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Abstract 

Genetic control of branching is a primary determinant of yield, regulating seed number 

and harvesting ability, yet little is known about the molecular networks that shape grain-

bearing inflorescences of cereal crops.  Here, we used the maize (Zea mays) inflorescence 

to investigate gene networks that modulate determinacy, specifically the decision to allow 

branch growth.  We characterized developmental transitions by associating 

spatiotemporal expression profiles with morphological changes resulting from genetic 

perturbations that disrupt steps in a pathway controlling branching.  Developmental 

dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator 

of determinacy, revealed potential mechanisms for repressing branches in distinct stem 

cell populations, including interactions with KNOTTED1, a master regulator of stem cell 

maintenance.  Our results uncover discrete developmental modules that function in 

determining grass-specific morphology and provide a basis for targeted crop 

improvement and translation to other cereal crops with comparable inflorescence 

architectures. 
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Introduction 

Remarkable architectural diversity exists among flower-bearing inflorescences 

that ultimately produce the fruits and grains we eat.  Central to this variation are unique 

branching patterns that contribute directly to traits such as grain yield, harvestability and 

hybrid seed production (Kellogg 2007; Huang et al. 2009; Sreenivasulu and Schnurbusch 

2012; Ishii et al. 2013).  Among grasses, inflorescence architecture is diverse, yet 

characterized by a unique morphology, where flowers are borne on specialized short 

branches called spikelets (Kellogg 2007; Thompson and Hake 2009).  In maize (Zea 

mays), spikelets are paired, a feature unique to the tribe Andropogoneae, which includes 

other important cereal and bio-energy crops (Vollbrecht et al. 2005; Doust 2007).  While 

classical genetics has uncovered regulators of maize inflorescence architecture 

(Vollbrecht and Schmidt 2009), the molecular mechanisms and gene regulatory networks 

underlying this grass-specific morphology remain elusive.  

Branching patterns in inflorescences arise from position and developmental fate 

of stem cell populations called meristems, which can either proliferate indeterminately to 

form long branches, or terminate in determinate structures such as flowers (Thompson 

and Hake 2009; Vollbrecht and Schmidt 2009).  Maize forms two distinct inflorescences, 

tassel and ear, which bear the male and female flowers, respectively.  The tassel forms 

from the shoot apical meristem and ears form laterally in axils of leaves.  Both structures 

have a common architecture in which an apical, indeterminate inflorescence meristem 

(IM) initiates a series of determinate axillary meristems: the spikelet-pair meristem 

(SPM) initiates two spikelet meristems (SM), each of which initiates two floral meristems 

(FM) (Fig. 1A-C).  This inflorescence morphology is specific to grasses, whereas in the 

eudicot model, Arabidopsis thaliana, the architecture is much simpler, with FMs directly 

initiated from the IM (Thompson and Hake 2009).  In tassels, the first lateral meristems 

initiated are indeterminate branch meristems (BM), which essentially reiterate the SPM 

developmental program, giving rise to long branches at the base before abruptly 

switching to a determinate fate (Thompson and Hake 2009; Vollbrecht and Schmidt 

2009) (Fig. 1K-M). 

The ramosa (ra) genes impose determinacy on the SPM, as loss-of-function 

mutations give rise to abnormal branching in ears and increased branching in tassels 
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(McSteen 2006; Kellogg 2007; Thompson and Hake 2009) (Fig. 1F-H; Supplemental Fig. 

S1).  ra1 and ra2 encode C2H2 zinc-finger (Vollbrecht et al. 2005) and LOB domain 

(Bortiri et al. 2006) transcription factors (TFs), respectively, and ra3 encodes a trehalose-

phosphate phosphatase (TPP) enzyme (Satoh-Nagasawa et al. 2006).  ra2 is expressed 

within the SPM, SM, and BM, while ra1 and ra3 co-localize to a narrow arc of cells at 

the base of the SPM.  Genetic evidence has placed both ra2 and ra3 upstream of ra1 in 

two separate pathways controlling branching (Vollbrecht et al. 2005; Satoh-Nagasawa et 

al. 2006). 

Recently, regulatory networks underlying important developmental processes 

such as flowering time and floral patterning have been elucidated in Arabidopsis 

(Kaufmann et al. 2009; Kaufmann et al. 2010; Pastore et al. 2011; Winter et al. 2011).  

Although these programs are largely conserved across eudicots, we know little about how 

such mechanisms extend to grasses and/or to what extent novel factors have been 

recruited to pattern grass-specific inflorescence morphology.  Some clues have emerged 

from expression profiling studies of grass inflorescence development, for example in rice 

(Oryza sativa) (Furutani et al. 2006; Kobayashi et al. 2012).  However, while homologs 

exist in other species, ra1 and ra3 themselves are found only within a clade known as the 

Panicoid grasses (Vollbrecht et al. 2005; Doust 2007; Kellogg 2007), and it has been 

suggested that they function in a regulatory module that either was lost in other grass 

lineages or arose in Panicoids via subfunctionalization.  Comparative studies in closely 

related grasses showed that timing of ra1 induction is directly related to branch length 

and degree of branching (Vollbrecht et al. 2005; Kellogg 2007).  Additionally, ra1 was a 

target for selection during maize domestication (Vollbrecht et al. 2005; Sigmon and 

Vollbrecht 2010), suppressing branches to allow for tight kernel packing on the cob.   

Here, we used a systems-level approach to elucidate the gene networks that 

modulate determinacy and inflorescence architecture in maize, and control phenotypic 

plasticity in grass inflorescence evolution.  Our strategy integrates morphology with gene 

expression signatures over development and upon genetic perturbation of the RA 

branching pathway.  We identified discrete gene modules associated with development of 

grass-specific meristem types, which revealed co-option of known determinacy factors 

along with genes of unknown function.  We mapped genome-wide occupancy of RA1 
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and showed that it differently regulates modules of target genes based on spatiotemporal 

context.  Through analysis of combinatorial binding with stem cell regulator, 

KNOTTED1 (Bolduc et al. 2012), we propose models for RA1 in promoting 

determinacy.  

 

Results 

Molecular signatures of auxin response are detected prior to morphological changes in 

ramosa mutants 

We first characterized morphological features of inflorescence primordia 

associated with developmental transitions in determinate and indeterminate axillary 

meristems.  We used loss-of-function ramosa (ra) mutant ears to monitor these 

transitions upon genetic perturbation of the SPM determinacy pathway.  Scanning 

Electron Microscopy (SEM) showed that branching phenotypes of ra mutant ears are first 

evident when the ears are ~2mm in length.  At a length of 1mm, wild-type and ra mutant 

ears have initiated SPMs, and are indistinguishable (Fig. 1B,G; Supplemental Fig. S1).  

By the time they are 2mm, wild-type ears have initiated SMs, whereas ra1 mutant ears 

have initiated elongating branches, and lack SMs (Fig. 1C,E,H,I).  In contrast, ra2 and 

ra3 mutants have initiated both SMs and elongating branches by 2mm (Supplemental 

Fig. S1).   

