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Chd5 orchestrates chromatin remodelling
during sperm development
Wangzhi Li1,2, Jie Wu1,3, Sang-Yong Kim1, Ming Zhao4, Stephen A. Hearn1, Michael Q. Zhang5,6,

Marvin L. Meistrich4 & Alea A. Mills1

One of the most remarkable chromatin remodelling processes occurs during spermiogenesis,

the post-meiotic phase of sperm development during which histones are replaced with

sperm-specific protamines to repackage the genome into the highly compact chromatin

structure of mature sperm. Here we identify Chromodomain helicase DNA binding protein 5

(Chd5) as a master regulator of the histone-to-protamine chromatin remodelling process.

Chd5 deficiency leads to defective sperm chromatin compaction and male infertility in mice,

mirroring the observation of low CHD5 expression in testes of infertile men. Chd5 orches-

trates a cascade of molecular events required for histone removal and replacement, including

histone 4 (H4) hyperacetylation, histone variant expression, nucleosome eviction and DNA

damage repair. Chd5 deficiency also perturbs expression of transition proteins (Tnp1/Tnp2)

and protamines (Prm1/2). These findings define Chd5 as a multi-faceted mediator of histone-

to-protamine replacement and depict the cascade of molecular events underlying this process

of extensive chromatin remodelling.
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S
permatogenesis is an intricate biological process that
transforms diploid spermatogonial stem cells into haploid
spermatozoa in seminiferous tubules of testis. It consists of

three major phases: mitosis, meiosis and spermiogenesis1.
Spermatogonial stem cells first multiply by repeated rounds of
mitosis and differentiate into primary spermatocytes, which
subsequently undergo meiosis and become haploid round
spermatids. Round spermatids then mature into highly
specialized spermatozoa through spermiogenesis, the final phase
of spermatogenesis1. During spermiogenesis, round spermatids
undergo a number of characteristic changes including elongation
and condensation of the nucleus, formation of the acrosome and
flagellum, and removal of cytoplasm2. In mouse, spermatogenesis
is subdivided into twelve stages (stages I–XII), whereas
spermiogenesis is further divided into 16 steps (steps 1–16)
mainly defined by changes in acrosome structure and nuclear
morphology of the maturing spermatids1,3–5.

Extensive chromatin remodelling occurs during spermiogen-
esis, which results in the majority of nucleosomal histones being
replaced by sperm-specific basic proteins, initially transition
proteins and ultimately protamines6. Protamines are distinct
from histones, packaging the sperm genome into a distinct toroid
chromatin structure7. This dramatic histone-to-protamine
remodelling repackages the sperm genome into a chromatin
structure that is sixfold or more compact than that of
somatic cells, and is essential for normal sperm development6,8.
Given its extensive degree of chromatin remodelling,
spermiogenesis offers a unique process to study mechanisms of
chromatin remodelling. However, this process is currently
understudied and still poorly understood, mainly due to the
complexity of the process itself and lack of in vitro experimental
systems for studying it. In particular, chromatin remodellers are
believed to be essential for facilitating the extensive degree of
chromatin remodelling during spermiogenesis, but their roles in
this process are not well elucidated. In this study, we discovered
that Chromodomain helicase DNA-binding protein 5 (Chd5)
plays an orchestrating role in the histone-to-protamine
remodelling process during spermiogenesis. Chd5 is a member
of the CHD family of chromatin remodellers, which we identified
as a dosage-sensitive tumour suppressor9. While recent studies
reveal that Chd5 binds unmodified histone 3 (H3) via its dual
plant homeodomains10,11 and that this interaction is essential for
tumour suppression10, the ability of Chd5 to mediate chromatin
dynamics in the context of normal cells is not well understood.
We find that Chd5 is highly expressed during spermiogenesis and
plays essential roles during sperm development. Inactivation of
Chd5 in mice leads to sperm chromatin compaction defects and
male infertility. We reveal that Chd5 both mediates a cascade of
molecular events for histone removal and modulates the
homeostasis of transition proteins and protamines, identifying
Chd5 as a master regulator of the histone-to-protamine
chromatin remodelling process during spermiogenesis.

Results
Chd5 is expressed in spermatids during spermiogenesis. Using
immunofluorescence analyses with a previously validated anti-
body specific for Chd5 (refs 10,12) we found that Chd5 is
expressed in mouse testes specifically during spermiogenesis
(Fig. 1, Supplementary Fig. 1). Chd5 was first detectable after
meiosis, when it was expressed within nuclei of step 4 spermatids
(Fig. 1). At this phase, Chd5 was weakly expressed throughout the
nucleus but was highly expressed in an intense focal spot near the
chromocentre, a cluster of centromeres and pericentromeric
heterochromatin13. Chd5 expression peaked at steps 7–8, when it
was expressed robustly throughout the nucleus and was enriched
in the chromocentre, where Chd5 colocalized with the hetero-
chromatin mark H3K9me3, and was expressed in a pattern
similar to that of the repressive histone mark H3K27me3 (Fig. 1b,
Supplementary Fig. 2). Chd5 expression decreased after step 9,
when it remained enriched in heterochromatin, and was not
detectable after step 10 (Fig. 1). The Chd5-intense focal spot
juxtaposed to the edge of the chromocentre was present in round
spermatids from steps 4–8, and was positioned at the junction
between the chromocentre and the post-meiotic sex chromosome,
both of which are DAPI-intense sub-nuclear structures within
spermatids (Fig. 1, Supplementary Fig. 3a)14. In contrast to the
chromocentre, the Chd5-intense focal spot was DAPI-weak and
was negative for H3K9me3 (Fig. 1b, Supplementary Fig. 3a),
suggesting that it marks transcriptionally active chromatin. We
speculated that the Chd5-intense foci may be within nucleoli. Co-
immunostaining of Chd5 with the nucleolar marker fibrillarin
showed that the Chd5-intense spot was near the nucleolus in
many spermatid nuclei, but was clearly separated in others
(Supplementary Fig. 3b), raising the possibility that Chd5
transiently associates with the nucleolus. These findings indicate
that Chd5 is expressed specifically in nuclei of round and early
elongating spermatids during spermiogenesis where it is primarily
enriched in heterochromatic regions, and that Chd5 is also
expressed in an intense focal spot in a non-heterochromatic
region juxtaposed to the chromocentre.

