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Abstract

Although two related species may have extremely similar phenotypes, the genetic networks underpinning this conserved
biology may have diverged substantially since they last shared a common ancestor. This is termed Developmental System
Drift (DSD) and reflects the plasticity of genetic networks. One consequence of DSD is that some orthologous genes will
have evolved different in vivo functions in two such phenotypically similar, related species and will therefore have different
loss of function phenotypes. Here we report an RNAi screen in C. elegans and C. briggsae to identify such cases. We screened
1333 genes in both species and identified 91 orthologues that have different RNAi phenotypes. Intriguingly, we find that
recently evolved genes of unknown function have the fastest evolving in vivo functions and, in several cases, we identify the
molecular events driving these changes. We thus find that DSD has a major impact on the evolution of gene function and
we anticipate that the C. briggsae RNAi library reported here will drive future studies on comparative functional genomics
screens in these nematodes.
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Introduction

As genomes evolve, new genes are born and older genes may

adopt novel functions, fuse, or disappear altogether. What are the

phenotypic consequences of this continual molecular change?

One striking consequence of the evolution of genomes is

adaptation: novel genetic variants can underpin the evolution of

novel organism-level phenotypes such as new anatomical structures

or behaviors and, if these result in improved fitness, these can

become fixed in the population through selection. At the molecular

level, such novel organism-level phenotypes can arise through the

evolution of entirely novel biochemical activities such as novel

genes, new protein domains, or new classes of functional RNAs: for

instance, metazoan genomes encode classes of proteins that are

absent from single-celled eukaryotes and that participate in

metazoan-specific processes (e.g. netrins in axon guidance, immu-

noglobulins and MHC complex subunits in the immune system).

New organism-level phenotypes can also result from the rewiring of

already existing activities such as the shuffling of existing domains

into novel combinations (e.g. the rapidly evolving architectures of

chromatin regulators [1]) or through changes in the regulation of

expression of otherwise conserved genes — for example, evolution

of lin-48 expression affects salt tolerance in C. elegans [2], evolution of

the yellow gene alters wing spots in different Drosophila species [3],

and evolution at the Pitx1 locus causes adaptive loss of pelvic spines

in sticklebacks [4]. Adaptation is dependent on changes in the

molecular phenotype of the organism — the functional activities

encoded by the genome and the way they are regulated — which

result in selectable changes in the phenotype of the organism.

At the other end of the spectrum from adaptation is neutral

drift. Many genomic changes have no impact on the phenotype of

the organism since they do not have any impact on the molecular

phenotype, that is, on the functions encoded in the genome and

their precise regulation. Such changes are therefore under no

selection — while they may disappear or become fixed in a species,

neither outcome is a consequence of their effect on phenotype.

All changes in organism-level phenotype (such as those that

result in adaptation) are thus underpinned by changes in

molecular phenotype and, conversely, genomic changes that do

not affect molecular phenotype cannot alter organism level

phenotype and are therefore neutral. However, there is a third

outcome, a phenomenon known as ‘Developmental System Drift’

(DSD) [5]. In DSD, shown schematically in Figure 1, two related

species share an identical organism-level function that was also

present in their last shared ancestor; however, since the species

diverged, the genetic networks that underpin this function have

drifted. Unlike in classical drift, molecular change in DSD is under

strong stabilizing selection to preserve the phenotype of the

organism. In DSD then, the molecular phenotype has changed,

while the organism-level phenotype has remained unaltered; this is

a reflection of the plasticity of genetic networks.

One effect of the changes in molecular phenotype that

accompany DSD is that some orthologues evolve different roles

in related organisms — these will therefore have different loss of
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function phenotypes. If we knew the entire set of orthologous

genes that have different loss of function phenotypes in two related

species that have very similar phenotypes, this would provide a

global view of how gene function can drift while maintaining the

same organism level phenotype — this is our goal here.

Specifically, by examining how DSD affects gene function in a

systematic manner, we would like to examine whether the in vivo

function of certain classes of genes evolves faster than others and

begin to explore the molecular changes the underpin the types of

changes in gene function that nonetheless preserve the same

overall organism-level phenotype.

C. elegans and C. briggsae are both free-living hermaphroditic

nematodes that share the same ecological niche [6]. Their

anatomical structures are strikingly similar and, up to the 350-

cell stage of embryogenesis, the lineages and timings of cell division

are nearly identical [7]. However, their genomes have diverged

significantly in the ,20 Mya since they last shared a common

ancestor [8]: only ,60% of their genes have 1:1 orthologues, with

many species-specific expansions, losses, and chromosomal rear-

rangements [9]. There is already good evidence that while C.

elegans and C. briggsae have very similar biology, the genetic

networks that control this are not the same, since while they can

fertilize each other, the resulting interspecific hybrids die as

embryos [10]. More specifically, a small number of genes is also

known to play very different roles in otherwise identical processes

— for example, while early embryogenesis is identical in both

species, knocking down the Wnt-pathway effector pop-1 by RNA-

mediated interference (RNAi) causes opposite cell fate transfor-

mations in the two nematodes [11,12]. Thus, while many of the

organism-level phenotypes functions are highly conserved between

these two worms, the genetic networks underpinning these

functions may have diverged considerably. A systematic compar-

ison of loss of function phenotypes between orthologous genes in

these two related nematodes might thus shed light on how DSD

affects gene function.

RNAi-based screens have been used extensively in C. elegans to

identify the in vivo (i.e. organism-level) functions of each gene [13–

16]. However, no analogous screens have been carried out in C.

briggsae. In this paper, we describe the construction of a C. briggsae

RNAi library of 1333 dsRNA-expressing bacterial strains analo-

gous to the well-characterized C. elegans RNAi library [13,14] —

feeding any single bacterial strain to C. briggsae targets a single C.

briggsae gene. The genes targeted in the library are the great

majority of the C. briggsae 1:1 orthologues of C. elegans genes that

have a well-characterized RNAi phenotype (see Methods).

Comparing the RNAi phenotypes of the C. briggsae gene with the

RNAi phenotypes of its C. elegans orthologue thus allows

identification of orthologues that have different loss of function

phenotypes in these two worms indicating that they play different

roles in the development and function of these anatomically highly

similar animals.

In this paper we report the construction of a C. briggsae RNAi

library and a screen to identify orthologues that have different

RNAi phenotypes in C. elegans and C. briggsae. Our data indicate

that while these two species have very similar morphology and

behavior, many orthologous genes have different in vivo functions

suggesting that DSD has a major impact on the evolution of gene

function.

Results

Construction and screening of the C. briggsae RNAi
library

RNAi is an extremely powerful tool for examining gene function

in C. elegans [17]. RNAi allows the knock-down of any gene in vivo

and thus can be used to rapidly identify the role any gene plays in

the development and function of the worm, that is, its organism-

level function. In C. elegans, RNAi can be induced by feeding

worms with bacteria expressing dsRNA complementary to a gene

of interest (so-called ‘RNAi by feeding’, [18,19]) and a library of

dsRNA-expressing bacteria has been constructed that allows the

researcher to individually target over 80% of all predicted C. elegans

genes [13,14]. We wished to construct an analogous library for C.

briggsae and use it to compare RNAi phenotypes of orthologous

genes between species.

Constructing and screening a genome-scale RNAi library for C.

briggsae is a huge undertaking. Since our principal goal was to

identify genes that have different RNAi phenotypes in C. elegans

and C. briggsae, the great majority of genes will be uninformative

since they will have no readily detectable RNAi phenotype in

either worm (,85% of genes have no readily detectable phenotype

in C. elegans [14], and this is likely to be broadly similar in C.

briggsae). We thus decided to construct a library targeting only the

set of 1437 C. briggsae genes that had direct 1:1 orthologues with

the 1640 genes which were previously shown to have a robust,

readily detectable RNAi phenotype in C. elegans [14] (see Methods,

Figure S1A). Although this excludes a small number of genes that

have no apparent phenotype in C. elegans but that have a

phenotype in C. briggsae, this set will nonetheless cover the great

majority of genes that have phenotypes in C. briggsae. We made the

library according to the same design principles as the C. elegans

RNAi library [13,14], and as far as possible targeted an

orthologous region of the C. briggsae gene as was targeted by the

C. elegans RNAi fragment (Figure S1B). In total, we were able to

construct targeting strains for 93% (1333) of the 1437 targeted

genes in C. briggsae (Methods, Figure S1A).