The phytohormone auxin induces organ formation, and expression of DR5, an 

auxin response reporter, marks the conversion from SPM to SM identity in maize 

(Gallavotti et al. 2008).  To define the developmental window when SPM determinacy is 

established and SM identity is initiated, we analyzed DR5-ER::RFP expression in 

developing wild-type and ra mutant ears.  Upon formation of the SPM, low levels of 

DR5 mark its central domain in all genotypes (Supplemental Fig. S1).  Subsequently, a 

strong DR5 maximum develops at the lower flank of the SPM, followed by a second 

maximum at the opposite flank (Fig. 1D,I).  1mm ears were enriched for SPMs with one 

to two DR5 maxima (Supplemental Fig. S1).  Interestingly, DR5 signal also was detected 

linking the two maxima in 1mm ears of ra mutants (Fig. 1I; Supplemental Fig. S1), but 

not in wild-type (Fig. 1D), indicating that molecular changes are established prior to 

visible morphological phenotypes.  In wild-type tassels, DR5 signal linking the two 
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maxima was evident only in indeterminate BMs (Fig. 1N), but never in determinate 

SPMs.  It is possible that maintaining a low level of response to auxin in the meristem, 

i.e. linking the two flanking maxima, could inhibit transition to determinate growth.  

These observations provide reference points for profiling developmental transitions in 

normal and branching mutant backgrounds.  

 

Genetic perturbation of the RAMOSA branching network reveals converging 

developmental pathways 

We used RNA-seq to profile transcriptional changes upon genetic disruption of 

the RA network, and compared differentially expressed (DE) genes in ra1, ra2, and ra3 

mutant ears, relative to wild-type siblings, and across a 1mm to 2mm developmental 

transition (Fig. 2A; Supplemental Fig. S1; Supplemental Table S1,2).  We observed a 

dynamic shift in the number of DE genes relative to wild-type shared between ra1 and 

ra2 mutants from 1mm to 2mm; by 2mm, 89% of DE genes in ra2 were also DE in ra1, 

where at 1mm, only 13% were DE in ra1 (Fig. 2A; Supplemental Table S2).  A similar 

trend was observed for DE putative TF genes (Fig. 2B).  This shift is concomitant with 

establishment of the branching phenotype and suggests that RA1- and RA2-dependent 

pathways converge towards a common molecular phenotype by 2mm.  

 A shift in functional enrichment among DE genes shared between ra1 and ra2 

mutants was also observed from 1mm to 2mm (Fig. 2C), but not for DE genes shared 

among all three mutants.  For the latter, enriched processes among shared DE genes 

included macromolecular complex subunit organization (p = 4.07e-10), nucleosome 

assembly (p = 5.12e-08), and chromatin (p = 1.21e-07); this functional profile was 

maintained in 1mm and 2mm ears (Fig. 2C) and may reflect the early, or primary, 

molecular responses during the developmental transition.  At 2mm, the largely shared 

molecular profile of ra1 and ra2 likely includes secondary responses downstream of the 

decision to branch, while the smaller number of DE genes in ra3 at this stage is 

consistent with a shift back to determinate fate after only a few indeterminate BMs are 

laid down at the base in this mutant.  Genes DE in ra3 also showed unique functional 

enrichment compared to the other mutants, possibly due to its predicted role in sugar 

metabolism and signaling (Satoh-Nagasawa et al. 2006) (Fig. 2C).  
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To identify early signatures of transcriptional regulation in axillary meristem fate, 

we analyzed expression patterns of DE TFs in 1mm mutants.  In general, DE TFs were 

expressed at lower levels in ra1 mutants relative to wild-type, whereas in ra3 mutants, 

they tended to be up-regulated.  Interestingly, those TFs DE in all mutants displayed 

common trends, either up- or down-regulated in all three (Fig. 2D).  This suggests that 

certain TFs are independently regulated while others show common regulation, possibly 

functioning in shared pathways among ra genes.  Notably, down-regulation of plant-

specific TCP genes was observed in all mutants (Fig. 2D,E), consistent with members of 

this family regulating cell proliferation and branching (Cubas et al. 1999).  In contrast, 

AP2-EREBP, bHLH, and C3H TF families tended to be up-regulated (Fig. 2D), as were 

genes encoding chromatin- and RNAi- associated factors (Supplemental Fig. S2; 

Supplemental Table S3).  In some cases, differential expression profiles were observed 

for TFs within a family.  For example, 12 members of a MADS-box family, implicated in 

developmental patterning, could be separated into up- and down-regulated classes across 

ra mutants (Fig. 2E).  Interestingly, some MADS-box genes up-regulated in ra mutants 

were also up-regulated in tassel primordia compared to ears, suggesting they may 

underlie differences between ear and tassel architectures.   

 

Co-expression signatures across spatiotemporal and genetic contexts predict a SPM 

determinacy module   

To characterize gene expression signatures associated with developmental 

transitions in normal inflorescences, we clustered genes based on their transcript profiles 

across eight wild-type ear and tassel stages.  In addition to 1mm and 2mm wild-type ears 

(above), we performed RNA-seq on samples sectioned from tip, middle, and base along a 

10mm ear, which were enriched for specific meristem types: IM/SPM, SM, and FM, 

respectively, and tassels at three stages of early development (stage (stg)1-3) 

(Supplemental Fig. S3; Supplemental Table S1,2,4,5).  Stg1 tassels are enriched for 

indeterminate BMs, with determinate SPMs and SMs formed at stg2, and FMs formed by 

stg3.  Therefore, profiling tassel development provided additional perspectives on 

indeterminate vs. determinate fate.  From a set of 16,272 genes with dynamic expression 
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profiles, we identified 20 co-expression clusters representing unique developmental 

signatures using a k-means clustering approach (Fig. 3A, Supplemental Table S6).  

Co-expression clusters 8 and 11 were highly enriched for genes DE in 1mm ra 

mutant ears, suggesting these signatures are associated with SPM determinacy (Fig. 

3A,B,D).  Both clusters showed enriched expression in stg2 tassels (Fig. 3B,D), and this 

is notable since the transition from stg1 to stg2 marks the time when production of BMs 

shifts to determinate SPMs (Fig. 1L,M).  Expression of genes in cluster 8 was also 

strongly enriched in 1mm wild-type ears, and those genes DE in all three mutants were 

coordinately repressed at 1mm (Fig. 3E).  Genes in cluster 11 and DE in all 1mm mutant 

ears were also coordinately regulated, either co-induced or co-repressed, and those up-

regulated showed strongest changes in ra3 (Fig. 3C; Supplemental Table S7).   

The expression signature of cluster 8 is consistent with production of determinate 

SPMs in 1mm ears and stg2 tassels.  We hypothesized that reduced expression of 

determinacy factors in this cluster by loss of ra gene function would promote 

indeterminate fate in SPMs.  As predicted, the suite of down-regulated genes in cluster 8 

showed strongest reductions in expression in the ra1 mutant, consistent with its extreme 

phenotype, compared to less severe phenotypes of ra2 and ra3 mutants (Fig. 3F).  

