between the click train onset and the choice response would thus represent 

the summed physical latency of the button press response after choice, and the added delays of 

sensory processing and decision making, which studies in human and monkey vision have estimated 

at ~25-30ms (Bodelón, Fallah et al. 2007; Stanford, Shankar et al. 2010).  

 Since the three subjects had previously participated in the confidence task, they were first 

trained for 10 minutes in the speed condition with visual feedback; a green bar plot showed the mean 

of their correct reaction times, and the subjects were instructed to reduce the height of the bar as 

much as possible. During subsequent 10 minute probe sessions used for our analysis, no visual 

feedback was given. The reaction time distribution and conditional accuracy functions for the pooled 

probe sessions of both subjects are shown in figure 3.7b-c.  
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Figure 3.7: Subjects responding as soon as 125ms after stimulus onset discriminate above 
chance. A: Pooled reaction time distribution for 4 human subjects in the explicit-only confidence task 
(32,308 trials). Only three trials had reaction times below 150ms. B: Pooled reaction time distribution 
for three subjects performing the speed task with perfect evidence (1781 trials). C: Accuracy 
conditioned on reaction time is shown in 25ms bins. Bins with less than 20 data points were not 
shown. Confidence intervals show 95% binomial CI. This analysis shows that the minimum 
sensorimotor response latency for which evidence informed choice was 125ms. Accuracy rose above 
chance after 100ms, reaching the maximum distinguishable performance in this dataset by 250ms.  
 
 These results indicate that while subjects performing our confidence reporting task did not 

use information in the final 150ms before choice, this was not entirely due to a physical constraint on 

the speed of motor response and may have been modulated by the subject’s decision making strategy, 

alertness or other factors. 

 
3.3.3. Click train evidence was the major determinant of subject choices 
 
Subjects use click-train evidence to guide choice. 
 
 Since perceived evidence is the primary determinant of confidence as defined in equation 3.1, 

we sought to determine the degree to which our delivered evidence (and not other factors) influenced 

each choice. Psychometric functions, shown in Figure 3.8a-d, were plotted using our experienced 

evidence discriminability measure, β' (section 3.3.2), and fit with Weibull functions using maximum 

likelihood (see methods). Accuracy varied continuously as a function of graded discriminability in 

each of our subjects (Figure 3.8a-d). To compute post-hoc discrimination thresholds for each subject, 

I computed the strength of experienced evidence that resulted in 80% accuracy using the fitted 

Weibull function. Discrimination thresholds for subjects (indicated as “e80” in Figure 3.8 insets) were 
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comparable. The difference between our lowest and highest scoring subjects was 0.023 differential 

units of |β'|, equivalent to 2.3 extra differential clicks per second (of 100Hz summed between the two 

channels).   

 Our four subjects completed 15,834 trials in the explicit-only task variant. Mean choice 

accuracies for Subjects H1-H4 averaged across the experimental dataset were comparable: 81.1%, 

81.7%, 83.8%, 84.5%. To ensure that subjects discriminated reliably, we computed the time course of 

discrimination accuracy within and across sessions (Figure 3.8e-f). Subjects discriminated 

consistently throughout the experiment, and any fatigue within sessions did not affect accuracy. 

 

 
 
Figure 3.8: Discrimination accuracy is stable and varies as a function of our discriminability 
measure. A-D: Psychometric functions are shown for subjects H1-H4 respectively, in the explicit-
only task variant. Points and error bars show means and 95% binomial confidence intervals for choice 
accuracy in each evidence bin. Solid lines are Weibull functions fitted to the bin means. The text inset 
shows the discriminability for which each subject performed at 80% accuracy (e80), and the same 
value is indicated by a dotted red line. A dotted black line shows 80% choice accuracy. Points were 
not shown if fewer than 20 measurements contributed to the mean. E: Mean accuracy is shown 
averaged across sessions in 30 trial bins. Throughout sessions, accuracy for all subjects remained 
within 7 percentage points of 80%, and did not decrease towards the end of sessions as would be 
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expected if subjects fatigued. F: Accuracy is shown for each session following the two calibration 
sessions (section 2.1.2) for each subject.  
 
Our delivered evidence dominates choice, despite small side and reward-history biases. 
 
 Especially since click stream pairs were directional and our subjects were not given clinical 

hearing tests prior to our study, we wondered whether they exhibited side bias. Probability of left 

choice was plotted as a function of signed β' (experienced click balance) to determine the extent of 

side bias in our subjects. I fit these data with a logistic regression model (see methods) and using the 

fitted function, evaluated excess left choice percentage when subjects were given perfectly neutral 

evidence (indicated in Figure 3.9a-d insets as “B”). To determine the significance of the bias for each 

subject, I computed 1000 bootstrap replications of the bias statistic B by re-sampling sessions of trials 

with replacement from our data, and re-fitted the logistic model to each bootstrap sample. 95% 

confidence interval boundaries were provided by the 2.5th and 97.5th percentiles of bootstrap 

distribution, and displayed as red dotted lines in Figure 3.4a-e. Two subjects (H1 and H2) did not 

have a statistically significant side bias. One subjects had a slight but significant bias of +2.2±1.8%. 

The remaining subject had a larger, significant side bias of -8.9%. 

 To evaluate the relative contribution of reward history to each choice, I computed separate 

psychometric functions for trials following correct left and right feedback, and for trials following left 

and right errors. Trials following correct feedback are shown with logistic regression fits in Figure 

3.9e-h, and error feedback in Figure 3.9i-l. Bootstrap distributions of the B statistic for each curve 

pair were computed as had been done previously to test side bias. From the resulting bootstrap 

distributions, the overlap of 95% confidence intervals was used to determine whether subjects 

responded differently after feedback on left and right response trials. Three of four subjects went left 

more often after being rewarded for going left, though the magnitude of this effect was less than 10%. 

Biases after errors were mostly non-significant, and effect direction was inconsistent among subjects. 

 We noted in a recent study employing a similar Poisson click discrimination task in humans 

and rats (Brunton, Botvinick et al. 2013), that rats often adopted a strategy where the first click on 
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either side disproportionally biased choice. While the authors played the first click of each stream in 

stereo to discourage this strategy, we did not take this precaution in our human study in order to 

maintain true Poisson evidence, which simplified reverse correlation analyses. To determine whether 

our subjects used a first-click discrimination strategy, I analyzed neutral-evidence trials (50Hz/50Hz), 

and predicted that choice on each trial would be the side to click first. For the four subjects included 

in the present analysis, this strategy predicted 46.9±3.4%, 49.5±2.8%, 55.4±3.1% and 59.2±3.3% of 

actual choices (errors are 95% binomial confidence intervals). However, we tested one additional 

subject in the task, for who first click predicted choice on 74.1±1.6% of trials, implying that this 

subject was not using evidence in the way we intended. How robust the normative model patterns are 

with respect to this different regime of evidence evaluation is examined separately as a case study in 

appendix III.   

 In summary, we controlled only one factor as our intended evidence – the rate balance of a 

pair of Poisson click trains, and needed to determine to what degree subjects used this evidence to 

drive choice. We observed a strong dependence of choice on our parameterization of experienced 

click train evidence, and comparatively minimal effects of choice bias, click order or history 

dependence, indicating that our parameterization of evidence strength, β’, would provide significant 

insight into decision confidence. 
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Figure 3.9: Click stream evidence primarily informed choice, despite small side and reward-
history biases. Three analyses are shown on separate rows for each subject who participated in the 
explicit-only task. A-D: Sided psychometric functions are shown for all subjects. Points and error 
bars are means and 95% binomial confidence intervals for the percentage of left choices in each 
evidence bin. Solid lines are logistic regression fits to the same points. Net side bias (B), computed as 
the unsigned difference between 50%-left and the percent left for neutral evidence (determined by the 
curve fit), is printed on the text inset of each plot with 95% confidence intervals. Pairs of dashed red 
lines are drawn surrounding the same confidence interval, and a dashed black line indicates 50% left 
choice. Choice bias is minimal for most subjects and the direction of the effect is not consistent (as 
might be expected if the headphones were not calibrated to have equal click intensity).  E-H: Choice 
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bias is shown for trials following left and right choices that were rewarded. Separate psychometric 
curves were fit for post-left and post-right conditions, and bias was computed as for panels A-D. Blue 
curves indicate trials after left choices, and orange curves indicate trials following right choices. 
Though it is a small effect in most cases, bias on the subsequent trial generally favors the side 
rewarded previously. I-L: Choice bias following error trials. Effect size is small and bias direction is 
not consistent. Axis labels for each plot are indicated on the top row.  
 
3.3.4.  Human subjects adopted stable evidence sampling strategies 
 
 Subjects discriminating based on temporally structured stimuli often adopt a sampling 

strategy that reflects the quality of evidence. If evidence is strong, subjects choose quickly, 

conserving time. If evidence is weak, subjects sample for longer, averaging out stimulus and sensory 

noise to gain a performance advantage. The precise duration of sampling on a trial of a given 

discriminability may depend on the cost of time for each subject, and their instantaneous estimate of 

the value of continued sampling (Drugowitsch, Moreno-Bote et al. 2012). Subjects were provided 

with a range of individual evidence strengths to compensate for different discriminability thresholds 

(H1-H4: 0.082 0.081 0.104 and 0.102, see Figure 3.8e). The mean reaction times of subjects provided 

with strong evidence were shorter than for subjects provided with weaker evidence (means in Figure 

3.10a), and these individual differences largely persisted across sessions (Figure 3.10d). We show in 

Figure 3.10b that our subjects spent extra time sampling more difficult stimuli, consistent with a 

decision policy employing speed / accuracy trade-off (Palmer, Huk et al. 2005). To quantify the 

direction of this relationship, I fit linear trend lines to the data with least-squares regression, and 

computed bootstrap confidence intervals for the regression slopes by resampling trials with 

replacement and re-computing the linear fit for each bootstrap sample. All trends were significantly 

negative (p<0.05). I also show that average performance decreases with continued sampling time in 

Figure 3.10c, consistent with the hypothesis that weak evidence trials are preferentially sampled for 

longer.  
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Figure 3.10: Subjects sampled evidence strategically to economize time. A: Distributions of 
reaction times for subjects H1-H4 are shown for correct trials in green and for error trials in red. All 
subjects sampled for significantly longer on trials when they erred (see table 3.1). Subjects provided 
with strong evidence to compensate for a high discrimination threshold sampled for less time on 
average. Distributions appear skewed forwards in time, except for two cases where reaction times 
regularly approached the 3 second sampling time limit (Subjects H1 and H2). B: All subjects sampled 
for more time before responding on trials with weaker evidence. Trend lines were fit to data with least 
squares regression. Trend line slopes and slope errors are listed in Table 3.1, and were all 
significantly negative. C: For all subjects, trials with long reaction times had lower accuracy than 
short-RT trials. D: With respect to larger differences between subjects, mean reaction time was stable 
across sessions (though note subject H2), indicating that the means of distributions shown in Panel A 
characterized persistent response strategies.  
 

Subject ID Correct RT mean (s) Error RT mean (s) RT / |β’| %correct / RT 
H1     1.84±0.02     2.23±0.03  -3.58±0.15  -21.1±2.0 
H2 1.60±0.02 1.91±0.03 -2.88±0.15    -15.0±1.2 
H3 0.81±0.01 0.96±0.02 -0.86±0.05    -31.8±6.1 
H4 1.05±0.02 1.40±0.04 -1.70±0.06    -24.1±4.2 
 
Table 3.1: Significance of relationships between reaction time, evidence and accuracy. The table 
shows means and 95% confidence intervals of correct and error RT distributions in figure 3.5a. All 
correct trial reaction time means are significantly smaller than error means. In the fourth and fifth 
column, the table shows slopes and bootstrapped slope errors of trend lines fitted to data in Figure 
3.5b-d. Two trends are significant for every subject as determined by slopes that are negative within 
error: reaction time varies with the inverse of evidence, and accuracy varies with the inverse of 
reaction time. Errors shown are 95% CI. 
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 The past four sections were intended to infer how well our measures of discriminability and 

outcome describe the process used by subjects to make choices. We determined that subjects almost 

exclusively used the evidence we provided to choose, and chose accurately in a way that was 

predictable from our measure of evidence strength. Furthermore, we observed patterns in reaction 

time consistent with the process of actively listening to temporally structured evidence to make 

choices. These results show that our measures of experimentally delivered evidence and choice 

outcome, required to observe normative model predictions, are good descriptors of the subject’s 

behavior. 

 
3.3.5.  Verbal confidence reports reproduce predicted normative model patterns 
 
 Earlier, we derived three characteristic patterns of confidence reports that emerge from the 

normative model, and showed that these patterns are true of a familiar confidence metric: p-values 

used in statistical hypothesis testing. If confidence reports generated by the brain are approximations 

of statistical decision confidence, the same characteristic patterns should manifest in human verbal 

confidence reports. To test this, we observed our data in projections that should produce the three 

normative confidence patterns. 

 The first prediction is that confidence predicts choice accuracy. For each subject in our study, 

self-reported confidence indeed exhibited this pattern (Figure 3.11a-d). We report the confidence 

calibration metric (equation 1.2) and statistically significant positive regression slopes for this 

relationship in Table 3.2. Subjects were all well calibrated to their respective levels of accuracy, 

consistent with previously reported calibration values in sensory discrimination studies (Figure 1.1). 

 The second prediction is that confidence on correct trials is correlated with experimentally 

delivered evidence, while confidence on incorrect trials is anti-correlated with the same. We found 

that human confidence reports do show divergence of confidence with respect to evidence on correct 

and error trials (Figure 3.11e-h), characterized by significant positive regression slopes for correct 

trials and negative slopes for error trials in all subjects (Table 3.2). 
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 The third pattern predicts that for a given level of discriminability of delivered evidence, 

confidence predicts accuracy. We found that this was true for each subject (Figure 3.11i-l).  

 

 
 
Figure 3.11: Confidence reports predict outcome and contain insight into perceptual evidence 
in all subjects. The patterns previously shown for statistical confidence in Figure 3.2 also 
characterized human verbal confidence reports. Data are shown in each row for four subjects who 
participated in the explicit-only confidence task variant. A-D: Calibration curves show that 
confidence is positively correlated with accuracy in each subject. Points are mean outcome for each 
reporting scale division, and solid lines were fit to the means with least squares regression. Slopes and 
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slope errors are reported in Table 3.2. Error bars indicate 95% binomial confidence intervals. E-H: 
Confidence reports are shown with respect to discriminability. The highest average confidence occurs 
in the presence of the strongest evidence when subjects are correct (shown in green), and the lowest 
confidence reports also occur in the presence of the strongest evidence - when subjects err (shown in 
red). Points and error bars are mean and standard error of confidence reports in each evidence bin. 
Solid lines were fit to the means with least squares regression, and slope errors are shown in Table 3.2 
to indicate trend significance. I-L: When considering trials of the same discriminability, confidence 
still predicts accuracy. Solid curves are psychometric curves for high confidence trials, and dashed 
curves show low confidence. Errors are 95% Binomial CI. Axis labels are shown in the uppermost 
row. 
 

Subject ID Accuracy/Conf 
regression slope 

Conf/Evidence 
correct slopes 

Conf/Evidence 
 error slopes 

Calibration  

     H1     13.3±1.1     +4.6±0.3    -7.5±2.0     0.004   
     H2 7.1±1.5     +4.8±0.6 -4.4±3.4 0.020 
     H3 8.9±2.1     +3.0±0.3 -1.8±1.6 0.001 
     H4 7.2±1.0     +3.1±0.2 -3.1±2.1 0.013 
 
Table 3.2: Significance of relationships between confidence, evidence and accuracy. The slopes 
and bootstrap slope errors are shown for trends depicted in Figure 3.6. The final column shows 
confidence calibration for each subject, computed with equation 1.2. 
 
 We have shown that human reports of confidence feelings have three robust properties that 

are characteristic of statistical confidence. We have shown that confidence predicts accuracy, 

consistent with a century of prior findings. For the first time in humans, we report that the lowest 

confidence is apparent in the presence of the greatest absolute provided evidence strength when a 

decision maker errs. In the next section, we will investigate some temporal properties of confidence 

reports that lend insight into how confidence reports are formed. 

 
3.3.6.  Verbal confidence properties are stable within and across sessions 
 
 Subjects exhibited confidence patterns despite a range of reaction time distributions and mean 

evidence strengths. We wondered whether subjects used the reporting scale consistently, and whether 

individual differences also existed in scale usage. Subjects were verbally instructed to use the full 

range of the reporting scale when providing reports on the first day of the experiment, and reminded 

again following the initial training sessions (section 2.1.1). Despite these instructions and similar 
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discrimination thresholds (Figure 3.8), subjects adopted a range of stable scale usage profiles. The 

frequency distribution of scale usage is shown for subjects H1-H4 in Figure 3.12a. 

 Since all of our analyses of confidence rely on data pooled across trials and sessions, we 

sought to determine the consistency of confidence reports. In Figure 3.12b-c, I show that mean 

confidence within and across sessions remains within one scale division for each subject. Figure 

3.12d shows that subjects were well calibrated for individual sessions throughout the study, indicating 

that confidence was a good predictor of outcome (see section 1.1.1 for discussion of the confidence 

calibration statistic).  

 While the response scale was vertically oriented on the confidence response keypad, the 

decision component of our task had a sided response. We show in Figure 3.9 that some subjects had 

slight side biases. To determine whether confidence level varied systematically with side in individual 

subjects, we computed the ratio of mean left to right confidence across the study. For subjects H1 to 

H4, these values were: 0.96±0.02, 0.94±0.02, 0.94±0.01 and 0.99±0.02 (errors are bootstrapped 95% 

confidence intervals). 
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Figure 3.12: Subjects showed unique but consistent confidence levels. A: Frequency histograms of 
response scale usage show subject variability in response. B: Mean of confidence within a session. 
With the exception of subject H2, mean confidence scores did not decline towards the session end, 
consistent with flat session performance shown in Figure 3.3e. Data points are means and standard 
errors of 30-trial bins. C: Mean confidence for each session remained within one scale division for 
each subject throughout the experiment. D: Subject calibration scores showed that confidence 
persistently predicted choice outcome. Scores were typical of sensory discrimination tasks reported in 
confidence literature (Figure 1.1). 
 
3.4. Human confidence in non-sensory decisions approximates statistical confidence 
 
 Our normative model defines confidence as the estimated probability of a correct outcome, 

given the evidence that was apparent to the decision maker. In the context of a perceptual 

discrimination task, our implicit assumption is that perceptual evidence is not equivalent to 

experimentally delivered evidence because experimentally delivered percept was distorted by noise. 

This noise could have originated in the sensory pipeline, or in the decision mechanism itself. In 

principle, the fundamental properties of confidence should not depend on sensory noise, since 

confidence judgments based on memory and general knowledge can be well calibrated (reviewed in 

section 1.1.1). We were especially interested to determine whether error trial confidence was anti-

correlated with the strength of evidence in a regime where the sensory signal used to choose was 

likely not the origin of error.  

 We chose to evaluate normative model patterns in confidence judgments based on comparing 

quantities that are general knowledge instead of sensory percepts. I designed a geography quiz termed 

“Confography” which could be rapidly distributed by email for subjects to run in MATLAB. We 

collected data from 24 volunteer subjects in the Neuroscience research group at Cold Spring Harbor 

Laboratory. In this task, subjects were presented with the names of two countries and asked to 

indicate which country had a larger population within three seconds. They were then asked to report 

their confidence in their choice using the 5 point scale. To ensure that the subjects had perceived the 

country names correctly, 10% of trials were probe trials during which the subjects did not give 

confidence reports, and instead typed the names of the countries they had just been asked to compare 
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– a control for which subjects were never incorrect. A full account of the task contingencies is 

detailed in section 2.1.4. 

 Three subjects responded with less than 60% accuracy and were eliminated from the analysis. 

The remaining 21 subjects performed 2,550 trials – nine subjects performed 150-trial sessions while 

the remaining subjects performed 100-trial sessions. Subjects exceeded the three second response 

time limit on 2.2% of trials, and had an overall accuracy of 67.4%.  

 Since our measure of evidence strength depended on the assumption that true population 

statistics had been learned by the population prior to the study, I sought to eliminate countries whose 

populations were systematically misjudged with greater than chance probability, as determined by a 

95% binomial confidence interval below 50% correct. This could occur if the population used 

heuristics to respond (for instance, “Australia is larger than Nepal so it must have a larger 

population”). In our dataset, no individual countries were misclassified at a probability greater than 

chance, however this does not preclude the possibility that a larger dataset would identify such 

effects.   

 I first introduce our results by establishing that our measure of city population difference 

predicted choice accuracy. I show that our data reproduces a fundamental effect reported previously 

in memory accession tasks: that subjects spend more time deliberating when they err. I then report our 

confidence findings. 

  
3.4.1.  Psychometric and chronometric performance on the Confography task 
  
 In designing the task, we assumed that the average subject had knowledge of the populations 

of world countries, and that countries with similar populations would be difficult to distinguish. Since 

country populations are never equal to zero, we used the absolute log ratio of each trial’s population 

pair as our measure of discriminability. Subjects determined the larger among country pairs with large 

population differences at above 90% accuracy, and performed at near chance when populations were 

similar (Figure 3.13a-b).  
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 As with sensory discrimination tasks, subjects often respond more slowly when they err in 

memory accession tasks (MacLeod and Nelson 1984). We found that this was slightly true of our 

data; pooled across subjects, correct trial reaction times averaged 1.87±0.02s, while error trials 

averaged 1.95±0.03. Distributions are shown in Figure 3.13c-d. Subjects spent slightly but 

significantly longer responding on difficult discriminations (Figure 3.13e-f), in contrast to the robust 

anti-correlation between reaction time and evidence we found in our sensory task (Figure 3.11b). A 

significant anti-correlation between reaction time and performance is shown in Figure 3.13e-f, 

consistent with drift diffusion model predictions for memory accession (Ratcliff 1978). Since subjects 

responded on a wide array of hardware configurations, reaction time differences of less than a few 

hundred milliseconds were not considered reliable with this assay (indicated in section 2.1.4). 