The central goal of this project is to compare the loss of function

phenotypes of orthologous genes in C. elegans and C. briggsae —

accurate identification of orthologues is thus critical. We initially

used InParanoid 6.1 [20] to identify putative 1:1 orthologues —

these candidates are similar to candidates that would identified

using reciprocal BLAST, and this is a reasonable place to start. To

increase our confidence that the identified putative orthologues are

Author Summary

Although two related species may appear similar, the
genetic pathways that underpin this shared biology may
have drifted and changed. This phenomenon is known as
Developmental System Drift (DSD). One consequence of
DSD is that equivalent genes may play different roles in
phenotypically similar, related species but there have been
no systematic studies to examine this. How often do genes
have different functions in similar species? Are certain
genes more likely to change functions? Finally, what are
the molecular changes that drive this? Here, we compare
the effects of reducing the levels of over 1300 different
genes in two species of nematode worm. These worms are
very similar— they live in the same ecological niche, and
have near-identical development and behavior. We find
that over 25% of conserved genes have different functions
in these two species, showing that DSD has a major impact
on how gene function evolves. Intriguingly, we find that
genes that have arisen recently are most likely to change
functions and that this is often driven by changes in their
expression. This is the first systematic comparison of loss of
function phenotypes in related species and sheds light on
how genetic pathways rewire during DSD.

RNAi Screen for Evolved Changes in Gene Function
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indeed likely to be true orthologues, we carried out three sets of

additional tests. First, we determined whether there are additional

closely related genes in either genome, in which case orthology can

be harder to assign, or whether the putative orthologues appear to

be the sole related gene in either genome, in which case orthology

is fairly unambiguous. For example, K04G7.1 and CBG16609 are

reciprocal best hits and have a BLAST E-value of 0 in either

direction; in C. briggsae, the next closest BLAST hit is CBG20138,

with a E-value of 8*1024, and in the other direction, the next

closest C. elegans hit is C01H6.2 with an E-value of 4.3. When the

difference in E-value is greater than 20 on a log10 scale we called

these unambiguous and 72% of our orthologue pairs fall into this

class. Second, we checked whether the orthologue pairs identified

via InParanoid, a graph-based method, were also identified using a

tree-based method, which is a very different and complementary

approach [21]. In this case we used TreeFam [22] and we found

that 90% of our putative orthologues are identified as orthologues

in TreeFam. Finally, we used synteny to resolve harder

assignments. Alignments of the C. elegans and C. briggsae genome

indicate that considerable proportions of these genomes are

syntenic [9], that is, many segments can be identified in which

gene order has been preserved in both species since the last

common ancestor. Synteny can be used to aid in identification of

likely true orthologues in complex cases (e.g. large families of

closely related genes, or cases where orthologues have diverged

greatly). We were able to find evidence of upstream or

downstream synteny in 87% of cases. Together these results

suggest that our orthologue identification is correct in the great

majority of cases — 72% are unambiguous, and a further 27% of

the putative orthologues can be confirmed either through

TreeFam or synteny — thus 99% of our orthologues can be

confirmed by other complementary approaches. These data are all

summarized in Table S1.

To screen the C. briggsae library, we followed an identical

screening protocol to that used in the first genome-scale screens

in C. elegans [13,14] and assessed the same developmental and

morphological phenotypes (see Methods for a complete list).

However, while wild-type C. briggsae is capable of RNAi when the

dsRNA is delivered by injection, RNAi by feeding is ineffective at

least in part because of the inability of the C. briggsae SID-2 to

actively uptake dsRNA [23]. This defect can be rescued by

transgenic expression of C. elegans sid-2 [24], however, and thus all

Figure 1. Possible outcomes of genome evolution. As a genome evolves, the accumulated mutations can be neutral, having no impact on the
molecular phenotype (that is, the functions encoded in the genome and the ways that these are regulated), or they can lead to adaptation via
changes in heritable phenotype due to changes in the molecular phenotype. Developmental System Drift (DSD) describes a third possibility: while
the overall phenotype of the organism remains identical, the underlying genetic networks underpinning this phenotype have changed. A key
outcome of this is that some orthologous genes play different in vivo roles in phenotypically identical, related species.
doi:10.1371/journal.pgen.1004077.g001
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our screening was not in wild-type C. briggsae but in a transgenic

line expressing C. elegans sid-2. We note that this could produce

some false positive results due to genetic interactions in the

background we are using, such as synthetic lethality with the

expression of SID-2, but this is likely to be only a minority of

cases. To identify genes with different phenotypes in C. elegans

and C. briggsae, we not only compared the phenotypes in C.

briggsae to previously published data for C. elegans [14] but we

also screened C. elegans side by side with C. briggsae as shown

schematically in Figure 2A. The RNAi phenotypes of each pair

of orthologues were compared in the two species at two time

points by two independent observers; three C. elegans replicates

and six C. briggsae replicates were examined in any single

experiment. Any differences were repeated in an independent

experiment, and genes where we detected a different phenotype

in at least 3 out of 4 observations between the 2 observers and 2

experiments were considered as potential hits. Based on these

criteria, we examined the loss of function phenotypes of 1333

orthologous genes by RNAi in C. elegans and C. briggsae and

identified 679 orthologues that have different phenotypes in the

two species (Figure S2A).

There are two major sources of false positives in this initial screen,

which we try to deal with using secondary filters and rescreening.

The first source of false positives in our primary screen is that RNAi

is more efficient in the transgenic SID-2-expressing line of C. briggsae

than in C. elegans — we generally get a stronger RNAi knockdown of

C.briggsae genes as measured by qPCR (see Figure S3). Many genes

thus have stronger RNAi phenotypes in C. briggsae (eg. ytk-6 has a

growth defect in C. elegans but is completely sterile in C. briggsae) but

this does not reflect any true difference in in vivo function. To partly

test this idea, we tested a 111 gene subset of the 508 genes that have

a stronger phenotype in C. briggsae in the lin-35(n745) C. elegans

strain, which has increased RNAi efficiency compared with wild-

type C. elegans. We find that a substantial proportion of these genes

(36%; 40/111) also have stronger phenotypes in lin-35(n745) worms

than in wild-type C. elegans which provides some support for the view

that the stronger phenotypes seen for many genes in C. briggsae may

be due to an increased level of knockdown in C. briggsae than C.

elegans. Crucially, however, this increased RNAi efficiency in C.

briggsae means that in the cases where the RNAi phenotype is weaker

in C. briggsae, this is not due to a weaker knockdown in C. briggsae (as

shown by qPCR for a number of cases in Figure S3), rather that it

reflects a genuine difference in the in vivo function. We thus focus the

rest of the paper on studying genes whose phenotypes are weaker in

C. briggsae than C. elegans and excluded all genes that had stronger

RNAi phenotypes in C. briggsae from any downstream analysis.

Figure 2. Outline of screening procedures. A. Manual comparison of RNAi phenotypes in both species. RNAi phenotypes are screened by eye
on 12 well plates. For each gene being examined, three replicates of the C. elegans RNAi and six replicates of the C. briggsae RNAi clone are screened;
in each replicate, phenotypes are examined in the progeny of a single adult worm that has been exposed to dsRNA-expressing bacteria for 72 hrs.
Each plate was scored by two people at two time-points (24 hrs and 48 hrs after removal of adult), as described in Kamath et al. In the example
shown, knockdown of Y39G10AR.7 produces a sterile phenotype in C. elegans but not in C. briggsae. B. Automated analysis of RNAi phenotypes. RNAi
was carried out in liquid cultures in 96-well plates as described in Methods. Each well was sampled with a commercially available worm sorter and we
quantified the number of animals in each well, as well as the size (Time of Flight, TOF) and optical density (Extinction, Ext) of each animal. The scatter
plots show Time of Flight (TOF, x-axis) and Extinction (EXT, y-axis) for the population in a representative well of either C. elegans or C. briggsae
following RNAi targeting Y39G10AR.7. In addition, the corresponding brood size defect is shown (see Methods for calculation).
doi:10.1371/journal.pgen.1004077.g002
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The second source of false positives is that some of the C. briggsae

RNAi library clones do not produce adequate knockdowns in C.

briggsae — these genes will thus appear to have weaker phenotypes

in C. briggsae than in C. elegans. To address this, we made

independent RNAi clones targeting a different region of the gene

to that used in the primary screen (where possible) and screened

these. We re-examined the RNAi phenotypes of all 204 genes that

had weaker phenotypes in C. briggsae in this way and found that 91

genes still showed reproducibly weaker phenotypes in C. briggsae

with the independent clones (final breakdown of hits is shown in

Figure S2B, genes are shown in Table S2). We note that while

rescreening with independent targeting clones is fairly rigorous, it

is still possible that both independent clones failed to generate

good knockdown in C. briggsae. To assess how often this may

happen, we used qPCR to examine levels of knockdown in C.

elegans and C. briggsae for genes that have weaker phenotypes in C.

briggsae — of the 8 genes examined, 7 showed similar or stronger

knockdown in the SID-2 expressing transgenic C. briggsae than in

C. elegans (and thus are true positives) and only a single example

had weaker knockdown in C. briggsae. This last example, tsr-1, is a

false positive in our dataset. We thus estimate that around 80–90%

of our hits are true positives, but acknowledge that a few rare

examples are false positives due to poor knockdown in C. briggsae.