Among genes with this expression pattern, many function in promoting determinacy and 

differentiation, and some were previously shown to form modular units in other 

developmental contexts, e.g. flower development in Arabidopsis and leaf development in 

maize and other species (Supplemental Table S8).  In addition to being co-expressed 

during normal development, many of these determinacy factors were also co-expressed in 

mutant backgrounds (Fig. 3G).  This module of co-expressed genes suggests conserved 

functions for determinacy factors co-opted for SPM development in maize and identified 

grass-specific genes of unknown function that may confer specificity in grass 

inflorescence morphology (Fig. 3G; Supplemental Table S6,8).  The latter include 

GRMZM2G130354, which is shown in Fig. 3G, and others predicted to be lineage-

specific based on taxonomic dating (Supplemental Table S6; Supplemental Methods).  

Among genes in this module, the MYB TF rough sheath 2 (rs2), is expressed in 

lateral organ primordia and their initials, and acts to promote organogenesis 

(Timmermans et al. 1999).  We identified a co-expressed gene encoding a glutaredoxin 
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with sequence similarity to ROXY1 from Arabidopsis, implicated in petal development 

(Xing et al. 2005).  This gene showed localized expression in the same pattern as rs2 in 

developing spikelet primordia (Timmermans et al. 1999) (Fig. 3G,H).  Also co-expressed 

in this module was a NAC TF, an ortholog of boundary-specifying CUP SHAPED 

COTYLEDON (CUC) genes from Arabidopsis, which displayed a somewhat different 

spatial profile, marking boundaries between initiating organs (Fig. 3G,I).  This co-

expression module represents a signature of determinate SPMs, which is dependent on a 

functional RA1.  We also define a module for SM initiation by identifying clusters that 

specifically target differences in the 1mm to 2mm transition between wild-type and ra 

mutant ears (Supplemental Note; Supplemental Fig. S4; Supplemental Table S9,10).  The 

SM initiation module included many genes involved in auxin and ethylene biosynthesis 

and signaling, as well as multiple members of the NON-PHOTOTROPIC HYPOCOTYL 

(NPH) and LIGHT-DEPENDENT SHORT HYPOCOTYLS (LSH) gene families. 

To identify putative upstream regulators of genes in the SPM determinacy 

module, we used position weight matrices (PWM) to identify cis-regulatory elements 

enriched in proximal promoters.  For 379 co-expressed genes from cluster 8 that were DE 

in ra1 mutants, we identified 31 significantly enriched motifs (Fig. 3J; Supplemental 

Table S11).  Among these were putative binding sites for TFs that function in integrating 

environmental cues: i.e. ABF and ABRE motifs, which are bound by stress-responsive 

bZIP TFs; and LEAFY (LFY), a key factor in modulating the floral transition (Weigel et 

al. 1992; Bomblies et al. 2003).  Motifs recognized by MADS-box TFs were also 

enriched; e.g. AGAMOUS (AG) and SEPELLATA3 (SEP3) (Kaufmann et al. 2009) 

(Fig. 3J; Supplemental Table S11).  Recent work from Arabidopsis showed that bZIPs 

and MADS-box TFs are likely co-factors of LFY in promoting floral differentiation 

(Winter et al. 2011; Wu et al. 2012) and thus may play qualitatively similar roles in maize 

in promoting branch determinacy. 

 

RAMOSA1 functions in activation and repression of co-expressed target genes  

To identify targets of RA1 and to distinguish direct vs. indirect interactions, we 

performed Chromatin Immunoprecipitation (ChIP)-seq and compared the results to the 

gene networks described above.  Plants expressing complementing RA1 transgenes 
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tagged with HA or YFP were used in parallel experiments (Supplemental Fig. S5; 

Supplemental Table S12).  As expected, YFP-RA1 was expressed in an adaxial domain 

subtending the SPMs in developing inflorescences (Fig. 4A).  HA-RA1 expression was 

confirmed by detection of a ~30kDa fusion protein from immature ear extracts 

(Supplemental Fig. S5).  Ear and tassel primordia were collected and tag-specific 

antibodies were used to pull down RA1 bound to its target loci.  Genome-wide analysis 

of RA1 occupancy revealed thousands of putative binding sites (i.e. peaks significantly 

enriched (p < 1e-05) compared to input DNA).  Here we considered 2,105 high-confidence 

peaks, which either overlapped in HA- and YFP-tagged libraries from ear or tassel and/or 

overlapped in three of the four libraries.  High-confidence peaks were strongly enriched 

between -1.5 and +1.5kb from the transcriptional start site (TSS) of genes (Fig. 4B), 

however RA1 bound in various genomic contexts, frequently introns and exons, and 

distal intergenic regions (Fig. 4C; Supplemental Fig. S6,7; Supplemental Table S13,14).    

Genes within 10kb of high-confidence peaks were considered putative targets of 

RA1.  Among 1,094 putative targets, 22% were DE in ra1 mutant ears and considered 

directly modulated (Supplemental Table S15).  Of these, 70% were down-regulated, 

suggesting positive regulation by RA1.  This was unexpected since RA1 has two 

Ethylene-responsive-element-binding-factor-associated Amphiphilic Repression (EAR) 

motifs, which can confer strong repressive activity to TFs (Vollbrecht et al. 2005; 

Gallavotti et al. 2010; Kagale and Rozwadowski 2011).  However, our data also indicate 

that RA1 acts as a repressor, since 73 bound genes were significantly up-regulated in ra1 

mutants.  Among repressed targets of RA1 were a number of genes associated with signal 

transduction and nucleic acid-related processes, such as chromatin and RNAi (Fig. 4D; 

Supplemental Table S15).   

RA1 also bound and modulated genes with known effects on inflorescence 

development including tasselseed2, encoding an enzyme involved in sex determinacy 

(DeLong et al. 1993), and compact plant2, the alpha subunit of a heterotrimeric G-protein 

that functions in IM maintenance (Bommert et al. 2013) (Fig. 4E).  TFs implicated in cell 

specification were generally activated by RA1, however the SBP TF liguleless1 (lg1) was 

repressed (Fig. 4E,F).  lg1 regulates leaf architecture (Moreno et al. 1997; Tian et al. 

2011) and loss-of-function lg1 mutants display upright tassel branches (Bai et al. 2012).  
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Although a branch number phenotype has not been reported for lg1 mutants, a recent 

genome-wide association study identified lg1 as a candidate locus controlling tassel 

branch number (Brown et al. 2011).  Here we show that LG1 protein accumulated in a 

domain at the base of indeterminate long branches in developing tassel primordia (Fig. 

4I), but not determinate SPMs of tassels or ears (Fig. 4G; Supplemental Fig. S8).  The 

LG1 expression domain overlaps that of RA1, however lg1 is expressed only in the 

absence of RA1, as shown in ra1 mutant ears (Fig. 4H), supporting direct repression of 

lg1 by RA1. 