Chd5 deficiency impairs sperm development and fertility. The
dynamics of Chd5 expression during spermiogenesis indicated
that it might play a functional role in chromatin remodelling
during spermatid maturation. To explore this possibility, we
generated Chd5-deficient mice carrying the Chd5Aam1 null allele
(Supplementary Fig. 4). Western blot analyses using a validated
antibody10 recognizing a part of Chd5 protein not disrupted by
gene targeting demonstrated that the Chd5 protein was not
detected in testes of Chd5Aam1 homozygotes (Fig. 2a).
Chd5Aam1� /� mice were viable and grossly normal. Mating
tests revealed that whereas Chd5Aam1� /� female mice and
Chd5Aam1þ /� mice of both genders were fertile, Chd5Aam1� /�

males were either sub-fertile or sterile (Supplementary Table 1).
Chd5Aam1� /� mice had significantly lower sperm counts, and

Figure 1 | Chd5 is expressed in step 4–10 spermatids and is enriched in heterochromatin during spermiogenesis. Roman numerals indicate the

spermatogenic stages of the tubules in wild-type testes sections. (a) Blue, DAPI; green, Chd5; RS, round spermatid; ES, elongating spermatid; ECS,

elongating and condensing spermatid; CS, condensed spermatid; P, pachytene spermatocyte; Mi, meiotic division. Arrow heads mark the chromocentre.

Scale bar, 10mm. (b) Chd5 is enriched in DAPI-intense heterochromatic regions, and colocalizes with heterochromatin marker H3K9me3. Top panel,

step 7–8 round spermatids; bottom panel, step 9–10 elongating spermatids. Arrow heads mark the chromocentre. Scale bar, 5 mm. (c) Schematic of Chd5

expression during spermatogenesis. Spermatogenesis is divided into twelve stages (stage I–XII) in mouse and each stage has a distinct cellular

composition. Spermiogenesis, the maturation process of haploid spermatids, is divided into 16 steps (steps 1–16). Green marks Chd5 protein expression.

Chd5 is specifically expressed in spermatids from steps 4–10, with peak expression in step 7–8 round spermatids, where Chd5 is enriched in the

heterochromatic chromocentre. A focus of intense Chd5 protein expression is located adjacent to the junction of the chromocentre and the post-meiotic

sex chromosomes in steps 4–8 spermatids. Spermatogonia (A, In, B); spermatocyte (Pl, preleptotene; L, leptotene; Z, zygotene; P, pachytene; D, diakinesis;

Mi, meiotic division); Ag, acrosomic granule; Ac, acrosomic cap. The diagram is drawn based on the illustration of Hess et al.71
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Figure 2 | Chd5 deficiency leads to defective spermatogenesis and chromatin condensation. (a) Western blot analyses indicates that Chd5 protein is not

detectable in Chd5Aam1� /� (� /� ) testis. A validated antibody10 raised against amino acids 1,524–1,705 of mouse Chd5 (which is not disrupted by gene

targeting), was used for western blotting. b-Actin serves as a loading control. (b) Representative abnormal head morphology of Chd5Aam1� /� sperm. Scale

bar, 20mm. (c) SCSA revealed impaired chromatin integrity of Chd5Aam1� /� sperm. DFI, DNA Fragmentation Index (see Methods). Data are presented as

mean±s.d. from four independent experiments. (d) Transmission electron microscopy analyses of sperm from Chd5Aam1þ /þ and Chd5Aam1� /� caudal

epididymi. Chromatin is homogenously condensed in Chd5Aam1þ /þ sperm, but appears loose and uneven with fibrillar texture and contains abnormal

vacuoles in Chd5Aam1� /� sperm nuclei. Scale bar, 1 mm. (e) Staged comparison of periodic acid–Schiff (PAS)-stained Chd5Aam1þ /þ and Chd5Aam1� /�

testes. Roman numerals indicate the stages of the seminiferous tubules. A decrease in the number of elongated spermatids, especially at stages VII and

VIII, is evident in Chd5Aam1� /� tubules. Arrows in stage IX and X mark abnormal retention of condensed spermatids. Scale bar, 10mm. (f) Relative CHD5

expression in human testis with normal versus clinically defined abnormal spermatogenesis. Data are derived from published microarray data set

(ArrayExpress: E-TABM-234) of 39 human testis biopsy samples from 29 men with highly defined testicular pathologies and 10 men with normal

spermatogenesis. RNA was prepared from the testis biopsies and analysed for gene expression using Affymetrix GeneChip. Data were analysed through

NextBio18. Arrow indicates increased severity of spermatogenic defect.
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the sperm that were produced had compromised motility and a
higher proportion of morphological abnormalities (Table 1, Fig. 2b
and Supplementary Table 2). Using in vitro fertilization (IVF), we
found that Chd5Aam1� /� sperm failed to fertilize wild-type
oocytes (Supplementary Table 3). Although it might be expected
that some functional sperm from sub-fertile Chd5Aam1� /� mice
should be able to fertilize oocytes, none of the sperm obtained
from three different Chd5Aam1� /� mice were able to generate
blastocysts in vitro. This may be because each of the three males
tested happened to be sterile rather than sub-fertile, or that IVF
conditions compromised the sperm that would have been able to
fertilize oocytes under in vivo conditions. A possible explanation
for the range of severity of the fertility phenotype in different mice
was genetic background, as 129Sv embryonic stem cells were used
to generate the Chd5Aam1 allele, with mice being backcrossed for
over four generations onto the C57BL/6 background before
heterozygotes were intercrossed. To determine whether genetic
background affected fertility, we established a second Chd5-
deficient mouse model (carrying the Chd5Tm1b null allele15) that
was in a 100% pure C57BL/6 genetic background, and assessed
male fertility (Supplementary Fig. 5, Supplementary Table 4). We
found that Chd5Tm1b� /� male mice were also either sterile or
sub-fertile. Another Chd5-deficient mouse model in a pure 129E
background also showed that homozygous male mice exhibited
variable pathology ranging from absence of sperm to near-normal
sperm count, although six homozygous males tested did not
produce any progeny over the 2-month period analysed16. These
data suggest that Chd5 deficiency compromises sperm production
and male fertility and that this phenotype exhibits inherent
variability in different individuals.

To assess chromatin integrity in sperm from Chd5-deficient
mice, we used the sperm chromatin structure assay (SCSA)
(Fig. 2c). SCSA revealed that DNA fragmentation was enhanced
in Chd5Aam1� /� sperm, reflecting a compromise in chromatin
integrity17. Consistent with this finding, transmission electron
microscopy showed that whereas chromatin within nuclei of
wild-type sperm is homogeneously condensed, less-condensed
chromatin with a punctate texture and uneven density, as well as
the presence of abnormal vacuoles, were observed in nuclei of
Chd5Aam1� /� sperm (Fig. 2d). These findings show that Chd5
deficiency leads to defective chromatin compaction in sperm.