As a final confirmation of the differences in RNAi phenotype

seen using the manual phenotyping described above, we retested

50 of the hits from our manual screen and a random subset of 324

additional genes using a fully automated phenotyping method

(shown schematically in Figure 2B). This is highly complementary

to manual screening. The manual screening described above has

many advantages — multiple time-points are examined, many

phenotypes are scored at once and, for the purposes of this screen,

it allowed us to assess RNAi phenotypes in C. briggsae using the

exact same methodology used for the initial screens in C. elegans.

One disadvantage, however, is that it is not fully quantitative and

this affects sensitivity in two ways. Firstly, there is a limit to what

the eye can detect at high throughput: while differentiating

between a sterile worm and one with a normal brood size is trivial,

it is hard to tell the difference between a worm that has 50% of

normal brood size and one that has 35% normal brood size.

Secondly, different worm strains and especially different worm

species do not grow identically. The C. briggsae sid-2-expressing

transgenic line that we use for all our experiments grows slightly

more slowly than N2, and this inherent difference in growth rate

can make identification of subtle differences in phenotype more

difficult. For these reasons, we also carried out a fully automated

quantitative screen using a commercially available worm sorter

(Union Biometrica) which addresses both the issues of sensitivity

and normalization for different growth of the two species.

In outline, RNAi experiments are set up in liquid culture in 96-

well format. At the start of the experiment, each well contains a

saturated culture of dsRNA-expressing bacteria and 10 L1 worms;

phenotypes are examined after 96 hours by which time, in a

normally growing culture, the initial L1 animals have grown to

fertile adults, laid the next generation, and these will have hatched.

Using the worm sorter, we quantify the number of worms in each

well, as well as the sizes and optical densities of each worm in each

well. These data allow us to precisely measure brood size as well as

identify differences in growth rate, body size, and embryonic

lethality (see Methods for more details in analysis). Crucially, by

comparing the phenotypes seen after targeting a specific gene with

phenotypes of worms growing in bacteria expressing a control

non-targeting dsRNA, all phenotypes are normalized for any

inherent differences in worm growth between the two species.

Using this pipeline, we confirmed statistically significant

differences in phenotype for 26 of the 50 tested manual

phenotyping hits; 21 showed brood size differences and a further

5 showed differences in growth rate or embryonic lethality (see

Methods for data processing details). We failed to see differences in

phenotype for 24 — the majority of these show subtle phenotypic

differences (e.g. cuticle defects, or movement defects) that are not

readily detectable in the sorter and we believe this explains the

difference in the two assays. Finally, we note that we see an

additional 57 genes having significantly different effects on brood

size in these two species using the automated pipeline, suggesting

that the true number of genes with different phenotypes in these

two species is significantly greater than was detected by manual

phenotyping which has few false positives but a substantial false

negative rate. All data from the automated pipeline are in Table

S3.

In summary, we constructed an RNAi library of targeting 1333

C. briggsae genes. We used this library to compare the RNAi

phenotypes of orthologues in C. elegans and C. briggsae using manual

phenotyping and identified 91 genes that have different RNAi

phenotypes in these two species that is likely to be due to a genuine

difference in their in vivo function. The majority of these differences

could be confirmed by a quantitative phenotyping method

designed specifically to measure differences in brood size, lethality,

and growth rate. This list of genes undoubtedly has some false

positives due to inadequate RNAi knockdown in C. briggsae (e.g. the

example of tsr-1 above, or pal-1 which has a detectable embryonic

lethal phenotype in C. briggsae when using RNAi by soaking [25],

but has no phenotype in our screen) — however, our qPCR

analysis suggests that only ,15% of our reported hits are such

false positives and thus that the great majority of our hits are true

positives. The rest of this paper is concerned with examining this

set of genes to explore the molecular changes that underlie this

difference.

Genes with different phenotypes are enriched for
transcription factors and recently evolved novel genes

We identified 91 genes that have a different RNAi phenotype in

C. elegans and C. briggsae — we refer to these from here on as the

‘Different Function’ genes. To begin to understand why these

‘Different Function’ genes have such differing in vivo roles, we

initially assessed whether this set of genes was enriched for any

specific molecular functions. We annotated genes into the

functional categories previously used by Kamath et al. [14] and

find that transcription factors and genes of unknown function are

enriched among the ‘Different Function’ genes, while genes

involved in protein synthesis are under-enriched (Figure 3A, p,

0.01, Hypergeometric test). This indicates firstly that the basic

machinery of the eukaryotic cell has changed very little in

organismal function over time and, secondly, suggests that

transcription factors appear to have more rapidly evolving

organismal roles than other classes of gene. These two findings

are unsurprising. The individual genes that encode for compo-

nents of the basic eukaryotic cell machineries (e.g. DNA

replication, transcription, translation etc.) are essential in organ-

isms as divergent as worms and yeasts [14,26], so finding great

similarity in these genes between two related species is expected.

Likewise, transcription networks are well-known to be extremely

plastic across evolution [27] and thus finding an enrichment of

transcription factors in the set of genes with different in vivo

functions in C. elegans and C. briggsae is not unexpected. However,

the finding that genes with different phenotypes are enriched

for genes of unknown function is intriguing since almost all of

these ‘unknown function’ genes have evolved de novo from

previously non-coding DNA relatively recently and are often

RNAi Screen for Evolved Changes in Gene Function
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nematode-specific (see analysis below). This suggested that more

recently evolved genes may have most rapidly changing in vivo

roles and we examined this further.

To investigate more closely whether there was any correlation

between the evolutionary age of a gene (i.e. when any such gene

arose de novo from non-coding sequences) and the likelihood that it

had a different in vivo function between C. elegans and C. briggsae, we

carried out a phylogenetic analysis for each gene screened and

date the emergence of these genes to their last common ancestor in

a similar method to the ‘phylostratum’ approach [28] (see

Methods). We find that the more recently a gene has arisen, the

more likely it is to have a different phenotype between C. elegans

and C. briggsae. Ancient genes (those that we were able to date to

the emergence of the Opisthokont lineage) are the least likely to show

a difference in phenotype (,5%, p,0.01 Hypergeometric test,

Figure 3B) while extremely recently evolved genes (those which

date to the emergence of the Caenorhabditis genus) are the most

likely (.15%, p,0.01 Hypergeometric test, Figure 3B), suggesting

that phylogenetically novel genes have a high rate of evolution of

their in vivo functional roles.

These bulk analyses thus reveal that just as changes in

transcriptional networks and the ‘invention’ of entirely novel

classes of gene are major forces driving the evolution of novel

organismal functions in adaptive evolution (for example, [29]),

these classes of gene are those that have fastest evolving in vivo

functions during DSD.

Changes in gene function during DSD are often the
result of promoter evolution

We found that the 91 genes that have significantly different in

vivo functions in C. elegans and C. briggsae are enriched for both

transcription factors and for recently evolved genes of known

function. However, this does not tell us why they have different in

vivo functions (and thus different RNAi phenotypes). There are

three possible reasons that orthologous genes could have a

different RNAi phenotype in C. elegans and C. briggsae, shown

schematically in Figure 4: they might encode the same molecular

function but be expressed in different tissues, the coding sequences

might have diverged such that they have different molecular

functions, or, while the orthologues are functionally identical both

in terms of expression and encoded functions, changes in some

other genes may have altered the level at which these orthologues

are required in these two worms. We examined each possibility in

turn.