RA1 appears to maintain control of its targets during development since 91% of 

modulated targets were expressed or repressed more differentially at 2mm compared to 

1mm (Fig. 4J).  Strikingly, targets of RA1 were co-expressed in distinct spatiotemporal 

clusters (from Fig. 3A) depending on whether they were activated or repressed (Fig. 

4K,L; Supplemental Table S15; Supplemental Fig. S9).  This suggests that RA1 acts to 

promote or repress gene expression in a manner dependent on spatiotemporal context, 

possibly through interactions with multiple co-factors.   

RA1 is characterized by a single zinc finger domain, implicated in binding DNA 

through a consensus AGT sequence (Dathan et al. 2002).  To determine whether 

additional sequences were associated with RA1 binding, we tested for enrichment of de 

novo motifs under high-confidence peaks in target gene promoters.  Most notable was a 

GAGA repeat, strongly enriched adjacent to the mean peak center (Fig. 4M,N).  

Drosophila (dGAFs), which activate and repress gene expression primarily through 

association with chromatin associated proteins (Berger and Dubreucq 2012), share 

several structural and functional features with RA1 (Omichinski et al. 1997; Dathan et al. 

2002; Vollbrecht et al. 2005).  One hypothesis is that RA1 may have been co-opted in 

Panicoid grasses to control developmental transitions using a mechanism analogous to 

that of dGAFs along with specific co-factors. 

Additional de novo motifs enriched in regions surrounding peak centers, i.e. 

potential binding sites for RA1 co-factors, were associated with genes involved in flower 

development and floral transition (Fig. 4M,N; Supplemental Fig. S10).  One motif was 

significantly similar (p = 5.6e-09) to the in vitro validated binding site for indeterminate1 

(id1), a regulator of the floral transition in maize (Colasanti et al. 1998).  Little is known 

 Cold Spring Harbor Laboratory Press on December 23, 2013 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://genome.cshlp.org/
http://www.cshlpress.com
http://www.cshlpress.com


 13

about the other INDETERMINATE DOMAIN (IDD) genes in maize, however it was 

shown that at least some can also bind the id1 site (Kozaki et al. 2004; Colasanti et al. 

2006).  RA1 binds and positively modulates three IDD genes (Supplemental Table S15).   

 

Common targets of RA1 and KNOTTED1 link meristem determinacy and maintenance 

networks 

While RA1 imposes determinacy on SPMs, KNOTTED1 (KN1) is a master 

regulator of indeterminacy in all shoot meristems.  Experimental and genetic evidence 

suggest that RA1 and KN1 proteins interact, and their expression domains overlap in a 

boundary at the base of SPMs (E.V., unpublished).  We used the KN1 dataset to 

determine the extent of RA1 and KN1 co-occupancy and modulation of shared target 

genes (Bolduc et al. 2012).  We identified 189 target loci associated with regions where 

high-confidence RA1 and KN1 peaks overlapped.  An additional 292 putative targets 

were bound by RA1 and KN1, but at different sites.  Total shared targets were 

significantly greater than expected by chance (p = 2.2e-16) (Fig. 5A; Supplemental Table 

S16).  Of the 176 (37%) targets that were modulated, 79% and 39% were DE in ra1 and 

kn1 loss-of-function mutants, respectively (Fig. 5A,C).  This suggests a stronger 

dependence on RA1 for normal expression of shared targets, possibly due to 

compensation for KN1 by other knox genes (Farnham 2009; Bolduc et al. 2012) (Fig. 

5C).  RA1 itself may also be involved in kn1 regulation, since it bound the 5' region of 

kn1’s third intron (Fig. 5B), which is rich in conserved non-coding sequences involved in 

kn1 repression (Inada et al. 2003).  KN1 was shown to bind and auto-regulate itself 

through the same intron (Tsuda et al. 2011; Bolduc et al. 2012).  Although expression of 

kn1 was not significantly altered in ra1 mutants in our experiments, regulation could be 

restricted to a small number of cells, since the ra1 expression domain is much smaller 

than that of kn1.  

Shared targets of RA1 and KN1 were enriched for genes encoding TFs 

(GO:0045449; p = 4e-04), and displayed several unique expression profiles (Fig. 5D).  

Among co-modulated TF family members were three HD-Zip class I genes (Fig. 5D,E), 

which were positively modulated by RA1 and/or KN1.  Members of this class have been 

implicated in integrating responses to the environment with development (Ariel et al. 
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2007; Whipple et al. 2011).  Several other TFs co-bound by RA1 and KN1 function in 

circadian response and modulation of floral transition (Fig. 5D; Supplemental Fig. S11).  

For example, RA1 and KN1 co-occupy the promoter of a MYB TF orthologous to LATE 

ELONGATED HYPOCOTYL/CIRCADIAN CLOCK ASSOCIATED1 (LHY/CCA1), and 

the intron of bZIP TF liguleless2 (lg2), two genes that function in the transition from 

vegetative to reproductive development (Walsh et al. 1998; Mizoguchi et al. 2002).  

Although ra1 is expressed after the transition to inflorescence development, this binding 

could reveal feedback regulation of the transition.  Co-occupancy of RA1 and KN1 at lg2 

is also notable since loss-of-function mutants in lg2 display a decreased tassel branching 

phenotype (Walsh and Freeling 1999), further implicating the liguleless module in 

inflorescence architecture. 

Two of the IDD TFs modulated by RA1 were also bound by KN1 (Fig. 5F).  Both 

RA1 and KN1 bound the promoter of ZmIDD1-p1 (Colasanti et al. 2006), but at distinct 

sites, and modulated the gene antagonistically.  RA1 and KN1 co-occupied the same site 

in the promoter of another IDD gene, an ortholog of LOOSE PLANT ARCHITECTURE 1, 

which regulates tiller angle in rice (Wu et al. 2013), but loss of kn1 function did not alter 

its expression.  RA1 also independently bound and modulated an ortholog of 

ENHYDROUS, an IDD TF implicated in integration of hormone signals in Arabidopsis 

(Feurtado et al. 2011).  Evidence for combinatorial action of IDD genes in developmental 

patterning has recently emerged (Welch et al. 2007; Reinhart et al. 2013; Slewinski 

2013), including novel roles in lateral organ development via regulation of auxin 

biosynthesis and transport (Cui et al. 2013).  One possibility is that RA1 may modulate 

auxin levels and distribution in the developing inflorescence indirectly via regulation of 

IDD genes. 

KN1 was shown to play a major role in integration of various hormone signaling 

networks (Bolduc et al. 2012).  While only 3% of genes bound and modulated by RA1 

were classified as hormone-related, functional analysis showed significant enrichment of 

gibberellic acid (GA)-mediated signaling (p=5.9e-04).  RA1 and KN1 co-bound ga2-

oxidase and an ortholog of the Arabidopsis SPINDLY (SPY) gene, suggesting they 

interface at both GA biosynthesis and signaling (Fig. 6A).  In addition, a number of 

auxin-related genes were co-targeted by RA1 and KN1 (Supplemental Fig. S11).  Our 
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analysis of DR5 expression suggested that auxin response in the meristem marks 

indeterminate fate.  Therefore, RA1 and KN1 could work cooperatively and/or 

antagonistically to modulate auxin signals during development.    