 

 
 
Figure 3.13: Population log ratio and RT measures support use of general knowledge to decide. 
The top row of panels shows data from a 100 trial session in a single example test subject. The 
bottom row shows combined data for our population of 21 test subjects. A,B: Subjects comparing two 
populations in memory were more accurate when the difference between them was larger. 
Performance means ranged from 54% in the most difficult bin of differences to 92% on the easiest. 
Errors are 95% binomial CI. C,D: Subjects took at least one second to respond, and took slightly 
longer to respond when they erred. E,F: Reaction times were slightly but significantly shorter on easy 
trials in our population, though our example subject did not show a significant trend. Slope errors are 
bootstrap 95% confidence intervals. G,H: Subjects were less accurate on trials with longer reaction 
times. 
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3.4.2.  Verbal confidence in general knowledge reproduces normative model patterns 
 
 Subjects entered confidence reports following choice by pressing laterally oriented, numbered 

buttons on their computer keyboards as shown in Figure 2.9.  Scale usage featured more use of low 

confidence scale divisions (Figure 3.14b) than in our perceptual study (Figure 3.12a), consistent with 

mean confidence calibrated to the difference between overall choice accuracies in the studies (67.4% 

vs 82.7%). However, individual subjects often had unique patterns of scale usage (Figure 3.14a).  

 With only ~100 trials per subject and a range of discriminability, analyses based on outcome 

in several categories were rarely significant in single subjects (Figure 3.14c). However, for our 

population, confidence strongly predicted outcome probability (Figure 3.14d), and the confidence 

calibration score of 0.04 was similar to previous reports in general knowledge and memory studies 

(Figure 1.1).  

 In both our example subject and our population, the lowest confidence occurred during the 

easiest incorrect decisions – despite the fact that the quantities being directly compared were 

memories of generally known quantities and not sensory percepts (Figure 3.14e-f). Correct choice 

confidence in the example subject and population was positively correlated with discriminability. The 

value and error of fitted linear regression slopes confirming the significance of the normative model’s 

predicted trend directions are listed in Table 3.3. At fixed difficulties, confidence predicted accuracy, 

confirming our previous observations in sensory discrimination and statistical tests (Figure 3.14g-h). 
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Figure 3.14: Normative model predictions describe confidence in general knowledge. The top 
row of panels shows data from the same example subject as shown in Figure 3.11, and the bottom 
row shows pooled data from 21 subjects (2550 trials). A,B: The population distributed their responses 
across the confidence reporting scale, while individual subjects had unique response patterns. C,D: 
Confidence reports were positively correlated with accuracy. Errors show 95% binomial CI. E,F: 
Correct and error confidence reports diverged with respect to discriminability. The lowest confidence 
occurred on strong evidence trials that were incorrect. Errors show 95% CI computed from SEM. 
G,H: At fixed discriminability, high and low confidence were distinguishable. Errors are 95% 
binomial confidence intervals. 
 
 

Subject ID Accuracy/Conf 
regression slope 

Conf/Evidence 
correct slopes 

Conf/Evidence 
 error slopes 

Calibration  

GH15    +18.4±10.7   +0.49±0.03    -0.61±0.15        ---   
Population    +6.2±1.1 +0.41±0.02 -0.55±0.03 0.044 
 
Table 3.3: Predicted normative model trend directions are significant for confidence in non-
sensory choices. This table shows the slopes and bootstrap 95% confidence intervals for linear 
regression fits in Figure 3.9.  
 
 Since we observed a slight relationship between reaction time and evidence, we anticipated 

that this effect would be visible in confidence reports. In sensory and general knowledge tasks where 

subjects are free to sample evidence and enter choices at will, confidence is often (though not always) 

anti-correlated with reaction time (reviewed in section 1.1.3). In our sensory task, the magnitude of 

this effect was slight but significant (Figure 3.10a-d). In the Confography task, the anti-correlation for 
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both correct and incorrect trials was significant, though small (Figure 3.15a) and unlike in our sensory 

task, correct and error reaction times were indistinguishable in these bins.  

 The time between viewing the confidence prompt (section 2.1.4) and entering a confidence 

report was not distinguishable between correct and error (Figure 3.15b), but varied inversely with 

confidence in keeping with confidence reports from previous studies (also reviewed in section 1.1.3).  

 

 
 
Figure 3.15: Temporal properties of confidence in general knowledge. A: Confidence is slightly 
but significantly anti-correlated with reaction time, though correct and error trials in each category do 
not have differentiable reaction times. B: The distribution of time taken to enter a confidence report 
following choice is skewed reflecting the absence of a time limit on reporting, and report latency is 
indistinguishable between correct and error trials. The correct trial report time mean was 1.87±0.02s, 
and for errors 1.95±0.03s where errors are 95% CI. C: The time to enter a confidence report varies 
with confidence in agreement with prior research (reviewed in section 1.1.3), consistent with a post-
decisional deliberation process contributing to the reporting behavior. 
 
We have shown that beyond statistical and sensory confidence, confidence in general knowledge 

exhibits normative model patterns. While the possibility remains that a corrupted mental 

representation of the sensory stimulus (country name text) informed memory access for choice, we 

show that the brain was able to recapitulate this information perfectly when probed, casting doubt on 

the likelihood that the confidence pattern we observed in evidence is dependent on sensory pipeline 

noise.  
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3.5. Conclusions 
 
 There is a strong precedent in literature detailing what decision confidence reports ought to 

look like. By necessity, our introduction of this precedent in Chapter 1 included studies from a 

century of literature in fields as diverse as Psychology, Economics, Neuroscience, Computer Science, 

Ethology, Geoscience and Medicine. With so many diverse reports informing the interpretation of our 

data, it is alarming that this dissertation is the first report of a new and fundamental property of 

confidence in humans: that confidence is lowest in the presence of the strongest absolute evidence 

strength when humans err.  

 We were able to derive this overlooked pattern from a perspective that clarifies confidence 

with a Bayesian definition, and makes strong predictions about the properties of pure confidence 

signals. We have shown that these predictions generalize from confidence in statistical hypothesis 

tests to people reporting confident feelings in two categorically different decision making tasks. 

These findings support our derived predictions as a general framework for identifying and 

understanding confidence measures. 

 Beyond statistical confidence and verbal confidence, these predicted patterns have been 

observed in the firing patterns of Orbitofrontal cortex neurons (Kepecs, Uchida et al. 2008), in a 

strategic time investment task performed by rodents. In the next chapter, we show that time 

investment behavior is correlated with verbal confidence in humans, and recapitulates normative 

patterns in human and rodent subjects, providing a way to understand implicit confidence within our 

framework as well as explicit confidence. 
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Chapter 4 
Post-decision time investment provides access to decision confidence in two species 

 
 In forecasting accuracy, confidence provides a powerful advantage to decision makers 

managing risk, and has been regarded as an advanced metacognitive ability which may be unique to 

primates (Flavell 1979; Metcalfe and Shimamura 1994; Terrace 2004). A variety of tasks have been 

used to measure confidence in non-human primates, usually relying on binary decisions to either 

choose among options or to decline difficult choices for a small reward (reviewed in Chapter 1). More 

recently, an assay in rodents has shown that rats can strategically reinitiate trials after waiting for 

uncertain reward, providing a graded measure of investment (Kepecs, Uchida et al. 2008). How the 

human notion of confidence maps on to these behaviors is poorly understood. To bridge this 

conceptual gap, we developed a task that measures time investment in humans and rodents, and 

allows within-trial comparison of verbal and implicit confidence reports in humans. Using this task, 

we show that verbal confidence is strongly correlated with time investment. We also show that when 

considered with respect to accuracy and discriminability, time investment in both species is 

characterized by the normative model derived patterns expected of a confidence report. This crucial 

link between rodent behavior and the subjective feeling of confidence provides an opportunity to 

study the neural circuits underlying confidence with powerful molecular tools available only in 

rodent. More generally, our task provides a way to measure how confidence is used in situ to guide 

behavior with high resolution across species. 

 
4.1.  Normative confidence patterns characterize the time investment measure in human and rat 
 
 A convenient experimental assay to measure strategic investment of time in rodents was first 

described by Kepecs et al 2008. A subject registers a choice among two options with a motor action, 

placing the subject in a “waiting” state for that response. Following a random delay, the subject is 

rewarded if correct. On incorrect trials and on a small fraction of correct trials, no reward is delivered. 
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In theory, the subject invests time in the belief that they were correct, and this belief is proportional to 

the quality of evidence that informed the choice.  

 While investment of time is a tempting approximation of confidence, it is informed by several 

other contributing factors: the subject’s cost function for time, and the utility of each expected reward. 

I begin this section by suggesting how each of these factors contributes to our measured investment of 

time, and how a pure confidence metric could be recovered in theory. I report two new adaptations of 

the time investment task for humans and rats (Figure 2.3), using auditory cues instead of odors. Using 

these task variants, I show that normative model predictions strongly govern the behavior of time 

investment in humans, and that this result generalizes across sensory modalities in rats. 

 
4.1.1.  Theoretical relationship of time investment to abstract confidence 
 
 The following equation describing the relationship between optimal time investment and 

confidence was generously contributed by Dr. Alex Koulakov, a primary investigator at Cold Spring 

Harbor, in support of our research: 

 

TI ൌ 	τ ∗ log
C ∗ ሺ1 െ ߬ ∗ ݇ሻ
߬ ∗ ݇ ∗ ሺ1 െ ሻܥ

 
(4.1) 
 

 
Where TI is time investment, C is confidence, τ is the reward probability decay constant defined by 

our exponential reward delay distribution, and k is the opportunity cost, defined as the average 

subjective reward value the animal experiences per unit of time while preforming the task. The 

decision maker, having formed a mental representation of the distribution of reward delays, 

determines its optimal time investment as the time at which the cost of continued waiting exceeds the 

value of an expected reward, given its estimated likelihood.  

 Decision making organisms are likely to have different momentary opportunity costs – this 

variable is derived from both the average reward rate based on task contingencies, and the utility of 

an individual reward for the subject.  
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 While equation 4.1 suggests a simple way of understanding the relationship between 

confidence and time investment in an ideal observer, several of these parameters may manifest 

differently in organisms. An animal’s subjective estimate of time is imperfect (Eagleman, Peter et al. 

2005), adding uncertainty to the observable effect of τ. Furthermore, animals behaving for liquid 

reward become sated, decreasing the opportunity cost throughout sessions in unpredictable ways. To 

directly infer confidence from time investment, in principle, requires a complex task design that 

compares time investment across otherwise identical conditions with different reward amounts and 

different reward delay distributions. To provide an initial characterization of whether time investment 

exhibits the patterns of a statistical confidence measure across species, we used nearly identical, fixed 

trial contingencies for humans and rats. 

 
4.1.2.  Human subjects perform the intended time investment task 
 
 We tested five human subjects in the time investment task (section 2.1.2). In exploring the 

relationship of time investment to accuracy and evidence, we first sought to ensure that our subjects 

were using the evidence provided to guide their choices. In Figure 4.1a, we show that choice varied as 

a function of graded click balance. Unlike our earlier study, two subjects had side biases above 10% 

for neutral-evidence stimuli (H3 and H6). Subjects showed a wide range of mean reaction times 

(Figure 4.1b), and always spent significantly more time sampling evidence on error trials (Table 4.1). 

The variable sampling durations were correlated with discriminability thresholds (Figure 4.1 insets); 

subjects who were poor discriminators were given stronger evidence to match performance among 

subjects, and needed to sample for less time. Performance for each subject across sessions is shown in 

Figure 4.1c, indicating that individuals were at a performance plateau and did not significantly 

improve between sessions (with the exception of subject H6) – an effect we would expect to 

contribute to variability in confidence if present. Reaction time means were also stable across the 

experiment (Figure 4.1d), indicating that sampling strategies were consistent. All subjects sampled for 

longer on difficult trials (Figure 4.1e) and were less accurate on trials with long sampling times, 
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consistent with strategic sampling of evidence to economize time. These patterns in performance and 

reaction time show the same trends in the same directions as for human subjects performing the 

explicit-only task variant (Figures 3.8, 3.9, 3.10), indicating that the fundamental process of 

evaluating evidence and choosing was not impaired by subsequent time investment. 
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Figure 4.1: Subjects sampled Poisson click evidence to maximize performance. A: Sided 
psychometric functions are shown for all subjects. Points and error bars are means and 95% binomial 
confidence intervals for the percentage of left choices in each evidence bin. Solid lines are logistic 
regression fits to the same points. Net side bias (B), computed as the unsigned difference between 
50%-left and the percent left for neutral evidence (determined by the curve fit), is printed on the text 
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inset of each plot with 95% confidence intervals. Pairs of dashed red lines are drawn surrounding the 
same confidence interval, and a dashed black line indicates 50% left choice. Side bias is minimal for 
most subjects (but see H3 and H6). B: Distributions of reaction times for all subjects are shown for 
correct trials in green and for error trials in red. All subjects sampled for significantly longer on error 
trials (see table 4.1). C: Mean choice accuracy is shown for each session. Errors are 95% binomial CI. 
D: Mean reaction time is shown for each session. Errors show SEM. E: Reaction time is shown with 
respect to discriminability for each subject. Subjects sampled for longer on difficult trials. F: 
Reaction time is show with respect to choice accuracy for each subject. Subjects were less accurate on 
trials where they sampled for longer. 
 
 

Subject ID Correct RT mean (s) Error RT mean (s) RT / |β’| %correct / RT 
H1     1.54±0.02     2.10±0.04  -2.95±0.09  -18.9±2.3 
H3 0.80±0.01 0.97±0.01 -0.87±0.02    -32.9±4.0 
H5 0.40±0.01 0.51±0.01 -0.31±0.01    -27.7±7.8 
H6 1.65±0.01 2.09±0.02 -1.94±0.08    -21.2±2.2 
H7 1.10±0.01 1.26±0.03 -1.03±0.09    -27.8±6.2 
 
Table 4.1: Significance of relationships between reaction time, evidence and accuracy. The table 
shows means and 95% confidence intervals of correct and error RT distributions in figure 4.1b. All 
correct trial reaction time means are significantly smaller than error means. In the fourth and fifth 
column, the table shows slopes and bootstrapped slope errors of RT trend lines fitted to data in Figure 
4.1e-f. Two trends are significant for every subject as determined by slopes that are negative within 
error: reaction time varies with the inverse of evidence, and accuracy varies with the inverse of 
reaction time. Errors shown are 95% CI. 
 
 
4.1.3.  Human time investment produces patterns expected of a confidence measure 
 
 All subjects learned to hold the response button and wait for reward, but individuals showed a 

range of willingness to invest time in unlikely returns (i.e. Subject H1 vs. Subject H7 in Figure 4.2 

and table 4.2). Reward omission trials occurred at 10% frequency, allowing us to compare investment 

on correct and error trials. Subjects invested more time when they were correct (Figure 4.2), 

indicating that the time investment measure contained predictive information about outcome.  
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Figure 4.2: Human subjects invested liberally and invested more time when they were correct. 
A: the same exponential distribution of reward delays was used for each subject. The average delay 
was 1.75s, and only 2.7% of delays were greater than 5 seconds. As for our rats, delays below 0.5s 
were omitted to discourage impulsive abort responses. B-F: Time investment distribution for each 
subject. Correct reward omission trials are shown in green, and error trials in red. Time investment 
means are shown in Table 4.2; subjects invested significantly more time on correct trials. Investments 
were liberal in the sense that while the probability of reward for waiting longer than 10 seconds was 
virtually zero (panel A), human investments frequently exceeded this value. 

 

Subject ID Correct TI mean (s) Error TI mean (s) 
H1     9.13±0.36  8.02±0.32 
H3 5.91±0.09 5.27±0.07 
H5 6.24±0.19 3.83±0.17 
H6 5.90±0.09 5.27±0.07 
H7 5.03±0.20 3.70±0.17 

 
Table 4.2: Human subjects invested more time in responses that were correct. Means and 95% 
confidence intervals (computed as SEM*1.96) are listed for the reaction time distributions shown in 
Figure 4.2. All correct time investment means were significantly greater than error means.  
 
 Time investment predicted accuracy, though unlike explicit reports and normative model 

predictions, the relationship was non-linear as shown for the average of all subjects in Figure 4.3a and 

for individual subjects in Figure 4.4a. Instead of a fitting a linear slope to measure this correlation, we 

show in Figure 4.3a that the range of time investments spans the range of accuracies as a monotonic 

function from chance to nearly perfect.  
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 Time investment, like verbal confidence, was lowest on high discriminability error trials and 

highest on high discriminability correct trials (Figure 4.3b for the population and 4.4b for individual 

subjects). For fixed discriminability, time investment still predicted outcome (Figure4.3c and 4.4c). 

Thus, the directions of the trends predicted from from normative confidence are strongly apparent in 

human time investment decisions.  

 

 
 
Figure 4.3: Human time investments resemble normative model predictions for confidence. 
Time investment is shown averaged across 5 subjects (34,446 trials) in the three projections where 
our normative model predictions would be apparent for a confidence measure. A: Time investment is 
nonlinearly related to accuracy, but spans the entire range of accuracies from chance to nearly perfect. 
Error bars show 95% binomial CI. B: Time investment is highest for high discriminability correct 
trials, and lowest for high discriminability errors. Time investment becomes less indistinguishable 
between correct and error trials as discriminability is reduced. Error bars show 95% CI. C: At fixed 
discriminability, subjects were more accurate on trials where they invested more time. Errors show 
95% binomial CI.   
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Figure 4.4: Human time investments for individual subjects resemble normative patterns. The 
patterns shown in Figure 4.3 for the population are shown for individual subjects. A: Time 
investment is nonlinearly related to accuracy. B: Time investment is highest for high discriminability 
correct trials, and lowest for high discriminability error trials. C: At fixed discriminability, subjects 
were more accurate on trials where they invested more time. All error bars are the same as for Figure 
4.3. 
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4.2. Human time investment is strongly correlated with verbal confidence 
 
 In the previous section, we showed that time investment contains four trends in directions 

predicted by the normative model. To further explore the link between time investment and 

confidence, we acquired verbal confidence reports following time investment on a fraction of trials 

(section 2.1.2). We reasoned that if time investment was informed by confidence (section 4.1.1), it 

should be closely correlated with explicit confidence reports. I show that on trials where both explicit 

and implicit measures were captured, they are closely correlated (Figure 4.5a) regardless of outcome 

(Figure 4.5b).  

 In our understanding of the relationship between confidence and time investment (equation 

4.1), time investment is derived from confidence – and for the subsequent verbal report, confidence is 

then consciously interrogated and reported by our subjects. While the correlation of these two within-

trial measures is compelling, we wondered whether it could be explained by a reversal of the 

dependent relationship between the two measures – that when prompted for a verbal report, subjects 

instead infer their confidence from their own investment behavior. In Figure 4.5c, we show that 

verbal confidence is not simply a function of time investment; for a fixed time investment, confidence 

varies as a function of evidence. We also show that post-investment explicit reports are linear with 

respect to accuracy (Figure 4.5d), similar to pre-choice reports and unlike time investment, further 

supporting the idea that verbal reports were independently determined. The correlation between time 

investment and verbal confidence was consistently high throughout the experiment (Figure 4.5f) and 

was high in each subject (Figure 4.5g).  
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Figure 4.5: Time investments are highly correlated with subsequent verbal confidence reports. 
With the exception of panel G, panels show data averaged across 5 subjects (34,446 trials). A: For 
each division on the 5-point confidence reporting scale, mean time investment is shown as a single 
point. The slope and coefficient of determination for a line fitted with least-squares regression (solid 
black line) are shown in the figure inset. Verbal confidence is strongly and linearly correlated time 
investment. Error bars indicate 95% confidence intervals. B: Time investment and verbal confidence 
are correlated regardless of trial outcome. C: The interrelationship between time investment 
(ordinate), discriminability (abscissa) and verbal confidence (indicated by inset color scale-bar). For a 
given time investment, verbal confidence varies with discriminability. D,E: Contrary to time 
investments, post-investment confidence reports show nearly linear trends with respect to choice 
accuracy and evidence. F: For the correlation of time investment with verbal confidence (panel A), 
the slope was positive and the linear fit was a good description of the data throughout the experiment. 
G: For each subject, time investment and verbal reports were closely correlated. From left to right, 
subjects H1,H3,H5,H6 and H7 are shown.  
  
 We have shown that time investment by human subjects produced the trends expected of a 

statistical confidence report, though without preserving linearity between confidence and accuracy, 

consistent with the hypothesis that time investment is a measure derived from confidence. We showed 
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that these explicit and implicit measures were strongly correlated. To infer that the correlation was 

not caused by subjects mapping the previous time investment to the explicit scale when asked for 

verbal confidence, we showed that confidence varies as a function of evidence for a given time 

investment. These results strongly suggest that time investment provides a way to infer the brain’s 

confidence, in assays where the cost of time and opportunity are known.   

 
4.3. Rat time investment produces patterns expected of a confidence measure 
 
 Since the time investment measure does not require verbal ability, it is in principle applicable 

to non-human animals. A previous study (Kepecs, Uchida et al. 2008) showed confidence-like 

patterns in time investment by rats discriminating odor mixtures. We wondered whether the use of 

confidence to guide time investment in rats would generalize across sensory modalities, for direct 

analogy with our results linking verbal reports to time investment.  

 To assess this, we trained five rats in the rodent variant of our implicit time investment task 

(section 2.1.3). In brief, rats were placed in a behavior box with three response ports on one wall, and 

trained to enter the center port to initiate a trial. After a random delay, the rat sampled two separate 

streams of Poisson clicks delivered from speakers behind the left and right walls. Once the rats 

determined the faster clicking side, they withdrew from the center port, instantly stopping the click 

streams, and entered the lateral reward port corresponding to their choice. In the reward port, rats 

waited for a randomly delayed drop of water. On 10% of trials, reward was omitted despite correct 

responses to measure correct trial time investment, and every incorrect trial yielded a time investment 

measure. No additional timeout was added to the punishment of fruitless investment on error trials. 