Since compromised fertility can be caused by a deregulation of
sex hormones, we investigated this possibility (Supplementary
Fig. 6). However, we did not detect a significant alteration in sex
hormones in Chd5Aam1� /� male mice relative to controls.
Histological analyses of testes revealed that seminiferous tubules
of Chd5Aam1� /� mice contained fewer elongated spermatids
relative to controls, with an abnormal retention of condensed
spermatids within stage IX and X tubules (Fig. 2e, Supplementary

Fig. 7). The extent of histological abnormalities varied among
individual Chd5Aam1� /� mice (Supplementary Fig. 7), in
agreement with the variable severity of infertility observed in
male Chd5-deficient mice. In contrast to post-meiotic defects,
we did not observe differences in spermatogenic cells (spermato-
gonia, spermatocytes, round spermatids) or in somatic cells
(Sertoli cells, Leydig cells) in Chd5Aam1� /� testes (Fig. 2e,
Supplementary Fig. 7). These findings indicate that Chd5
deficiency disrupts the elongation and condensation steps of
post-meiotic sperm maturation, consistent with Chd5’s peak of
expression in step 7–8 round spermatids, the phase immediately
preceeding extensive chromatin remodelling.

To determine whether our findings from Chd5-deficient mice
might be relevant to human cases of male infertility, we analysed
a previously established gene expression data set of testes biopsies
from 39 men (29 men with highly defined testicular pathology
and 10 men with normal spermatogenesis)18. This analysis
revealed that men with spermatogenic defects had lower CHD5
expression relative to controls and that the clinical grade of
spermatogenic defect correlated inversely with CHD5 expression
(Fig. 2f). While this is a correlation rather than evidence for
causality, it suggests that future efforts should be made to
determine whether compromised CHD5 contributes to male
infertility in humans.

Chd5 deficiency disrupts histone-to-protamine replacement.
During mammalian spermiogenesis, the majority of canonical
histones are removed and replaced by histone variants and
transition proteins, which are subsequently replaced by prota-
mines6,7,19,20. This histone-to-protamine replacement process
repackages the sperm genome at least sixfold more compact than
its somatic counterpart8. To define the mechanism whereby Chd5
deficiency compromises chromatin compaction during
spermiogenesis, we used western blotting to assess expression of
a panel of somatic histones, transition proteins and protamines in
elutriation-purified spermatids at different steps of spermio-
genesis (Supplementary Fig. 8). The core nucleosomal histones
(H1, H2A, H2B, H3 and H4) were quickly depleted after the
round spermatid steps in wild-type testes, with minimal retention
in condensing and condensed spermatids (Fig. 3a). In contrast,
these core histones were retained to a higher extent in
Chd5Aam1� /� differentiated spermatids, which implied
ineffective histone removal. In addition, transition proteins
(Tnp1 and Tnp2) and protamines (Prm1 and Prm2)
had elevated expression in differentiated Chd5Aam1� /�

spermatids (Fig. 3b,c), likely contributing to impaired fertility of
Chd5Aam1� /� mice, as precise control of levels of Prm1 and
Prm2 are critical for male fertility21,22. Prm2 is first translated as a
precursor protein that is subsequently processed into mature
Prm2 through a multistep proteolytic cleavage. In Chd5Aam1� /�

spermatids, there was enhanced expression of the Prm2 precursor
and partially processed Prm2 was present, indicating a defect in
Prm2 processing, which may be because the overproduction of
Prm2 in Chd5Aam1� /� spermatids exceeds the processing
capacity of the cells. In addition, both Tnp1 and Tnp2
deficiency have been shown to increase levels of the Prm2
precursor and partially processed forms of Prm2 (refs 23,24).
Thus, the abnormal elevation of Tnp1 and Tnp2 in
Chd5Aam1� /� spermatids may also contribute to defective
Prm2 processing. Consistent with the observation in
spermatids, western blotting of lysates from mature sperm also
revealed enhanced retention of core nucleosomal histones and
elevated Prm1 and Prm2 expression in Chd5Aam1� /� sperm
(Fig. 3d). Furthermore, immunofluorescent analyses of testes
showed enhanced expression of Tnp1, Tnp2, Prm1 and Prm2 in

Table 1 | Reduced sperm counts and motility in
Chd5Aam1� /� mice.

Genotype N Sperm/caudal
epididymis

(� 106)

All motile
sperm (%)

Progressive
motile sperm (%)

Chd5Aam1þ /þ 7 5.52±1.13 62.3±5.4 48.6±11.3
Chd5Aam1þ /� 4 6.51±0.68 66.0±3.8 52.8±2.3
Chd5Aam1� /� 11 2.74±0.68 42.4±10.3 21.0±5.7
P(þ /þ versus þ /� ) 0.103 0.228 0.375
P(þ /þ versus � /� ) 0.0002* 0.0055* 0.0004*

N indicates the number of mice used for the indicated sperm analyses. P-value is two-tail
Student’s t-test result between the indicated genotypes.
*indicates statistical significance. Data are presented as mean±s.d. þ /þ , Chd5Aam1þ /þ ;
� /� , Chd5Aam1� /� ; þ /� , Chd5þ /� .
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Chd5Aam1� /� spermatids (Fig. 3e, Supplementary Figs 9–12). In
addition, Tnp1 was precociously expressed in step 9–10
spermatids and had extended expression until step 15
spermatids in Chd5Aam1� /� testes. These findings indicate
that Chd5 deficiency perturbs the histone-to-protamine transition
that occurs during spermiogenesis, leading to aberrant retention

of nucleosomal histones and elevated levels of transition proteins
and protamines.

Chd5 mediates histone removal and DNA repair. To assess the
mechanism of how Chd5 deficiency leads to aberrant histone
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removal we focused on H4 hyperacetylation, a molecular event
occurring in early elongating spermatids that is essential for
histone-to-protamine replacement in Drosophila25, and
considered the same for spermiogenesis in mammals6,25,26.
Using immunofluorescence, we determined that Chd5 had
similar expression dynamics as H4 hyperacetylation during
spermiogenesis, but immediately preceded it (Fig. 4a). In step
9–10 spermatids, Chd5 colocalized with H4 acetylation,
suggesting that Chd5 modulates H4 hyperacetylation during

spermiogenesis (Fig. 4a). Consistent with this hypothesis,
immunofluorescent analyses revealed that H4 acetylation was
compromised in Chd5Aam1� /� spermatids (Fig. 4b). In
Chd5Aam1þ /þ testis, H4 hyperacetylation was detected in step
9 spermatids and showed peak expression in step 10–12. H4
acetylation decreased in step 13 spermatids, and was not
detectable at later steps. Whereas H4 acetylation was detected
within step 9–13 spermatids of Chd5Aam1� /� testis, its
expression was substantially reduced in Chd5Aam1þ /þ
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(b) Immunofluorescence analyses of H4 acetylation in Chd5Aam1þ /þ (þ /þ ) and Chd5Aam1� /� (� /� ) seminiferous tubules. Roman numerals indicate