We initially focused on testing whether genes with different

RNAi phenotype in C. elegans and C. briggsae might have different

expression patterns in these two species. This could be due to

many different levels of gene regulation from transcriptional to

post-transcriptional and translational control — for the purposes

of these analyses, we focused on transcriptional control of gene

expression since this is a major step of regulation of gene

expression. In outline, we used PCR stitching [30] to generate

pairs of constructs in which either the promoter of the C. elegans

gene drives GFP expression or the syntenic region of the

orthologous C. briggsae promoter drives expression of mWorm-

Cherry. In this way, we could make C. elegans worms transgenic for

both constructs and rapidly identify cells that were either

exclusively GFP or mWormCherry positive, indicating that the

C. elegans and C. briggsae orthologues might be expressed in different

cell types. In any cases where we found differences in C. elegans, we

repeated the experiment in C. briggsae to test whether any

differences in tissue expression were due to evolved changes in

the promoters or any changes in trans-acting factors.

Figure 3. Functional enrichment in genes with different in vivo
functions in C. elegans and C. briggsae. A. All 1333 genes analyzed
were manually placed into the functional categories described in
Kamath et al. [14]. The graph shows the proportion of genes that have
different RNAi phenotypes in several different functional classes: all
genes analyzed (‘All’), genes annotated to have roles in Protein
Synthesis (Prot. Synth.), Transcription Factors (‘TF’), or genes of
Unknown function (‘Unk’). Classes with significantly fewer genes with
different RNAi phenotypes are shown in blue; those with statistically
increased numbers are shown in red. Enrichments are significant with
an FDR of 0.05 (Hypergeometric test). B. RNAi phenotypes differ most
for more recently evolved genes. All 1333 genes analyzed were placed
into five classes based on their evolutionary age as described in
Methods. The most ancient genes could be dated back to the
emergence of the Opisthokta lineage (‘Opis.’), then becoming
progressively younger, we could date sets of genes back to the
emergence of the Coelomata (‘Coel.’), Nematoda (Nem.), Chromadorea
(‘Chro.’), and finally some genes had arisen so recently that they were
only detectable in Caenorhabditis species (‘Caen.’). In each case, the
graph shows the proportion of genes in each evolutionary class that
had a different RNAi phenotype.
doi:10.1371/journal.pgen.1004077.g003
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Since it would have been an impractical amount of work to do

this analysis for all 91 orthologue pairs, we focused our effort on

examining the expression patterns of the ‘Different Function’

genes of unknown function that are uniquely found in nematode

genomes since this class of gene was enriched in our dataset. We

analyzed expression patterns for 12 such worm-specific ‘Different

Function’ genes; in addition, to sample other gene classes, we

examined expression patterns of 10 random ‘Different Function’

genes in our dataset. We identified 3 worm-specific orthologues,

C03D6.1, K04G7.1, and C27F2.7, that had clearly visible

differences in expression pattern between C. elegans and C. briggsae

(Figure 5A–C); in addition, one gene in our random set, sac-1, also

had a different expression pattern in the two species (Figure 5D).

In all four cases this was due to differences in the promoter and not

to differences in trans-acting factors since the expression patterns

seen in C. elegans could be faithfully recapitulated in C. briggsae (all

data shown in Figure 5 are expression patterns in transgenic C.

briggsae). Crucially, in all four cases, the difference in expression

pattern is likely to explain the difference in phenotype since the

tissue expression in C. briggsae, where the phenotype is weaker, is a

restricted subset of the tissue expression in C. elegans. For example,

C03D6.1 has a strong growth defective RNAi phenotype in C.

elegans and is expressed in the gut, the hypodermis, and a small

number of tail cells; in C. briggsae, where its expression is restricted

to only a handful of cells in the tail, it has no obvious phenotype at

all.

These data strongly suggest that the reason for the differences in

RNAi phenotypes between C. elegans and C. briggsae for the four

genes examined here is that they are expressed in a very different

set of tissues in these two animals, leading to a differential

requirement for these genes for organismal viability. To test this

prediction directly, we took a cross species rescue strategy. In

outline, we examined the ability of a set of transgenes (shown

schematically in Figure 4) to rescue the phenotype of a null C.

elegans mutant and designed these to be able to test which parts of

the C. elegans and C. briggsae genes are functionally interchangeable

— the promoter, the coding region, neither, or both. Of the four

orthologues that we could have tested, there was only a suitable

null mutant for one of these, sac-1, and we focused our attention

on this gene.

We find that transgenic expression of the C. elegans sac-1 ORF

under control of the C. elegans sac-1 promoter gives robust rescue of

the growth arrest phenotype of C. elegans homozygous for the null

allele sac-1(ok1602), but that the C. briggsae sac-1 ORF under

control of the syntenic region of the C. briggsae sac-1 promoter (see

Figure S4) does not, indicating that these genes have indeed

functionally diverged. When we use hybrid rescue constructs, we

find that while the coding sequences are apparently functionally

interchangeable, the promoters are not: only the C. elegans

promoter drives expression in the correct tissues to rescue the

sac-1(ok1602) phenotype (Figure 6). These data show that at least

in the case of sac-1 the difference in RNAi phenotype in C. elegans

and C. briggsae is entirely due to promoter evolution.

Orthologue pairs encoding more divergent protein
sequences are more likely to have different RNAi
phenotypes

We examined the expression patterns of 22 pairs of orthologues

that have different RNAi phenotypes in C. elegans and C. briggsae

and found that 4 of these have obviously different expression

patterns, suggesting that promoter evolution underlies the

differences in in vivo function that we observe for these genes.

However, as shown in Figure 4 differences in in vivo function might

also be due to evolution of coding sequences— if the C. elegans and

C. briggsae orthologues encode different enzymatic activities, for

example, this could result in different in vivo functions. Using a

similar hybrid transgene rescue strategy to that for sac-1 above, we

tested whether coding sequences of bli-4, bli-5, vha-5, flr-1, sma-3,

and sem-5 were functionally interchangeable, or whether there was

evidence that they had evolved functional differences. We selected

these 6 genes since for each gene there was a null allele available in

C. elegans that had a readily detectable phenotype; for most genes,

there was no null allele available at the time, and thus we could not

carry out similar tests for most of our dataset.

We found no clear examples where the difference in RNAi

phenotype of orthologues in C. elegans and C. briggsae could be

conclusively shown to be due to evolution of coding sequences.

However, we only tested a very small number of cases and, in

many of these cases, we failed to get strong enough rescue of the

null phenotype by transgenic expression of the C. elegans coding

sequence under the C. elegans promoter to allow us to distinguish

between the ability of different hybrid transgenes to give different

levels of rescue. These are therefore inconclusive experiments and,

as more null alleles are being generated, it will be interesting to

revisit this. We note however that bulk analyses of the protein

sequences encoded by C. elegans and C. briggsae orthologues

indicates that divergence of protein sequence between orthologues

does appear to correlate with the likelihood that orthologues have

different RNAi phenotypes. We compared the proteins encoded

by orthologous ‘Different Function’ genes in C. elegans and C.

briggsae and find that the ‘Different Function’ genes have drifted

slightly more in sequence than the ‘Same Function’ genes as would

be expected if changes in protein function have in part driven the

evolution of different organismal functions for these genes. We find

that the alignable regions are more divergent (as measured by the

Figure 4. Schematic illustrating transgenic rescue approach. The transgenic rescue approach illustrated here shows the possible molecular
events driving changes in gene function and how transgenic rescue with various hybrid rescue constructs would be interpreted to differentiate
between these. In each case regions of constructs in red are derived from C. elegans while regions of construct in blue are derived from C. briggsae.
Coding regions are shown as coloured boxes.
doi:10.1371/journal.pgen.1004077.g004
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Ka or Ka/Ks metrics; see Figure S5A,B, p,0.01 Mann Whitney

U test) and that both the number and the total length of non-

alignable regions are slightly increased (Figure S5C,D, p,0.01

Mann Whitney U test). This is consistent with a model in which

drift in the proteins encoded by orthologous genes might

contribute to DSD, but this effect is modest at this level of bulk

analysis. It is nonetheless predictive: the orthologues that differ

most in sequence are substantially more likely to have different

RNAi phenotypes than more similar orthologues and this is shown

in Figure S5E.

We thus find that the greater the divergence in protein sequence

between orthologues, the greater the likelihood that they will have

different in vivo functions, as identified by different RNAi

phenotypes. However, we have no conclusive evidence to show

that this is causative rather than correlative: it could simply be that

genes with differing in vivo roles have more rapidly diverging

coding sequences and this is still an open question from our data.

