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Large-Scale Gene Expression Data Analysis: A New
Challenge to Computational Biologists
Michael Q. Zhang
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA

The use of high-density DNA arrays to monitor gene expression at a genome-wide scale constitutes a
fundamental advance in biology. In particular, the expression pattern of all genes in Saccharomyces cerevisiae can
be interrogated using microarray analysis where cDNAs are hybridized to an array of each of the ∼6000 genes
in the yeast genome. In this survey I review three recent experiments related to transcriptional regulation and
discuss the great challenge for computational biologists trying to extract functional information from such
large-scale gene expression data.

Ever since the theory of genetic regulation of protein
synthesis was first worked out almost 40 years ago (Ja-
cob and Monod 1961), biologists have been fascinated
by how different genetic programs hard coded in the
DNA are involved in the control and regulation of gene
expression. This is important because different tempo-
ral–spatial gene expression patterns relate directly to
developmental control, morphogenesis and cell differ-
entiation, tissue specificity, hormonal communica-
tion, or cellular stress responses. Gene expression is
largely controlled at the transcriptional level, and tran-
scriptional regulatory elements are located primarily in
the upstream promoter region of each gene; however,
the lack of quality upstream experimental data has
made systematic global investigations very difficult
(Zhang 1998a; for review, see Fickett and Hatzigeor-
giou 1997). In the past, computational genomics has
focused mainly on gene finding (Claverie 1997; Zhang
1997), namely finding the protein coding region and
extracting functional information about the protein
product. To get equally important functional informa-
tion about control elements of a gene, one has to ana-
lyze functional motifs, most of which occur in non-
coding regions (Lavorgna et al. 1998). There have been
some excellent works on genomic identification of in-
dividual eukaryotic transcriptional factor (TF) binding
sites (e.g., Fondrat and Kalogeropoulos 1996; Tronche
et al. 1997; Wasserman and Fickett 1998). The most
tedious part of these approaches is collecting enough
experimentally verified cis-acting elements that are
shared by a set of coregulated genes.

Since the complete yeast genome has become
available, there have been several attempts to compu-
tationally identifying upstream activation sequences
(UASs) by their clustering properties (Wagner 1997,
1998). This approach suffers from the simple random
background (i.e., all oligonucleotides are Poisson dis-
tributed) assumption and will certainly miss many TF

sites that do not cluster or do not cluster in a simple
fashion. Genome-wide monitoring of gene expression
has provided a far more effective way of systematically
studying coregulated genes and TF sites (for the latest
reviews, see “The Chipping Forecast” 1999). I focus on
the computational problems of identifying coregulated
genes and their promoter elements and refer people to
read elsewhere on other interesting and equally chal-
lenging issues, such as data requisition/process (Mar-
ton et al. 1998), data presentation/management (Er-
molaeva et al. 1998), and genetic network dynamics
(Altman et al. 1998, 1999).

The power of DNA microarray hybridization on a
genome scale was demonstrated early on (Schena et al.
1995; Lockhart et al. 1996; for introduction on the ba-
sic concept and protocols, see Stein 1998). For ex-
ample, in a yeast diauxic shift experiment, five groups
of distinct temporal patterns of induction or repression
could be recognized visually, as glucose concentration
was increased (Fig. 1). The characterized members of
each of these groups shared important similarities in
their functions, and common regulatory mechanisms
could be inferred for most sets of genes with similar
expression profiles. When searching for known UAS
motifs in each group, many coregulated genes did
share common TF sites (DeRisi et al. 1997).

In preparation for regulatory sequence analysis
from such expression data, a statistical method was
developed (van Helden et al. 1998) based on detection
of over-represented oligonucleotides in a target set
of upstream sequences over all noncoding sequences
from the genome. It was applied to 10 families con-
taining from 5 to 38 genes; 2 of the families were ac-
tually built from the DNA microarray expression data
of YAP1 overexpression and TUP1 deletion (DeRisi
et al. 1997). This method was very useful for iden-
tifying short core motifs, which is equivalent to
the oligonucleotide relative information method
(Zhang 1998b) and other methods used in the follow-
ing experiments.1E-MAIL mzhang@cshl.org; FAX (516) 367-8461.
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I now describe real data analyses in the following
three sets of recent whole-genome expression experi-
ments. The first was two-point comparisons using oli-
gonucleotide chips, which detected relative mRNA lev-
els before and after nutrient change, heat shock, or
mating-type switch (Roth et al. 1998). The second was
multipoint (time-course) comparisons also using oligo-
nucleotide chips, which detected mRNA level changes
(at different time points after cell cycle release) relative
to an arbitrary (but fixed) standard (Cho et al. 1998) for
the purpose of identifying cell cycle-regulated genes.
The third consisted of both two-point and multipoint
comparisons, but using cDNA microarrays, which de-
tected relative mRNA levels (at different time points
after cell cycle release) in the synchronous cells relative
to the control of asynchronous cells (Spellman et al.
1998) coupled with separate experiments of CLN3 and

CLB2 induction. In Table 1, the
main features in these experi-
ments are listed for easy com-
parison.