 

Discussion 

The molecular networks that control inflorescence development in the world’s 

most important cereal crops remain largely unexplored relative to eudicot models.  Here, 

we defined distinct developmental modules that contribute to identity and determinacy of 

grass-specific meristem types.  These networks appear to have been co-opted from other 

developmental programs and function in modules for SPM and SM development, along 

with uncharacterized and/or lineage-specific genes, suggesting that maize has leveraged 

these modules to support phenotypic plasticity in the inflorescence.  We also showed that 

the RA1 TF activates or represses genes during development in a spatiotemporal context.  

Finally, target genes shared between RA1 and KN1 networks are enriched for TFs, and 

suggest convergence points of regulation that interface meristem determinacy and 

maintenance.   

DE profiles of ramosa mutants revealed overlap of ra1 and ra2 molecular 

phenotypes by the 2mm stage of ear development, suggesting these TFs converge on a 

common developmental pathway.  This is consistent with genetic evidence that places 

ra2 upstream of ra1 in the control of its expression (Vollbrecht et al. 2005).  ra3 is also 

hypothesized to work upstream of ra1 (Satoh-Nagasawa et al. 2006), however ra3 

appears to also act independently in other pathways, especially at 1mm, before SMs are 

formed.  Interestingly, ra3 mutant ears shared similar molecular phenotypes with 

developing tassels; e.g. up-regulated MADS-box TFs and co-expressed genes in cluster 

11, including several tassel-specific genes.  Since ra3 ears, like tassels, make only basal 

long branches before shifting to determinate SPMs, these common molecular profiles 

could reveal components of an underlying gradient for repressing branches (Vollbrecht et 

al. 2005). 

Genome-wide analysis of RA1 occupancy suggested it acts both as an activator 

and a repressor of gene expression (Fig. 6B).  Previous work showed that RA1’s two 

EAR motifs interact with a protein encoded by ramosa enhancer locus2, an ortholog of 
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the co-repressor TOPLESS (Gallavotti et al. 2010).  While EAR motifs may confer 

repressive activity to TFs (Kagale and Rozwadowski 2011), there are examples where 

transcriptional repressors, such as the stem cell regulator WUSCHEL, activate gene 

expression in specific developmental contexts (Ikeda et al. 2009).  Activated and 

repressed targets of RA1 were partitioned both developmentally and temporally, 

suggesting the mechanism of RA1 action depends on spatiotemporal context.  The down-

regulation of co-expressed determinacy factors in ra1 mutants is consistent with failure to 

impose determinacy on SPMs and defines a role for RA1 in promoting differentiation 

(Fig. 6B).  We showed that RA1 acts both directly and indirectly to promote SPM 

determinacy (e.g. cluster 8), and expression of RA1’s repressed targets were negatively 

correlated with these genes, suggesting one possible mechanism for indirect activation 

(Supplemental Fig. S9).   

Other factors that may regulate co-expressed SPM determinacy candidates, either 

downstream of RA1 or in parallel, include LFY, bZIP and MADS TFs, as putative 

binding sites for these factors were enriched within their promoters.  In Arabidopsis, 

these factors have been implicated in co-regulation of genes related to floral transition 

and differentiation (Winter et al. 2011; Wu et al. 2012).  RA1 bound a number of genes 

responsive to environmental cues and in various contexts with KN1.  Consistent with 

this, mutants defective in floral transition tend to show dramatic inflorescence 

phenotypes, including aberrant branch numbers (Walsh et al. 1998; Bomblies et al. 2003; 

Vollbrecht and Schmidt 2009).  RA1 may therefore act at the interface of external and 

endogenous cues to modulate developmental transitions.  Integration of these signals 

could be regulated in part by RA1 interactions with KN1 and potentially with RA3, since 

trehalose-6-phosphate was shown to regulate flowering time in Arabidopsis (Wahl et al. 

2013).  Genes related to floral transition, and other RA1 targets such as TCP genes and 

ga2-oxidase, were recently implicated in tomato inflorescence architecture, further 

suggesting parallels in inflorescence development across species (Park et al. 2012). 

ra1 mRNAs localize to a cup-shaped region subtending the SPM, suggesting that 

RA1 may also control SPM determinacy non-cell autonomously via a mobile signal.  The 

phytohormone GA is a candidate signal based on experiments that showed exogenous 

GA both suppressed the ra1 phenotype and decreased tassel branching (Nickerson 1960; 
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McSteen 2006).  Our results are consistent with a role for RA1 in fine-tuning levels of 

bioactive GA1 by direct binding and up-regulation of GA biosynthesis and catabolism 

genes, ga3-oxidase and ga2-oxidase, respectively.  ga3-oxidase is rate-limiting and 

involved in spatiotemporal maintenance of GA1 maxima during the developmental shift 

from cell division to differentiation (Nelissen et al. 2012).  Consistent with positive 

regulation of ga3-oxidase by RA1, GA-responsive DELLA genes, dwarf8 and dwarf9, 

were significantly down-regulated in ra1 mutants.  RA1 also binds and represses SPY, 

which negatively regulates GA and promotes cytokinin signaling (Greenboim-Wainberg 

et al. 2005).  Furthermore, KN1 negatively regulates GA by activating ga2-oxidases and 

repressing biosynthetic ga20-oxidases, keeping GA out of the meristem to maintain 

indeterminacy (Jasinski et al. 2005; Bolduc et al. 2012).  Absence of RA1 therefore 

would tip the balance in favor of cytokinin signaling (Fig. 6A,B).  Consistent with this 

hypothesis, down-regulation of TCP genes, as in ra mutants, has been shown to increase 

sensitivity to cytokinin (Efroni et al. 2013).   

Since ra1 has been implicated as an important locus in domestication of modern 

maize, knowledge of its targets provide insight into the evolution of grass inflorescence 

architecture.  Association studies for maize inflorescence architecture traits identified 

several targets of RA1; e.g. ts2, lg2, and lg1.  Since branch number defects have not been 

reported in lg1 loss-of-function mutants, our finding that RA1 regulates expression of lg1 

was unexpected.  In leaves, lg1 is proposed to promote anticlinal cell divisions critical for 

preligular band formation (Moreno et al. 1997).  One hypothesis is that lg1 also promotes 

BM identity by regulating cell division at the adaxial surface of indeterminate SPMs.  A 

recent report in rice showed direct association of a key panicle architecture trait with 

regulation of OsLG1 (Ishii et al. 2013).  Since RA1 is not present in rice, multiple modes 

of lg1 regulation may have been co-opted for inflorescence development during 

evolution, and possibly for tissue-specific regulation, e.g. through lg1 association with 

leaf angle in maize (Brown et al. 2011; Tian et al. 2011).  Joint linkage analysis also 

showed significant correlations between quantitative trait loci associated with tassel 

branch number and those associated with flowering time (Brown et al. 2011), further 

supporting a possible role for RA1 in feedback regulation of the floral transition. 
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Our analyses capture dynamic molecular signatures underlying grass-specific 

developmental programs with clear relevance to grain yield.  Together, these data provide 

a rich resource for studying many aspects of grass inflorescence evolution and 

development, predictive modeling of crop improvement and translation to other cereal 

crops bearing grain on panicles or spikes.   