Orthologues may have different organismal roles due to
changes in other genes

We tested whether changes in RNAi phenotype might be due

either to changes in gene expression or to changes in the molecular

functions of the encoded protein. We identified four genes with a

different RNAi phenotype between C. elegans and C. briggsae which

is likely to be due to changes in promoter sequence and for one of

these, sac-1, we showed that to be the case. In addition, given the

increased protein divergence between orthologues that have

different RNAi phenotypes in the two worms, it appears that

many of the molecular events that lead to changes in the level of

requirement for a specific gene are likely to be linked to changes in

the gene itself, either in its promoter or in its coding region. As

shown in Figure 4, there is a final possibility: that orthologues in

the two species might encode identical proteins and be expressed

in an identical manner, yet still have very different RNAi

phenotypes due to changes in other genes that alter the level at

which the orthologues are required. In such cases, both the coding

regions and the regulatory sequences are functionally interchange-

able between the orthologues, but the RNAi phenotypes in the two

species still differs. Similar cross-species transgenic approaches

have been used to great effect between C. elegans and C. briggsae. For

example, a similar cross species rescue experiment has been used

to show that the different RNAi phenotype of gld-1 lies in the

overall genetic context of C. elegans and C. briggsae and not in the

molecular function of gld-1 [31,32] and careful analysis of unc-47

has revealed extensive compensatory evolution in the regulation of

gene expression in these two species [33,34].

We found two examples of orthologues that have differing in vivo

functions in C. elegans and C. briggsae due to changes in other genes.

bli-4 and bli-5 act together to regulate molting and have very

different phenotypes in the two species studied — for example bli-5

has a strong blistering phenotype in C. elegans but not in C. briggsae

(Figure 7A,B). bli-4 encodes a subtilisin-like serine protease [35]

whereas bli-5 encodes a kunitz family serine protease inhibitor

thought to act with BLI-4 [36]. Given that these genes are

hypothesized to act together to affect cuticle development, we

wondered whether the difference in requirement for these two

genes in C. elegans and C. briggsae might not be due to independent

functional changes in bli-4 and bli-5, but to changes in the

requirement for this entire pathway between the two worms due to

changes in other genes. Using transgenic rescue experiments we

found that both the coding sequences and the promoters of C.

elegans and C. briggsae are functionally interchangeable for both bli-4

Figure 5. in vivo expression of a subset of genes with different RNAi phenotypes. C03D6.1, K04G7.1, C27F2.7, and sac-1 had strongly
different RNAi phenotypes in C. elegans and C. briggsae. We generated transgenic C. elegans strains (N2) expressing GFP under control of the
promoter of the C. elegans orthologue or C. briggsae strains (AF16) expressing mWormCherry under control of the orthologous C. briggsae promoter
for each gene. In each case, four panels are shown: DIC image of N2 worms transgenic for the C. elegans promoter driving GFP, fluorescence image of
N2 worms transgenic for the C. elegans promoter driving GFP, DIC image of AF16 worms transgenic for the C. briggsae promoter driving
mWormCherry expression, fluorescence image of AF16 worms transgenic for the C. briggsae promoter driving mWormCherry expression. Images are
confocal projections at 2006magnification, and scale bars represent 100 mm, except for C. elegans K04G7.1 which is at 4006magnification with a
scale bar representing 50 mm. Images are representative of 3 independent lines. A. Expression difference for C03D6.1. Arrow heads indicate tail cells
(white), intestine (red) and hypodermis (blue). B. Expression difference for K04G7.1. Arrow heads indicate head neurons (white) and body wall muscle
(red). C. Expression difference for C27F2.7. Arrow heads indicate head neurons (white), hypodermis (blue), intestine (yellow), vulva (green) and tail
neurons (red). D. Expression difference for sac-1. Shown are 3 confocal projections along the body of the animals 4006magnification. Scale bars
represent 50 mm. Arrowheads indicate the intestine (blue), pharynx and pharyngeal neurons (white), spermatheca (yellow), and tail cells (red).
doi:10.1371/journal.pgen.1004077.g005

Figure 6. Differences in sac-1 RNAi phenotype are due to
differences in sac-1 promoter function. We generated C. elegans
lines transgenic either for the C. elegans sac-1 ORF under control of the
C. elegans sac-1 promoter, the C. briggsae sac-1 ORF under control of
the C. briggsae sac-1 promoter, or for the two hybrid constructs shown.
In each case, we examined the ability of the transgenic array to rescue
the developmental arrest phenotype of sac-1(ok1602) homozygous
animals — the graph shows the percentage of animals that reached the
adult stage that are homozygous for the sac-1(ok1602) allele, indicating
rescue. Either the C. elegans sac-1 ORF or the C. briggsae sac-1 ORF
under control of the C. elegans sac-1 promoter could partially rescue; no
rescue was seen for the remaining constructs, indicating that the sac-1
promoter has diverged in the two species, while the sac-1 coding
regions appear to be functionally interchangeable.
doi:10.1371/journal.pgen.1004077.g006
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and bli-5: expression of the C. briggsae bli-5 under control of the C.

briggsae bli-5 promoter gives as robust rescue of the C. elegans bli-

5(e518) null mutant as expression of C. elegans bli-5 coding region

under control of the C. elegans bli-5 promoter (Figure 7C); the same

is true for rescue of the C. elegans bli-4(e937) mutant by C. briggsae

bli-4 (Figure 7D). Thus, at least in these two cases, we have found

examples where the difference in the RNAi phenotype for

orthologues in C. elegans and C. briggsae is not due to any difference

in the genes themselves, but rather in the level of requirement for

the pathway in which the genes act.

Conservation of function can be maintained at the level
of gene family and not gene family members

In the case of bli-4 and bli-5 above, these genes have differing

RNAi phenotypes in the two species studied because of changes

elsewhere in the genetic networks of these worms but one cannot

trivially pinpoint these other changes. However, for a subset of

genes with differing phenotypes one can make an educated guess

— the set of genes that are members of multigene families. In these

cases, it is possible that both worms have an essential requirement

for a specific gene activity but that this is carried out by different

members of the same gene family in the two worms. Although we

have not followed this in depth, we have data that are consistent

with this.

We first examined all 91 C. briggsae genes that had a weaker

phenotype and searched for related genes in the C. briggsae genome

(see Supplementary Methods for details) that might instead be

carrying out the required molecular function. If this is indeed the

case, these related genes would thus be expected to have a stronger

phenotype in C. briggsae. There are 49 genes with a weaker

phenotype in C. briggsae for which we were able to find one or more

related genes in the C. briggsae genome that might have a similar

molecular function. When we compared RNAi phenotypes in C.

elegans and C. briggsae for these related genes, we find 5 examples

where the C. briggsae gene has a stronger phenotype than C. elegans

(Figure S6) — for example rsp-3 is an SR protein which is 100%

Figure 7. bli-5 and bli-4 have an identical gene function despite showing different RNAi phenotypes. A. RNAi phenotype of bli-5 in C.
elegans (N2) and C. briggsae (JU1018). B. Quantification of the phenotype shown in panel A. C. Rescue of the bli-5(e518) phenotype by either C.
elegans or C. briggsae bli-5 genes. We generated transgenic bli-5(e518) lines in which either C. elegans bli-5 coding region was expressed under the
control of C. elegans bli-5 promoter (C. elegans rescue) or the C. briggsae bli-5 under the control of the C. briggsae bli-5 promoter (C. briggsae rescue).
We examined adult animals and assessed the proportion with blistered cuticles; the results were combined across lines, with a minimum of 3 lines.
Error bars represent the standard error on the binomial proportion. D. Similar data to panel C but instead showing rescue of the bli-4(e937) allele with
analogous C. elegans and C. briggsae bli-4 constructs.
doi:10.1371/journal.pgen.1004077.g007
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embryonic lethal in C. elegans, but not in C. briggsae, while rsp-6, a

different SR protein, is 100% embryonic lethal in C. briggsae but

not C. elegans. The family of rsp genes is known to have multiple

functional overlaps in C. elegans [37,38] and we suggest that not

only is this true in C. briggsae but, crucially, that the relative

importance of each family member differs in the two species. This

is consistent with a model in which both C. elegans and C. briggsae

require a specific molecular function, but that this function can be

carried out by different members of the same family of genes in the

two species.