In a two-point experiment
(such as in Roth et al. 1998 and
in part of Spellman et al. 1998),
one measures the relative ratio
of mRNA concentration under
two different conditions for all
genes. After sorting these ratios
(one ratio per gene) of mRNA
levels, one can identify the most
induced or most inhibited genes
from the two extreme ends of
the sorted list. Some criteria are
needed for the gene selection.
For example, in the promoter
analysis of Roth et al. (1998),
the upstream sequences (rela-
tive to ATG) of the 10 ORFs were
taken from the top and the bot-
tom of the sorted list. Hence a
highly induced set, a highly in-
hibited set, and a combined set
were used in searching by Align-
ACE for common UAS motifs.
The rationale for examining the
combined set is that a single
regulatory motif may serve as ei-
ther a positive or a negative ele-
ment depending on its se-
quence context or environ-
ment. AlignACE is a modified
version of the Gibbs sampler
(Neuwald et al. 1995) and was
optimized for finding multiple
motifs (via an iterative masking
procedure) and for aligning

DNA sequences on both strands. It also scores align-
ments by frequency of occurrence in the intergenic
regions of a given genome (for the algorithmic details,
see Roth et al. 1998). To suppress false positives, a mo-
tif must pass two criteria: (1) exceeding an alignment
threshold, and (2) having an occurrence score below
1% (i.e., <1% of genes in the genome may have this
motif).

For the galactose versus glucose comparison, UASG

motif t(T/c)CGG(C/A)(G/c)NNcT(g/c)(T/c)NNcCGG,
which is known to regulate galactose utilization genes
via the Gal4p/Gal80p activation complex (Lohr et al.
1995) was found successfully, but other expected UASs
such as the Rap1 site, the Gcr1 site, or the Mig1 site were
not found. For the 39°C vs. 30°C comparison, the heat
shock element (HSE) and stress response element
(STRE) were not found. Because heat shock is known to

Figure 1 Distinct temporal patterns of induction or repression help to group genes that share
regulatory properties. Shown are five examples (B–D) of some coregulated genes as glucose
concentration (red) dropped during the exponential growing phase (A). (Taken from DeRisi et
al. 1997).
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have broad effects, including transient cell cycle arrest
in G1 (Rowley et al. 1993), the cell cycle activation
(CCA) motif GCGAA(a/g)ttNT(g/c)(a/g)GAA(C/g) of
histones was found, but other cell cycle UASs, such as
the negative regulatory element of histones (NEG),
Swi4/6 cell cycle box (SCB), MluI cell cycle box (MCB),
and early cell cycle box (ECB) (see below), were not
found. For mating-type a versus a comparison, all four
mating type-specific elements (a2 operator, tCAAtgN-
cAg; P box, TtCCTAATT(a/g)GgN(c/a)(a/t); pheromone
response element (PRE), aTGAAAC; and Q box, tCAAt-
gNcAg) were found. Some putative motifs were also
found, but many were suspected to be false positives.
As only one time point (or averaged stationary time
points) is taken for each pair of conditions in a two-
point comparison experiment, dynamic information is
totally lost. It is impossible to separate the primary
transcriptional event from the downstream cascades. It
would have been much more informative for detecting
coregulated genes if measurements had been taken at
multiple consecutive time points. (In principle, curve-
fitting may result in more robust time series but cur-
rently available points in a particular experiment were
too limited for smoothing.) This is why I discuss the
other two sets of time-course experiments for identify-
ing a complete set of cell cycle-regulated genes and
regulatory sequences in yeast.