spermatogenic stages of the marked tubules. H4 hyperacetylation starts at step 9 spermatids of stage IX tubules, exhibits peak expression from step 10 of

stage X tubules to step 12 spermatids of stage XII tubules and decreases in step 13 spermatids in stage I tubules in Chd5Aam1þ /þ (þ /þ ) testis. H4

acetylation is weaker from step 9 to 13 spermatids in Chd5Aam1� /� (� /� ) testis than in the Chd5Aam1þ /þ counterparts. H4Ac was detected by

a rabbit polyclonal antibody against pan-acetylation of H4. Scale bar, 20mm. (c) Western blot analyses of purified spermatids at different spermiogenic

stages. Histone H4 becomes transiently hyperacetylated in ECS of Chd5Aam1þ /þ (þ /þ ) testes, but not in ECS of Chd5Aam1� /� (� /� ) testes.

H4Ac was detected by a rabbit polyclonal antibody against pan-acetylation of H4. b-Actin serves as a loading control. RS, round spermatids; RES, round and

early elongating spermatids; ECS, elongating and condensing spermatids; CS, condensed spermatids.
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spermatids. Furthermore, western blotting of lysates from
elutriation-purified spermatid fractions showed that whereas
more total H4 was retained, H4Ac was severely compromised
in differentiated Chd5Aam1� /� spermatids (Fig. 4c). Consistent
with the findings in Chd5Aam1� /� mice, Chd5Tm1b� /�

testes also showed compromised histone H4 acetylation
(Supplementary Fig. 13). These findings indicate that acetylated
H4 is compromised in Chd5-deficient testes.

Following H4 hyperacetylation, acetylated histone tails are
recognized by Brdt, a testis-specific member of the BRD
bromodomain-containing protein family that has been shown
to induce eviction of nucleosomes6,27,28. However, how Brdt
mediates nucleosome eviction is not clear. Likely, Brdt recruits
chromatin remodelers to remodel and evict hyperacetylated
nucleosomes. We therefore asked whether the compromised H4
acetylation and Chd5 deficiency perturbed nucleosome eviction
in Chd5Aam1� /� spermatids. Using an antibody specific for
intact nucleosomes29, we found that nucleosomes were detectable
through step 11 of spermatid maturation in wild-type testes, but
were depleted at later steps (Fig. 5a). However, we found that
nucleosomes were aberrantly retained in Chd5Aam1� /�

spermatids as late as step 14 (Fig. 5b), indicating that
nucleosomes were ineffectively evicted. Thus, both H4
acetylation and nucleosome eviction are compromised by Chd5
deficiency.

Nucleosome eviction generates DNA supercoiling tension that
needs to be relieved. Previous studies indicate that topoisomerase
II beta (Top2b) catalyses resolution of such supercoils in
elongating spermatids, during which double-strand breaks
(DSBs) are generated. A DNA damage response is then triggered
to repair the DSBs in order to maintain genome integrity30–33.
We found that Chd5 expression is induced by DNA damage
(Fig. 6a), suggesting that Chd5 plays a role in the DNA damage
response as well. Indeed, TUNEL assays revealed an increase of
DNA breaks in differentiated Chd5Aam1� /� spermatids, most
notably at steps 13–14 (Fig. 6b), a time point when most DNA
breaks are repaired in wild-type testes. In agreement with this
finding, immunofluorescent analyses showed that whereas
g-H2A.X (a marker for the DSB-activated DNA damage
response) is cleared in wild-type spermatids after step 12, it is
detected in Chd5Aam1� /� spermatids as late as step 14 (Fig. 6c).
Western blot analyses further confirmed an increase of g-H2A.X
in differentiated Chd5Aam1� /� spermatids (Fig. 6d). Together,
these findings indicate that Chd5 deficiency impairs H4
hyperacetylation, nucleosome eviction, and DNA damage repair
during spermiogenesis.

Chd5 loss alters gene expression in spermatids. Tnp1, Tnp2,
Prm1 and Prm2 are transcribed in round spermatids, but their
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transcripts are stored in translationally repressed ribonucleo-
protein particles before being later translated into protein within
elongating spermatids34–36. To determine whether the increase in
transition proteins and protamines within Chd5-deficient
spermatids was due to enhanced expression at the transcript
level, we used qRT–PCR to assess Tnp1, Tnp2, Prm1 and Prm2
expression in Chd5Aam1� /� and Chd5Aam1þ /þ round
spermatids. Whereas only a slight increase of Tnp1, Tnp2 and
Prm2 transcripts were detected, Prm1 transcript was increased
B2.5-fold in Chd5Aam1� /� round spermatids (Fig. 7a).
Using chromatin immunoprecipitation-qPCR (ChIP-qPCR)
analyses of nuclear lysates from testicular cells, we found an
enrichment of Chd5 binding at the Prm1 promoter (region P:
� 77 bp to þ 135 bp) (Fig. 7b). Less-pronounced Chd5 binding
was observed at region A (� 860 to � 672 bp), B (� 444 bp to
� 239 bp) and C (þ 397 bp to þ 585 bp), but not at region
50 (� 1,319 bp to � 1,164 bp). Collectively, these data suggest
that Chd5 represses Prm1 transcription, whereas it negatively
modulates expression of Tnp1, Tnp2 and Prm2 mainly
post-transcriptionally.

As described above, a Chd5-intense focus near the edge of
chromocentre in round spermatids showed proximity to the
nucleolar marker fibrillarin (see Supplementary Fig. 3b), suggest-
ing that Chd5 may play a role in rRNA biogenesis and
translational control. qRT–PCR analyses of 45S and 28S rRNA
expression revealed that 45S rRNA was reduced by B30%, and
28S rRNA expression was reduced by 450%, in Chd5Aam1� /�

round spermatids (Fig. 7c), indicating compromised rRNA
biogenesis in Chd5Aam1� /� spermatids. These results suggest a
role of Chd5 in rRNA biogenesis during spermiogenesis, which is
consistent with the known function of other CHD proteins
such as CHD4 and CHD7 in positively regulating rRNA
biogenesis37,38.