In summary, we have a generated an RNAi library targeting

1333 C. briggsae genes; each targeted gene is the direct orthologue

of a C. elegans gene known to have a clear detectable RNAi

phenotype. We screened for genes that have major differences in in

vivo function between the two nematodes but clearly many more

refined RNAi screens are possible using this reagent and we

anticipate that the availability of our library will help drive

progress in this area of comparative evolutionary development.

We identified 91 genes with obviously different in vivo functions

and examining these genes reveals key features of the molecular

events driving the changes in gene function that accompany DSD.

In more focused studies, we showed that multiple genes with

different in vivo functions have evolved different expression patterns

and, in the case of sac-1, we showed that promoter evolution is

indeed the cause of the change in in vivo function. This is only one

example and we anticipate that our dataset, along with the RNAi

library itself, will provide a rich source of other future detailed

studies to pinpoint the molecular causes of the changes in in vivo

function that we observe.

Discussion

C. elegans and C. briggsae are phenotypically extremely similar.

They live in the same ecological niche [6], they have near-identical

development [7], and are sufficiently morphologically close that

they can be crossed and can fertilize each other [10]. The resulting

interspecies hybrids are not viable, however, indicating that while

the biology of these two nematodes is nearly identical, the

molecular pathways that underpin this conserved biology have

diverged substantially, a phenomenon termed Developmental

System Drift (DSD) [5].

One of the consequences of DSD is that some orthologous genes

play different in vivo roles in the two species and thus their loss of

function phenotypes will be different. Our goal in this study was to

investigate the consequences of DSD on gene function in C. elegans

and C. briggsae. Rather than examine one specific process in great

detail, as has been done successfully before in these two species

[39–41], we chose instead to carry out a broad screen to identify as

many cases as possible of genes that have different in vivo roles due

to DSD and hence to gain insight into the following questions.

How many genes have changed their in vivo roles as these species

diverged? Is this common or extremely rare? Do specific classes of

genes change more frequently? Finally, can we identify any

common features in the molecular events that underlie the changes

in gene function that we identify? Addressing these questions gives

insight both into how great an impact DSD has on the evolution of

gene function and into how gene functions evolve during DSD.

We used RNAi to target over 1300 genes in both C. elegans and

C. briggsae. Each of these genes has a readily detectable RNAi

phenotype in C. elegans and thus we could identify genes whose

RNAi phenotypes (and hence whose in vivo functions) differ

between these two species as the result of DSD. Using a manual

phenotyping method designed to screen for a broad range of

phenotypes, we identified 91 orthologues that have obviously

different RNAi phenotypes in these two species (the ‘Different

Function’ genes). In parallel to this, we also screened 374 genes

using an automated quantitative phenotyping method which

allows detection of more subtle differences in brood size and

growth rate. This more sensitive assay identified significant

differences in phenotype for ,21% of genes. Taken together, we

estimate that over 25% of genes have different in vivo functions in

C. elegans and C. briggsae as the result of DSD.

We note that this estimate is likely to be a substantial

underestimate of the true rate at which gene functions are

diverging during DSD for several reasons. Firstly, while we tried

hard to eliminate false positives from our dataset, both through

multiple rounds of rescreening and by re-designing additional

RNAi clones for each potential hit, we have little means to

estimate our false negative rate. This is likely to be significant: the

screen was carried out at high throughput, the phenotypes

examined were fairly crude and, at least in the case of the manual

phenotyping, differences needed to be quite large for us to detect.

All these factors will result in false negatives and thus the

proportion of the genes that we screened which have truly different

phenotypes is almost certainly higher than we report here.

Secondly, because of the difference in RNAi efficacy in the two

species, we could only detect biologically meaningful differences in

RNAi phenotype if the phenotype was weaker in C. briggsae than in

C. elegans. In all likelihood, there are as many genes that have a

weaker phenotype in C. elegans than in C. briggsae as vice versa, we

just cannot identify them in our screen. Finally, we screened an

extremely selectively chosen gene set i.e. the set of genes that have

a readily detectable RNAi phenotype in C. elegans (,15% of all C.

elegans genes [14]) and that also have a 1:1 orthologue in C. briggsae.

While only ,60% of genes have a 1:1 orthologue in C. elegans and

C. briggsae [9], our gene set is extremely highly conserved: ,90%

have 1:1 orthologues between these two species. Furthermore,

many of the genes we screened are known to be functionally

conserved over extremely long evolutionary distances: for exam-

ple, 60% of the genes giving lethal or sterile phenotypes in C.

elegans are also essential for viability in S. cerevisiae [26]. The set of

genes we screened are likely to be the most functionally conserved

between C. elegans and C. briggsae of any genes in the genome.

Taking this all together, our finding that during DSD over 25% of

these have evolved different functional roles in the two species is

surprisingly high and suggests that DSD has a major impact on the

evolution of gene function.

What are the underlying molecular causes of the differences in

gene function that we observe as differences in RNAi phenotype?

We find that three main types of molecular events explain many of

the changes in gene function that we identified.

Firstly, we find multiple examples in which orthologous genes

that have different RNAi phenotypes also have different in vivo

expression patterns. We examined the expression patterns of 22

such ‘Different Function’ genes in both species and find that 4

have a clearly different expression pattern in C. elegans and C.

briggsae that is entirely due to promoter evolution. In all four cases,

the species in which the RNAi phenotype is less penetrant (and

thus the species which has a lower requirement for the function of

that orthologue) is also the species in which the expression is far

more restricted, suggesting that the difference in phenotype might

indeed be explained by the difference in expression. In one case,

sac-1, we tested this explicitly and showed that this is indeed true.

Gene expression, as a result of promoter evolution, thus plays a

significant role in the way genes change in vivo functions during

DSD.

Secondly, certain types of gene are more likely than others to

evolve different in vivo functions as a result of DSD. While most of
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the core conserved components of the eukaryotic cell (the

ribosome, the proteasome etc.) tend to have the same functions

in both species, transcription factors and recently evolved genes of

unknown function often have different phenotypes. In the case of

transcription factors, this result is perhaps expected: transcriptional

networks are known to be extremely plastic and can rewire

extensively while still having similar outputs and responses [42].

For the recently evolved genes, however, this is intriguing. None of

them have orthologues outside nematodes and indeed many are

specific to Caenorhabditis species, and few have any functional

annotation. Why should a gene that is absolutely essential for C.

elegans viability be more likely to be dispensable in C. briggsae if it

evolved recently than if it is an ancient gene? What essential roles

do these novel genes play in nematode biology and why do they

seem to be changing so rapidly? Some carefully dissected examples

already exist such as the example of fog-2 and she-1 in the

independent evolution of hermaphroditism in these two species.

fog-2 is a recently evolved gene which has evolved a specific

function in sperm development in C. elegans, while the non-

orthologous F-box protein she-1 plays the same role in C. briggsae

[43–45]. The roles of such novel recently evolved genes in

nematode biology and evolution are intriguing open questions that

will require extensive follow-up studies.

Finally, our data suggest that the individual members of

multigene families frequently adopt different in vivo roles during

DSD. There are often multiple redundancies among members of

gene families and we suggest that this results in the requirement for

any single family member to be extremely fluid over time. For

example, there are well described redundancies in the SR family of

splicing regulators in C. elegans [37,38]. We find that while rsp-3 is

essential for viability of C. elegans, targeting rsp-3 in C. briggsae has

little effect; conversely, targeting rsp-6 in C. briggsae has a strong

RNAi phenotype, but in C. elegans rsp-6 has no obvious phenotype.

In this example, while both worms require an rsp activity, in C.

elegans the essential rsp is rsp-3 whereas in C. briggsae it is rsp-6 and

we suggest this is a common feature of drift in gene function

during DSD.

We note that all the three key molecular drivers of gene

functional change during DSD — changes in gene expression, the

rapid evolution of novel genes, and subfunctionalisation among

related family members — are also central molecular drivers of

changes in gene function that result in adaptation [4,29,46]. One

explanation for this is that DSD and adaptation are unrelated and

unlinked phenomena— for example, some evolved alterations in

gene expression have advantageous phenotypic outcomes while

others have no impact on phenotype and neither set of changes

has any influence on the other. While this is completely plausible,

there is an alternative view: that the reason that the molecular

events that often underpin the changes in gene function that

accompany both DSD and adaptation are very similar is that DSD

and adaptation are intimately linked evolutionary phenomena.