Figure 2 shows a current model illustrating inter-
actions that determine cell cycle-regulated transcrip-

tion in yeast (Koch and Nasmyth 1994; McInerny et al.
1997). Cln3-associated kinase activates late G1-specific
transcription factors [SBF (SCB binding factor) and
MBF (MCB binding factor)] in a cell size-dependent
fashion. SBF and MBF mediate the expression of
CLN1,2 and CLB5,6 as well as S-phase proteins leading
to budding and S-phase entry. CLN1,2 activity allows
accumulation of Clbs by an unknown mechanism.
Clb1 and Clb2 activate transcription of G2-specific
genes and thereby autoactivate their own synthesis,
possibly via transcription factors Mcm1 and Sff. At the
same time, Clb1,2/cdc28 represses SBF-mediated tran-
scription. Whereas Clb1,2/cdc28 activates expression of
SWI5 and possibly of ACE2 RNAs via mcm1/Sff, it keeps
the gene products in an inactive state by phosphory-
lation of the nuclear localization signals. Clb proteoly-
sis at the end of mitosis dramatically changes the situ-
ation: Clb-mediated activation of G2-specific genes is
stopped, and Swi5 loses its inhibitory phosphoryla-
tions, leading to its uptake into the nucleus where it
can activate early G1-specific transcripts. At late M
phase, a mcm1-related factor binds to ECB (early cell
cycle box) and initiates M/G1-specific activation of
CLN3, SWI4, and some DNA replication genes; these
gene products have critical roles in promoting the ini-
tiation of the next S phase.

Since oscillation of histone mRNAs was discovered
(Hereford et al. 1981), 103 cell cycle-regulated mes-
sages have been identified using traditional methods,

Table 1. Basic Features in Three Genome-Wide Expression Experiments

References Roth et al.(1998) Cho et al. (1998) Spellman et al. (1998)

Goals Gal-responsive, heat shock and
mating type-specific genes and
cis-acting elements

Cell cycle-regulated genes
and cis-acting elements

Cell cycle-regulated genes and
cis-acting elements

Technology Affymetrix oligo chips Affymetrix oligo chips cDNA microarrays

Experiments and
synchronization
methods

two-point comparisons:
(1) galactose vs. glucose;
(2) 39°C vs. 30°C;
(3) type a vs. type a

multipoint comparisons:
(1) cdc28-13 ts mutant;a

(2) cdc15-2 ts mutant

two-point comparisons:
(1) cln3+ vs. cln31;
(2) clb2+ vs. clb21;

Multipoint comparisons:
(1) a-factor arrest;
(2) elutriation;
(3) cdc15-2 ts mutant

Cluster methods simple sorting visual identification of
periodic peaks

simple sorting for the two-point
data; Fourier transform and
Pearson-type correlation for
the multipoint

Putative new/total genes
identified

(1) 3/9, (2) 6/33, (3) 7/40 ∼300/416 ∼700/800

Motif tools AlignACE oligonucleotide bias oligonucleotide information
Database search TRANSFAC visual extension GibbsDNA

TRANSFAC TRANSFAC+SCPD
Upstream of ATG <600 bp 500 bp 700 bp

a(ts) Temperature sensitive.
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and it was estimated that some 250 in total might exist
(Price et al. 1991). To create a comprehensive catalog of
yeast genes whose transcript levels vary periodically

with the cell cycle, two independent sets of genome-
wide transcriptional experiments have been completed
recently (Cho et al. 1998; Spellman et al. 1998).

Cho et al. (1998) used the commercially available
oligonucleotide arrays and temperature-sensitive cdc28
mutant synchronization. After normalization of the
expression profiles, cell cycle-dependent periodicity
was found for 416 of the ∼6200 monitored transcripts.
These genes were classified into five groups (early G1,
late G1, S, G2, and M) according to their visual peak
positions and the consistency with known genes.

Table 2. Example Scores and Oscillation Amplitude for
a Collection of Genes

Rank Score Gene Peak to trough

1 15.99 PIR1 27.3
9 10.90 CLN2 12.1

37 8.78 CLB1 9.4
82 6.51 BUD9 7.0

177 4.25 STE3 12.8
224 3.55 TUB4 4.8
255 3.29 DUN1 4.2
401 2.37 CIN8 5.4
407 2.33 TUB2 5.5
585 1.71 MET1 3.0
800 1.314 STP4 5.9

844 1.28 SEC8 4.2
861 1.25 TUB1 2.7

1258 0.92 ANP1 3.1
1799 0.71 TUB1 3.0
2499 0.54 TUB3 2.7
2673 0.50 IME2 3.5
6054 0.05 RPS8B 10.9

See Spellman et al. (1998) for details.

Figure 3 Gene expression patterns of 800 cell cycle-regulated
genes are sorted by the phases of the Fourier transform. At each
time point, red/green means that synchronous cells have higher/
lower expression compared to asynchronous cells. Different
phases are color coded on the top. The genes having expression
levels peak in a specific phase are also coded by the same color
scheme at right.