In addition to H4 hyperacetylation, replacement of canonical
core nucleosomal histones with histone variants including those
that are testis-specific is another key mechanism facilitating
nucleosome destabilization and histone removal during sperma-
togenesis39–41. We examined expression of a panel of general and
testis-specific histone variants in Chd5Aam1þ /þ and
Chd5Aam1� /� round spermatids via qRT–PCR, and discovered
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that expression of the H2B variant Hist1h2bc was elevated over
fivefold in Chd5Aam1� /� round spermatids (Fig. 7d). Although
little is known about the functions of Hist1h2bc, its substantial
increase in Chd5Aam1� /� round spermatids suggests that it
might impact histone variant exchanges during spermiogenesis.
In addition, an B30% decrease in expression of histone H1
variant Hist1h1e, histone H3 variant Hist2h3c1 and testis-specific
H1 variant H1t were consistently observed in Chd5Aam1� /�

spermatids (Fig. 7d). These findings indicate that Chd5 deficiency
alters transcript levels of specific histone variants during
spermiogenesis.

In order to gain insight into the global gene expression changes
resulting from Chd5 deficiency and to identify candidate Chd5
targets, we performed RNA sequencing (RNA-Seq) (Fig. 8). Chd5
is mainly expressed in round spermatids, where transcription is
most active during spermiogenesis, with transcription globally
being ceased afterwards. Using RNA-Seq, we compared mRNA
expression profiles of round spermatids that had been elutriation-
purified from five sets of Chd5Aam1þ /þ , Chd5Aam1þ /� and
Chd5Aam1� /� littermates. Expression of 14,206 transcripts was
detected in at least one of the three genotypes. Two-hundred and
sixty-one transcripts, or 1.8% of all the transcripts detected,
showed a twofold or greater expression change in Chd5Aam1� /�

round spermatids compared with Chd5Aam1þ /þ counterparts
(false discovery rate q¼ 0.05). Among the 261 transcripts, 156
transcripts or 59.8% were downregulated, whereas 105

transcripts, or 40.2%, were upregulated in Chd5Aam1� /� round
spermatids. Together, these results suggest that Chd5 deficiency
leads to a rather limited alteration in global gene expression in
round spermatids, and that Chd5 both activates and suppresses
gene expression in round spermatids with a slight preference for
activation. Gene ontology (GO) analysis of the gene expression
changes showed clustering of GO terms including chromosome
organization, response to DNA damage, acetylation, alternative
splicing, nuclear export, protein transport, ubl (ubiquitin)
conjugation, intracellular transport, endocytosis, cell cycle and
MAPK pathway (Supplementary Fig. 14). Since Chd5Aam1þ /�

male mice were fertile, we reasoned that genes that had
expression changes only in Chd5Aam1� /� spermatids but not
in Chd5Aam1þ /� spermatids, or genes that had gradual
expression changes dependent on Chd5 dosage, would be
candidates most likely to contribute to the infertility of
Chd5Aam1� /� male mice. We thus further filtered the 261
transcripts through clustering with manual examination and
identified a list of 155 transcripts that had expression changes
only in Chd5Aam1� /� spermatids, or that had gradual expression
changes that correlated with Chd5 dosage (Fig. 8a, Supplementary
Fig. 15). Among the list, 90 transcripts were downregulated and
65 transcripts, including Hist1h2bc, were upregulated in
Chd5Aam1� /� spermatids (Fig. 8a). qRT–PCR analyses for
expression of 11 genes from this list, which included the positive
control Hist1h2bc and represented a range of expression changes,
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was used to validate the expression changes revealed by RNA-Seq,
attesting to the reliability of the RNA-Seq data and analyses
(Fig. 8b). GO analysis of this list showed clustering of a subset of
GO terms revealed from the original list, which include
chromosome organization, response to DNA damage stimulus,
alternative splicing, ubl conjugation, regulation of DNA meta-
bolic process, cell cycle and MAPK signalling (Fig. 8c). A number
of candidates implicated in acetylation (1700019G17Rik), DNA
damage response (Wrnip1), RNA processing and translational
control (Cstf2t) and nuclear structure maintenance (Syne3) were
further verified using qRT–PCR (Fig. 8d, Supplementary Fig. 16).
Altogether, these GO terms are consistent with the phenotypic

impacts of Chd5 deficiency on chromatin compaction,
DNA damage response and post-transcriptional modulation of
transition proteins and protamines during spermiogenesis.
Alterations in gene expression within these GO terms are likely
contributing, at least partially, to the spermatogenic abnormalities
of Chd5Aam1� /� male mice.

Discussion
In this study, we show that Chd5 mediates a cascade of molecular
events underlying histone removal during spermiogenesis
including H4 hyperacetylation, histone variant expression,
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nucleosome eviction and DNA damage repair. Chd5 deficiency
leads to disruption of these biological processes and increases
histone retention in both spermatids and sperm. We reveal that
Chd5 also modulates the homeostasis of transition proteins and
protamines by suppressing expression of Prm1 transcriptionally
and expression of Tnp1, Tnp2 and Prm2 post-transcriptionally.
Chd5 deficiency results in elevated levels of both transition
proteins and protamines. These findings unravel pleiotropic
functions of Chd5 and highlight its multi-faceted role in
orchestrating the extensive histone-to-protamine remodelling
that occurs during male germ cell development.

Chd5 contains multiple domains (PHD domains, chromodo-
mains, SNF2-like ATPase domain, DEAD/DEAH-box Helicase
domain, SANT domain and DNA-binding motifs), which may
enable its diverse functions during spermiogenesis. The SNF2-like
ATPase domain defines the nucleosome remodelling function of
CHD proteins42,43. Chd5 may facilitate nucleosome eviction
during spermiogenesis through its ATPase domain, whose
absence in Chd5-deficient spermatids would thus lead to
inefficient nucleosome eviction. The ATPase domain is also
implicated in DNA damage repair in somatic cells44 and may play
a direct role in the DNA damage response during spermiogenesis
and contribute to the increased DNA damage in Chd5-deficient
spermatids. The DEAD/DEAH-box helicase domain may
implicate Chd5 in RNA processing and the characteristic
repression of mRNA translation in round spermatids, which
could contribute to the abnormal post-transcriptional elevation of
transition proteins and protamines in Chd5-deficient spermatids.
It is known that the dual PHD domains of Chd5 preferentially
bind H3 tails lacking H3K4me3 in mouse embryonic
fibroblasts10, whereas the chromodomains bind to H3K27me3
in neurons, both of which are important for Chd5 to mediate
gene expression in somatic cells10,45. We also observe such
patterns in mouse spermatids, as Chd5 is enriched in the
chromocentre of spermatids, a heterochromatic region marked
with H3K9me3 and H3K27me3, but lacking H3K4me3 (Fig. 1,
Supplementary Fig. 2). This suggests that the PHD and/or
chromodomains of Chd5 may also play important roles in
regulating gene expression in spermatids, as RNA-Seq revealed
that Chd5 deficiency leads to expression changes of specific gene
sets. These multiple functional domains of Chd5 may work
independently or in concert, enabling the diverse functions of
Chd5 observed during spermiogenesis.