 While the same overall click rate (100Hz distributed between sides) was used for both 

species, several differences between this task design and the human variant were notable. To 

encourage long waits and discourage impulsive withdrawal, rats were given longer reward delays 

(mean = 2.30s vs. 1.75s in humans). Rats were also punished with a 3s time-out for withdrawing in 

the first 200ms of sampling, to discourage impulsive withdrawal, and were never given delays longer 
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than 8s. When humans pressed the response button, the stimulus was immediately stopped, indicating 

both the end of evidence sampling and the temporally aligned motor execution of choice. For rats, the 

stimulus was stopped on withdrawal from the center port, allowing them the opportunity to switch 

their original decisions based on information in the sensory pipeline before entering a response port. 

Finally, rats were rewarded with liquid drops following ~22 hours of water restriction – a reward 

whose subjective value was likely higher than 5 US cents offered to humans for correct responses.  

 Despite the same click rate sum (100Hz), rats discriminated much more poorly than humans 

given the same evidence balance (shallow psychometric function in Figure 4.6a). The difference in 

signal quality between acoustically isolated left and right headphone channels and speakers 

positioned outside a behavior box with solid, acoustically reflective walls may account for this 

discrepancy. Rats also sampled for very short durations on average before withdrawing from the 

stimulus port, averaging only 341ms of evidence collection. Despite such short reaction times, rats 

sampled for longer on difficult trials (Figure 4.6c), mirroring the extended processing of difficult 

evidence observed in our human subjects. Rats were also less accurate on trials where they sampled 

for longer durations (Figure 4.6d). 

    While reward delays were 500ms longer than humans on average (Figure 4.6e), rats waited 

for comparable average durations (mean = 5.01±0.06s, error = 95% CI). This observation is 

consistent with the possibility that the cost of time is lower for humans (who earn 5 cents per correct 

trial) than for rats (which are relieved of liquid deprivation when correct), though we did not design 

the experiment to explicitly estimate a cost function. Like humans, rats invested more time waiting 

for reward on correct trials than on error trials (Figure 4.6f). 
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Figure 4.6: Rats perform the time investment task and invest more conservatively than humans. 
All data are averages across 5 rats who performed 21,499 trials. A: Psychometric function showing 
that chosen side varied continuously as a function of L/R click balance. B: Rats sampled for very 
short durations. Mean sampling time was significantly shorter for correct trials(336±2ms), than for 
error trials (365±4ms). C: Rats sampled for longer on trials with weaker evidence. Error bars indicate 
95% CI. D: Rats were less accurate on trials with longer reaction times. Error bars are 95% binomial 
CI. E: Reward delays were longer for rats than for humans. While only 2.8% of delays exceeded 5 
seconds for humans, 8.5% exceeded 5s in rats. F: Rats invested more time for correct trials than for 
error trials (5.28±0.09s vs 4.88±0.06s respectively where errors are 95% CI). Despite a larger fraction 
of reward delays exceeding 5 seconds, rats spent less time waiting for reward than most humans 
(Table 4.2). 
 
 Time investment in rats performing olfactory discrimination had previously generated 

patterns consistent with our normative model predictions for confidence reports (Kepecs et al 2008). 

We found that rodent time investment contains these patterns despite a different sensory modality 

informing choice (Figure 4.7 A, C). As with our humans, the time investment conditional accuracy 

function was nonlinear. While the first two normative model predictions had been observed in rodents 

previously, the third prediction is reported in our data for the first time (Figure 4.7E).  
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 Figure 4.7: Rat time investments resemble normative model predictions for confidence. 
Panels A,C,E show pooled data from 21,499 trials in 5 rats performing the time investment task. 
Panels B,D,F show data from a single session of 522 trials (of which 31 were correct reward 
omissions and 102 were errors). The first two sessions of exposure to the final reward delay 
distribution and the first 20 trials of each session were omitted from the analysis. Sessions for which 
rats averaged below 90% accuracy on the easiest category of stimuli were also omitted. A,B: Time 
investment is nonlinearly related to accuracy, but spans the entire range of accuracies from chance to 
nearly perfect. Error bars show 95% binomial CI. C,D: Time investment is highest for high 
discriminability correct trials, and lowest for high discriminability error trials. Time investment 
becomes less indistinguishable between correct and error trials as discriminability is reduced. Error 
bars show 95% CI. E,F: At fixed discriminability, rats were more accurate on trials where they 
invested more time. Errors show 95% binomial CI.   
 
4.4 Conclusions 
 
 The animal models most accessible to neurophysiology manipulations and measurements do 

not have linguistic abilities needed to provide explicit confidence reports, forcing most research on 

the neural correlates of confidence to use implicit measures. We have shown in two mammalian 

species, that strategic time investment displays three robust patterns expected of a confidence report, 

consistent with the possibility that a confidence metric is computed by the brain, and is used to guide 

time investment behavior.  
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 We further show in humans that strategic time investment is correlated with verbal 

confidence when both are provided in series to measure the same prediction. This constitutes the first 

report directly comparing an explicit and implicit measure of confidence. Together with our previous 

findings, we have established an empirical basis for claims that time investment measured in rodents 

is indeed a confidence-derived behavior. By implication, rodents are capable of being confident – a 

finding that undermines previously argued positions on confidence as a higher order cognitive ability 

unique to primates.  

 There was a subtle difference between implicit and explicit reports in our data. Implicit 

reports mapped nonlinearly to accuracy, consistent with the hypothesis that time investment is a 

measure derived by combining confidence, expected reward probability and reward utility.  

 While we have established the presence of statistical confidence patterns in human and rodent 

time investment, how time investment is computed from abstract confidence algorithmically in 

different conditions remains an avenue for future behavioral research. Mechanistically, neurons in the 

orbitofrontal cortex have been shown to contain patterns indicative of a confidence signal (Kepecs, 

Uchida et al. 2008). With a validated behavioral confidence measure in rodents, continuing 

investigations may determine how this signal arises and contributes to strategic investment of an 

organism’s time. 
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Chapter 5  
The Opportunistic Coupled Accumulator (OCA) model of confidence 

 
 Behaving organisms are constantly faced with choices, and must collect and classify samples 

of evidence from the environment to inform them. In the previous two chapters, we determined that 

decision confidence is fundamentally a statistical computation performed by human decision makers 

on the evidence they used to decide. However, the form of the computation we proposed in equation 

3.1 is abstract, and not equipped to describe how confidence is computed by an organism’s brain as it 

sequentially samples noisy evidence in time.  

 Several computational models of choice and confidence have been proposed within 

sequential analysis and signal detection theory frameworks. These models use different algorithms to 

compute choice and confidence from evidence, implying different predictions about the features of 

evidence that inform choices, and about the general properties of confidence. To evaluate the fitness 

of these models, we designed a perceptual decision making task where choices and confidence were 

informed with high resolution, temporally structured evidence, similar to Brunton, Botvinick et al 

2013. Unlike Brunton et al, subjects in our task were free to respond as soon as they had made a 

choice. Precise alignment of evidence history to the instant of a measured motor response could in 

principle, better enable us to identify different temporal patterns in the evidence preceding choice and 

confidence, if subject commitment to choice was precisely followed by the button press. 

 On each trial, subjects decided which of two Poisson click streams was faster on average, and 

subsequently reported their confidence in their choice on a 5-point scale (section 2.1.2). Unlike 

previous studies of confidence, this task afforded us access to a sub-millisecond precise temporal 

record of experimentally delivered evidence used by subjects to decide and generate a confidence 

report on each trial, allowing us to compare the patterns in evidence history left behind by humans to 

those produced by different sequential sampling models. Using previous models of choice and 

confidence, we attempted to simultaneously fit several important inter-relationships between five 
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trial-by-trial measures: choice outcome, discriminability, confidence, reaction time and evidence 

history. We found that each previous model failed to explain at least some aspects of the data. To 

resolve this discrepancy, we developed a new model: the Opportunistic Coupled Accumulator (OCA) 

model of choice and confidence. We anticipate that an algorithmic understanding of how confidence 

is computed by the brain in this simple decision task will inform future investigations of the more 

complex miscalculations of confidence that contribute to mental illness. 

 In the following five sections, we report properties of our choice and confidence data which 

cannot be explained by each of the five models of choice and confidence introduced in section 1.5. In 

the final section of this chapter, we provide a model that generates correct predictions and fits where 

previous models failed. 

5.1   Methods 

 Our explicit-only confidence reporting task design is described in Chapter 2 and human task 

performance is characterized in Chapter 3. In brief, human subjects listened to a binaural stream of 

Poisson clicks on each trial and freely indicated which stream was clicking faster on average by 

pressing a left or right choice button when they felt they had made this determination. Each click was 

delivered in acoustic isolation and well above the human detection threshold for sound (70dB), 

presumably containing a clear (~100%) hypothesis about the faster clicking side. Delivering click 

streams and capturing button press events were accomplished with a custom device, affording a 

record of the precise times of clicks and button presses, and 50-microsecond precise control of 

evidence cessation after choice (section 2.1.5). After choosing, subjects were immediately prompted 

to report their confidence that their decision was correct on a 5-point pushbutton scale, where 1 

indicated a random guess and 5 indicated high confidence. To vary the discriminability of each trial, 

the balance of left and right click rates was varied from 50Hz/50Hz (hardest) to ~65Hz/45Hz (easiest, 

precise value adjusted for each subject to match 90% performance). Subjects had up to three seconds 

to sample evidence, and forfeited the trial’s reward if they responded after this interval. Five precise 

measures were captured to describe different aspects of the choice on each trial: the precise time 
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course of evidence sampled (click streams), the discriminability of evidence sampled (left/right click 

balance ratio), reaction time, outcome (correct or error) and verbal confidence (five point scale).  

 Task performance metrics and an analysis of patterns in confidence reports are provided in 

Chapter 3. In brief, we computed a measure of discriminability based on the balance of experienced 

clicks prior to choice (β’), and determined that subjects primarily used Poisson click evidence to drive 

decisions. We also found that reaction times were consistent with evidence integration, and that 

subjects performed with mean performance, reaction time and confidence consistent across sessions. 

Intriguingly, we determined that reports describing the human feeling of confidence exhibited a set of 

three patterns that characterize statistical confidence. We next sought to determine an algorithm 

which could produce these intriguing patterns in the human brain. 

 

5.2   Reaction time models do not account for patterns in confidence reports 

 Previous studies of confidence have reported that under most circumstances, confidence is 

anti-correlated with reaction time (reviewed in section 1.1.3). To generate confidence from the drift 

diffusion model of choice (DDM), this relationship has been suggested to be causative – a decision 

maker using a drift diffusion algorithm would determine confidence by observing its own reaction 

times (reviewed in section 1.5.3).  

 To determine which patterns in confidence are predicted by the reaction time model, we fitted 

a drift diffusion model with four free parameters (threshold, integrator noise level, motor latency 

mean, motor latency variance, equation 5.1 with ρ=0) to the psychometric function and reaction time 

distribution of an example subject: subject H4 (see Chapter 3). For each trial, we set confidence equal 

to reaction time, providing a raw confidence measure. To map the model’s raw confidence to the 1-5 

scale, we determined the frequency with which subject H4 used each scale division, and divided the 

inverse raw confidence distribution into scale divisions by corresponding percentiles. Thus, a trial 

with a reaction time in the bottom fifth of the reaction time distribution would be scored a “5”, while 

a reaction time in the top fifth would be scored a “1”. 
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 The psychometric curve produced by the fitted model fell within 95% binomial confidence 

intervals of the subject curve at each point (Figure 5.1a), and the model reaction time mean fell within 

one standard error of the subject (1.092±0.004s and 1.089±0.007s respectively, Figure 5.1b).  

 In the remainder of Figure 5.1, I show that while DDM can account for choice and reaction 

time, confidence reports show different patterns from the DDM model’s reaction times. The reaction 

time model of confidence predicted that confidence is equivalent to reaction time, irrespective of 

whether the decision was correct (Figure 5.1c), and irrespective of discriminability (Figure 5.1d). 

Contrary to these predictions, human confidence is indeed differentiable between correct and error 

trials for each of our subjects (Figure 5.1e) and for a fixed reaction time, varies as a function of 

discriminability (Figure 5.1f). In human subjects, we observed that verbal confidence on error trials is 

anti-correlated with discriminability (Figure 5.1g, Chapter 3). For the same fit to our example subject, 

confidence on both correct and error trials was correlated with discriminability (Figure 5.1h). To 

determine whether the model was capable of producing an error-trial anti-correlation with different 

parameters, we evaluated model datasets of 20,000 trials, varying the two model parameters not 

related to the motor delay (noise level and threshold). Datasets were included if they produced choice 

accuracy within 10% of the mean of pooled human subjects (72%-92%), a reaction time mean within 

one standard deviation of the human mean (0.73-1.99s), and responded within the three-second 

sampling limit on 90% of trials. The slope of error trial confidence vs discriminability was never 

negative (Figure 5.1J).  
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Figure 5.1: The reaction time model of confidence makes three incorrect predictions. A drift 
diffusion model was fitted to an example subject’s data, to produce psychometric fits and reaction 
time means within error of the subject’s data. A: Psychometric functions produced by an example test 
subject (gray points and 95% binomial) and the fitted drift diffusion model (solid black line). Model 
parameters are shown in text inset. B: Reaction time distributions produced by the test subject (blue) 
and the fitted model (red). C: For the fitted model, confidence for correct (green) and error (red) trials 
is strongly anti-correlated with reaction time, but is not differentiable between correct and error 
choices. D: Confidence (inset) is shown for the model with respect to both reaction time and 
discriminability. Discriminability is shown as the β measure (equation 2.1) – the ratio of the 
difference and sum of experienced left and right click counts. For a given reaction time, confidence 
does not vary as a function of evidence. E: Mean reaction times and 95% confidence intervals 
computed at each division in the confidence scale are shown for correct and error trials in subjects 
H1-H4 respectively. To quantify the significance of trends, slopes and bootstrapped 95% confidence 
intervals are shown in text insets. Confidence on both correct and error trials show significant anti-
correlation with reaction time. Error trials have longer reaction times than correct trials of the same 
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confidence. F: Relationship between reaction time, discriminability and confidence is shown as a heat 
map. Scale inset shows confidence scale (Dark red = 5, Dark blue = 1).  Within reaction time bins, 
confidence varies strongly as a function of evidence, a pattern that would not emerge if confidence 
were solely determined by reaction time. G: For the example subject (also shown in Figure 3.5), 
confidence is correlated with discriminability on correct trials, and anti-correlated on error trials in 
accordance with normative model predictions. Points are subject data. Errors are 95% CI. Solid lines 
are least squares linear regression fits. For each fit, text inset shows slope and bootstrap error.  H: The 
model’s confidence is correlated with discriminability on correct trials and error trials, violating 
normative model predictions. I,J: For correct and error trials respectively, model threshold and noise 
level were varied to determine whether the reaction model can produce error trial confidence that is 
anti-correlated with discriminability while producing reasonable reaction times and choice accuracies 
as described in text. This was not true for any set of these two parameters.  
 
 The reaction time model of confidence thus incorrectly predicts three robust patterns in 

human confidence which are evident in our data. While reaction time was significantly anti-correlated 

with verbal confidence in each subject (Figure 5.1E), we conclude that this is only a correlation, and 

not the algorithm used by the brain to compute confidence. 

 

5.3   Variance models fail because variance in evidence is unrelated to confidence 

 Models of choice with relative stopping rules (like DDM) collect evidence for hypotheses A 

and B until evidence sum A exceeds evidence sum B by a fixed threshold. For this reason, they 

cannot use the difference in evidence collected for and against choice as a confidence measure, as can 

models using an absolute threshold (like race and other accumulator models). The reaction time 

model was one possible solution to this problem, especially plausible due to the oft reported anti-

correlation between reaction time and confidence (Figure 5.1, but see section 1.1.3). An alternative 

algorithm recently proposed by Yeung and Summerfield (2012) is to derive confidence from a choice 

process with a relative stopping rule using a metacognitive process that explicitly computes the 

variance of the time course of perceptual evidence (reviewed in section 1.5.4). The model was 

intended to solve the task of identifying which “sensory hypothesis” was true, in a continuous space 

of possible sensory hypotheses, and thus departs from the two-choice drift diffusion framework while 

retaining relevance to sequential sampling problems. As a brief example of how their model computes 
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confidence, consider classification of a face in the continuous spectrum between male and female. 

Each noisy sensory sample of the face contains a hypothesis about maleness (e.g 30% male, 95% 

male). As more samples are collected, the mean of the sample distribution converges towards the true 

value, and the variance of the measurements provides confidence in the mean. Unlike accumulator 

and drift diffusion models, this model requires that the brain maintain a memory for the entire 

collection of samples in order to compute variance. 

  Earlier, we noted that acoustic isolation and high signal to noise (~70dB clicks) afforded us a 

regime where each click was assumed to contain a near-100% hypothesis supporting its side (but see 

Brunton, Botvinick et al 2013 for exceptions). This binary evidence afforded us the opportunity to 

determine whether variability in evidence, apart from discriminability, can account for confidence.  

 To quantify the variability of evidence, we computed two measures, the coefficient of 

variation (CV) for the entire click train leading to the choice, and also the local variation, known as 

CV2 (Holt, Softky et al. 1996). CV is the standard deviation to mean ratio of a trial’s click intervals, 

while CV2 is a related measure that is less sensitive to changes in click rate as might be expected 

from a choice process that filters for momentarily elevated or suppressed rates and measures local 

variation in evidence. The mean CV2 was within error of 1, indicating that the average click train was 

Poisson (CV2=0.999±0.001, error = 95% CI). However, individual click trains were sub-Poisson or 

supra-Poisson, ranging in CV2 from 0.784 to 1.231, and indicating a range of click regularity on 

individual trials (Figure 5.2a,d). For chosen and anti-chosen click trains, confidence scale divisions 

did not have statistically distinguishable regularity of evidence by either measure (Figure 5.2b-c, e-f).   

 While confidence is unrelated to regularity of delivered evidence within each stream, a 

metacognitive process explicitly approximating the variance of a noisy internal decision variable may 

be less sensitive to the precise time course of evidence. To determine whether regularity of the 

decision variable’s movement in a drift diffusion process could produce normative confidence 

patterns with Poisson evidence, we tested the standard deviation of momentary changes in decision 

variable value across its history as a confidence measure. For the most direct path, shown in bright 
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red (Figure 5.2g), the decision variable moves by exactly -1*Threshold/RT units of evidence at each 

time step, and the standard deviation of the resulting vector of movements is 0, indicating the highest 

confidence. An indirect path (shown in dark red), would advance inconsistently and have higher 

variance in momentary movement, indicating lower confidence. For human subjects, confidence is 

strongly correlated with choice accuracy (Chapters 1, 3). However, this internal variance measure 

does not meaningfully predict accuracy for the fitted drift diffusion model used in section 5.2 (Figure 

5.2h) or for the same model with a range of reasonable noise and threshold parameter values (Figure 

5.2i). Slopes for the relationship of confidence scale divisions to choice accuracy in our subjects 

ranged from 7.1-13.3 (table 3.2). 
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 Figure 5.2: Variability of Poisson evidence does not account for decision confidence. For 
each click train sampled by our subjects, the CV2 and coefficient of variation (CV) were computed 
for the click intervals experienced, to determine whether confidence is correlated with the reliability 
of evidence. A: The distribution of CV2 for individual trials shows that subjects experienced a range 
of evidence irregularity. B,C: Despite the range on individual trials, mean CV2 was not differentiable 
among divisions of the confidence reporting scale. Errors show 95% CI of the mean. D-F: The same 
analysis is shown using CV, a simpler measure of variance that is sensitive to changes in event rate. 
G: Illustration of the drift diffusion decision variable time course on a trial with no variance in 
momentary movement at each dt (bright red) and a trial with high variance (dark red) of the same 
reaction time. H: The inverse standard deviation of momentary movement of the decision variable 
was evaluated as a confidence measure. For the fitted drift diffusion model shown in section 5.2, this 
confidence measure did not predict accuracy. Points show model accuracies for each scale division. 
Trend line shows linear regression fit. Text inset shows slope and bootstrap confidence interval. I: 
Across a range of parameters that produce plausible accuracy and reaction times for our dataset (see 
section 5.2), inverse variance of decision variable movement was not positively correlated with 
accuracy. Color bar inset shows slope of the same fit in panel H. Subject values ranged between 7.1-
13.3. 
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 We have shown that verbal confidence is insensitive to the range of click interval 

distributions experienced by our subjects. We have further shown that in the drift diffusion 

framework, variability in the drift diffusion decision variable’s time course does not predict 

outcomes, failing the most essential test for a confidence measure. We conclude that the 

characteristics of variance, when considered apart from reaction time and balance of evidence, do not 

match the patterns of confidence reports in our data. 

 

5.4.  Accumulator models predict an incorrect pattern in use of recent evidence 

 Sequential sampling models of choice (reviewed in section 1.4) posit that decision makers 

aggregate noisy evidence for competing hypotheses over time until the instant some criterion is 

reached. The different stopping rules used in these models make different predictions about the 

patterns in evidence for and against the chosen hypothesis immediately prior to a choice.  

 We were originally attracted to the accumulator model of choice and confidence (Vickers 

1979), for its simple explanation of confidence as the difference between accrued evidence for and 

against the chosen hypothesis at the moment of choice (dE). The same patterns in normative, 

statistical and human confidence were also shown to be generated by the dE measure in the race 

model  (Kepecs, Uchida et al. 2008). However, in an accumulator model, an absolute stopping rule 

terminates accumulation of evidence when either decision variable exceeds threshold.  

 To determine which patterns in recent evidence are generated by these stopping rules, we 

computed the reverse correlation of chosen-side and anti-chosen side evidence leading up to the 

moment of choice for an accumulator model, a drift diffusion model, and an example test subject 

using the method described in section 2.2.5. We determined a set of each model’s parameters that fit 

every point on a model psychometric to within 95% binomial confidence intervals of the example 

subject’s psychometric function (Figure 5.3a), while the model’s reaction time mean was within one 

standard error of the subject mean. For the model and subjects, we separately aligned all chosen and 

anti-chosen click trains to the moment of choice on evidence-neutral trials (50Hz left/50Hz right), and 
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determined the mean click rate in 100ms bins going backwards in time. We subtracted the baseline 

click rate (50Hz) from chosen and anti-chosen streams in each bin to view selection for elevated or 

suppressed momentary click rates on each side. The resulting reverse correlation is shown 

superimposed on the human reverse correlation in Figure 5.3b for the accumulator model, and 5.3e 

for the drift diffusion model. In reverse correlations produced by both models, evidence diverges 

strongly from baseline in the first 100ms bin before choice. However, unlike the model, human 

subjects must execute a motor response following choice. To simulate motor latency, we added two 

free parameters to each model, describing the mean and variance of a Gaussian latency added to each 

reaction time, and re-determined parameters that fit our data within error. The resulting reverse 

correlations are shown in Figure 5.3c,f. While the drift diffusion model provides a fit within error, 

accumulator model choices select for an incorrect pattern in anti-chosen evidence: click rate on the 

anti-chosen side is not preferentially suppressed in the moments before choice. 