Figure 2 A current model of transcriptional control of the yeast cell cycle.
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Through matches of known TF sites and visual exten-
sion of over-represented short oligonucleotides, a
dozen putative motifs (including MCB, SCB, ECB/
MCM1) were identified in the promoter regions (Table
2 in Cho et al. 1998).

In contrast, Spellman et al. (1998) used “home-
made” cDNA microarrays and samples from yeast cul-
tures synchronized by three independent methods:
a-factor arrest, elutriation, and blockage of a cdc15
temperature-sensitive mutant. Using Fourier transform
and Pearson-type correlation algorithms, 800 genes
were identified that met an objective minimum crite-
rion for cell cycle regulation. In separate experiments,
designed to examine the effects of inducing either the
G1 cyclin Cln3p or the B-type cyclin Clb2p, it was
found that mRNA levels of more than half of these 800
genes responded to cyclin induction. These 800 gene
expression patterns (sorted by the phases) are shown in
Figure 3. The genes were divided into the following five
groups: M/G1 (113 genes), G1 (300 genes), S (71 genes),
G2 (121 genes), and M (195 genes). Spellman et al.
(1998) used the following clustering strategy: Five pro-
files were built from genes known to be expressed in
each class. The averaged peak correlation score (de-
fined as the highest correlation value between the log
2 (ratio) data series for each gene and each profile) of
different experiments was used to construct an objec-
tive “aggregate CDC (cell cycle-dependent clustering)

Figure 4 Comparison of some consensus distributions (counts per gene at 50-bp intervals) in the upstream regions of each phase group
and control group.

Figure 5 Genes that share similar expression profiles are
grouped by correlation clustering (Eisen et al. 1998). The den-
dragram (left) shows the structure of the cluster relationship.
Nine clusters for promoter analysis are marked in blue.
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score.” Genes were ranked by their aggregate CDC
scores, and the list was examined to determine a
threshold that was exceeded by 91% of known cell
cycle-regulated genes. Altogether, 800 genes met or ex-
ceeded the threshold. Clustering of randomly shuffled
data indicated that the false-positive rate should be
<10%. Table 2 provides some examples of the kinds of
scores obtained for several genes (including specific ex-
amples that are and are not cell cycle regulated).

Using a newly developed Saccharomyces cerevisiae
promoter database and analysis tools (Zhu and Zhang
1999), the 700-bp upstream regions of the five phase
groups were analyzed further.

Spellman et al. (1998) first computed the relative
pentamer information (an olignucleotide bias mea-
sure) of each phase group versus the control group of
non-cell-cycle genes (Zhang 1998b). They then tried to
extend the informative oligomers or to find other
longer motifs by using GibbsDNA (Z. Ioschikhes and
M.Q. Zhang, unpubl.), which is another modified ver-
sion of the Gibbs sampler and includes features, such
as double strand, palindrome symmetry, distance con-
straint and submotif inclusion/exclusion. As Gibbs
sampling is a stochastic process, a sufficient number of
runs had to be carried out for each data set with various
parameters, and the motifs that had higher maximum

aposteri probability (MAP) values were selected. Once
motifs were established for a group, their predictive
value was tested by searching for the motif consensus
(with specified mismatches) in the promoter regions of
all groups, as well as for the control group. Figure 4
shows the selectivity of some consensus motifs with
respect to different regulatory groups and positions.

Because the cutoffs for different phase groups were
somewhat arbitrary, to search for better coregulated
gene clusters, the Peason-type correlation clustering al-
gorithm (Eisen et al. 1998) was used to identify nine
clusters [data from Cho et al. (1998) was also included
during clustering for completeness]. The dendragram
of these clustered expression profiles is shown in Figure
5. UAS motifs for each of these clusters were calculated,
and results are shown in Table 3. As the statistics show,
many of these motifs contain information predictive
of cell cycle regulation (see Fig. 4). A full description
and complete data sets are available at http://cellcycle-
www.stanford.edu and at http://www.cshl.org/
mzhanglab.

It is clear that multiple time points are more useful
and better for clustering and promoter analysis. The
most obvious difference between the results of Spell-
man et al. (1998) and Cho et al. (1998) is the number
of cell cycle-regulated genes and promoter elements

Table 3. Potential UAS Motifs Found in Each Cluster

Name Genes Group Motifs
Sites

(% genes)

Sites
(% genes out of

256 controls)

Cho
et al.