It is possible that there is a functional connection between the
histone removal process and homeostasis of transition proteins
and protamines. For example, transition proteins have been
implicated in DNA repair during spermiogenesis46,47, thus
the abnormal levels of transition proteins may contribute to the
increased DNA damage in Chd5Aam1� /� spermatids. On the
other hand, deficient H4 acetylation may alter the chromatin
structure of the Prm1 locus, thereby contributing to its increased
transcription, although it is counterintuitive that a decrease in H4
acetylation would result in transcriptional activation.

Chromatin remodellers are thought to be critical for the
extensive chromatin remodelling taking place during the post-
meiotic phase of spermiogenesis; however, little is known about
their roles in this process. The chromatin remodeller Brg1 is
essential for meiosis, and its deficiency leads to meiotic arrest
with global alterations in histone modifications and chromatin
structure in mice48. Acf1, which binds to chromatin remodeller
Snf2h within the ACF complex, plays an essential role during
post-meiotic spermiogenesis49. Deletion of Acf1 results in male
infertility with increased DNA damage and spermiation defects,
but without any detectable alterations in chromatin
composition49. Previous studies have also suggested roles of
chromatin modifier Rnf8, a E3 ubiquitin ligase, in

spermiogenesis. Lu et al.50 revealed that Rnf8 mediates H2A
and H2B ubiquitination in elongating spermatids, and is critical
for H4K16 acetylation and histone-to-protamine replacement.
However, Sin et al.51 later reported that Rnf8 deficiency does not
affect H4K16 acetylation and histone-to-protamine exchange in
spermatids, but instead compromises gene activation from
inactive sex chromosomes in round spermatids. Thus, while a
number of nuclear proteins have been implicated in spermato-
genesis, Chd5, to our knowledge, is the first chromatin remodeller
identified to play an orchestrating role in chromatin remodelling
during post-meiotic spermiogenesis.

Consistent with Chd5 deficiency disrupting histone acetylation,
DNA damage response and homeostasis of transition proteins
and protamines during spermiogenesis, RNA-Seq reveals that
Chd5 deficiency alters expression of genes encoding proteins
underlying these processes, but does not cause a major change in
global gene expression in round spermatids. We validate a
number of candidate Chd5 target genes (for example, Cstf2t,
1700019G17Rik, Wrnip1 and Syne3) implicated in these pro-
cesses. Notably, Cstf2t encodes the RNA polyadenylation protein
tauCstF-64, which is expressed during haploid spermatid
differentiation52. Deletion of Cstf2t in mice disrupts post-
meiotic development and leads to male infertility52. Similar to
the heterogeneity of histopathology among Chd5Aam1� /� testes,
Cstf2t� /� male mice also display variable expressivity of sperm
defects52. These intriguing parallels suggest that deficient
expression of Cstf2t in Chd5Aam1� /� spermatids may
contribute to the infertile phenotypes of Chd5Aam1� /� mice.
In addition, the compromised expression of Cstf2t in
Chd5Aam1� /� spermatids may compromise polyadenylation
and translational repression of transition protein and protamine
mRNAs, thereby leading to an elevation in protein production,
since translational repression of mRNAs in spermatids involves
binding of protein repressors to poly (A) tails, and shortening of
poly (A) tails of Tnp1, Tnp2, Prm1 and Prm2 mRNAs
accompanies their translation activation53,54. 1700019G17Rik
encodes a putative N-acetyltransferase that is highly enriched in
mouse testis but is absent in most other tissues (Supplementary
Fig. 16a). We also found that 1700019G17Rik expression increases
as round spermatids differentiate into elongating spermatids, the
time point at which H4 hyperacetylation occurs (Supplementary
Fig. 16b). These data suggest 1700019G17Rik as a potential
acetyltransferase affecting H4 acetylation during spermiogenesis,
and the 480% decrease in expression may compromise H4
acetylation in Chd5Aam1� /� spermatids. Wrnip1 stimulates the
activity of DNA polymerase delta, rapidly accumulates at laser-
irradiated sites and is required for maintaining genome
integrity55–57. Syne3 is a component of the nuclear envelope
that tethers the nucleus to the cytoskeleton, and is critical for
maintaining nuclear organization and structural integrity, as well
as for development of the sperm head58–62. Compromised
expression of Wrnip1 and Syne3 may contribute to the
enhanced DNA damage and abnormal sperm head
morphology, respectively, in Chd5Aam1� /� testis. However, it
is not yet clear whether these genes and other candidates revealed
by RNA-Seq are direct Chd5 target genes, a question that could
be addressed by defining the global pattern of Chd5-bound loci in
spermatids. A small proportion of histones and nucleosomes are
retained in chromatin of wild-type sperm, preferentially at loci
encoding proteins of developmental importance63. It would be
interesting to know whether the aberrant histone retention in
Chd5Aam1� /� sperm disrupts such a pattern, where the
aberrantly retained histones locate in the genome of
Chd5Aam1� /� sperm, and to understand these implications for
the developmental potency of the sperm. Future studies to
characterize genome-wide distribution of Chd5, nucleosomal
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histones and specific histone modifications in Chd5-deficient
spermatids and sperm should shed additional light on these
questions.

We observed variation ranging from sterility to sub-fertility
among individual Chd5Aam1� /� male mice in a mixed C57BL/6
and 129S background, as well as among individual Chd5Tm1b� /�

male mice in a pure C57BL/6 background. Such variability in
infertility is similarly observed in Tnp1� /� and Tnp2� /� male
mice, as B40 and 89% of Tnp1� /� and Tnp2� /� male mice,
respectively, are sub-fertile23,24. The aberrant Tnp1 and Tnp2
levels in Chd5-deficient testes may contribute to the variable
infertility among individual Chd5-deficient male mice. In
addition, we observed increased DNA damage in Chd5-
deficient spermatids and sperm. The intrinsically variable extent
of DNA damage may be more severe in testes of some Chd5-
deficient mice than in others, thus contributing to the variability
of infertility.