 

Methods 

Plant material for RNA-seq experiments 

Segregating families (1:1) of ra1-R, ra2-R, and ra3-fea1 mutant alleles, all 

introgressed at least 6 times into the B73 inbred background, were grown at CSHL 

Uplands Farm.  Field-grown plants were genotyped and collected 6-7 weeks after 

germination (V7-V8 stage).  First and second ear primordia were immediately hand-

dissected, measured, and frozen in liquid nitrogen.  For ra1, ra2 and ra3 mutants and 

wild-type controls, ears were pooled into two size classes: 1) 1mm class included a range 

of 0.7-1.5mm sized ears and nine ears were pooled for each of 2 biological replicates; 2) 

2mm class included a range of 1.8-2.5mm sized ears and six ears were pooled for each of 

three biological replicates.  Wild-type samples were proportional mixtures of 

heterozygote siblings segregating in ra1, ra2, and ra3 populations.  Variability factors 

(e.g. ear size within class, ear rank on the plant, and time of collection) were distributed 

evenly across pooled samples. 

For the wild-type ear and tassel developmental series, greenhouse-grown B73 

inbred plants were used.  10mm ears were collected and sectioned as follows from tip to 

base along the developmental gradient: tip 1mm sampled (tip; IM/SPM), next 1mm 

discarded, next 2mm sampled (mid; SM), next 2mm discarded, next 2mm sampled (base; 

FM) (Supplemental Fig. S3), and immediately frozen in liquid nitrogen.  Sections from 

~30 sampled ears were pooled for each of 2 biological replicates to represent tip, mid, 

and base stages.  Tassels were hand-dissected, measured, separated by stage: 1-2mm 

(stg1), 3-4mm (stg2), and 5-7mm (stg3), and immediately frozen in liquid N.  For each 

stage, ~20-30 tassels were pooled for each of 2 biological replicates. 

 

Microscopy 
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For Scanning Electron Microscopy (SEM), fresh immature ears and tassels were 

dissected and immediately imaged without fixation using a Hitachi (S-3500N) SEM.  For 

fluorescence microscopy, maize HiII plants were transformed with a DR5-ER::RFP 

reporter construct (Gallavotti et al. 2008) and backcrossed to ra mutants.  Tassel and ear 

primordia were hand-dissected at 4-5 weeks (V4-V5) and 6-7 weeks (V7-V8) after 

germination, respectively.  Optical sections were taken using the Carl Zeiss LSM 710 

Laser Scanning Confocal Microscope.  Z-stacks of the optical sections were 

reconstructed into three-dimensional images and the RFP channel signal was converted 

into the LUT (mapped color) “Fire” using Bitplane Imaris 7 software.  Further details on 

sample preparation and parameters used are found in Supplemental Methods. 

 

RNA-seq library construction, sequencing and analysis 

RNA-seq libraries were generated from 2-5 µg total RNA (RNAeasy kit 

(Qiagen)) using methods adapted from (Li et al. 2010).  Libraries were size-selected for a 

250-300bp insert for paired-end (PE) sequencing using standard Illumina protocols 

(Illumina Inc.).  Libraries were quantified on an Agilent bioanalyzer (Agilent) using a 

DNA 1000 chip, and sequenced using the Illumina GAII platform at the CSHL Genome 

Center.   

The Tuxedo suite (Trapnell et al. 2010) was used for mapping and analysis of 

RNA-seq data.  Further details are provided in Supplemental Methods.  Tophat (version 

1.2.0) was used to align reads to the maize reference genome (AGPv2) based on an a 

priori set of 110,028 predicted maize gene models (Working Gene Set v5b.60; 

maizesequence.org).  Cuffdiff (version 1.0.2) was then used to analyze differential 

expression using a high-confidence subset of 39,656 maize gene models, the Filtered 

Gene Set (FGS v5b.60; maizeseqeunce.org).  Gene-level expression values are 

represented by Fragments Per Kilobase exon per Million reads mapped (FPKM) and a 

consensus FPKM was determined for each gene based on its representation across 

biological replicates (Trapnell et al. 2010).  Biological replicates showed strong 

correlations (r > 0.95) in gene expression.  We used a corrected p-value of < 0.05; FDR 

10% to call differentially expressed (DE) genes between each set of compared samples 
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(Supplemental Table S2).  Additional information about gene annotation and functional 

enrichment analyses is provided in Supplemental Methods. 

 Analyses were performed the same for previously published RNA-seq datasets 

from knotted1 loss-of-function ear and tassel samples and B73 wild-type controls 

(Bolduc et al. 2012), two biological replicates from each, after raw data were downloaded 

from the Gene Expression Omnibus (GEO; GSE38487). 

 

Clustering of gene expression profiles 

A k-means approach was used (R Bioconductor package Mfuzz) to cluster 16,272 

dynamically expressed genes based on their expression profiles across wild-type libraries.  

These genes were selected based on the following criteria:  1) showed a two-fold change 

in expression or were identified as DE between at least two of the stages being compared, 

2) were covered by at least 50 reads among every two stages being tested, and 3) 

collectively had an expression value of at least 1 FPKM.  With these criteria, we reduced 

noise in the clusters by omitting genes that did not change expression during 

development or showed very low expression levels with little confidence.  FPKM values 

were normalized to a Z-score scale prior to clustering.  We evaluated fuzzy k-means 

results based on 10-35 clusters using 1,000 iterations and finally chose 20 clusters based 

on optimal results (Supplemental Methods).  Genes were grouped with their best-fit 

cluster. 

 

ChIP-seq sample collection, library construction and peak calling 

We created two native translational fusion constructs to drive the expression of 

tagged RA1 proteins in the endogenous expression domain using 2.9kb of the RA1 

promoter.  We fused the YFP and HA-FLAG tags in frame with the RA1 coding 

sequence at the N-terminus.  Constructs were transformed into the HiII genetic 

background at the Iowa State University Plant Transformation Facility (Ames, IA).  T0 

generation transformed plants were crossed to the ra1-R mutant.  T1 plants were then 

backcrossed to create a T2 generation segregating 1:1 for the transgene and for ra1. 

 Tassel primordia were harvested ~4 weeks after planting, and immature ears were 

harvested after 6 weeks.  Analysis of plant phenotypes in F1BC2 families segregating for 
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the transgene and ra1 mutants, showed transgenic constructs were capable of 

complementing the mutant.  In populations fixed for the ra1-R mutation, but segregating 

for the YFP- or HA-tagged transgene, the wild-type phenotype segregated perfectly with 

the presence of the transgene (n=160). 