(1998)

Cln2 58 G1 MCB:ACGCGT 52 (62) 15 (6) +
SCB:CRCGAAA 43 (52) 33 (13) +

Y8 31 G1 RAP1:TGCACCW 42 (71) 33 (12) 1
?:AGCSGCT, etc. 32 (52) 16 (3) 1

Fks1 38 G1 SCB:CRCGAAA 26 (53) 33 (13) +
?:TKCAKCTGCA 4 (11) 3 (1) 1

Histone 9 S CCA:GcGAArytngrGAACr 19 (100) 0 (0) 1
NEG:CATTgnGCG 18 (89) 1 (0) 1
SCB:CGCGAAA 7 (56) 14 (5) +

Met 20 S/G2 Cbfl/Met/Met28:TCACGTG 20 (60) 17 (5) 1
Met31/Met32:AAAnTGTGG 14 (55) 12 (5) 1

Clb2 36 G2/M Mcm1(P-box):TTWCCyaawnnGGwAA 55 (64) 1 (0) +
Mcm1(P-box):+Sff:(P)n2–4RTaAAYAA 19 (47) 0 (0) 1

Mcm 38 M/G1 ECB:TTTCCcaATngGGAAA 73 (79) 1 (0) +
?:AAAGAAAA 26 (53) 20 (8) 1

Sic1 27 M/G1 SWI5:RRCCAGCR 23 (48) 23 (9) 1
?:GCSCRGC 12 (41) 31 (11) 1

Mat 13 M/G1 Ste12(PRE):TGAAACA 10 (54) 48 (18) 1
P8+Q:tTTCCTaaTTrGknnnTCAATG 8 (46) 0 (0) 1
?:WnAnnAGCCAnnnnWWnMAAAnA 6 (46) 2 (1) 1

(?) An unknown motif. Motif site counts (percent of genes containing the motif) in each cluster and in the control are also shown. (+
or 1) The motif was found or not found in Cho et al. (1998). As Y8 is full of repeats, there are many “motifs” that look significant on
pure statistical ground. All sites were counted on both strands in the (1700, 11) region, except MCB:ACGCGT was counted on one
strand and histone motifs were counted only in the commonly shared promoter regions.
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identified. With a manual decision process, Cho et al.
found 421 genes to be cell cycle regulated. A set of 800
genes found by Spellman et al. includes 304 of these,
but the other 117 do not appear significantly cell cycle
regulated in their experiments. The set of 800 genes
therefore contains 496 genes not identified by Cho et
al. The main cell cycle control promoter element SWI5
site (among some others) was not identified in the
analysis of Cho et al. because (according to Cho et al.)
“Swi5 do not have a highly conserved binding se-
quence, making it difficult to accurately search ge-
nomic sequence for possible sites of action.” Here, the
SWI5 site was a good example for which the factor was
well known generally, but the site had not been well
characterized experimentally. Another advantage of
the analysis of Spellman et al. was the diversity of ex-
periments, which allowed them to distinguish cell
cycle regulation from confounding patterns such as
those caused by the heat shock response when a cul-
ture is shifted from one temperature to another. Al-
though transcriptional cascade could be better resolved
by adding more time points, there are certainly tech-
nical limits. Because differential stability could also af-
fect the transcript level as well as transcription rate, a
systematic detection of the turnover rate for each tran-
script would be also crucial for more accurate global
picture.

In summary, with the help of genome-wide ex-
pression techniques, it is possible to identify coregu-
lated genes by clustering analysis. Furthermore, by
combination of over-represented oligonucleotide
analysis and multiple-sequence alignment programs, it
is also possible to identify upstream regulatory motifs
commonly shared by coregulated genes. Good cluster-
ing is better than sophisticated motif-search algo-
rithms. It would be highly desirable if one could com-
bine motif and cluster analyses, as good clustering can
facilitate motif identification, and, conversely, con-
served motifs (or any other functional information re-
lated to the sequences) can help to improve clustering.
We ought to work toward a self-consistent iteration
process (clustering coregulated genes → detecting
common motifs) as used in all scientific inference
(functional groups → conserved structures). Although
I have only discussed promoter motif detection in the
context of array data analysis, it can be equally applied
to a similar search of 38-untranslated regions (38 UTRs).
As the 38 UTR is often important for message stability
and transport, identification of conserved motifs in
this region may be also be instructive for gene regula-
tion.
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NOTE
Recently, an interesting new clustering algorithm GENE-
CLUSTER based on self-organizing maps has been developed
(Tamayo et al. 1999); it was used to recluster the data of Cho
et al. (1998) and found essentially similar results. Unfortu-
nately, there was no regulatory sequence analysis.
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