 We observed that the absolute stopping rule makes three predictions about the structure of 

evidence leading to the moment of choice in our task. 1. While the value of the anti-chosen decision 

variable must have been less than the chosen variable at the moment of choice, its time course leading 

up to that point is not otherwise filtered against by the stopping rule. For an accumulator model with 

Gaussian decision variable noise and no decay parameter (perfect memory), this predicts uniform 

enhancement of chosen-side evidence and uniform suppression of anti-chosen side evidence over 

time. 2. In a task where subjects sample evidence for a self-determined duration (reaction time task), 

trials with lower than average absolute evidence in the beginning of the evidence stream take longer 

to reach threshold. Thus, the earliest evidence in the reverse correlation is expected to fall below 

baseline. 3. In a regime where noise is low, a final pulse of evidence causes the decision variable to 

exceed threshold more often than noise. This predicts that in windows measuring the instant before 

choice, the average click rate of the click stream on the chosen side will be higher than in earlier 

windows.  
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Figure 5.3: The accumulator model incorrectly predicts the reverse correlation of evidence. 
A,D: Psychometric fits for two-parameter accumulator and drift diffusion models respectively to an 
example subject (Subject H1). Free parameters were noise level (N) and threshold (T). Subject data 
are shown as gray points and 95% binomial CI, solid black lines were produced by model datasets of 
100,000 trials. B,E: Reverse correlations for the accumulator and drift diffusion models respectively 
(solid lines), overlaid on the human reverse correlation (shade = 95% CI of mean). Reverse 
correlations were computed using evidence-neutral trials (50Hz/50Hz) and show the average 
difference between click rate and 50Hz baseline rate (excess rate) in 100ms bins, when Poisson click 
streams were aligned to choice at time 0. Text insets show model parameters that fit the human 
psychometric curve shown to within error of each point, and produced reaction time means within 1 
standard error of the human mean. C,F: Two-parameter Accumulator and drift diffusion models were 
extended to four parameters to account for human motor delay by adding a Gaussian motor delay 
mean (Dµ) and variance (Dσ) to each model. The drift diffusion model (Panel F), but not the 
accumulator model (Panel C) fits the human reverse correlation of evidence that contradicted the 
hypothesis (Anti-chosen). 
 
 To quantify the suppression of anti-chosen side evidence in the moment before choice in each 

subject, we computed their reverse correlations separately. Chosen-side click rates were significantly 

enhanced and anti-chosen click rates were significantly suppressed in the moments before choice, 

indicating that each subject listened for both of these features when making choices (Figure 5.4a-d). 
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In two subjects, the absolute magnitude of chosen-side enhancement and anti-chosen side suppression 

were not statistically differentiable (Figure 5.4e) and the imbalance was small but significant in the 

remaining two subjects.  

 While the pattern of opposing chosen and anti-chosen side excess rates suggests that a 

relative stopping rule (or something very close to this) was used by our subjects, the pattern in both 

our subjects and in the drift diffusion model (Figure 5.3f) becomes increasingly less distinguishable 

beyond ~300-400ms pre-decision. We wondered whether the predictive information contained in 

click streams about choice followed the same time course. To determine this, we divided the click 

streams preceding choice into 150ms bins, and computed receiver operator characteristic (ROC) 

curves to determine how well left/right click balance in each bin predicted choice using the AUC 

measure (Figure 5.4f, see methods). Between 0 and 150ms pre-choice, click balance did not inform 

choice in our example subject (Figure 5.4G) or for the pooled population (Figure 5.4H).  The most 

predictive window was 300-450ms pre-choice, consistent with the greatest divergence between 

chosen-side enhancement and anti-chosen side suppression. From this window, the information about 

choice contained in click balance decayed with a comparable time course to chosen/anti-chosen 

excess rate divergence (Figure 5.4a, g).  
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Figure 5.4: The human stopping rule filtered for supporting evidence and against contradictory 
evidence in the choice-informative final second of sampling. A-D: Reverse correlations of Poisson 
click evidence are shown for subjects H1-H4 respectively, aligned to the detected button press at time 
0. On neutral-evidence (50Hz/50Hz) trials, excess click counts on the chosen (blue) and anti-chosen 
(orange) sides were computed in 50ms bins. The first and last bin which are statistically differentiable 
at 95% confidence (bootstrap test) are indicated with red dotted lines. This window was used to 
compute symmetry of aggregated evidence. E: Chosen and anti-chosen reverse correlations are nearly 
symmetric. Excess rate is shown for each subject, averaged throughout the evidence window 
computed in the previous analysis. Yellow bars are anti-chosen evidence, inverted for visual 
comparison. Only for subjects H3 and H4, the absolute magnitude of anti-chosen side suppression 
was less than the magnitude of chosen side enhancement. F: ROC curves measure how well click 
balance predicts choice in an example subject, in four equally spaced 150ms bins. The axes indicate 
at each click balance threshold, what fraction of left trials was correctly labeled left (ordinate), and 
what fraction of right trials was mislabeled left (abscissa) by left/right click balance in four windows. 
The area under each curve (text inset) indicates how well evidence from the partition predicted 
choices. A classifier that predicts high and low confidence at chance accuracy would have an area 
indistinguishable from the identity line (gray, dashed). Click balances in the final 150ms before 
button press and 1 second prior to choice were not predictive, while click balance in intermediate 
windows predicted choice. G: For the same example subject, AUC is shown in each consecutive 
150ms window. Windows from the previous analysis are indicated in color. Errors are bootstrap 95% 
confidence intervals. The predictive power of evidence follows approximately the same time-course 
as the subject’s reverse correlation (panel A). H: The same analysis for all subjects pooled. Evidence 
in the final 150ms before choice was not informative. 
 
 We have shown that the accumulator model predicts that recent evidence for the anti-chosen 

hypothesis is not impoverished in the moments before choice – while this pattern is clearly present in 

our data. In light of this finding, we were forced to abandon the accumulator model, despite its 

intuitive way of producing confidence reports. We have also shown that the time courses of chosen-

side excess rate enhancement and anti-chosen side excess rate suppression match the time course with 

which evidence balance predicts choice, consistent with the hypothesis that the balance of clicks (and 

not an absolute threshold) was the primary feature in evidence which our subjects used to drive 

decisions. In the next section, we extend this analysis to determine whether the time-course of click 

contribution to confidence matches the time-course of contribution to choice, in the context of a 

model that uses only post-decisional evidence to compute confidence. 

 

5.5.  Post-decision models overestimate how well post-decision evidence predicts confidence

 Reaction time and variance failed to provide a convincing method of generating confidence 

from a drift diffusion model. A recent study in humans proposed and tested a novel extension of the 
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drift diffusion model to account for confidence. In this model, a subsequent phase of evidence 

gathering is commenced at the moment of choice, for the purpose of determining confidence (Pleskac 

and Busemeyer, 2010, reviewed in section 1.5.5). According to this model, termed 2-Stage Dynamic 

Signal Detection (2DSD), only post-decisional evidence contributes to confidence. Since our data 

contain a precise record of the time course of evidence, we wondered whether post-decisional 

evidence was more informative about confidence than earlier evidence. To determine how much 

evidence from each click stream was used to compute confidence, we subdivided each 150ms bin 

from our reverse correlation analysis of choice (Section 5.4) into “high-confidence” (4,5) and “low-

confidence” (1,2,3) partitions. We observed that in the final moments before a choice response was 

registered, high confidence trials select for click balances supporting the same side on average, and 

low confidence trials select for click balances supporting the opposing side (Figure 5.5a). This pattern 

is consistent with a subject’s use of post-decisional evidence gathered during the motor response in 

computing confidence. We reasoned that if choice and confidence estimation occur in series, high and 

low confidence trials would not be distinguishable during the phase of sampling prior to the motor 

response. To measure the first moment for which high and low confidence are distinguishable in our 

record of evidence, we combined the chosen and anti-chosen data from Figure 5.5a to generate the 

time series shown in Figure 5.5b. We then determined the first bin of evidence within the window 

significant for choice, which also had significantly different high and low confidence means. 

Evidence contributing to confidence was present in the earliest fifth of the choice window, and 

persisted until the response was registered.  

 In estimating the motor response latency of our subjects (section 3.3), I showed that clicks in 

the final 150ms before the button press response do not inform choice – a finding consistent with the 

reverse correlations computed in Figure 5.3a-d and our ROC analysis of the same bin in Figure 5.4h. 

If post-decisional evidence was really used by subjects to compute confidence, we would expect to 

find that the click balance in this window can be used to predict confidence with greater than chance 
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accuracy on evidence-neutral trials. To test this, I selected four divisions measuring the pre-choice 

period, early and late choice periods, and post-decisional period as in Figure 5.4G.  

 For each trial, I computed the difference between chosen and anti-chosen clicks in each 

window. To determine whether this quantity had information about confidence, I scored confidence 

responses as “High” (4,5) or “Low”(1-3) and used an ROC (Receiver Operating Characteristic) 

analysis (see methods) to determine how well differential click count in each time bin can predict 

high or low confidence. For an example subject, the ROC curve for each window is shown in Figure 

5.5d, with the AUC statistic and its bootstrapped confidence interval printed in the panel inset. While 

evidence in the pre-choice period could not predict confidence above chance accuracy, evidence in all 

other windows predicted confidence. The time course of L/R click balance choice prediction and 

Chosen/anti click balance confidence-prediction AUC statistics are shown in Figure 5.5e-f for two 

example subjects in sequential 150ms bins. In the pre-choice period (1350-1200ms before choice), 

neither predictor exceeds chance. While choice AUC drops to chance prediction in the final 150ms, 

this bin predicts confidence for both subjects. Thus, in the post-decision period, evidence only 

informs confidence. The same analysis is shown for our combined human population in 200ms bins 

in Figure 5.5g. The larger bin size was chosen for statistical power, to illustrate that the early bins 

informing choice do also contain information about confidence.  

  Computational models of choice and confidence make different predictions about use of 

post-decisional evidence. Since only post-decisional evidence informs confidence in the 2DSD 

model, evidence gathered in the beginning of a choice should be agnostic with respect to confidence. 

This prediction is shown in Figure 5.5h-i, for 2DSD model simulations of 15,834 and 250,000 trials 

respectively, with parameters loosely fit to our psychometric, chronometric and confidence data. The 

larger dataset was illustrated in 50ms bins, to illustrate the relative time courses with which evidence 

informs choice and confidence. The initial bins for which evidence informs confidence occur when 

the stimulus stops becoming more informative about choice, as the increasing choice commitments 

begin to divert average information flow from choice to confidence. The post-decision bin, when 
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virtually all trials no longer inform choice, informs confidence vastly more than evidence collected 

during the choice period for the 2DSD model (Figure 5.5i). Human post-decision bins in our 

individual and pooled subjects are comparable to the later bins in the choice period, suggesting a 

discrepancy in the way confidence is computed from evidence. 

 

 
 
Figure 5.5: Confidence is computed using evidence gathered both during and after choice. A-D: 
F: Reverse correlation for the merged population decomposed by high and low confidence. High 
confidence (4,5) is indicated with solid lines, and low confidence (1-3) is indicated with dotted lines. 
High and low confidence trials are differentiable throughout the choice process. In the final moments 
before the motor response, evidence on high confidence trials supports the chosen hypothesis on 
average, while evidence on low-confidence trials supports the opposing hypothesis. G: The analysis 
from panel F, with high and low confidence components pooled. The first statistically differentiable 
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bin between high and low confidence is indicated with a blue dotted line. H: The four partitions used 
for ROC analysis, to determine whether evidence from different epochs informs confidence (see main 
text). The post-decisional evidence bin duration is 150ms, while the other bins are 350ms. I: ROC 
curves for each partition in an example subject. The axes indicate at each threshold, what fraction of 
high confidence trials were correctly labeled high confidence (ordinate), and what fraction of low 
confidence trials were mislabeled high (abscissa) by chosen/anti-chosen click balance. The area under 
each curve (text inset) indicates how well evidence from the partition predicted confidence reports. A 
classifier that predicts high and low confidence at chance accuracy would have an area 
indistinguishable from the identity line (indicated in gray). With the exception of the pre-choice 
partition, all partitions contained information about confidence. J: For the same subject, a comparison 
of confidence predicted by chosen/antichosen click difference and choice predicted by left/right click 
difference is shown. Post-decisional evidence informs confidence but not choice. Early evidence in 
choice informs confidence. K: The same analysis for all subjects pooled. L: A confidence-partitioned 
reverse correlation generated by a 2DSD model simulation with parameters loosely fit to our 
psychometric, chronometric and confidence data. Only evidence from the part of choice that overlaps 
with the motor latency distribution contributes to confidence. The first bin distinguishable between 
high and low confidence is indicated with a black dotted line. 
 
 We observed that in humans performing our intended task, as evidence increasingly informed 

choice, it also informed confidence (but see appendix III for a counter-example with a different 

decision making strategy). We also observed that post-decisional evidence informed confidence in 

humans. This finding poses a challenge for the previous models in this chapter that either rely on 

post-decisional evidence alone, or forfeit the opportunity to exploit post-decision evidence.  

 

5.6   Coupled accumulator models cannot fit both recent evidence and confidence patterns 

 The accumulator model can be viewed as the end of a continuum of models between race and 

drift diffusion. Intermediate models are defined by a coupling coefficient, ρ (Figure 1.3), which 

controls the degree to which evidence added to one decision variable is subtracted from its opponents 

(Usher and McClelland 2001). Two subsequent adaptations of the coupled accumulator model posit 

that the balance of evidence measure in these intermediate models provides useful confidence 

information (Moreno-Bote 2010; Zylberberg, Barttfeld et al. 2012).  We found that at ρ=0, the model 

is an accumulator model and is capable of fitting the relationship of confidence to evidence, but not 

the reverse correlation of anti-chosen evidence (Figure 5.6a-b). At  ρ=1, the model is a drift diffusion 
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model. Since the difference between winning and losing accumulators at the moment of choice is 

fixed by the relative stopping rule, each trial has the same confidence by definition (Figure 5.6g-h). 

Two intermediate fits are shown, illustrating that as ρ increases, anti-chosen side suppression of 

evidence increases but the slope of error trial confidence in evidence decreases, eluding a fit to the 

subject’s patterns in evidence and confidence. In section 5.7, we introduce the OCA model - a 

derivative of the coupled accumulator model that uses evidence collected after commitment to a 

motor response to fit human confidence patterns despite high coupling coefficients. 

 

 
  
Figure 5.6: The coupled accumulator model cannot simultaneously fit patterns in evidence 
history and confidence. In the top row of panels, the reverse correlations of chosen and anti-chosen 
evidence are shown for subject H1 (blue = chosen side, orange = anti-chosen side, shaded area = 95% 
CI of mean, insets show parameters of model fit) and for 150,000-trial simulations of the coupled 
accumulator model evaluated at coupling coefficients equal to accumulator, two intermediates and 
drift diffusion with remaining parameters fit to psychometric and reaction time data as in Figure 5.1. 
The bottom row shows confidence v. discriminability at each coupling coefficient (points = subject 
mean, errors = 95% CI, solid lines = model). A,B: The accumulator model provides a poor fit to the 
reverse correlation of evidence (also shown in Figure 5.3), but provides a reasonable fit to decision 
confidence v. evidence on error trials. C,D: At ρ=0.35 (mostly accumulator), slight selection for a 
low click rate in anti-chosen evidence is apparent, but the slope of error trial confidence v. 
discriminability becomes too shallow to fit our data. E,F: At ρ=0.8 (mostly drift diffusion), the anti-
chosen side reverse correlation of the model approaches error of our data, but the slope of error trial 
confidence v. evidence becomes slightly positive. G,H: The drift diffusion model fits the reverse 
correlation of evidence (also shown in Figure 5.3) but each trial is terminated with chosen and anti-
chosen accumulators at the same threshold, producing the same confidence on each trial. 
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 Aside from difficulty simultaneously fitting these two clear patterns, the coupled accumulator 

model has a fundamental problem it shares with the reaction time, variance and accumulator models – 

these models are not capable of gathering post-decisional evidence to inform confidence, while it is 

clear that human decision makers do so. In Figure 5.7, I show the time course of confidence and 

choice-predictive evidence generated by human decision makers and each of the models considered 

until this point when fit within error to the psychometric function and reaction time. Only the 2DSD 

model correctly predicts that post-decisional evidence informs confidence.  

 

 

Figure 5.7: No previous model correctly predicts temporal patterns of evidence contribution to 
choice and confidence. AUC was computed to determine how well left/right click balance predicted 
left/right choice (green), and how well chosen/anti-chosen click balance predicted high(4,5) vs. low 
(1-3) confidence trials (purple) in 200ms time bins preceding choice. All trials used were evidence-
neutral (50Hz/50Hz). Abscissa labels indicate 200ms bin centers in seconds. Shade indicates 
bootstrap 95% CI of mean AUC (solid lines). The lower plot in each panel shows the fraction of 
choices that have committed to a motor response for models: the cumulative sum of the 
commitment/latency distribution. To approximate the error of our human data, model data were 
generated from simulations the same size as our human dataset (15,834 trials). A: In human subjects, 
evidence increasingly informs confidence from at least the first 1/5th of the period that informed 
choice until the button press (also see Figure 5.5). The distribution of commitment times is unknown. 
B: The coupled accumulator model was shown for ρ=0.85, a value that could fit the reverse 
correlation of evidence while also generating some confidence information (see Figure 5.6). 



 

129 
 

Confidence information was gathered from the earliest moments of choice, but returns to AUC=0.5 
with increased motor response commitment. C: The 2DSD model uses only post-commitment 
evidence, producing a pattern where evidence does not predict confidence in early choice, and is too 
informative in the final 200ms bin where nearly all choices are committed. D-F: The race, variance 
and reaction time models return to chance prediction of confidence with increased motor response 
commitment. 
 

 We noticed that the confidence pattern produced by human subjects (panel A) appeared 

provocatively similar to a merge of unique Coupled Accumulator and 2DSD model properties (panels 

B and C respectively): escalating use of evidence in the early period that informed choice, and use of 

post-decisional evidence. 

 

5.7   Our OCA model simultaneously fits interrelationships of five key behavior measures 

 Encouraged by the partial successes of previous models to account for select features of 

human choice behavior, we developed a new model. It contains features of two previous models that 

were each insufficient: the Coupled Accumulator model and the Two-stage Dynamic Signal 

Detection (2DSD) model. We term this model the Opportunistic Coupled Accumulator (OCA) model. 

The model’s behavior for collection of evidence occurs in two phases: 1. integration of evidence until 

commitment to a decision, governed by equation set 5.1 (adapted from equation 1.5 in Chapter 1), 

and 2. less efficient integration of evidence during the commitment and motor response period, 

governed by equation set 5.2. The equations for these phases differ only in the stopping rule that 

terminates the phase, and efficacy of sensory evidence. The interplay between the model’s six free 

parameters and equations is illustrated in Figure 5.8. The coupled accumulator model equations 

describing the choice phase of evidence collection are: 

 

 

 

ାଵܮ ൌ ܮ  ,ܧ  ,ߟ െ ோ,ܧሺߩ   ;ோ,ሻߟ
ܴାଵ ൌ ܴ  ோ,ܧ  ோ,ߟ െ ,ܧሺߩ   ;,ሻߟ

maxሺܮ, ܴሻ ൏ ܶ 
 

(5.1) 
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where L and R are decision variables, EL and ER are vectors of Poisson evidence for left and right 

hypotheses at each time point, ηL and ηR are noise vectors for the left and right decision variables 

respectively, drawn independently at each time step i from a standard Gaussian distribution with free 

parameter N describing variance for choice-period noise. Two additional free parameters are: T (the 

choice threshold in units of evidence) and ρ (the coupling coefficient, see Figure 5.8a). The choice is 

determined by the larger of decision variables L, R when the inequality max(Li,Ri) < T is satisfied.  

 To compute evidence collection during the motor response period, the decision variables 

retain their values from the moment of choice (LD, RD) and proceed to integrate more evidence until 

the end of a Gaussian-derived response latency interval tL: 

 

ܮ ൌ ܮ	 	ܵܧ,  ,ߟ െ ோ,ܧሺܵߩ  ோ,ሻߟ

௧

ୀଵ

 

ܴ ൌ 	ܴ 	ܵܧோ,  ோ,ߟ െ ,ܧሺܵߩ  ,ሻߟ

௧

ୀଵ

 

ܮݐ ൌNሺߤ,  ሻߪ

(5.2) 
 

 

This formulation preserves variable names from equation set 5.1 with additional variable tL (the post-

decision motor response latency), and adds the latter three free parameters: µ (the mean of the 

Gaussian distribution of motor response latencies), σ (the variance of the same distribution) and SP, a 

factor describing the reduced signal strength of evidence gathered in the post-decision and motor 

response period, as it is apparent to the accumulators. N is a function that produces Gaussian 

numbers with parameters µ,σ. At the end of latency (i = tL), decision confidence is determined by the 

absolute difference between decision variables L and R at the end of the post-decision interval (LC, 

RC): 

 
ܮ	݂݅  ܴ, ܥ ൌ ሺܮ െ ܴሻ  
ܮ	݂݅ ൏ ܴ, ܥ ൌ ሺܴ െ ሻܮ  

 
 

(5.3) 
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An example of the time course of decision variables for a single trial is shown in Figure 5.8b, with the 

decision variables at time-points LC/RC and LD/RD indicated.  