ChIP and ChIP-seq library preparation were performed as previously described 

(Bolduc et al. 2012; Morohashi et al. 2012) with minor modifications.  Further details on 

ChIP, library preparation and sequencing, and ChIP-seq analysis are provided in 

Supplemental Methods.  ChIP-seq reads were aligned to the maize reference genome 

(AGPv2) and peak calling was performed with MACS version 1.4.0rc2 using only 

uniquely mapped reads (Zhang et al. 2008).  Peaks were identified as significantly 

enriched (p<1e-05) in each of the ChIP-seq libraries compared to input DNA.  Significant 

peaks from individual libraries were considered overlapping if their summits were 

positioned within 300 bp of each other.  Coordinates for KN1 peaks were used from the 

published dataset ((Bolduc et al. 2012); GEO (GSE39161)).   

 

Analysis of cis-regulatory motif enrichment 

To determine enrichment of cis-regulatory elements within promoter regions 

spanning 1 kb upstream to 500 bp downstream of the TSS of co-expressed genes, we 

used a computational prediction pipeline, which leveraged the Search Tool for 

Occurrences of Regulatory Motifs (STORM) from the Comprehensive Regulatory 

Element Analysis and Detection (CREAD) suite of tools (Smith et al. 2006).  We 

identified putative TF binding sites based on 128 experimentally derived position weight 

matrices (PWMs) from various sources (Supplemental Methods).  We considered only 

those motifs that were overrepresented (p-value < 0.001) in promoter sequences of 

protein coding genes as compared to a background set of the same number of random 

genomic sequences. STORM uses this p-value to assign a PWM-specific quality score to 

each predicted cis-regulatory motif (Schones et al. 2007).  Predictions were further 

filtered based on a PWM-specific median score threshold (i.e. quality score greater than 

or equal to the median score passed the filter) and a motif occurrence frequency of three 

or more per promoter.  A parallel analysis was carried out for all FGS genes in the 
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genome to compare their overall percent-occurrence of enriched motifs in the maize 

genome to determine the extent of cluster-specificity for a given motif.   

To identify de novo motifs associated with RA1 ChIP-seq peaks, we used the 

Promzea pipeline ((Liseron-Monfils et al. 2013); Supplemental Methods).  To optimize 

signal-to-noise, we used only those high-confidence RA1 ChIP-seq peaks that were 

associated with proximal promoters of FGS models within 1 kb upstream of TSSs.  

Enriched motifs were identified and tested for significance by comparing their presence 

in the input dataset (sequences spanning RA1 peaks) with 5,000 random maize promoter 

sequences (500 bp upstream of predicted TSSs).  Additional details are provided in 

Supplemental Methods. 

 

In situ hybridizations 

Immature B73 ears (2-5mm) were sampled as above.  Details on sample 

preparation and in situ hybridizations are provided in Supplemental Methods.  The 

glutaredoxin gene (GRZM2G442791) probe included the entire coding sequence and 241 

bp of the 3'UTR.  The CUC-like gene (GRMZM2G393433) probe contained 700 bp of 

nucleotide sequence, including 115 bp of the 3'UTR.  Probe sequences were cloned into 

TOPO PCRII dual promoter system (Invitrogen) and linearized for probe transcription 

(Roche).  

 

LG1 immunolocalization 

B73 wild-type ears and tassels, and ra1 mutant ears (all 2-5 mm) were sampled as 

described above and fixed in PFA under vacuum infiltration, dehydrated through an 

ethanol series into Histoclear and embedded in paraplast plus.  Tissue was sectioned to 10 

microns using a Leica microtome and mounted on Probe-on Plus slides.  Further details 

for the immunolocalization are provided in Supplemental Methods.  The antibody against 

full length LG1 expressed as a HIS tagged N-terminal protein fusion in E. coli was 

created as previously described (Chuck et al. 2010) (Cocalico Biologicals, Inc 

(Reamstown, PA, USA)) and purified against full length LG1 expressed as a GST tagged 

N-terminal fusion protein.  Primary α-LG1 (guinea pig) was used at a 1:500 dilution, and 
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α-guinea pig alkaline phosphatase conjugated secondary antibody was used at a 1:5000 

dilution (Abcam, Cambridge MA USA). 

 

Data access 

All RNA-seq and ChIP-seq data generated in this study have been deposited in the NCBI 

Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo/) and the NCBI Short Read 

Archive (SRA; www.ncbi.nlm.nih.gov/sra) and are accessible through the GEO Series 

accession number GSE51050.   
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Figure legends 

Figure 1.  Molecular signatures of auxin response are detected prior to changes in 

morphology.  (A) Normal progression of axillary meristem initiation in wild-type ears 

occurs in a developmental gradient from tip to base.  (B) SPMs are formed at 1mm and 

(C,E) by 2mm SMs are formed.  (D) Expression of the DR5-ER::RFP reporter is strongly 
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polarized to either side of developing SPMs in wild-type ears and (E) these maxima 

indicate where new SM primordia will form.  There is no DR5 signal detected between 

maxima in wild-type ears (grey arrow).  (F) SPMs in ra1 mutants take on a fate similar to 

indeterminate BMs, reiterating the SPM developmental program, and (G-H,J) do not 

produce SMs by 2mm. (I) In ra1 mutants, weak DR5 signal is observed spanning the 

central domain of indeterminate SPMs joining the two maxima (white arrow), similar to 

that observed in tassel BMs.  (K-M) In tassels, basal BMs are initiated first before the IM 

switches to producing determinate SPMs. (N) DR5 expression is observed across the 

central domain of indeterminate BMs (white arrow), connecting the maxima formed on 

opposite flanks.  red * = determinate Spikelet Pair Meristem (SPM); green * = 

indeterminate Branch Meristem (BM);  scale bars = 250μm in all panels except in D 

(right), I (right) and N, where scale bars = 100μm; DR5 expression views in panels D and 

I are taken from section in white boxes in C and H, respectively. 

 

Figure 2.  Genetic perturbation of the RAMOSA pathway. (A) Differentially expressed 

(DE) genes and (B) TFs shared among ramosa (ra) mutant ears at 1mm and 2mm stages 

(p < 0.05; FDR 10%).  (C) GO enrichment of biological processes for DE genes shared 

between different mutants at 1mm and 2mm.  Venn diagrams above each set of columns 

are shaded to represent DE genes shared among mutants (from left to right): DE in ra1, 

ra2 and ra3; DE in ra1 and ra2 only; DE in ra1 and ra3 only; DE in ra1; DE in ra3.  (D) 

Expression changes for DE TF genes in 1mm ra mutants relative to wild-type siblings.  

TFs were grouped by family and the number of DE family members is indicated.  Each 

column represents average expression differences across the TF family in a single mutant 

(ra1, ra2 or ra3); for TFs DE in more than one mutant, individual mutant profiles are 

shown, but grouped according to shaded area of Venn diagrams above.  From left to 

right, TF expression profiles are shown if: DE in ra1, ra2 and ra3; ra1 and ra2 only; ra1 

and ra3 only; ra1; ra2; ra3.  Blue-to-red = up-to-down regulation. (E) Expression 

profiles for individual members of two TF families:  13 TCP genes were significantly 

down-regulated in one or more ra mutants at 1mm and expression changes across 1mm to 

2mm stages are shown for all mutants; 12 MADS-box TF family members showed 

dynamic expression differences in 1mm ra1, ra2, ra3 mutants, and 1-2mm wild-type 
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tassel primordia.  TCP family members are represented by maize Gramene gene ID: 

GRMZMx(8); 
1AC199782.5_FG003; 2AC205574.3_FG006; MADS maize gene names or 

closest ortholog in rice are shown.   