One possible conceptual model for a link between DSD and

adaptation comes from detailed studies of in vitro molecular

evolution [47,48]. In these studies, the evolution of a new

phenotype (in this case, a new fold or activity) is rarely the result

of a single adaptive mutation alone. Rather, a series of

phenotypically neutral mutations (the molecular equivalent of

DSD) results in a derived molecule that is phenotypically

indistinguishable from the ancestor, but that is different with

respect to its evolvability. While a final adaptive mutation results in

a new adaptive phenotype in the derived molecule, making the

same mutation has no effect on the phenotype of the ancestral

form. The derived and ancestral molecules are thus functionally

equivalent, but a single base change has radically different

phenotypic consequences for adaptation in these two molecular

species. In this way, at least at the level of adaptation of in vitro

molecular phenotypes, neutral drift and adaptation are often

intimately linked. We speculate that DSD and adaptation might be

linked in an analogous manner at the level of whole organism

phenotypes.

While the widespread changes in gene function that occur

during DSD do not appear to have any direct impact on

phenotype, they might have profound consequences on the effect

of additional subsequent changes. The effect of DSD, viewed in

this way, is that while two species such as C. elegans and C. briggsae

are phenotypically extremely similar at present, the possible

evolutionary trajectories of the two species are very different since

the phenotypic outcomes of identical molecular changes can be

very different in the two animals. Changes in gene function that

would be deleterious in C. elegans might have no effect in C. briggsae

(e.g. mutation or change in gene expression of sac-1) or, at the

limit, might confer a selective advantage that would drive

adaptation. This idea of a potential link between DSD and

adaptation is still speculative but the finding we report here that

similar molecular events underlie the evolution of gene function in

both processes is consistent with this notion.

In summary, then, we used RNAi to identify genes with

different in vivo functions in two extremely phenotypically similar

nematode worms, C. elegans and C. briggsae. This study is the first

systematic survey of the outcome of DSD on the in vivo functions of

orthologous genes in any closely-related animal species and our

data suggest that DSD has major consequences for the evolution of

gene function. We anticipate that the dataset from our RNAi

screen will help to drive deeper characterization of the molecular

events underlying DSD and, just as the public availability of the C.

elegans RNAi library was key for the systematic analysis of gene

function in C. elegans, so the availability of the C. briggsae RNAi

library will drive extensive comparative screens in these two

related nematodes.

Materials and Methods

Construction of the C. briggsae RNAi library
We used InParanoid 6.1 [20] to identify C. briggsae genes that

are putative 1:1 orthologues of C. elegans with a reported RNAi

phenotype [14]. To further validate these orthologue assign-

ments, we also used orthology assignments from TreeFam,

which use phylogeny relationships, and also synteny to resolve

complex orthologue assignments. Full details are given in Table

S1. In order to design the C. briggsae clones we identified the

orthologous region in the C. briggsae genome to that targeted by

the C. elegans RNAi clone using BLAST and used this as a seed

region. Predicted clones that had at least 80% identity over

200 bp to additional C. briggsae genes were eliminated as having

potential off target effects and manually redesigned. Secondary

clones were designed by hand according to the principles above

and were targeted to a separate group of exons to the first clone

we used.

For cloning we digested L4440 with EcoRV (Fermentas) and

then dephosphorylated with Shrimp Alkaline Phosphatase (Fer-

mentas). PCR products were amplified from AF16 genomic DNA

using Pfu (Fermentas) and then phosphorylated with PolyNucle-

otide Kinase (Neb) for blunt end cloning. The vector and PCR

products were ligated together overnight and then transformed

into HT115 bacteria. The colonies were screened using a T7

colony PCR, and positives were reassembled into the correct

locations in 96 well plates, and then finally verified using an insert

specific colony PCR.

RNAi Screen for Evolved Changes in Gene Function

PLOS Genetics | www.plosgenetics.org 12 February 2014 | Volume 10 | Issue 2 | e1004077



Manual screening of the C. briggsae RNAi library
Caenorhabditis species were maintained by feeding on OP50 on

NGM plates at 20uC. Screening was done on 12 well agar plates as

previously described [14]. We screened for a list of visible

phenotypes which have been previously reported [14], listed here:

Emb (embryonic lethal), Ste (sterile), Stp (sterile progeny), Gro

(slow post-embryonic growth), Lva (larval arrest), Lvl (larval

lethality), Adl (adult lethal), Bli (blistering of cuticle), Bmd (body

morphological defect), Clr (clear), Dpy (dumpy), Egl (egg-laying

defective), Him (high incidence of males), Lon (long), Mlt (moult

defect), Muv (multivulva), Prz (paralysed), Pvl (protruding vulva),

Rol (roller), Rup (ruptured), Sck (sick) and Unc (uncoordinated).

Each orthologue pair was screened by 2 people in 2 fully

independent experimental set-ups on separate weeks. Our

confidence score is the number of observations of a phenotype

difference out of 4 possible observations. Genes with at least 3 out

of 4 observations of a different phenotype in the two species were

potential hits and were tested in secondary screens. For these, we

designed additional RNAi clones which targeted a different region

of the C. briggsae gene where possible and screened these secondary

RNAi clones in an identical way to the first screen. Genes were

called as final hits if we saw a consistent phenotype difference using

both the primary and secondary RNAi clones.

Fitness assay
L1 animals were grown and filtered for purification as described

above. RNAi clones were grown overnight at 37uC in LB media

with 1 mM Carbenicillin and induced at a final concentration of

4 mM IPTG for one hour. After induction, bacterial cultures were

spun down and resuspended in NGM containing 4 mM IPTG and

1 mM Carbenicillin. 10 ml of a ,1 worm/ml solution were put

into each well of a 96 well plate and then 40 ml of the bacterial

suspension was added. Each row of the 96 well plate had 5

replicates of each RNAi clone for each species and 2 blank wells.

In each plate non-targeting dsRNA-expressing bacteria (GFP)

were also present as negative controls. After growing at 20uC with

shaking at 200 rpm for 96 hours we quantified the number of

progeny using a COPAS worm sorter; the length (measured as the

Time of Flight -TOF) and optical darkness (measured as

Extinction - EXT) of each counted animal are also recorded.

From these data, we calculated the relative brood number

following RNAi as the ratio between the worm number in the

targeted cultures and the worm number in cultures grown with

non-targeting GFP RNAi bacterial controls. To assess differences

in relative brood size, we calculated the log ratio of the relative

brood sizes for C. elegans and C. briggsae for each targeted gene, and

used the empirical distribution of 60 independent non-targeting

GFP RNAi bacterial controls to determine a cutoff for statistical

significance. In order to identify embryonic lethal phenotypes we

counted objects with TOF less than 50 and EXT less than 30

(which identifies embryos) and calculated the ratio of the number

of embryos to non-embryos for each RNAi and control

experiment. By comparing the empirical distribution of these

ratios in the control experiments to the targeting RNAi we were

able to identify genes that resulted in embryonic lethality when

knocked down by RNAi.

qPCR
For each knock down, 50 L4 larvae were grown on a lawn of

dsRNA-expressing bacteria on NGM plates containing 1 mM

IPTG and 1 mM Carbenicillin for 72 hr. RNA was harvested

using Trizol (Invitrogen) and was cleaned-up using an RNeasy kit

(QIAGEN). Following a DNase I digestion (Invitrogen) we carried

out first strand cDNA synthesis using superscript II (Invitrogen).

We calculated the efficiency of the primers by dilution curves and

ensured they were between 1.85 and 2.05. The qPCR was done in

a CFX96 (Bio-Rad) using Sybr Green (Clonetech) according to the

manufacturer’s protocols. Relative expression was calculated using

the Pfaffl efficiency correction [49] where each sample was

normalized to the expression of tbg-1.

Examination of C. elegans and C. briggsae gene
phylogenetic age

In order to define the phylogenetic position of genes we took

curated lists of orthologues to the C. elegans gene from Wormbase

(WS233) [50]. We downloaded a phylogenetic tree from the NCBI

taxonomy database [41], (downloaded on the 8th of January 2013)

for the species which have genomes available and found the last

common ancestor as the point of emergence of each gene.

GFP stitching and microscopy
PCR primers were designed to amplify 2 kb upstream of the

translation start site or up until the next gene. C. elegans promoters

were combined through PCR stitching to the coding sequence

from GFP and unc-54 39UTR from the vector pPD95.75, while C.

briggsae promoters were stitched onto the coding sequence from

mWormCherry and unc-54 39 UTR from the vector pJH1774.