 

 

Figure 5.8: Illustration of OCA model variables and parameters in an example trial. A:  The 
relationship between decision variables is shown for the decision and response phases of evidence 
collection. Decision variables L and R accumulate evidence for respective hypotheses that the left and 
right directions have stronger evidence. At each time step i, left and right decision variable noise for 
each sample, ηi is added to any available evidence at each time step, E. For each unit of noisy 
evidence added to L or R, the same amount multiplied by coupling coefficient ρ is subtracted from 
the opposing decision variable. The decision phase ends when L or R exceeds threshold T. The 
response phase is identical to the decision phase except that evidence efficacy factor SP diminishes the 
evidence added to each accumulator at dt, and the phase ends when time elapsed exceeds response 
latency tL. B: The time course of decision variable values is shown for an example trial. Variables 
were computed using equation 5.1 until one variable exceeded threshold, indicated by the intersection 
of the left decision variable (blue) with the horizontal dashed threshold line). On threshold crossing, a 
random response latency tL (green bar) was drawn from a Gaussian distribution with parameters µ,σ. 
Subsequent decision variable values were computed throughout the latency period with equation 5.2. 
Confidence was computed following the latency period as the difference between the chosen and anti-
chosen decision variables following the response phase, shown as a light red bar. 
 
 To test the model’s predictions against the combined data of our test subjects, we adjusted the 

six free parameters until the model produced patterns describing the interrelationships of choice, 

confidence, discriminability and the evidence time-course as close as possible to our data. This fit is 

shown “globally” in 10 projections for a model stimulation of 100,000-trials in Figure 8.9. To 

produce the model dataset for the fit, click streams used by the model were matched in absolute click 

rate and rate balance frequency to those in our pooled human dataset. To produce decisions and 

confidence reports, the model was evaluated once per millisecond, and proceeded to integrate 

evidence as per equations 5.1 and 5.2. Raw confidence values produced by the model were mapped to 
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the 5 point scale based on frequency of human scale usage. Since subjects had considerably variable 

reaction time distribution shapes and means (Figure 3.4), their combined reaction time distribution 

was unusually shaped. For this reason, reaction times were fit to subjects individually. Three 

additional projections showing simultaneous fits to reaction time interrelationships are shown with 

individual subjects’ global fits in Figures 8.10-8.14. In nearly every instance, the OCA model 

simultaneously produced and fit each of the patterns in our data which had eluded previous models. 

 

 

Figure 5.9: The OCA model simultaneously fits patterns in human behavior that eluded 
previous models. A 100,000 trial dataset was produced by an OCA model simulation, which 
generated choices and confidence reports from Poisson click stream pairs matching pooled subject 
data. Patterns from the model dataset were overlaid on patterns in pooled data from our 4 subjects.  
A: The model’s psychometric function predicted the subject’s accuracies in each of 10 equally spaced 
evidence strength bins, to within 95% confidence intervals of human data. Solid line shows model 
accuracies. Gray points and errors show human accuracy and 95% binomial CI. B: OCA model 
confidence strongly predicts accuracy, and fits four of five confidence scale divisions to within 95% 
binomial confidence intervals of human accuracy. The excessively accurate second bin in pooled 
human data was attributable to subject H4 (Figure 5.10). C: OCA model confidence shows the 
normative model prediction that the lowest confidence occurs on strong, high evidence trials and 
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highest confidence on correct, high evidence trials. It further fits human data for the same trend to 
within 95% confidence intervals of mean confidence in each of six accuracy bins, with the exception 
of a slight deviation beyond error in a single point. D: The model generates the third pattern derived 
from statistical confidence, that confidence predicts accuracy for a given evidence strength, and fits 
the human pattern of the same trend. E: On evidence-neutral trials (50Hz/50Hz) the OCA model’s 
choice-aligned reverse correlation of evidence showed elevated click rate on the chosen side, and 
suppressed click rate on the anti-chosen side, decaying in both directions from peak excess rate 
difference at ~350ms to baseline (50Hz) at approximately 150ms and 1.5 seconds prior to choice. 
This trend fit human data in 150ms bins (error shade indicating human 95% CI of mean excess rate) 
with the exception of a single bin on the anti-chosen side, which showed a sharp peak. F: When 
separated by confidence and the anti-chosen stream’s suppression inverted and recombined with 
chosen data to show the amount of excess rate supporting the chosen hypothesis in different time 
windows, evidence immediately before choice supported the chosen hypothesis on high confidence 
trials, and contradicted the chosen hypothesis on low confidence trials, consistent with use of post-
decision evidence. The model pattern matched human data in this projection at every point in 150ms 
bins. G: The area under ROC curves calculated for each bin to determine how well left and right click 
balance predicted choice on individual trials was plotted in green. Shaded region shows 95% 
bootstrap confidence intervals of the AUC for human subjects. Solid line shows AUC for the model 
dataset. A separate AUC computed to determine how well chosen/anti-chosen click balance predicted 
confidence in the same bins is plotted in pink for the subject (shade) and the model (solid line). For 
both the subject and the model, evidence gathered throughout the choice contributed to confidence. 
H: The frequency of confidence scale division use is shown for the subject and the model. This 
equivalence was fixed by our method of mapping of raw confidence values produced by the model to 
the 5-point reporting scale. I-J: Confidence was significantly anti-correlated with reaction time for 
both the subject and model. Since subjects had markedly different reaction time distributions, fits 
interrelating reaction time with other variables are shown for individual subject global fits (Figures 
5.10-5.14). K-L: Heat maps showing the interrelationship of discriminability, reaction time and 
confidence are shown for the subject and model respectively. For both the subject and model, 
confidence varies with both reaction time and evidence. 
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Figure 5.10: For individual subject H4, the OCA model simultaneously approximates 12 key 
interrelationships between decision measures. A 100,000 trial stimulation of the OCA model using 
parameters indicated in text above the figure panels, was overlaid on patterns produced by subject H4 
as in Figure 5.9. Panels A-G, L show the same patterns as in Figure 5.9.  H: The subject reaction time 
distribution is shown in blue, and the model RT distribution in red. Mean subject RT was 41ms 
slower than model RT: 1.098±0.015s and 1.058±0.002s respectively where error indicates 95% CI of 
the mean. I: OCA model reaction time was anti-correlated with discriminability, and matched subject 
data to within 95% confidence interval of the mean in 8 of 9 evenly spaced discriminability bins. J: 
OCA model choice accuracy decreased as a function of reaction time, though was accuracy was 
significantly different from the accuracy of human data in 4 of 10 evenly spaced reaction time bins. 
Error shows binomial 95% CI. K: Confidence is shown as a function of reaction time as in Figure 
5.9i-j, with subject and model overlaid. OCA model reaction time decreases as a function of 
confidence, and matches human data to within 95% CI of the mean on correct trials. While the model 
underestimates the reaction times of error trials, error trial reaction times are longer than for correct 
trials for trials with the highest confidence – a divergent trend that is also apparent for subject H4. L: 
The interrelationship between reaction time, discriminability and confidence is shown for the model. 
This projection was previously shown for subject H4 in Figure 5.1f, showing the simultaneous 
correlation between confidence and discriminability, and anti-correlation between confidence and 
reaction time. 
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Figure 5.11: OCA model fit for subject H3 

 

 Figure 5.12: OCA model fit for subject H2 
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 Unlike the previous two subjects shown, Subject H2 sampled for long durations on average, 

and produced a nearly symmetric reaction time distribution which our model had difficulty producing 

(Figure 5.12H). This is consistent with the possibility that as the subject approached the three second 

time limit and the probability of a time-out reward forfeiture increased, the subject made decisions in 

urgency with less evidence supporting their choice. While 7% of trials had reaction times greater than 

2500ms, a very small fraction of trials that actually timed out – less than 1%, compared to 8.6% for 

the model. For our final subject, Subject H1, 15% of all trials approached the timeout boundary, 

exceeding 2500ms in sampling time while only 1.2% of trials timed out. To achieve a fit of the 

timeout-approaching reaction time distribution in subject H1 without a large fraction of model 

timeouts, we added an additional parameter to the model: λT, a decay factor for the choice threshold. 

Once each millisecond, the initial threshold (55.0) was multiplied by λT =0.99965 to generate a 

simple, exponentially collapsing decision threshold which was equal to 19.2 at the three second time-

out. This enabled our model to generate long reaction times within 79ms of subject H1’s reaction time 

mean, while timing out only 0.2% of trials (Figure 5.13h), and preserving a fit to normative model 

confidence patterns, psychometric and chronometric functions within error (Figure 5.13a-d, j). 

Suggestions of how to further improve reaction time fits in situations with subjective hazard are 

provided in section 5.8. 
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Figure 5.13: OCA model fit for subject H1. To model subject H1, initial decision threshold T 
decayed by a factor λT when the model was evaluated each millisecond. This addition to our model, 
prevented a high rate of time-outs, though did not provide ideal fits to the history of evidence (panels 
E-G). 
 

5.8   Conclusions 

 We began our research with a confidence reporting task that is uniquely capable of 

accounting for patterns in the history of evidence use at high resolution, and an affinity for the 

accumulator model, for its straightforward confidence provision and relevance to the physiology of 

decision making in monkeys (Mazurek, Roitman et al. 2003; Churchland, Kiani et al. 2008). We were 

initially surprised when it failed to fit basic patterns in evidence history. Subsequently, we discovered 

that each of the five published models introduced in this chapter (as well as several preliminary 

models of our own) failed to explain at least one clear pattern in our data – a situation we did not 

expect to face, given the large literary priors on confidence and decision making. The model we 

eventually converged upon simultaneously accounts for the interrelationships of choice outcome, 
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confidence, discriminability, evidence history and to a lesser extent, reaction time – a kind of “global” 

fit that has been painfully absent in the heated, century-old literature of confidence modeling.  

 Our Opportunistic Coupled Accumulator model is opportunistic in the sense that it can 

harvest confidence information from the same presented evidence that informed choice, and is 

separately equipped to gather additional, noisy information during the motor response if this 

opportunity is available. This dual-source design makes the algorithm useful across a wider range of 

decision making contingencies than previous algorithms – it is capable of determining confidence in 

circumstances where the decision maker’s choice policy uses a relative stopping rule to choose, and 

also in weak signal circumstances where the evidence gathering penalty elicited by a motor response 

makes further signal collection impossible. This opportunity-driven use of evidence is consistent with 

the brain’s ability to flexibly use available evidence to optimize learning and performance (Courville, 

Daw et al. 2006). 

 OCA is a novel “meta-algorithm” describing how the brain computes choice and confidence. 

However, the principles governing separate stages of the algorithm are not unique. The balance of 

evidence collected by decision variables in coupled accumulators has previously been suggested to 

inform confidence (Moreno-Bote 2010; Zylberberg, Barttfeld et al. 2012), though neither study 

addressed the trade-off between confidence information and the coupling coefficient (Figure 5.6), or 

tried to fit confidence reports produced by this model to human confidence. Post-decision evidence 

collection in a perfectly coupled drift diffusion model had also been suggested to account for decision 

confidence (Pleskac and Busemeyer 2010), though the model’s over-dependence on post-decision 

evidence and under-dependence on early evidence with respect to human evidence use patterns 

(Figure 5.5) makes the conjecture that the brain uses only post-decision evidence unlikely.   

 OCA especially excels at modeling the relationships between choice outcome, confidence, 

discriminability and evidence history (Figure 5.9). However, we noticed that the reaction time 

distributions produced deviate slightly from those produced by individual subjects, subtly affecting 

fits inter-relating reaction time with other measures. We suspect that our three-second limit for 
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evidence sampling may have affected the duration for which subjects elected to continue sampling 

evidence, particularly those subjects who sampled for long periods and frequently approached this 

limit. A more sophisticated model of the interplay between the cost of gathering evidence and 

reaction time was proposed by Drugowitsch, Morento-Bote et al, 2012, providing a way to combine 

both the cost of gathering evidence and the subjective hazard for the cost and momentary risk of 

“timing out” a trial into a cost function that is then used to determine when to stop sampling for a 

given evidence stream. We chose not to build these computationally demanding features into our 

model, to demonstrate how surprisingly well our simple algorithm of six-parameters could explain 

behavior. 

 Given its surprisingly unique ability among sequential sampling models to explain our high-

resolution choice and confidence data, we anticipate that our OCA model will be exploited to provide 

an algorithmic understanding of momentary brain function underlying choice and investment 

behavior in a broad range of tasks. 
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Chapter 6  
A device to capture multiple choice decision responses in head-fixed mice 
 
 In section 1.6, I introduced the challenge of porting the 2AFC paradigm to the head-fixed 

setting. This would allow researchers to leverage the latest optical and molecular tools to determine 

the neural correlates of perception, decision making and motor control, using an informative, 

precisely controlled behavior. In this chapter, I introduce a novel way for head-fixed mice to 

communicate their decisions: the choice ball - a modified computer trackball that rotates about an 

axis, and is operated by short lateral motions of the animal’s front paws. I demonstrate the advantages 

of this response device using an auditory discrimination task, and show that head-fixed mice can be 

trained in a robust two alternative choice paradigm yielding psychophysical measures. 

 

6.1. Design of the choice ball device and experimental apparatus 

 The choice ball system employs a series of modifications to a commercially available USB 

trackball (Expert Mouse model K64325, Kensington). The 55mm diameter trackball is large enough 

that a laboratory mouse can position both paws comfortably and stably on its surface. We replaced the 

original trackball with an oversized 55mm diameter ping-pong ball (Joola, USA) in order to reduce 

the force required for the mouse to rotate it. In order to restrict the trackball’s motion to rotation about 

a single axis, we secured a precision-aligned hypodermic tube through the ball, creating mechanical 

guidance to the two acceptable choice responses. The hypodermic tube was anchored to metal inserts 

mounted in grooves cut into the trackball chassis such that the ball could freely rotate about this axis 

and remain within range of the trackball’s optical sensor. To prevent undesired visual cues, we 

disabled the trackball’s time-delayed automatic LED shut-off feature by clipping the trackball LED’s 

leads from its printed circuit board, re-wiring it to an external power source, and securing it back on 

to the circuit board with epoxy. The raw trackball position was read out by a dedicated PC running 

the Windows XP operating system (Microsoft) using a script in MATLAB r2008a (Mathworks). 
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Pointer enhancement was disabled in the operating system to ensure a linear readout of the trackball 

position. In our setup, a single pixel registered by the trackball computer corresponded to 0.26 

degrees of rotation, or 0.13mm of lateral movement along the circumference. Ball position was 

monitored and logged to the computer’s hard drive in real-time. During each trial, the computer 

measured ball movement towards pre-determined choice boundaries. Choice boundary crossing 

events were communicated in real-time from the trackball computer to our behavior system using 

parallel port logic lines. Position data were returned over an Ethernet connection following each trial, 

to the computer governing our behavior system. The modified trackball module itself was thus 

inexpensive and easy to integrate with our existing behavior system, based on BControl (C. Brody, 

Z.F. Mainen, A.M. Zador, CSHL) , an open source real-time state machine framework (Felsen and 

Mainen 2008; Erlich, Bialek et al. 2011). The Matlab code used on the dedicated trackball computer 

to acquire trackball position data and interface choice responses with our behavior system is provided 

in a GitHub repository: 

https://github.com/KepecsLab/ChoiceBallSystem. On this site we also provide code and setup 

instructions for a microcontroller-based Choice Ball system that is functionally identical to the one 

used here but does not require an additional, dedicated computer. 

 A stable platform to support the hind paws of a mouse was positioned such that when head-

fixed, the animal’s front paws rested on a modified computer trackball as shown in Figure 6.1a. The 

platform was made from a polycarbonate tube (McMaster, 50.8mm outer diameter) cut to 100mm in 

length and milled to expose the animal’s front paws to the ball as depicted in Figure 6.1b (a photo 

diagram of the setup).  A custom designed optical lickometer was placed within reach of the animal’s 

tongue. A lickometer is a device specialized for precise delivery of liquid droplets and measurement 

of lick events. Water reward was dispensed from a reservoir above the animal into the lickometer, 

through silicone elastic tubing. Water flow was controlled using a solenoid pinch valve (NResearch, 

Inc.), with pulse timing calibrated such that a single reward measured 5µl. Sounds were delivered 

using a set of speakers (Harman Kardon 5187-2105) positioned on either side of the animal’s head. 
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Speakers were calibrated to 70dB-SPL within a 5-40kHz range using a pressure-field microphone 

(Brüel & Kjær, Sound & Vibration Measurement A/S, Nærum, Denmark). Auditory stimuli generated 

in MATLAB were sampled at 200kHz and delivered to the speakers using a Lynx L22 sound card 

(Lynx Studio Technology, Inc.). A white LED to indicate trial onset was mounted on the top face of 

the lickometer, pointing towards the mouse. An infrared camera was positioned 20cm in front of the 

animal, and its output was shown on an LCD display for monitoring purposes. The trackball was 

placed on a lab jack (Fisher Scientific) to allow fine scale adjustment of its height relative to the 

mouse’s paws. The entire apparatus was enclosed in a dark acoustic isolation chamber (Industrial 

Acoustics Company, Inc.). 

 

 
 
Figure 6.1: The choice ball apparatus. A: Orientation of the choice ball. A ping pong ball replacing 
a commercial trackball was fitted with a steel rod, and secured in the trackball chassis such that it 
rotated freely about its axis in range of the trackball’s optical motion sensor. At the beginning of each 
trial, the mouse’s front paws rested on the ball approximately as shown (also see supplementary 
video). B: Photo diagram of task setup. A head-fixed mouse is positioned with its front paws on the 
choice ball and its hind paws on a fixed platform. A water-dispensing lickometer is positioned within 
reach of its tongue. An LED on the lickometer indicated the no-movement period to the mouse at the 
start of each trial. Speakers positioned laterally on either side of the mouse were used to present the 
stimulus (head-fixture beams omitted for clarity). 
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6.2. Design of the task and training protocol 
 
 To demonstrate the utility of the Choice Ball device, we trained mice in a two choice Poisson 

click stream discrimination task similar to our rat and human tasks. We chose this task because it 

provided graded decision difficulty and directional cues to match directional responses for easy 

learning. Finally, we sought a task that allowed for hundreds of trials, permitting within-session 

analysis at each difficulty level. In this section, we describe our adaptation of the Poisson click 

discrimination task for head-fixed mice. 

 

6.2.1    Subjects and surgery 

 

 Data are reported from three male B6129SF2/J white-bellied agouti mice, aged 12 weeks at 

the onset of training. Mice were housed individually on a 12 hour reversed light/dark schedule. Four 

additional mice were used but never advanced beyond the earliest phases of training due to low 

performance in the auditory task and persistent side bias. Food was available ad libidum, and the mice 

were placed on a liquid restriction schedule with daily body weight monitoring to ensure that body 

mass remained within 85% of mass prior to restriction. Mice were provided with at least 1ml of water 

per day. One hour following training, if the water delivered in the task did not exceed the daily water 

allowance, the remaining portion was provided to each mouse in its home cage.  

 For surgery, mice were anaesthetized with intra-peritoneal injection of ketamine (150mg/kg) 

and xylaxine (12mg/kg). The skull was exposed, and a horizontally oriented titanium bar (20mm x 

3mm x 1mm) was centered 2mm above bregma and secured to the skull surface with acrylic cement. 

Three bone screws spaced among the occipital and parietal bones were used to ensure the stability of 

the implant, and the remaining exposed skull was sealed with acrylic cement. For post-operative 

analgesia, ketoprofen (5 mg/kg) was administered intra-peritoneally. Mice were given one week to 

recover from surgery, with water and food available ad libidum. 
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6.2.2. Task flow of events 

 

 Each trial was initialized by illuminating an LED positioned in front of the animal (Fig. 6.2c), 

to indicate to the animal that they must cease moving the ball for a period of one second in order to 

continue the trial. This ensured that any paw movements captured during a trial were initiated from 

resting position, at some time following stimulus onset. While we did not store a record of trackball 

movement before trial start, we observed in video records that mice frequently shifted their paws, 

often in the opposite direction of their paw movement in the previous trial as would be necessary to 

regain balance on the ball. Once a one second period had passed with no ball motion, the LED was 

extinguished and two Poisson-distributed click trains of different rates were delivered from right and 

left speakers. Mice listened to independent random click trains, and were rewarded for rolling the 

trackball towards the side with the faster underlying click rate. Mice were not required to sample the 

stimulus for a fixed period, and were permitted to respond as soon as they had made a choice. To 

qualify as a response, mice had to move the choice ball by 26mm (~50˚) about its axis. Failure to 

respond within the 2 second stimulus delivery period resulted in termination of the current trial and 

initialization of the next trial after a three second delay. Mice were rewarded for pushing the ball in 

the direction of the click train whose underlying rate was faster as shown in Figure 6.2b. A correct 

response was immediately rewarded with 5ul of water dispensed from the lickometer. An incorrect 

response resulted in a 5 second punishment delay before the next trial was initialized. 
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Figure 6.2: A two-alternative forced choice task for head-fixed mice. A: Trial stages. 1. Paw 
motion idle: a head-fixed mouse must cease paw motion for one second to initiate a trial. 2. Stimulus 
delivery: The mouse listens to two random click streams and discriminates the faster clicking side. 3. 
Response: The mouse rotates the trackball with its paws in the chosen direction until a response 
threshold is crossed. The click train was not terminated until a choice was registered, allowing 
ongoing clicks to inform paw movement. 4. Outcome: The mouse was rewarded with a water droplet 
if it responded correctly, or punished with a 5 second time-out delay if it responded incorrectly. B: 
Time course of ball position record. In each trial, a fixed threshold was set at 26mm of lateral paw 
movement (~50˚ about the ball axis) such that ball rotation past threshold in the correct direction will 
register a correct response. C: Illustrated time course of trial-start LED, water valve and the auditory 
stimulus.   
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6.2.3. Training protocol 
 
After surgery recovery, mice were introduced to the apparatus following three days on a liquid 

restriction schedule. For each mouse, we optimized the orientation of the lickometer prior to each 

session, such that licks interrupted the lickometer’s photo-gate, and the mouse’s tongue touched the 

drink tube when extended. We also adjusted the elevation of the hind-paw platform for each mouse, 

such that the animal’s anterior/posterior axis was parallel to the floor with its front paws resting on 

the trackball. The objective of training was for mice to use the choice ball device to classify two 

Poisson click streams by indicating which stream had a faster underlying rate. Training was 

implemented in six phases. The first phase was designed to train head-fixed mice to lick for water. 