 

Figure 3.  Developmental modules for SPM determinacy. (A) Expression signatures across 

wild-type libraries were used to cluster genes with dynamic expression during ear and/or tassel 

development.  20 k-means clusters fell into 4 distinct clades of expression: enriched in (from top 

to bottom): SM/FM; tassel; 1 and 2mm ear; IM/SPM.  Each cluster is assigned a number 

identifier (left) and the number of genes associated with each cluster is indicated (right).  The 

heatmap represents cluster centers; white-to-dark = low-to-high expression.  Clusters 8 and 11 

were highly enriched for DE genes in 1mm ra mutants (blue arrows). (B) Genes in cluster 11 

and (C) DE in all 3 mutants at 1mm were either coordinately up- or down-regulated and (D) 

genes in cluster 8 and (E) DE in all mutants were almost entirely down-regulated.  (F) DE genes 

in cluster 8 tended to be most strongly down-regulated in ra1 mutants consistent with a more 

severe phenotype. (G) Co-expressed genes in cluster 8 were also co-expressed across ra mutant 

backgrounds.  Expression profiles are shown for examples of known genes implicated in 

determinacy and a gene of unknown function with grass-specific lineage. (H) Among these, an 

ortholog of ROXY (GRMZM2G442791) and (I) a CUC-like NAC TF (GRMZM2G393433) 

were temporally co-expressed in overlapping and adjacent domains. (J) Of 31 cis-regulatory 

motifs significantly enriched within proximal promoters of genes co-expressed in cluster 8 and 

DE in 1mm ra1 mutants, the 20 with highest enrichment in this group of genes relative to 

genome-wide occurrences are shown.  

 

Figure 4.  Genome-wide binding profiles for RAMOSA1. (A) YFP-tagged RA1 is 

expressed in an adaxial domain subtending SPMs in developing inflorescences, and 

localized to the nucleus. (B) Distribution of RA1 binding relative to maize gene models 

showed strong enrichment -1.5 and +1.5kb from the TSS. (C) Distribution of high-

confidence peak summits across genomic features (numbers are based on percent of 

total).  Within a genic region, up = up-stream, body = gene body, down = downstream. 

(D) Bound and modulated targets of RA1 grouped by functional class. (E) RA1 bound 

genes with known inflorescence phenotypes; zag1, ts2, ct2, and lg1.  Examples of 
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overlapping peaks in ear and tassel (zag1 and ts2) and HA- and YFP-tagged libraries (ct2 

and lg1) are shown. (F) lg1 was up-regulated in ra1 mutant ears and in wild-type tassel 

primordia compared to wild-type ears. (G) Immunolocalization of the LG1 protein 

indicates its absence in wild-type ears (inset image shows determinate SPMs).  (H) In ra1 

mutant ears, LG1 is localized to the adaxial side of developing branch meristems and (I) 

in wild-type tassels is localized to the base of long branches. (J) Bound and modulated 

targets of RA1 were more strongly regulated at 2mm compared to 1mm. (K,L) 

Expression profiles represent cluster centers from Figure 3A: repressed targets were 

largely co-expressed in clusters 2, 13, 17 and 18; activated targets were associated with 

clusters 8, 11, 12 and 19. (M) Analysis of high-confidence RA1 binding sites within gene 

promoters showed enrichment of de novo motifs: a GAGA-repeat element, a motif 

similar to the indeterminate1 (id1) binding site (p = 5.6e-09), novel CAG-box and TG 

repeat motifs.  The latter two were most strongly enriched in promoters of activated 

genes.  (N) Motifs were enriched at specific positions relative to the center of RA1 

binding sites.   

 

Figure 5.  Integration of RA1- and KN1-dependent networks.  (A) RA1 and KN1 bound 

481 shared target genes (189 at the same genomic position), which was greater than 

expected by chance based on Fisher’s test. (B) RA1 bound kn1 in its third regulatory 

intron.  (C) 65 targets were co-bound by RA1 and KN1 at the same genomic position and 

differentially expressed in ra1 and/or kn1 loss-of-function mutants; these genes tended to 

have stronger dependence on RA1 than KN1 for their normal expression; green to red = 

up- to down-regulation; ln = natural log. (D) Expression profiles for 40 TFs co-bound by 

RA1 and KN1 at overlapping genomic regions showed signatures of spatiotemporal 

regulation.  TFs are listed by their family or protein domain name and, where provided, 

Arabidopsis ortholog name in brackets.  (E) Three co-expressed HD-Zip Class I genes 

(indicated with a * in panel D) were modulated targets of RA1 and/or KN1.  All were 

significantly down-regulated (* = p<0.05) in kn1 tassels; GRMZM2G132367 was 

significantly down-regulated in ra1, ra2, and ra3 mutant ears by 2mm and showed 

significant change (** = p<0.001) between 1mm and 2mm in ra1 and ra3, but its 

expression remained unchanged in wild-type ears from 1mm to 2mm. RA1 and KN1 also 
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co-bound putative intergenic regulatory regions ~15 kb upstream of these HD-Zip genes.  

Shown are orthologs of ATHB6 (GRMZM2G132367) and ATHB21 (GRMZM2G104204) 

(F) IDD genes bound by both RA1 and KN1 were positively modulated by RA1.  

ZmIDD-p1 (GRMZM2G179677) was repressed by KN1 while expression of the LOOSE 

PLANT ARCHITECTURE 1 ortholog (GRMZM2G074032) was not significantly altered 

in kn1 mutants.  

 

Figure 6.  Models for RA1-mediated regulation and integration with KN1-based 

meristem maintenance pathways. (A) RA1 and KN1 interact via gibberellic acid (GA) 

biosynthesis and signaling.  RA1 may modulate GA levels in a spatiotemporal manner by 

activating genes for its biosynthesis and catabolism and negatively regulating a repressor 

of GA signaling, SPY. (B) RA1 interfaces with various developmental and regulatory 

networks, and interacts with KN1-based meristem maintenance via common targets and 

pathways.  RA1 directly represses genes involved in chromatin and RNAi and positively 

regulates a suite of co-expressed determinacy factors.  Promoters of the latter were 

enriched for binding sites of LFY, bZIP and MADS-box TFs and therefore activation of 

determinacy factors by RA1 could work in part through co-regulation by these TFs.  RA1 

positively regulates a set of IDD TFs, including one that is co-bound and repressed by 

KN1, and negatively regulates lg1, which may play a role in BM identity, possibly by 

establishing a boundary.  RA1 and KN1 also co-target genes related to floral transition, 

auxin biology and the integration of environmental and developmental cues. 
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