Stitched PCR products were quantified on an agarose gel and then

diluted to the same concentration and injected with pRF4 into C.

elegans (N2) worms as a co-injection marker. F2 animals were

isolated and then imaged on a custom Quorum confocal

microscope. For each expression pattern we imaged a minimum

of 3 lines to ensure we had consistent expression patterns. Any

genes with obvious expression differences were then validated by

injection into C. briggsae (AF16) in order to ensure that we get a

consistent expression pattern.

Transgenic rescue experiments
We created the rescue constructs shown schematically in

Figure 4 by first generating constructs that encode a C-terminal

GFP fusion for each ORF to be expressed using the pPD95.75

vector. For each of these we cloned the region upstream to either

C. elegans or C. briggsae orthologues to make a total of 4 constructs, 2

containing DNA specific to one species, and the other 2 being

hybrids between species (shown in Figure 4). The bli-4 and bli-5

constructs were injected at 15 ng/ml with pCFJ90 as a co-injection

marker. We isolated F2 progeny which were positive for myo-

2::mCherry and then we counted the proportion of RFP+ adult

animals with blisters. The sac-1 constructs were injected at 1 ng/ml

with pRF4 as a co-injection marker into sac-1(ok1602) animals. Rol

positive F2s were isolated and the proportion of homozygous adult

rescued animals were scored by the absence of myo-2 GFP signal

from the hT2 balancer. A subset of animals were confirmed to be

homozygous by single worm genotyping PCR.

Examination of C. elegans and C. briggsae protein
similarity

Orthologues between C. elegans and C. briggsae were defined

using InParanoid 6.1 and their CDS sequences were downloaded

from Wormbase (WS190). We translated these to protein

sequences, aligned them using ClustalW 2.0 [51] and then

projected these alignments back to the CDS sequences. We then

used the Yn00 program from PAML (4.3) [52] to calculate Ka, Ks

and the Ka/Ks ratios for C. elegans and C. briggsae orthologues. We

measured evolutionary novel segments between C. elegans and C.

briggsae by taking the protein alignments defined above and then

identifying segments which did not align between the 2 species
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(minimum of 4 residues). We then counted the total number of

such unique segments as well as the total residues involved.

Predictability of phenotype differences
In this procedure we ranked orthologues by either the Ka

metric. Then we randomly picked pairs of orthologues, one with a

different phenotype and one with the same phenotype, and we

asked whether the orthologue with a greater Ka was the

orthologue with a different phenotype. If so we classified this as

a positive prediction and put it into bins based on the rank

difference of the Ka. This randomization procedure was repeated

one million times and the results were plotted.

Identifying functionally related genes
We identified genes which have weaker RNAi phenotypes in C.

briggsae and then searched for related C. briggsae genes by using

BLASTP; we considered any gene with a BLASTP hits with an E-

value less than 1025 as a possible related gene. We then

constructed RNAi clones for the sets of related genes but excluded

families with greater than five related members as being too

complex. All RNAi clones were screened in C. briggsae side by side

with RNAi experiments in C. elegans using clones targeting the C.

elegans orthologues. In this way we compared the RNAi

phenotypes of C. elegans and C. briggsae orthologues for small gene

families that contain at least one member that had a weaker

phenotype in C. briggsae.

Supporting Information

Figure S1 Design of the C. briggsae RNAi library. A. 1640 genes

with an RNAi phenotype in C. elegans were targeted and then

filtered for having a 1:1 orthologue in C. briggsae. B. C. elegans

RNAi clones form the Ahringer library were mapped by BLAST

to the C. briggsae genome and used as a seed region for RNAi clone

design. Primers were designed around this region targeting the

maximum number of bases of exons.

(EPS)

Figure S2 The breakdown of the final screening results we

observed. A. Breakdown of primary RNAi screen. Genes were

placed into three classes: those with an identical phenotype in both

species (‘Identical’); those with a stronger phenotype in C. briggsae

(JU1018) (‘Stronger’); and those with a weaker phenotype in C.

briggsae (JU1018) (‘Weaker’). B. Breakdown of the final result after

rescreening with secondary RNAi constructs.

(EPS)

Figure S3 Comparison of levels of knock-down achieved in C.

elegans and C. briggsae using bacterial-mediated RNAi. 9 genes were

individually targeted by RNAi in both C. elegans and C. briggsae,

RNA was harvested after 72 hrs of treatment, and qPCR was used

to examine levels of knockdown. One of the genes had an identical

RNAi phenotype in the two nematodes, the other 8 had weaker

RNAi phenotypes in C. briggsae as indicated in the figure. The data

in the graph represent the means of three independent biological

replicates; each biological replicate had two independent technical

replicates. The error bars shown are the standard error and

expression levels are expressed relative to the expression of tbg-1.

Genes are from left to right pqn-85,nekl-2,K04G7.1,csn-5,unc-62,

mcm-7, sac-1, apr-1, tsr-1.

(EPS)

Figure S4 The genomic contexts of C. elegans sac-1 and C. briggsae

sac-1. Tracks were downloaded from wormbase version WS235

and the cloned upstream region is highlighted in red.

(EPS)

Figure S5 Enrichment of metrics relating to protein divergence

for genes with a different phenotype. A.,B. Ka (Non-synonymous

substitutions per non-synonymous site) and Ka/Ks ratio was

calculated from the Yn00 program of PAML 4.3 C.,D. The

number of non-aligned regions is calculated by counting the

number of gaps (minimum size of 4 residues) in the protein

alignments, and the total number of residues in all of those gaps.

E. Ka is predictive of a different phenotype when the difference in

large. Genes were ranked by the Ka metric and random pairs were

chosen, one with the same phenotype and one with a different

phenotype. If a Ka in C.elegans predicted the gene with a different

phenotype, then this is classified as a positive prediction.

(EPS)

Figure S6 Comparison of phenotypes of individual members of

multigene families in C. elegans and C.briggsae. We searched for

putative related family members of genes that had weaker RNAi

phenotypes in C. briggsae by identifying any other C. briggsae genes

that had a BLAST evalue cutoff of 1025 or better, up to a

maximum of 5 related proteins — larger families were excluded

from our analysis due to their complexity. These genes and their

C.elegans orthologs were aligned and a gene tree was constructed

with the dnaml program in phylip. RNAi phenotypes are shown in

bold at the tips of the tree; if no phenotype in indicated then the

gene is wildtype. Abbreviations are as follows – Wt – wildtype, Gro

– Growth defective, Emb – Embryonic Lethal, Lvl – Larval lethal.

(EPS)

Table S1 Validation of the orthology assignments. We used

InParanoid 6.1 to identify putative orthologues between C. elegans

and C. briggsae. To determine if there were additional possible

alternative BLAST hits in either genome that could confound

correct orthologue assignments, we examined the E-values of the

next best hits in either genome. If the E-values of next best hits in

either genome were greater than 1020 higher (i.e. worse match) than

the best hits, we called this an unambiguous hit and gave this a

confidence value of 3, indicating that these orthologues are the sole

similar genes in either genome. If the situation was more complex,

we examined both tree-based and synteny-based methods to resolve

true orthology — if both synteny and tree-based methods confirm

the initial orthologue assignment, it has a confidence value of 2, if it

is supported by only one line of evidence, it scores only 1. If we can

find no support for the orthologue assignment from either synteny

or tree-based approaches, we score this as a zero — we note that

only 9 genes in total fell in this category. Thus over 99% of all the

InParanoid orthologue assignments could be validated by one or

more independent orthology assignment methods. For the tree-

based orthology, we used the precomputed data in TreeFam [22].

For synteny, we defined syntenic genes if the C. briggsae orthologue of

either of the two upstream genes was found up to 2 genes adjacent to

the C. elegans gene, or similarly for the downstream gene.

(PDF)

Table S2 Genes identified by eye as having a different

phenotype between C. elegans and C. briggsae. The number of

supporting observations in the primary screen (out of 4) and the

secondary screen (out of 2) is shown. Functional annotations are

from the manual annotation in Kamath et al.

(PDF)

Table S3 Quantitative analysis of brood size RNAi phenotypes

for genes screened on the worm sorter in C. elegans and C. briggsae.

Shown are the brood size scores as described in the methods

section as well as an empirical p-value calculated from the

distribution of GFP negative control RNAi replicates.

(PDF)
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