Mice were trained to lick by intermittently rewarding their licking behavior. Mice were advanced to 

the subsequent stage once they were rewarded for licking at least 200 times in a single 30 minute 

session. In the second phase, mice learned to lick preferentially in the period following an auditory 

cue. Each trial started with a random delay between one and three seconds in length. Following the 

delay, a one second long train of random clicks was presented at 100Hz mean click frequency from 

both left and right speakers. Clicks were 1ms white noise pulses, flanked by 100µs linear ramps 

between silence and 70dB SPL. Mice were rewarded for licking in the second following the click-

train offset. Mice were advanced once they licked in the second following sound offset for at least 

90% of 200 consecutive trials. The third phase was intended to teach mice to use the ball to dispense 

reward. Parameters were identical to the second phase, except that the click train was extended to two 

seconds in length, and mice were required to move the trackball in either direction while the click 

train was being presented, in order to terminate the click train and dispense reward. Sessions in this 

phase of training were repeated twice daily until mice responded with a 6.5mm lateral trackball 

movement (~13˚ about the ball axis) at the correct time for at least 50% of the first 100 trials in a 

session. In the fourth phase of training, sound was presented from only one side on each trial, and 

mice learned to push the ball selectively, towards the side with sound. The rewarded side with sound 
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was alternated trial-wise between left and right. Choosing the wrong direction resulted in repeating 

the same stimulus on the subsequent trial, until the animal chose correctly (to prevent choice bias). 

During this phase, we trained mice to move the ball for increasing distances in order to register a 

response. Mice were initially required to move the ball 6.5mm (~13˚) in the chosen direction to 

respond, and once accuracy on this phase surpassed 90% per session, the distance to choice threshold 

was gradually increased to 26mm (~50˚, 200px). We initially chose 26mm as the rewarded choice 

boundary for our task based on early observations that mice were unwilling to paw repeatedly for 

distances longer than 26mm over hundreds of trials per session (data not shown).  A session would 

end once the mouse failed to cross a choice threshold for ten sequential trials following trial 100. 

Training on the fourth phase was repeated twice daily until choice accuracy surpassed 90% for a 

single session of >100 trials with the choice movement boundary set at 26mm. In the fifth training 

phase, left and right trials were randomly interleaved so that mice could not perform well by simply 

alternating choices trial-wise and ignoring the stimulus. The anti-bias algorithm was disabled for this 

phase and all subsequent phases. The sixth training phase (multiple-difficulty) was identical to the 

fifth, except that Poisson distributed click train pairs were generated at three levels of stimulus 

difficulty. The rates used to generate the left and right click trains always summed to 200Hz as 

follows for each difficulty level: 200Hz/0Hz, 0Hz/200Hz (easy left, easy right), 150Hz/50Hz, 

50Hz/150Hz (mid left, mid right) and 125Hz/75Hz, 75Hz/125Hz (difficult left, difficult right). Mice 

were returned to the fifth stage of training (single difficulty) for the remainder of the experiment, 

following several multiple difficulty sessions. In these subsequent sessions, the boundary for reward 

delivery was extended beyond 26mm in a manner dependent on performance, and LEDs positioned 

on top of each speaker indicated the chosen direction to the mouse once the ball passed 26mm. 

Outcome scoring for these sessions in our analyses used the earlier 26mm decision threshold.  We 

report on three mice that completed training in the 2AFC task. Following the first three phases of 

training, we collected 68 behavior sessions from our animals, averaging 283 completed trials per 

session. Although the task is not explicitly self-initiated, mice responded reliably, rotating the 
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trackball by a sufficient amount to be counted as a valid response (26mm, 200px) on >90% of all 

trials in behavioral sessions. 

 

6.2.4. Readout of choice responses: mice respond with rapid (~200ms) paw motions 

 

 In a decision making study, an ideal choice response is rapid (i.e. a saccadic eye movement), 

and can be aligned to the record of neural data with enough precision to be informative about brain 

function at moment of choice. The paw movement component of choice responses was swift, 

averaging 189ms of ball motion to register a choice (Figure 6.3a,b). 

 

 
 
Figure 6.3: Rapid readout of choice responses. A: Trackball position data. The trackball position 
record allows for high-resolution reconstruction of the animal’s motor response. Ball movement 
trajectories for four example trials are shown with respect to auditory stimulus onset. Choices are 
registered when the trackball has rotated by 50 degrees in either direction (shown as 26 mm along the 
ball’s circumference with respect to the position at trial start). B: Timing of paw movement responses. 
Variability in ball position was calculated for the first 50ms following auditory stimulus onset of 
10,575 post-training trials of three mice. The standard deviation of position during this pre-reaction 
period was 1.65mm. The duration of paw sweeps was considered during the period from 2xSD 
(3.3mm, gray dotted lines in 3a) to the +/- 26mm decision boundary (black dotted lines), as a measure 
of the speed with which the mice operated the ball to report their decisions. Trials in which a mouse 
moved 6.5mm in one direction and ultimately responded in the opposite direction were considered 
decision reversal trials (Fig. 6) and omitted from this analysis. Mean response movement duration 
was 189 ms. 
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6.3. Mice perform the task and show evidence of speed/accuracy tradeoff 
 
 In this section we report successful training of three mice, showing that the relation of 

reaction time to accuracy and discriminability is consistent with reports of these relationships in 

monkey and human psychometric discrimination. 

 

6.3.1. Mice learn the task within weeks 

 

 Mice typically learned to discriminate among the easiest stimuli in less than two weeks. 

Figure 5.4a shows an example plot illustrating the improvement in discrimination accuracy over the 

course of training for a single mouse. Three types of sessions are shown, reflecting the order and 

difficulty of trial types: sessions for which trials with the easiest stimuli to classify were alternated 

trial-wise between left and right correct responses (black), sessions for which the easiest stimuli were 

randomly interleaved (dark gray) and randomly interleaved sessions containing stimuli of multiple 

difficulty categories (light gray). Mice typically approached 90% proficiency at classifying the easiest 

stimulus over the course of the first 5,000 trials as shown in Figure 6.4b. For sessions with multiple 

difficulties, difficult stimuli were created by configuring the relative rates of clicks coming from the 

two speaker channels. 

 

 
 
Figure 6.4: Mice learn the trackball task consistently and with high accuracy. A: Sliding window 
performance for a single mouse (window length = 100 trials). Mice were initially trained, using only 
the easiest stimuli (100% left / right contrast), to alternate left and right responses (black bins). When 
accuracy approached 90%, mice were advanced to sessions with interleaved 100% contrast stimuli 
(dark gray bins), and subsequently sessions with multiple difficulty levels (light gray bins). B: 
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Performance records for three mice, considering only trials with 100% left/right contrast (bin size = 
1000 trials). Error bars show S.E.M. 
 
6.3.2. Mice show psychometric discrimination 
 
 Psychometric performance varied with discriminability, indicating that mice had mastered the 

intended click train discrimination task. Data are shown for all 10 multiple difficulty sessions and for 

a single example session of 466 trials in Figure 6.5a-b. 

 

 
 

Figure 6.5: Choice accuracy varies with discriminability. A: Pooled psychometric performance for 
all sessions across mice for sessions with multiple difficulties, showing a full range of accuracy in 
classifying stimuli of varying difficulty. Left-side click percentage reflects a total of 200Hz 
distributed between the left and right channels. Error bars show 95% binomial confidence interval. B: 
The bipolar psychometric function for an example session of 466 trials. 
 
6.3.3. Mice sample difficult stimuli for longer, and are more accurate for longer RT 
 
 In our task, due to temporal variability in the stimulus, optimal performance requires an 

evidence integration strategy (Palmer, Huk et al. 2005). Specifically, mice could gain an accuracy 

advantage by using a decision making strategy where more ambiguous evidence is intentionally 

sampled for longer periods. With respect to easy stimuli (200Hz contrast), mice spent significantly 

more time sampling medium (100Hz contrast) and difficult stimuli (60Hz contrast), as shown in 

Figure 6.6a for all sessions averaged across mice (ANOVA and post-hoc Tukey-Kramer test, p<1e-6). 

Using the same test, the difference between medium and difficult stimulus sampling time was not 

significant (p > 0.05). For the example session shown in figure 6.6b, the mouse also spent 

significantly less time sampling easy stimuli than difficult stimuli (p<0.05). An additional prediction 
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of integration in our task is higher performance on trials where mice spent more time sampling the 

binaural click train prior to responding. Figures 6.6c-d show that over the first 200ms, accuracy 

improves as reaction time increases for the easiest stimulus condition across sessions (note non-

overlapping 95% binomial confidence intervals for the increasing trend over the first 200ms in Fig. 

6.6c and a similar trend for the first 200ms of sampling in the example session in Fig. 6.6d). 

 

 
 

Figure 6.6: Reaction times correlate with stimulus difficulty and performance. A: Averaged 
reaction time with respect to discriminability considering only correct trials across all multiple 
difficulty sessions, showing that mice spend more time sampling the stimulus before responding on 
difficult trials. Error bars on plots C-D show S.E.M. B: Example session: reaction time with respect 
to discriminability.  C: Pooled reaction time conditional accuracy for three animals. Accuracy peaks 
when animals respond 250ms following stimulus onset. Error bars show 95% binomial confidence 
interval. D: Example session: reaction time conditional accuracy.   
 
6.4. Mice reverse their choices for a performance gain 
 
 Beyond precise control over behaviorally relevant stimuli and measurement of discrete lick 

events, the choice ball affords us an additional window into the decision making process - the 

opportunity to reconstruct the time course of the animal’s report of its decision. In analyzing ball 
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movement data, we noticed that mice occasionally reversed the decisions they had initiated. In this 

section, we provide the first evidence of decision reversals in mice. 

 

6.4.1. Readout of choice reversals 

 If reversal trials were used strategically to correct errors made as part of the decision making 

process, we anticipated that they would be correlated improved performance, and would become less 

necessary as the mice became more proficient in the task. To test these predictions, we defined a 

choice reversal as a response in which the mouse moved the trackball 6.5mm in one direction, but 

ultimately chose the other direction. The boundary for choice reversals was placed at 6.5mm, 

corresponding to four standard deviations from the mean of lateral ball movement during the first 

50ms following stimulus onset. The time courses of trackball movement for five choice reversal trials 

are shown in red in Figure 6.7, overlaid upon 45 surrounding non-reversal trials from the same 

session in blue. In total, 6.9% of all trials qualified as reversals by these criteria. 

 

 
 

Figure 6.7: Detection of choice reversals in mice. Ball movement time course plot for 50 
consecutive trials. Dotted line at +/- 6.5mm indicates the reversal detection threshold. Solid lines at 
+/- 26mm indicate decision threshold. Detected reversal trials are shown in red. 
 
6.4.2. Mice reverse their choices to optimize performance 
 
 Performance on reversal trials within the same difficulty category was slightly but 

significantly enhanced with respect to non-reversal trials (Fig. 6.8a, Chi-square test, p<0.001), 

consistent with the prediction that mice can reverse their choices to improve accuracy. If mice use 
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decision reversals to resolve errors made as part of learning, we reasoned that reversal probability 

would diminish as a function of experience in the task. For this analysis, we excluded alternation 

sessions, and considered only sessions with randomly interleaved trials, where the rewarded choice 

boundary was set at 26mm. The latter restriction was necessary because the decision to reverse 

movement during the response has a cost for the animal that depends on the total distance to choice 

boundary. Figure 5.8b shows that reversal probability decreases during the first 2,500 interleaved 

trials of the easiest decision difficulty. The combined reversal probability for the three mice was 

significantly higher in the first 500 trials than the final 500 trials of the period observed (15.7% vs 

9.3%, Chi-square test, p<1e-7). 

 

 
 
Figure 6.8: Choice reversals are used to correct errors. A: For the easiest decision category, 
accuracy is greater on reversal trials than on non-reversal trials averaged across all sessions for three 
mice. Error bars show 95% confidence intervals. B: Reversal probability for the easiest decision 
category decreases with task experience (average of three mice shown in blocks of 500 trials). Error 
bars show S.E.M. 
 
6.5  Conclusions 
 
 We designed a simple response device for acquiring two-choice decisions from head-fixed 

mice. Our device has several advantages over previously used methods. By divorcing the animal’s 

method of acquiring reward (licking) from its method of choice response (paw motion), our paradigm 

does not require conditioning the mouse to suppress anticipatory licking as was true for go/nogo tasks 

utilizing the lick response (Andermann, Kerlin et al. 2010; Schwarz, Hentschke et al. 2010), This 

leaves lick rate available as an additional behavioral metric. By providing high resolution trackball 

movement data, our device opens an additional facet of the animal’s choice response to analysis that 
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is lost in experiments with a binary readout – the ability to detect and study changes of mind. 

Furthermore, the ability to reward simple lateral paw-strokes affords us greater temporal resolution 

than head-fixed analogs of traditional rodent decision making tasks based on directed navigation 

(Harvey, Coen et al. 2012).  

 To demonstrate the usefulness of this response device we designed an auditory psychophysics 

task based on binaural random click discrimination. The task was inspired by the random dot task, a 

simple and extensively researched paradigm in primate visual neuroscience, used to study decision 

making (Newsome, Britten et al. 1989; Roitman and Shadlen 2002). While we chose to use audition 

for superior stimulus control in head-fixed mouse, our task is fundamentally similar in that a subject 

is trained to integrate stochastic information supporting two hypotheses over a sampling period, and 

makes a discrete choice between them on each trial, providing both a choice and a reaction time 

measure. Our post-training sessions averaged several hundred completed trials. High trial counts are 

necessary to precisely characterize complex response profiles of neurons to different behavioral 

contingencies. 

 In keeping with findings in primates (Mazurek, Roitman et al. 2003; Palmer, Huk et al. 

2005), mice spent more time sampling difficult stimuli (Figure 5c), and discriminated more accurately 

on trials with longer sampling durations (Figure 5e). Under idealized conditions in perceptual 

discrimination, a performance increase is realized through continued sampling of a stimulus (Link 

and Heath 1975; Ratcliff 1988; Mazurek, Roitman et al. 2003). Although these effects are consistent 

with a speed-accuracy tradeoff strategy exploiting integration of temporal evidence, further 

experiments specifically designed to test this hypothesis will be required (Kiani, Hanks et al. 2008; 

Jun, Brunton et al. 2010). 

 We have also shown that mice sometimes reverse the direction of choice responses they have 

initiated. Reversal trials correlated with performance gain, and reversal probability decreased with 

training. Changes of mind in human test subjects have been attributed to conflicting information in 

early sensory processing that is considered after a decision has been initiated (Resulaj, Kiani et al. 
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2009). Since after initiating a response, mice in our task were permitted to sample the stimulus 

continuously until their final choice was registered, the precise source of evidence used to trigger 

decision reversals remains unresolved. Nevertheless, our results suggest that in addition to humans, 

mice can also use choice reversals to strategically optimize decision accuracy.  Whether the reversals 

we observed are true changes of mind or corrections of motor errors in support of the animal’s 

original choice remains an open question. 

 The choice ball provides an opportunity to combine information-rich 2AFC psychophysical 

behavior with a stable, head-fixed configuration ideal for emerging imaging and optogenetic 

techniques. Studies in the monkeys have leveraged simple, information-rich motor responses 

(saccades) to uncover clearly defined set of motor control circuits in the frontal eye fields and 

superior colliculus (Schall and Thompson 1999), governing choice responses. A similar anatomical 

link has been exploited in a Go/No-go task for head-fixed mice - the ALM and PPM regions of 

primary motor cortex that govern licking (Komiyama, Sato et al. 2010). Since the motor response in 

our task is a simple lateral shift of the forelimbs, we also anticipate that these stereotyped movements 

will provide a tractable paradigm for understanding the neural circuits that control choice responses in 

mice. 
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Chapter 7  
Conclusions and perspectives 
 
 We provided a series of findings that collectively frame confidence as a tractable problem in 

human and animal brain research. Beginning with a normative definition of confidence, we derived a 

profile of three patterns that characterize decision confidence signals. We found that these patterns 

generalize to remarkably different confidence computations beyond the normative model, from 

statistical confidence to verbal confidence reports in humans and confidence-guided investment 

decisions across species. To measure confidence in these studies, we designed a sensory 

discrimination and confidence reporting task with high resolution temporally structured evidence. The 

patterns in evidence preceding each confidence report belied the algorithm our subjects used to 

compute confidence, allowing us to resolve a family of contradicting models with a new model that 

uniquely reproduces a profile of robust patterns in our data. Lastly, we developed and tested a new 

technique for high resolution multiple choice behavior in head fixed mice, ideal for investigation of 

how abstract mental variables manifest mechanistically in brain circuits with optogenetic and 

functional microscopy techniques. In this chapter, I review each of these results in the context of their 

respective literatures, and conclude with implications of our confidence framework for future decision 

making research. 

 

   Human decision makers feel the brain’s approximation of statistical confidence. 
 
 Previous research characterizing the properties of human verbal confidence has been chiefly 

concerned with a superficially enigmatic property of the confidence reports produced by the human 

organism – that these values forecast the likelihood of correct decisions astonishingly well, though 

slightly sub-optimally in contended ways (Chapter 1.1). However, the perspective that confidence is 

computed to solve a statistical problem in the deciding human brain was suggested only sparsely as a 
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conjecture (Kahneman and Tversky 1972; Ferrell and McGoey 1980; Griffin and Tversky 1992), and 

its implications were not fully explored. 

 Beginning with the normative model of decision confidence (Kahneman and Tversky 1972) – 

that confidence is equivalent to a Bayesian posterior estimate of the probability that a decision was 

correct given the evidence used to decide, we formally derived three predicted interrelationships 

between confidence, evidence and outcome (Figure 3.1, appendix I).  We showed that these 

relationships describe other uncorrupted signals of confidence – statistical p-values – and that this 

result generalized across different tests and noise distributions (Figure 3.2). The invariance of the 

derived patterns between Bayesian and Frequentist interpretations of confidence supported our 

hypothesis that these are fundamental patterns that arise when statistical confidence is computed from 

the evidence used to decide among options. 

 An intriguing suggestion we considered, is that the brain performs an operation similar to a 

statistical hypothesis test on the evidence it uses to make assertions, in order to derive its self-

reportable feeling of confidence. We investigated the computation underlying the brain’s confidence 

feelings by designing a two choice perceptual discrimination task, achieving very precise control over 

evidence delivery and behavioral measurements with Poisson click stream evidence (Sanders and 

Kepecs 2012; Brunton, Botvinick et al. 2013) delivered in partial acoustic isolation, by a custom, real-

time pulse generator and button press capture device (section 2.1.5). In four human subjects and in an 

additional subject who processed our evidence in an unexpected way (Appendix III), the 

interrelationships between three measures of each decision –choice outcome, the strength of evidence 

and confidence, robustly exhibited the same characteristic patterns which arise in both Bayesian and 

Frequentist statistical confidence measures.  

 Since confidence is an operation performed on samples of evidence, we sought to determine 

whether this result was dependent on something special about samples of evidence provided by the 

brain’s auditory perceptual pipeline. Specifically, we wondered whether normative patterns would 

persist in confidence, if the samples of evidence used to decide were gathered from memory (Ratcliff 
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1978). We tested 21 subjects providing 100 or 150 trials each, in a two choice task where subjects 

compared quantities in long-term memory that were general knowledge – the populations of countries 

- and reported their confidence in their decisions. Normative patterns robustly described confidence in 

this task as well, and emerged when individual subjects provided as few as 100 trials (Figure 3.14), 

confirming that extensive training on the statistics of a task was not necessary to observe these 

patterns. 

  We conclude that the human feeling of decision confidence exhibits properties that are true 

of all statistical decision confidence measures. However, we cannot exclude the possibility that this 

profile of patterns could also arise from a signal that is in some way differentiable from decision 

confidence – a topic I explore in appendix IV by contrasting the patterns produced by an evidence 

gain modulation factor against the patterns of statistical confidence in the three normative model 

projections. In the context of this comparison, I suggested that a signal containing the three normative 

patterns is most likely as useful to a decision maker as a confidence measure for predicting outcomes 

and casting wagers – and that any further difference between the signal and statistical confidence is 

likely a semantic problem. While the wide range of confidence measures assayed in this dissertation 

establishes that the sensitivity of these patterns for things we call confidence is high, further research 

is necessary to determine the specificity of these patterns as a putative identity test for statistical 

confidence signals.  

 Our results were consistent with several well established properties of human decision 

confidence – that decision confidence strongly forecasts outcomes in sensory discrimination tasks 

(Keren 1988; Björkman, Juslin et al. 1993; Baranski and Petrusic 1994; Olsson and Winman 1996; 

Merkle and Van Zandt 2006), that confidence is correlated with the strength of provided evidence 

(Jastrow and Peirce 1884; Vickers and Packer 1982; Baranski and Petrusic 1998) and that confidence 

in perceptual tasks without speed instructions, is anti-correlated with reaction time (Volkmann 1934; 

Merkle and Van Zandt 2006). Our results from Chapter 3 also establish a new pattern in human verbal 

confidence reports – that the lowest verbal confidence occurs in the presence of the errors informed 
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by the strongest evidence. While we observed this pattern in two markedly different behavioral tasks, 

further research will be required to establish whether this is truly a general pattern that arises from the 

nature of imperfect evidence sampling, or whether the directions of the confidence/evidence 

relationships can be changed in humans and animals by different task contingencies.  

  Finally, and speculatively, the fact that reports from humans were verbal carries the curious 

implication that reported feelings may provide conscious access to brain’s approximation of statistical 

computations. Common functional and circuit architectures in the brain’s mechanistic underpinnings 

of those unitary mental variables that can be “felt” and directly reported, may eventually belie the 

purpose of conscious experience in organisms. 

 
Confidence informs time investment in two distant mammalian species. 
 