H4 hyperacetylation in early elongating spermatids is shown to
be essential for histone-to-protamine replacement in Drosophila25

and has been considered the same for mammalian
spermiogenesis6,25,26. Our study shows that Chd5 deficiency
leads to substantial deficiency in H4 acetylation in elongating
spermatids and subsequent defects in nucleosome eviction and
histone removal, supporting the notion that H4 hyperacetylation
is indeed critical for efficient nucleosome eviction and histone
removal during mouse spermiogenesis. However, most
nucleosomes and histones eventually get removed in late
Chd5Aam1� /� spermatids. This suggests that whereas H4
hyperacetylation is important for efficient nucleosome eviction
and histone removal during mammalian spermiogenesis, it seems
non-essential. Thus, whether H4 hyperacetylation is required
for histone-to-protamine replacement during mammalian
spermiogenesis warrants further investigation. In addition, the
enzymes responsible for H4 hyperacetylation during
spermiogenesis remain unidentified and are of great interest in
the field. Our study identifies 1700019G17Rik as a candidate
acetyltransferase for H4 hyperacetylation, providing a new
promising target for future study.

The cascade of defects in H4 hyperacetylation, nucleosome
eviction and DNA break repair during Chd5Aam1� /� spermatid
maturation provide functional evidence demonstrating the
sequential order of these events, and suggest a model for the
molecular events underlying the histone-to-protamine replace-
ment process during spermiogenesis: H4 is first hyperacetylated,
which along with other epigenetic modifications, leads to
chromatin loosening and nucleosome eviction to facilitate histone
removal and exposure of the DNA to allow for deposition of
transition proteins and eventually protamines. DSBs are gener-
ated during nucleosome eviction to resolve supercoiling tension,
and DNA damage response is activated to repair the DSBs,
ensuring integrity of the sperm genome. This sequence of
molecular events is in agreement with the model proposed by
Leduc et al.30. Our findings establish functional evidence
revealing the cascade of major molecular events underlying the
histone-to-protamine replacement process, and provide a
foundation to further elucidate this critical but elusive process.

Methods
Generation of Chd5-deficient mouse models. To generate the Chd5Aam1 mouse
model, Chd5 locus was disrupted in AB2.2 ES cells using the MHPN20h05 MICER
vector64, and targeted ES cells were injected into C57BL/6 blastocysts through
standard procedures. All animals were housed and utilized according to the Cold
Spring Harbor Institutional Animal Care and Use Committee (IACUC) and the
Association for Accreditation of Laboratory Animal Care International (AAALAC)
policies. Progeny resulting from germline transmission were backcrossed to wild-
type C57BL/6 mice, and Chd5Aam1þ /� mice were intercrossed to obtain
homozygotes. To generate the Chd5Tm1b mouse model, ES clones with

Chd5Tm1a(EUCOMM)Wtsi allele, which has exon 2 of Chd5 locus flanked by LoxP
sites, were obtained from EUCOMM (European Conditional Mouse
Mutagenesis)65. ES cells were from the C57BL/6N-A/a background and were
injected into albino B6 (C57BL/6J-Tyr c-2J) blastocysts through standard
procedures. Progeny resulting from germline transmission, designated as
Chd5Tm1aþ /� mice harboured a Chd5 allele with exon 2 flanked by LoxP sites.
Chd5Tm1aþ /� mice were mated to CMV-Cre mice in the C57BL/6 background to
obtain Chd5Tm1bþ /� mice (which had a Chd5 allele with exon 2 excised), and
Chd5Tm1bþ /� mice were intercrossed to obtain Chd5Tm1b� /� progeny.

Genotyping. For Southern blot genotyping of the Chd5Aam1 model, the
MHPN20h05 MICER vector was cut with AflII and the 2.6 kb excised fragment was
gel-purified and used as a probe. Southern blotting of genomic DNA digested with
BglII yielded the expected 7.8 and 10.4 kb endogenous and targeted alleles,
respectively. Genotypes were differentiated based on dosage of the targeted allele
(Chd5Aam1þ /þ , 0 copies; Chd5Aam1þ /� , 1 copy; Chd5Aam1� /� , 2 copies). All
genotypes had two copies of the endogenous band, which serve as an internal
loading control and reference for dosage. For PCR-based genotyping, relative
dosage of the neo-cassette in different genotypes (Chd5Aam1þ /þ , 0 copies;
Chd5Aam1þ /� , 1 copy; Chd5Aam1� /� , 2 copies) was quantified using qPCR, with
Neo-cassette dosage being normalized to dosage of Actb. Genotyping of Chd5Tm1b

mice was performed by PCR using primers (Supplementary Fig. 16) that amplify a
674-bp endogenous band specific for the wild-type Chd5 allele and a 456-bp
targeted band specific for the targeted Chd5Tm1b allele.

Antibodies. Antibodies used for western blot, immunoflurorescence and ChIP
are as follows: anti-H3K27me3 (Cell Signaling no. 9756, 1:100 for IF, that is,
immunofluorescence), anti-H2A (Cell Signaling no. 2578, 1:300 for WB, that is,
Western blotting; for uncropped images, see Supplementary Fig. 17), anti-H4 (Cell
Signaling no. 2935, 1:800 for WB), anti-g-H2A.X (Cell Signaling no. 9718, 1:200 for
IF; 1:1,500 for WB), anti-H3K9me3 (Active Motif no. 39385, 1:100 for IF), anti-H1
(Active Motif no. 39707, 1:800 for WB), anti-H2B (Active Motif no. 39125, 1:800
for WB), anti-H4Ac-pan (Active Motif no. 39243, 1:1,000 for WB; 1:200 for IF),
anti-H3 (Abcam no. ab1791, 1:15,000 for WB), anti-Chd5 (Santa Cruz Bio-
technology no. sc-68389, 1:1,500 for WB; 1:200 for IF), anti b-Actin (Sigma no.
A2228, 1:2,000 for WB), anti-H4K5/8/12/14Ac (Millipore no. 05-1335, 1:100 for IF
), anti-lectin PNA Alex Fluor 568 (Invitrogen no. L32458, 1:4,000 for IF), anti-
Prm1 (Briar Patch Biosciences, Hup1N, 1:300 for WB; 1:150 for IF), antiPrm2
(Briar Patch Biosciences, Hup2B, 1:800 for WB; 1: 200 for IF), anti-Tnp1 (gift from
Dr Stephen Kistler, University of South Carolina, 1:500 for WB; 1: 100 for IF ),
anti-Tnp2 (gift from Dr Stephen Kistler, University of South Carolina, 1:1,000 for
WB; 1: 200 for IF) and anti-nucleosome (mab no. 32, gift from Dr Jo H.M. Berden,
Radboud University Nijmegen Medical Center, 1:300 for IF).

Histology and immunostaining. Testes were fixed in Bouin’s fixative or 4%
paraformaldehyde, embedded in paraffin and sectioned at 5 mm. Sections were
deparaffinized in xylene and subjected to either PAS staining for histological
analyses or immunofluorescent staining using the indicated antibodies.