 In 2008, Kepecs et al. discovered that when considered with respect to evidence and choice 

outcome, the firing of individual neurons in the rat orbitofrontal cortex produce the same patterns we 

have attributed to statistical confidence in chapter 3 (Kepecs, Uchida et al. 2008). To further study the 

neural correlates of confidence in rodents, we needed a non-verbal way to knowingly attribute the 

human and statistical notions of confidence to behavioral measures in animals. Previous methods had 

relied on the probability that an animal chooses an “uncertain” option for a small reward in a two-

choice task (Watson, Kellogg et al. 1973; Smith, Shields et al. 1997), or declines the opportunity to 

answer a given difficult choice for a small reward (Foote and Crystal 2007; Kiani and Shadlen 2009). 

Niether of these behaviors have been directly compared with explicit confidence in humans. More 

importantly, these confidence measures are binary, prohibiting the kind of detailed analyses we 

presented in chapter 4, and do not provide within-trial confidence measures that are necessary to 

observe the relationship between the discriminability of a choice and subsequent confidence.  

 To address this problem, we developed a new task where subjects sampled sensory evidence 

(Poisson clicks) and invested time in the hypothesis that they were correct. We found that time 

investments generated the trend directions of all three normative model patterns expected of statistical 
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confidence in both humans (Figure 4.3) and rats (Figure 4.7), though deviated from normative and 

verbal confidence by a non-linear transform. In humans, we requested an additional confidence 

measure after each time investment: an explicit confidence report. This provided the first within-trial 

comparison of implicit and explicit confidence measures, to the limit of our awareness. We reported a 

strong correlation between verbal confidence reports and time investment, and countered the 

possibility that time investment was the source of these verbal reports (Figure 4.5).  

 We thus provide two lines of clear evidence supporting our hypothesis that time investments 

were derived from decision confidence. 1. The presence of robust normative model patterns in time 

investment (Figure 4.3b, 4.7c), implies that the process which computed time investment had access 

to the perceptual evidence used to make decisions. 2. The strong correlation we observed between 

time investment and verbal confidence is consistent with the hypothesis that these implicit and 

explicit reports were derived in series from the same internal confidence value on each trial.  

 By establishing that time investment shows the hallmarks of a confidence-derived measure 

and co-varies with verbally reported confidence in humans, we have provided an empirical basis for 

interpreting implicit confidence in humans and rodents. Subsequent research may seek to identify the 

neural circuits underlying confidence computations in the brain using the rodent model. 

 It is unknown whether the alternative processes of mentally observing confidence to report it 

verbally, or instead, using confidence implicitly to guide behavior, affect the way confidence 

manifests. Future studies which are designed to measure a subject’s cost functions for time and 

reward utility using our task, may seek to recover the subject’s abstract confidence prior to its use in 

computing time investment (Equation 4.1), to determine whether its form is affected by its intended 

function, and how it varies across conditions. A phenomenological understanding of the basic 

properties that govern how the brain computes and uses this important mental variable will clarify its 

potential roles in different behaviors and disorders that rely on learning and mitigation of risk. 
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The human brain’s algorithm for sensory discrimination and post-decision confidence resembles a 
coupled accumulator adapted to exploit noisy evidence gathered after choice commitment.  
 
 Sequential sampling models of choice and confidence have sporadically appeared over the 

past half-century, positing conflicting algorithms for deriving confidence from evidence. To 

determine which model could account for human confidence, we designed a confidence task with 

unprecedented resolution in the timing of patterned evidence delivery and response acquisition, to 

capture signatures of the algorithm subjects used to decide.  

 Among five previously posited computational models, the OCA model we developed is 

unique in its ability to simultaneously account for both patterns in evidence history and the signature 

patterns of statistical confidence. It further provides a “global” fit that reproduces most qualitative 

aspects of the interrelationships between choice, reaction time, discriminability, confidence and 

evidence history in the 12 key projections simultaneously assayed. While it does not perfectly model 

reaction time under deadline stress, this simple model constitutes a significant step towards a general 

algorithmic understanding of how the brain computes choice and confidence. 

 
Two-choice psychometric discrimination in head-fixed mice can be readily achieved by conditioning 
lateral paw motion, captured by our Choice Ball device. 
 
 Precise two alternative forced choice (2AFC) behavior was not previously available in head-

fixed mouse, complicating investigation of the brain’s decision making variables with technologies 

that require imaging to capture and manipulate aspects of brain function. To realize 2AFC behavior in 

this constraining setting, we designed a simple response device enabling mice to report two-choice 

decisions with paw movements, and trained mice to discriminate Poisson click stream pairs of 

varying difficulties. We showed that head-fixed mice can learn the same psychometric discrimination 

behavior that we used for our human subjects and rats to study confidence, and respond on average 

with rapid (~180ms) paw responses, producing psychometric and chronometric signatures of a well-
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controlled psychophysical behavior. This finding may provide a path for future research targeting the 

neural circuits underlying decision confidence, with appropriate modifications to capture an effort 

investment or time investment measure in addition to choice. We anticipate that paw response 

measures in head-fixed mice will be exploited in future studies of decision making to simultaneously 

leverage the advantages of an informative decision making behavior and advanced genetic and optical 

imaging tools. 

 

Implications of our framework 

 
 The chapters of this thesis form a series of conceptual bridges between computational, 

algorithmic and mechanistic levels of understanding confidence, which can be leveraged as a 

framework to guide design of future investigations. We began with a first-principles definition of 

confidence - in essence, a statistical computation of likelihood. We derived three signature patterns of 

this computation, and showed that both statistical p-values and the human feeling of confidence bear 

striking resemblance to these patterns, while other measures lacking information about the decision 

maker’s internal evidence, do not. We take from this, though with due caution, the central insight of 

our framework - that the fundamental operation underlying the brain’s sense of confidence is a 

computation approximating statistical likelihood. 

 Alongside inferences from behavior, further insight will come from observing the 

computation of confidence directly, as it manifests in the brain. Towards this end, we reported 

signatures of a confidence calculation in human and rodent time investments, and supplemented our 

argument that these are products of the brain’s use of confidence by showing a direct correlation 

between time investment and verbal confidence. This finding includes within our framework, a 

convenient definition of applied confidence in behavior, and methods by which it can be reproduced 

in model organisms ideal for brain research.  
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  We leveraged insight from the computational level of our framework to resolve the algorithm 

of confidence, by requiring that it account for all three normative model patterns in human data. The 

OCA model further adds to our framework, providing a realistic way to realize the computation of 

confidence in real-time. This algorithmic understanding forms a second bridge, permitting the 

computation of confidence to be understood in terms of neural circuit mechanisms, which also 

process information in real-time and cannot accept abstract symbols as inputs. 

 To study the brain’s internal representation of confidence in terms of neural circuits, our 

framework provides two useful tools – an algorithm and a class of behavior. We added to this, a 

partial implementation of this behavior in a manner compatible with functional microscopy and ideal 

for optogenetic dissection of circuit function.  

 We anticipate that the combined tools and insights of our framework will endow researchers 

with unprecedented access to the physical correlates of the familiar statistical experience we know as 

confidence. 
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Appendix I  
Derivation of confidence signal properties from normative confidence 
 
 The following three derivations were courteously contributed by Dr. Balazs Hangya, 

presently a postdoctoral fellow in our research group, to determine what properties are expected of 

confidence signals in their interrelationship with choice accuracy and discriminability. 

Confidence is correlated with choice accuracy 

Arbitrating between opposing hypotheses and assigning levels of confidence to our decisions 
can be viewed as a statistical hypothesis testing problem. We make a decision based on an internal 

variable (decision variable, ܦ), which is the internal reflection - estimate - of a corresponding external 

variable (D). (Remark: D and ܦ can be multidimensional.) 

Definition 1: Let us denote the external variable D and realizations of this random variable d. 
Let us denote the corresponding internal variable ܦ and realizations of this random variable መ݀ 
(referred to as percept; also called the decision variable). We define another random variable called 
the choice (also termed decision), denoted by ߠ (realizations will be denoted by θ). The choice is a 
probabilistic function of the percept. Thus, a realization of the choice takes the form of a probabilistic 
event of መ݀ ∈  is subset on the space of all percepts (percept space). (Because this ࣂ where ,ࣂ
represents an equivalent description of the choice, we keep the same Greek letter for the notation; 
however, we use bold face rendering whenever ࣂ refers to a subset.) 

Our decision can be thought of as the choice of a hypothesis (in statistical terms, the 
alternative hypothesis) against all possible complementary choices (constituting the null hypothesis):  

null-hypothesis (H0): መ݀ ∈  ࣂ
alternative hypothesis (H1) : መ݀ ∈  ࣂ

where ࣂ represents our choice. The choice is called correct if the alternative hypothesis is true and 
incorrect otherwise. In this context, our confidence (c) can be defined as the probability of the 
alternative hypothesis being true provided the percept and the choice. 

Definition 2: Let confidence be defined by  

ܿ ൌ ܲሺܪଵ| መ݀,  ሻߴ

(As usual, the random variable will be designated by C and its realizations by c). We can thus define 
the function determining confidence from the decision variable and the choice: let the function 

ሻߠሺ࣬:ߦ ൈ ࣬ሺܦሻ → ሾ0,1ሿ be defined by 

,ߴ൫ߦ መ݀൯ ൌ ܲሺܪଵ| መ݀,  ሻߴ

where ࣬ሺܦሻ denotes percept space and ࣬ሺߠሻ denotes the range of all possible choices (i.e., the choice 
space). 
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Next, we will derive the relationship between confidence and accuracy. 

Definition 3: Accuracy is the expected proportion of correct choices.  

We seek to determine the following function: 

݂: ሾ0,1ሿ → ሾ0,1ሿ 

݂: ܿ ↦  ܣ

where Ac is the accuracy for choices with a given confidence. Our claim is that this function is 
identity. 

Theorem 1: Accuracy equals confidence:  

ܣ ൌ ܿ 

Proof: For every given level of confidence, there is a set of values of percept-choice pairs 

leading to the same confidence value: let us denote the image of c by  ିߦଵ as	൛൫ መ݀ ,  ൯ൟఢூ, the set ofߴ

choice-decision variable pairs mapping onto c. Let us first assume that ܫ is a countable set. Accuracy 
for confidence level c is determined by the probability of a correct choice if C = c over the 
probability of encountering the confidence level of c (that is, P(C=c)): 

ܣ ൌ
∑ ܲሺܪଵ, መ݀ , ሻఢூߴ

∑ ܲሺ መ݀, ሻఢூߴ
 

From the definition of joint probability, 

ܣ ൌ
∑ ܲሺܪଵ, መ݀ , ሻఢூߴ

∑ ܲሺ መ݀, ሻఢூߴ
ൌ
∑ ܲሺܪଵ| መ݀ , ሻߴ ∙ ܲሺ መ݀ , ሻఢூߴ

∑ ܲሺ መ݀, ሻఢூߴ
 

As we know that ∀݅ ∈ ଵหܪ൫ܲ	:ܫ መ݀ , ൯ߴ ൌ ܿ, 

ܣ ൌ
∑ ܲሺܪଵ| መ݀ , ሻߴ ∙ ܲሺ መ݀ , ሻఢூߴ

∑ ܲሺ መ݀, ሻఢூߴ
ൌ
∑ ܿ ∙ ܲሺ መ݀ , ሻఢூߴ

∑ ܲሺ መ݀, ሻఢூߴ
ൌ
ܿ ∙ ∑ ܲሺ መ݀, ሻఢூߴ

∑ ܲሺ መ݀, ሻఢூߴ
ൌ ܿ 

 is not necessary a countable set. We can re-write the equations in continuous form to apply ܫ 
to any sets as follows. 

ܣ ൌ
  ݂ஈ,,ఏሺߨ, መ݀ , dߴሻdߴ መ݀dߨሺ,ఏሻ∈కషభሺሻஈୀଵ

  ݂,ఏሺ መ݀ , dߴሻdߴ መ݀ሺ,ఏሻ∈కషభሺሻ

 

where ߎ is a random variable that is 1 if the choice is correct, and 0 otherwise. 
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ܣ ൌ
  ݂ஈ,,ఏሺߨ, መ݀ , dߴሻdߴ መ݀dߨሺ,ఏሻ∈కషభሺሻஈୀଵ

  ݂,ఏሺ መ݀ , dߴሻdߴ መ݀ሺ,ఏሻ∈కషభሺሻ

ൌ
  ஈ݂ሺܦ|ߨ ൌ መ݀, ߠ ൌ ሻߴ ⋅ ݂,ఏሺ መ݀ , dߴdߨሻdߴ መ݀ሺ,ఏሻ∈కషభሺሻஈୀଵ

  ݂,ఏሺ መ݀ , dߴሻdߴ መ݀ሺ,ఏሻ∈కషభሺሻ

ൌ
  ܿ ⋅ ݂,ఏሺ መ݀ , dߴdߨሻdߴ መ݀ሺ,ఏሻ∈కషభሺሻஈୀଵ

  ݂,ఏሺ መ݀ , dߴሻdߴ መ݀ሺ,ఏሻ∈కషభሺሻ

ൌ
ܿ ⋅   ݂,ఏሺ መ݀ , dߴሻdߴ መ݀ሺ,ఏሻ∈కషభሺሻ

  ݂,ఏሺ መ݀ , dߴሻdߴ መ݀ሺ,ఏሻ∈కషభሺሻ

ൌ ܿ 

□ 

 

Remark 1: We would like to note that these consideration about confidence do not depend on 
a particular theory of perception, that is, the function mapping the external variable on the internal 

percept: ܦ ↦  ,. Furthermore, the derivations also do not depend on a particular theory of decisionܦ

that is, the function between the internal variable or percept and the decision or choice: ܦ ↦  This .ߠ
includes both deterministic and stochastic decision models, the latter referring to models where a 
certain percept can result in more than one decision. In case of deterministic decision models, the 
percept unequivocally determines the choice, thus in the equations we could drop the choice from the 

inverse picture of a confidence value, taking only the percept into account: ൛ መ݀ൟ∈ூ instead of 

	൛൫ መ݀ ,  ൯ൟఢூ. However, as this simplified version would not include stochastic decision models, weߴ

chose to adhere to the general formalization. 

Remark 2: We also note that there is no need for a relation to be defined on the percept space. 
However, if the choice is fixed (or determined by the percept, as in deterministic decision models), 
confidence defines a natural relation on percepts by ߦ. More precisely, the order relation on 
confidence values can be pulled back to the percept space by taking ିߦଵሺܿሻ and restricting it to a 
particular choice. 

 

Confidence is correlated with discriminability (difficulty) on correct trials, and anti-correlated on 
incorrect trials. 
 

Perceptual decisions involve a feeling of decision difficulty. Next, we will formally introduce 
the concept of difficulty and examine the changes of confidence along this difficulty axis. 

Definition 4: Let us define choice difficulty as the probability of evidence for incorrect 
choice: 

ܲሺ መ݀ ∈  ሻߠ

Remark 3: Please note that this definition is although conceptually useful, it will not be 
strictly applied in the following derivations and hence other definitions are also possible without 



 

167 
 

impacting the overall results. For deterministic decision models, the proportion of errors will equal 
the above probability. In the following theorem, the monotony assumption (second assumption, see 
below) is in agreement with the above definition; however, they are not consequences of one another. 

Theorem 2: Let us assume that 

 ߦ is independent of difficulty 

 the distribution of percepts changes monotonically with difficulty 

Under these assumptions, confidence increases for correct choices and decreases for incorrect 
choices with decreasing difficulty. 

Proof: We start with the somewhat counterintuitive claim regarding the incorrect choices. Let 
us first examine the two assumptions in more detail.  

The first assumption postulates that the function from percept to confidence does not change 
with difficulty. Thus, whenever we calculate expected value of confidence over a percept distribution, 
only the percept distributions will depend on difficulty. 

For incorrect choices, the second assumption means that with difficulty decreasing, the 
relative weight of low-confidence percepts increases while the relative weight of high-confidence 
percepts decreases in the percept distribution. Note that low-confidence and high-confidence percepts 
are defined here through the relation imposed by ߦ on the percepts; see Remark 2 in the previous 
section. As a trivial consequence of this definition, confidence changes monotonically along low- and 
high-confidence percepts. 

Let us consider two different levels of difficulty (S1 and S2), with corresponding distributions 
of percept restricted to incorrect choices P (S1, difficult) and Q (S2, easy). It is sufficient to show that 
the expected value of confidence is larger for S1 than for S2: 

න ܿ ∙ ሺܿሻdܿ 
ଵ


න ܿ ∙ ሺܿሻdܿݍ
ଵ


 

where p and q denotes the probability density functions corresponding to P and Q, respectively. Note 
that p(c) can be thought of as the probability of the picture of c by ିߦଵ restricted to incorrect choices 
in the percept space. 

Equivalently, 

න ܿ ∙ ሾሺܿሻ െ ሺܿሻሿdܿݍ 
ଵ


0 

Let us denote ܫ ⊂ ሾ0,1ሿ the interval where p < q, and ܫଵ ⊂ ሾ0,1ሿ the complementary interval where p 
> q. The existence of these intervals is the consequence of the monotony assumption. Thus, there is a 
critical confidence value (denoted here by ccrit) for which ܫ ൌ ሾ0, ܿ௧ሿ and ܫଵ ൌ ሾܿ௧, 1ሿ. We then 
re-write confidence as ܿ ൌ ܿ௧ െ ܿ′ if ܿ ൏ ܿ௧ and ܿ ൌ ܿ௧  ܿ′ if ܿ  ܿ௧; thus, ܿᇱ  0 for both 
cases. Applying these notations, 
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න ܿ ∙ ሾሺܿሻ െ ሺܿሻሿdܿݍ ൌ
ଵ


 

ൌ න ܿ ∙ ሾሺܿሻ െ ሺܿሻሿdܿݍ
ೝ


 න ܿ ∙ ሾሺܿሻ െ ሺܿሻሿdܿݍ ൌ

ଵ

ೝ

 

ൌ න ሺܿ௧ െ ܿᇱሻ ∙ ሾሺܿ௧ െ ܿᇱሻ െ ሺܿ௧ݍ െ ܿᇱሻሿdܿᇱ 
ೝ



 න ሺܿ௧  ܿ′ሻ ∙ ሾሺܿ௧  ܿᇱሻ െ ሺܿ௧ݍ  ܿᇱሻሿdܿ′ ൌ
ଵିೝ


 

ൌ ܿ௧ ⋅ ቆන ሾሺܿ௧ െ ܿᇱሻ െ ሺܿ௧ݍ െ ܿᇱሻሿdܿ′
ೝ


 න ሾሺܿ௧  ܿ′ሻ െ ሺܿ௧ݍ  ܿ′ሻሿdܿ′

ଵିೝ


ቇ

 න ܿᇱ ⋅ ሾሺܿ௧  ܿᇱሻ െ ሺܿ௧ݍ  ܿᇱሻሿdܿᇱ
ଵିೝ



െ න ܿᇱ ⋅ ሾሺܿ௧ െ ܿᇱሻ െ ሺܿ௧ݍ െ ܿᇱሻሿdܿᇱ ൌ
ೝ


 

ൌ ܿ௧ ⋅ ቆන ሾሺܿሻ െ ሺܿሻሿdܿݍ
ೝ


 න ሾሺܿሻ െ ሺܿሻሿdܿݍ

ଵ

ೝ

ቇ

 න ܿᇱ ⋅ ሾሺܿ௧  ܿᇱሻ െ ሺܿ௧ݍ  ܿᇱሻሿdܿᇱ
ଵିೝ



 න ܿᇱ ⋅ ሾݍሺܿ௧ െ ܿᇱሻ െ ሺܿ௧ െ ܿᇱሻሿdܿᇱ
ೝ


 0 

In the last step, the first term is 0, since  

න ሾሺܿሻ െ ሺܿሻሿdܿݍ
ೝ


 න ሾሺܿሻ െ ሺܿሻሿdܿݍ

ଵ

ೝ

ൌ 

ൌ න ሾሺܿሻ െ ሺܿሻሿdܿݍ
ଵ


ൌ න ሺܿሻdܿ െ න ሺܿሻdܿݍ ൌ 1 െ 1 ൌ 0

ଵ



ଵ


 

The second term is positive, since c’ is positive and the probability density functions are evaluated on 
 ଵ, where p > q. Finally, the third term is also positive, because c’ is positive and the probabilityܫ
density functions are evaluated on ܫ, where q > p. In consequence, the sum is positive, which 
concludes the proof for incorrect choices. 

For correct choices, the high-confidence percepts are increasingly more likely with 
decreasing difficulty, thus showing an opposite pattern as compared to incorrect choices. Therefore, a 
symmetric derivation proves the increase of confidence with decreasing difficulty for correct choices. 
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 Remark 4: The first assumption is essential. If confidence is defined based on the relevant 
conditional probability (see Definition 2 in the first section) from a distribution reflecting a single 
difficulty level, then the function between the percept and confidence (ߦ) will differ among 
difficulties, thus the above proof does not apply. Furthermore, the expected value of confidence 
cannot decrease with decreasing difficulty for incorrect choices, for the following reason. For 
maximal difficulty, when the choice is random with respect to the percept, confidence will fall to its 
lowest possible value (0.5), reflecting equal probabilities of the null and alternative hypothesis 
regardless of the percept. This translates to situations in which a person (or other decision making 
agent) is provided with information about difficulty, e.g. by grouping decisions of similar difficulties, 
giving a chance to learn about difficulty and define confidence accordingly. Thus, the above theorem 
only applies when changing confidence levels based on knowledge of choice difficulty is prevented, 
e.g. by randomizing the order of choices with different difficulty. 

 

For a fixed discriminability, confidence predicts choice outcome. 
 

 Corollary 1: For any given difficulty, accuracy for low confidence choices is not larger than 
that of high confidence choices (dividing the confidence distribution at any particular value). Strict 
inequality holds in all cases when accuracy is dependent on the percept. 