Sperm counts and motility analysis. Individual caudal epididymi were minced in
200 ml HTF medium (Irvine Scientific). After 30 min incubation at 37 �C, the tissue
pieces were separated from sperm by pipetting and passaging through a 70-mm
filter. Sperm counts and motility assessment were performed using the DRM-600
CELL-VU Sperm Counting Cytometer.

Sperm morphology. Air-dried smears were prepared from sperm suspended in
PBS, stained with haematoxylin, and examined using light microscopy at � 100
magnification. Head, neck and tail morphology was determined independently for
each mouse, with separate counts of at least 100 cells per sample.

Sperm chromatin structure assay. SCSA was carried out as previously descri-
bed24 using a LSR II flow cytometer (Becton Dickinson). Briefly, a 0.2 ml aliquot of
sperm nuclei in TNE buffer (0.1 M Tris, 0.15 M NaCl and 1 mM EDTA (pH 7.4))
was mixed with 0.4 ml acid detergent solution (0.15 M NaCl, 0.08 N HCl and 0.1%
Triton X-100, pH 1.4). After 30 s, 1.2 ml acridine orange staining solution
(6 mg ml� 1 acridine orange, 0.1 M citric acid, 0.2 M Na2HPO4, 1 mM EDTA and
0.15 M NaCl, pH 6.0) were added to the denatured sperm nuclei. After staining for
3 min, samples were measured for green and red fluorescence using LSR II with a
488-nm excitation wavelength. For the SCSA assay, acid-treated sperm were
stained with acridine orange, which emits red or green fluorescence when binding
to single-stranded or double-stranded DNA, respectively. Sperm with impaired
chromatin generate more single-stranded DNA after denaturation with acid
treatment, and therefore emit more red fluorescence. DNA Fragmentation Index
(DFI) is defined as the percentage of red/greenþ red fluorescence.

Transmission electron microscopy. Testes were fixed with 2% paraformaldehyde
and 2% glutaraldehyde in 0.1 M sodium phosphate buffer (pH 7.4), dehydrated and
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embedded in Epon. Sections were contrasted and imaged in a Hitachi H7000T
transmission electron microscope.

Basic protein extraction and acid-urea gel electrophoresis. Testes were surgi-
cally decapsulated and homogenized in buffer (10 mM Tris–HCl (pH 7.2), 0.32 M
sucrose, 5 mM MgCl2, 0.1% Triton X-100 and 0.5 mM PMSF). After centrifugation,
cell pellets were resuspended in sonication buffer (10 mM Tris–HCl (pH 7.5),
25 mM 2-mercaptoethanol) and sonicated using a Diagenode Bioruptor UCD-200
to obtain sonication-resistant spermatids, which represent step 12–16 spermatids.
After centrifugation, sonication-resistant spermatid pellets were resuspended in
10 mM Tris–HCl (pH 7.5) by brief vortexing and HCl was added to a final con-
centration of 0.5 M. Samples were incubated on ice for 30 min to extract basic
proteins. After centrifugation, the supernatant was transferred to a new tube and
20% trichloroacetic acid (final concentration) was added to precipitate basic pro-
teins. Protein pellets were washed with acetone, dried and dissolved in buffer
containing 5 M urea, 0.5% acetic acid and 1% b-2-mercaptoethanol. Proteins were
separated by electrophoresis in acid-urea-15% polyacrylamide gels and were sub-
jected to either staining with Coomassie brilliant blue or western blot using the
indicated antibodies.

TUNEL assay. TUNEL assays were performed with the In Situ Cell Death
Detection Fluorescein Kit (Roche), following the manufacturer’s instruction.
Briefly, testes sections were deparaffinized, rehydrated and digested with
20mg ml� 1 Proteinase K in 10 mM (Tris pH 7.5) for 30 min at 37 �C. After washes,
sections were incubated with TUNEL reaction mixture for 1 h at 37 �C, followed
with lectin PNA (1:4,000, 1 h) and DAPI (1:5,000, 5 min) staining to visualize
acrosomes and DNA, respectively.

ChIP. ChIP was performed using SimpleChIP Enzymatic Chromatin IP Kit (Cell
Signaling) with the indicated antibodies. Primers for ChIP-qPCR are listed in
Supplementary Table 5.

Centrifugal elutriation. Fractionation of spermatogenic cells through centrifugal
elutriation was performed as previously described66 using a Beckman Coulter
Avanti J-26XP centrifuge with JE-5.0 rotor.

RNA-Seq. Five sets of Chd5Aam1þ /þ : Chd5Aam1þ /� : Chd5Aam1� /� littermate
male mice with matched background and age (B3 months old) were used for
elutriation. Round spermatids were purified through centrifugal elutriation of the
testes pooled from five mice of the same genotype. Total RNA was prepared from
the round spermatid samples using RNeasy kit (Qiagen) with DNase I treatment.
RNA-Seq libraries were prepared from RNA samples using Illumina TruSeq pro-
tocol. RNA-Seq libraries were barcoded and sequenced on Illumina HiSeq 2000.

RNA-Seq data analysis. The quality of raw data was assessed and passed by
FastQC. Reads were mapped to the mm9 reference genome with OLego (ref. 67).
Cufflinks (v2.0.2)68 was used to estimate transcript expression levels represented by
FPKM (fragments per kilo bases per million mapped reads) for all the samples.
Ensembl transcripts annotation was provided (� g) to guide transcriptome
reconstruction. Cuffdiff (ref. 68) was run to detect differential expression between
samples. Transcripts showing twofold or more expression changes in
Chd5Aam1� /� spermatids compared with Chd5Aam1þ /þ spermatids were selected
(false discovery rate q¼ 0.05), and further filtered via hierarchical clustering using
Genesis (v1.7.6)69. Clusters that either showed expression changes only in
Chd5Aam1� /� spermatids but not in Chd5Aam1þ /� spermatids, or those that
showed gradual expression changes from Chd5Aam1þ /þ spermatids to
Chd5Aam1þ /� spermatids to Chd5Aam1� /� spermatids, were selected for GO
analysis using DAVID (v6.7)70.

qRT–PCR validation of RNA-Seq hits. qRT–PCR was first performed on the same
RNA samples used for RNA-Seq, and then repeated using another set of RNA
samples that were prepared from round spermatids that had been elutriation-
purified from three different sets of Chd5Aam1þ /þ , Chd5Aam1þ /� and
Chd5Aam1� /� littermate male mice with matched background and age. All
qRT–PCR results were pooled and data are presented as mean±s.d. from four to
five independent experiments. Primers for qRT–PCR and ChIP-qPCR are listed
in Supplementary Table 5.
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