 Proof: Let us take the set of low-confidence percept-choice pairs corresponding to the low 
confidence choices by ିߦଵ, and similarly, the set of high-confidence percept-choice pairs 
corresponding to the high confidence choices. By the definition of confidence (Definition 2 in the first 
section), low-confidence percept-choice pairs cannot have higher accuracy than the high-confidence 
percept-choice pairs. If all percepts are associated with the same accuracy (either when the percept 
does not carry information about the hypotheses of choice, or when the percept determines the correct 
choice with a probability of one), the two accuracies are equal. Otherwise, the two accuracies should 
necessarily differ, in which case the strict inequality holds. 
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Appendix II  
Bpod: a microcontroller based real-time behavior acquisition and control system  
 
 Modern research on the biological basis of cognition builds heavily upon the successes of the 

behaviorist tradition, underscoring the power of precise and reliable behavioral metrics as a proxy for 

mental processes. The earliest of modern animal behavior studies used experiment-specific analog 

devices to achieve behavioral precision through automation (Skinner 1938). Automation of behavior 

was simplified by the later use of specialized personal computer software to design and execute 

behavior protocols (Brainard 1997; Peirce 2007), though largely at the expense of the ability to 

control behavior with millisecond precision (Ramamritham, Shen et al. 1998). The need for this level 

of precision is inspired by the insight that sub-millisecond action potentials in cell populations are a 

fundamental currency of mental information (Hebb 1949). Ideally, in modern experiments relating the 

firing of neurons to behavior, behavioral measures and manipulations should match the brain’s 

fundamental signals in their precision. Historically, this ideal has been compromised in favor of 

convenient instrumentation.  

 Use of an operating system with a real-time kernel and low-level programming of behavioral 

protocols can provide sub-millisecond precision using a PC, but the advanced programming skills 

required restrict this approach. B-control (C.D. Brody, Z.F. Mainen, A.M. Zador, CSHL) is a rodent 

behavior system designed to address this problem, and has been used in several published studies 

(Felsen and Mainen 2008; Erlich, Bialek et al. 2011; Brunton, Botvinick et al. 2013; Znamenskiy and 

Zador 2013). B-control allows trials in behavioral tasks to be organized in MATLAB (Mathworks) as 

a matrix of states and state transitions, and delegated to a separate real-time computer for execution. 

Under the governance of a trial’s state matrix, B-control provides the ability to precisely read photo-

gates, drive solenoid valves, deliver acoustic stimuli and respond to logic signals.  

 In this section, I advance a behavior system that leverages a microcontroller platform to 

replicate most of B-control’s functionality, and builds upon B-control’s central idea in several ways 
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that improve generality and accessibility. In section 4.3.5, we use data acquired with this new system 

to show several classic psychophysics measures and confidence usage in rats performing the Poisson 

clicks task.  

 

Rationale for an inexpensive open hardware state machine 

 While B-control has proven to be an excellent system for capturing rodent behavior, we 

identified three major aspects that could be improved. 1. Modifying the system to interface with new 

actuators and sensors requires programming in C for real-time Linux. Ideally, the system would be 

implemented on a platform more accessible to researchers without education in low level 

programming. 2. The B-control system relies on proprietary, custom-designed hardware, only 

available from a specific freelance engineer. Access to the system depends upon the availability of 

that engineer to provide the hardware. 3. Since the system uses a dedicated computer to run the state 

machine, a proprietary PC interface card and a custom interface module, a single installation costs 

thousands of dollars.  

 One way to achieve real-time precision in behavior in a way that is more technically and 

financially accessible is to take advantage of the growing popularity of open source microcontroller 

platforms. Arduino is one such platform which has previously been applied to a range of applications 

in Neuroscience research (Sun, Bouchard et al. 2010; Teikari, Najjar et al. 2012) and leverages 

thorough documentation with simple tutorials alongside a large community of active developers 

(available at http://arduino.cc/). While Arduino provides the precision necessary for a real-time 

behavior solution, it lacks peripheral interfaces to directly control instruments and read sensors used 

in animal behavior. Also, native Arduino restricts behavior protocol development to a modified subset 

of c++, complicating protocol writing for programmers inexperienced with low-level performance 

optimization for real-time applications.  

 To address these limitations, I developed Bpod - a device that uses an Arduino 

microcontroller to implement the abstraction of real-time precision for high level state machine-based 
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behavioral protocols. To interface between the microcontroller and experiment, a custom designed 

printed circuit board provides a convenient hardware bridge to common equipment for manipulating a 

rodent’s environment – LEDs, TTL logic lines and solenoid valves. The same circuit board provides 

an interface for behavior measurement using infrared photo-gates, analog sensors and TTL trigger 

lines. To further expand Bpod’s usefulness, we have expanded Bpod to interface with both Ethernet 

devices and an open source programmable pulse generator for laser control in optogenetics and 

control of patterned stimuli like our auditory Poisson click stimulus (Pulse Pal, section 2.1.6). 

Firmware on the microcontroller executes a virtual state machine with guaranteed 300µs resolution 

on generated and captured events, and seamlessly interfaces with the MATLAB client using a virtual 

serial port. A single installation can be assembled for under $250 using common parts from industrial 

suppliers, raising the possibility of high throughput animal training in environments with limited 

funding. By combining an augmented open source microcontroller with powerful developer tools for 

achieving sub-millisecond control of behavioral experiments, we anticipate that our system will be 

useful for a variety of applications ranging from in vivo electrophysiology to psychophysics, 

behavioral phenotyping and science education. 

 

Circuit and firmware design 

 The schematics, bill of materials, enclosure CAD files and MATLAB client software are 

open source, and available at the following URL: https://bitbucket.org/kepecslab/bpod. This section is 

intended to provide a very brief, non-technical explanation of how the circuit and firmware operate. 

 Bpod is built on the Arduino Mega 2560 platform, a programmable single-chip computer 

(microcontroller) with added power and USB communication peripherals. To interface between 

Arduino Mega and the operant chamber’s sensors and actuators, I designed the circuit board drawn in 

Figure A2.1. This figure is not intended to show connectivity, but to pictorially introduce the major 

components of the circuit.  
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Figure A2.1: Components of the Bpod interface circuit board. A: 36 pin plug to connect Arduino. 
The top two pins as shown provide the USB 5V supply, and bottom two provide USB ground. All 
other pins are bidirectional 5V digital logic lines. B: 8 pin RJ45 Ethernet jack to synchronize behavior 
states with an electrophysiology system. One pin is a ground pin. Using the 7 remaining pins, up to 
128 states can be synchronized using a parallel binary code. C: Indicator LED remains on while Bpod 
is running a state matrix. D: A 2 Amp boost regulator (Pololu), converts the USB 5V supply to 12V 
for powering solenoid valves. With this regulator, a laptop can power the entire behavior system, 
making it robust against power fluctuations. E: Input BNC signal connection pins and pull-down 
resistors. Pull-down resistors force the signal lines to ground potential until a high current (TTL) 
signal arrives. F: logic-gated MOSFET transistors allow Arduino’s native logic signals to connect 
and disconnect solenoids and their 12V power source from ground for precision liquid and gas 
delivery. G: RJ45 plug for nose port interface (1 of 6 indicated). Red lines indicate electrical 
connections on the top face of the board, and blue lines indicate bottom-side connections. Green 
circles indicate connections between the top and bottom layers. 
 
 The firmware is software written in c++, which is converted by Ardino’s software tool-chain 

to AVR assembly language, and written to the microcontroller’s program flash memory. The 

microcontroller does not have an operating system. It stores and runs only the program intended. This 

way, the Bpod firmware has total control of the time course of events. The firmware is a set of 

instructions that are run indefinitely in a loop. Pseudo-code for the loop is shown in figure A2.2. 
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Figure A2.2: Pseudo-code of Bpod firmware. This is an English readable description of the 
firmware code available at https://bitbucket.org/kepecslab/bpod. It does not include variable 
declarations or other initialization routines that are run when the Bpod device is first powered.  
 
Software client features  
 
 To expedite behavior protocol development and execution, the Bpod client for MATLAB 

contains an array of software tools including a state matrix assembler for simple text description of 

state matrices, a data manager for organizing each subject’s data and settings, and a solenoid valve 
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calibrator to simplify precise liquid and gas delivery. A higher level protocol development tool is 

available to save time on coding when creating GO/NOGO or 2AFC protocols.  

2.3.4 Conclusions 

 The Bpod system constitutes a small step towards an ideal system for rodent behaviors 

commonly used in Neuroscience research. It is inexpensive, reliable and has been chosen to power 

projects ranging from the presently reported confidence task to conditioned place preference, self-

stimulation, head-fixed auditory GO/NOGO, rat soccer and social value measurement. However, 

several challenges remain to be solved before Bpod is adopted more broadly. For tasks that require 

high fidelity auditory cues instead of simple clicks and feedback tones, Pulse Pal is an insufficient 

solution for sound delivery. Also, Bpod’s software client lacks modular plugin architecture, for 

conveniently adding arbitrary sensors and actuators. This can be added in a future update. Finally, 

Bpod’s onboard 8kb of RAM is only sufficient to store matrices of 50 states and to record 1,000 

events per trial as currently programmed. Though we have not yet exceeded these limits in our lab, 

constraints are not ideal. The memory limit has been addressed in a new design available in the 

repository, based on a faster microcontroller with 9x more memory (Arduino Due). This new 

prototype has been bench-tested, but it has not yet been used in research.  

 While the system has already proven a valuable asset, we anticipate that with the 

improvements above, Bpod will become the interface of choice to leverage powerful microcontrollers 

for real time precision in behavioral research. 
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Appendix III  
Decision confidence with an alternative evidence processing strategy: a case study 
 
 In section 3.1.2, we noted that for one of our subjects (H5), the first side to click predicted 

choice on 74% of evidence-neutral trials. However, the subsequent 7 clicks also predicted choice with 

greater than chance accuracy (Figure A3.1a), indicating that subsequent information was considered. 

The subject’s mean reaction time was 406ms, (Figure A3.1b), far closer to the 294ms mean response 

time of our rats than the reaction times of our other human subjects. We wondered whether normative 

model patterns would persist in explicit confidence reports, in a regime where processing of evidence 

occurred on a short timescale. To observe confidence in this subject at high resolution, we gathered a 

large dataset (11,463 trials over 18 sessions). 

 The period of information that contributed to subject H5’s average choice lasted for only 

250ms after a 150ms motor response delay (Figure A3.1c), indicating that at 100 clicks per second, 

24 clicks on average could have been considered besides the first click. Most significantly for our 

analysis, the reverse correlation shows that anti-chosen stream evidence was selected against in 

making choices almost as much as chosen stream evidence was selected for, indicating that despite 

over-contribution of the first click, the balance of evidence was the dominant feature driving choice.  

 Consistent with this view, a psychometric curve fit with a binomial logistic function as in 

Figure 3.9 indicated that our balance of experienced evidence measure, β’, still meaningfully 

described choice probability (Figure A3.1d), achieving 100% choice accuracy on both sides. A slight 

side bias (same panel) and a considerable feedback bias (Figure A3.1e) also contributed to choice. We 

determined that despite short response times, subject H5 sampled for longer on difficult trials, and 

exhibited reduced accuracy with prolonged sampling as for our other subjects (Figure A3.1f-g).  

 Short response times at such high accuracy were possible in part, because we gave the subject 

strong evidence to compensate for low initial performance. Taken together, the subject accumulated 

strong evidence on a short timescale, selectively prolonged sampling of ambiguous evidence, and at 
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least partially evaluated its balance to make choices. Since our metric of evidence meaningfully 

described choice, we sought to determine how well it described confidence in a regime prone to 

several biases. 

 Subject H5 responded with a confidence frequency distribution unlike any of the subjects in 

our previous report (Figure A3.1h), using the “5” response more often than the remaining parts of the 

scale combined. Despite this unusual scale usage, confidence reports reproduced the three normative 

model patterns, capturing the correct slope directions for all trends (Figure A3.1i-l). Calibration 

(section 1.1.1) was nearly perfect at 0.003, indicating that the subject was a good forecaster of her 

outcome probabilities. The relationship of confidence to evidence exhibited the expected correlation 

and anti-correlation for correct and incorrect trials, however the correct trial data saturated at 5 on 

very strong evidence trials, making the curve a poor linear fit. A similar saturation exists for the p-

value of the one-sided bootstrap confidence test for difference between means, using Poisson 

evidence (Figure 3.2h). The subject’s confidence had a remarkable ability to discriminate between 

correct and incorrect trials of the same experimentally delivered evidence strength (Figure A3.1k). 

 Subject H5 used ~250ms of strong evidence to decide on each trial, but during the motor 

response, collected an additional ~150ms of evidence which could have informed confidence. By 

these measures, post-decisional evidence was potentially a far more reliable source of information 

with respect to choice evidence than for our other subjects. Figure A3.1L shows that post-decisional 

evidence was used, and strongly opposed the chosen hypothesis on low confidence trials.  
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Figure A3.1: With strong evidence and biased, rapid judgments similar to our rats, normative 
patterns persist in explicit confidence. A: Subject H5 had a significant choice bias towards the side 
that clicked first. The seven subsequent clicks all show small but significant influence over choice.  
B: The subject responded rapidly after evidence onset but spent more time sampling on incorrect 
trials. Inset shows mean and standard error. C: Choice-aligned reverse correlation of chosen and anti-
chosen evidence streams. Data were evaluated in 50ms bins. Chosen and anti-chosen streams were 
distinguishable by a bootstrap test for difference between means, in a window from 450ms to 150ms 
before choice (indicated with red dashed lines). Inset shows mean click bias calculated in the same 
window. Chosen-side clicks contributed to choice slightly more than anti-chosen side clicks. D: 
Psychometric function showing that evidence balance explains choice probability despite the first-
click bias. A small left bias of 6% was evident. E: The subject showed considerable bias towards the 
side rewarded on the preceding trial. Biases after non-rewarded trials were less pronounced (not 
shown) F: On trials with weak evidence, the subject sampled for longer.  G: On trials with long 
response times, the subject was less accurate.  H: Subject H5 used the “5” response more often than 
the remaining scale divisions combined. I: Despite the unusual scale usage pattern, confidence reports 
predicted accuracy with nearly perfect calibration. J: Confidence on strong evidence trials was lowest 
when the subject erred and highest when the subject was correct. A saturation effect is evident for 
correct trials of very high evidence strength. K: The subject’s confidence predicted choice even when 
experimentally delivered evidence was fixed. L: The reverse correlation from panel C was partitioned 
into low and high confidence bins. A very strong bias in the post-decision period is evident on low 
confidence trials, for evidence that contradicted the choice. 
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 Strikingly, in this subject, a phase of early evidence which strongly predicted choice on 

evidence neutral trials (450ms-300ms before choice), did not predict confidence at all (Figure A3.2). 

This indicates that under some circumstances, the processes of information gathering for choice and 

for confidence are dissociable. In chapter 5, we explore models that use post-decisional evidence 

exclusively, and propose a new model that can use both decision and post-decision epochs in varying 

proportions. In terms of our model, the fact that a period of evidence collection only for choice can 

exist in a human subject, is consistent with the idea that subjects may adapt the coupling coefficient 

between accumulators to the statistics of sensory evidence and reward contingencies in each task. 

Future research may test how flexible this trade-off is, by collecting evidence from subjects in speed 

and accuracy conditions, and with different distributions of evidence strength. 

 
 

 
 
Figure A3.2: The processes of gathering evidence for choice and for confidence are dissociable. 
We partitioned time before choice into four bins on neutral-evidence trials. A post-decisional 
evidence bin was set between -150ms and 0ms, based on bootstrap tests for different means, 
performed on data from Figure A3.1C. The first significant bin and final significant bins for choice 
occurred at -150ms and -450ms. This period was divided equally into early and late choice bins. A 
pre-decision bin was computed between 500ms and 650ms. Clicks in subject H5’s early choice epoch 
predicted choice but not confidence. However, evidence gathered in the final 150ms did not inform 
confidence more than evidence collected 300-150ms during the choice period, as predicted by the 
post-decision model’s mutually exclusive trade-off between choice and confidence information on 
individual trials (Figure 5.5). 
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Appendix IV  
Towards an identity test for confidence signals 
 
 It is tempting to infer, from the presence of normative model patterns in human confidence, 

that the human brain is computing statistical confidence from its evidence. However we cannot 

entirely dismiss the possibility that signals which produce the normative model patterns could exist, 

which are differentiable from confidence in some fundamental way. Our normative model predictions 

make strong predictions about the sensitivity of this set of patterns in identifying confidence signals. 

While a theoretical treatment of the specificity of these patterns is an excellent topic for future 

research, in this appendix I explore one instance of the ability of this set of patterns to discern 

between decision confidence and a superficially similar cognitive signal. 

 In one view, the absolute noise level corrupting perceived evidence may be reduced, or the 

amount of available evidence may be increased, when a channel providing evidence is attended to 

(Neill and Westberry 1987; Lu and Dosher 1998). Intuitively, these simplistic and abstract forms of 

“attention” should satisfy several of the normative model predictions. When attention varies on each 

trial, it can predict the amount of uncorrupted evidence apparent to the decision maker, and by 

inference, the decision maker’s accuracy. It is also intuitive that only when a decision maker is 

attending least, they will make mistakes in the presence of strong evidence, satisfying the error trial 

prediction of the second pattern. For a fixed strength of provided evidence, the strength of the same 

evidence after modulation should predict accuracy on average, satisfying the third prediction. 

However, this form of “attention”, while enhancing or suppressing the collection of information in 

general, does not contain direct insight into the relative statistics of the two samples of evidence, 

apparent to the decision process. We wondered whether a variable that intuitively mimics confidence 

in so many ways but does not have insight into the ratio of evidence supporting different hypotheses, 

would also satisfy the three normative predictions of decision confidence. 
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 To test this, we constructed a two-choice decision making simulation with Gaussian 

evidence, identical to the one we used to evaluate two-sample t-test confidence in Chapter 3. On each 

of 1,000,000 trials, two samples of 30 measurements were drawn from two Gaussian distributions of 

variance = 1 (distributions A and B). The means of distributions A and B were offset from 0 by 

random amounts drawn from a uniform distribution between -0.5 and 0.5, where the means described 

provided evidence for each hypothesis (the distinction between provided and perceptual evidence 

discussed in section 3.1). The difference between the means of A and B on each trial described 

discriminability. I scored each trial as correct if the ordinal relationship between sample means was 

true of the population means based on our offsets, and incorrect if false.  

 We tested two attention-like “global gain” (GG) variables, which affected the strength of 

signals supporting separate hypotheses without directly changing their balance of evidence ratio. 

These two measures were: 1. added noise, and 2. sample size. These factors modulated both samples 

in the same way on each trial. For our added noise simulation (Figure A4.1a-d), each trial’s evidence 

was corrupted by adding zero-mean Gaussian noise to the evidence on each trial. The variance of the 

noise added (noise variance in Figure A4.1), ranged from 0 to 1.5 with uniform probability on each 

trial. T-tests were also performed on each trial’s evidence (Figure A4.1e-g). For our sample size 

simulation (Figure A4.1h-k), the total number of samples collected for the two hypotheses was co-

modulated on a trial by trial basis by co-varying the (equivalent) sample size of the two samples being 

compared between 2 and 50 with equal probability. 

 Accuracy varied continuously with discriminability between chance and near-perfect in each 

simulation (Figure A4.1a,h). However, the GG measures did not span the complete range of accuracy, 

as did statistical confidence in our simulation (Figure A4.1b,i vs. panel e) and verbal confidence in 

our study. On error trials, these two GG measures were indeed lowest in the presence of strong 

evidence (Figure A4.1. However, GG measures were not positively correlated with evidence strength 

on correct trials as was always true for confidence reports. 
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Figure A4.1: Normative predictions are not reproduced by two global gain (GG) processes. We 
compared two factors affecting the total amount of evidence available to a decision maker: the 
amount of noise added to samples of evidence (a-d) and the equivalent sample size of the two samples 
compared on each trial (h-k) to determine whether these modulators of evidence signal strength 
would be distinguishable from decision confidence using normative model patterns. A,H: 
Psychometric functions showed that accuracy increased with the difference between underlying 
distribution means (∆µ), from which samples were drawn on each trial. B,I: Despite evidence 
eliciting a complete range of accuracy for the decision process, GG measures were weak accuracy 
predictors. C,J: Contrary to normative model predictions, GG measures were not positively 
correlated with discriminability on correct trials. D,K: GG measures predicted accuracy for a given 
difficulty. E,F,G: One-sided, two-sample t-tests were performed on the evidence of each trial in the 
added noise simulation, producing robust confidence patterns despite modulation of evidence. 
 
 In chapter 5, we examined two decision measures which might have been explicitly used by 

the brain to know its own confidence – reaction time and evidence variance – and determined that 

these measures could not produce normative model patterns in the context of the drift diffusion 

model, eluding a fit to human data. Here, we show that two instances of an additional class of 

decision making signal, global gain signals, do not reproduce the expected patterns of the normative 

confidence model, despite directly affecting the statistics of evidence used for choice. These 
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processes modulated evidence strength by sampling more of it, or adding noise to corrupt it, but did 

not affect the balance of evidence supporting the two hypotheses on average, preserving the primary 

information used to decide.  

 In this appendix, I showed that a set of three statistical confidence patterns can be used to 

discern between two related measurements of the evidence used in two-choice decision making – 

global gain (GG) and decision confidence. The failure of GG measures to mimic the direct correlation 

between provided evidence and confidence on correct trials touches on the power of this set of 

patterns to infer insight about the role of a candidate confidence signal in the process of decision 

making. The second normative pattern especially, may be an exclusive hallmark of an a posteriori 

appraisal of the likelihood that a noisy decision process chose correctly, in contrast to the pattern 

produced by the a priori global gain measure. This pattern in provided evidence requires information 

about the strength of evidence used to decide each trial as it was apparent to the decision maker (after 

sampling errors and all other internal noise sources were added), in order to manifest. Whether a 

process acquires this privileged information about a decision maker’s internal evidence directly from 

the decision process, or tangentially as in the case of the 2DSD model (Chapter 5), a calibrated 

confidence signal can in principal, be used by organisms to assess the quality of their judgments and 

cast wagers with higher efficiency than if it were making these judgments based on a signal that 

modulates evidence strength prior to choice (Figure A4.1b,i). Though further research is necessary to 

establish whether there exists an independently generated signal that mimics the privileged insight of 

decision confidence in these three important ways, it may be of semantic concern whether or not a 

signal that exhibits the three normative patterns is in fact, a measure of decision confidence. 
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