Amino-terminal acetylation of proteins by Nterminal acetyltransferases: mechanisms and relevance to human genetic diseases

Gholson J. Lyon, M.D. Ph.D.

Acknowledgments

Michael Klingener Jason O'Rawe Yiyang Wu Michael Schatz Giuseppe Narzisi

Thomas Arnesen Rune Evjenth Johan R. Lillehaug

Max Doerfel

our study families

The role of thyroid hormone in cretinism, which is caused by lack of iodine during maternal pregnancy, so this is an environmentally triggered

disease.

Isolation and Characterization of the Mouse Gene for the Type 3 Iodothyronine Deiodinase*

ARTURO HERNÁNDEZ[†], GHOLSON J. LYON[‡], MARK J. SCHNEIDER, AND DONALD L. ST. GERMAIN

Departments of Medicine and Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756

Bacterial communication via small molecules and peptides

Lyon, G. & Muir, T.W., *Chem. Biol.* 2004 Bassler, B., *Cell*, 2004, **109**, 421

I moved to Utah in July 2009 to find at least one new human disease, thus revealing new biology.

- July 2009-December 2009: Attended weekly genetics case conference in which 10-30 genetic cases are presented weekly, led by Dr. Alan Rope and attended by Drs. John Carey and John Opitz.
- There are indeed MANY idiopathic disorders not described in the literature, many of which have neuropsychiatric manifestations. I thought about hundreds of such cases, looking for the ideal first family to sequence.

Discovering a new syndrome and its genetic basis.

Using VAAST to Identify an X-Linked Disorder

ARTICLE

Resulting in Lethality in Male Infants Due to N-Terminal Acetyltransferase Deficiency

Alan F. Rope,¹ Kai Wang,^{2,19} Rune Evjenth,³ Jinchuan Xing,⁴ Jennifer J. Johnston,⁵ Jeffrey J. Swensen,^{6,7} W. Evan Johnson,⁸ Barry Moore,⁴ Chad D. Huff,⁴ Lynne M. Bird,⁹ John C. Carey,¹ John M. Opitz,^{1,4,6,10,11} Cathy A. Stevens,¹² Tao Jiang,^{13,14} Christa Schank,⁸ Heidi Deborah Fain,¹⁵ Reid Robison,¹⁵ Brian Dalley,¹⁶ Steven Chin,⁶ Sarah T. South,^{1,7} Theodore J. Pysher,⁶ Lynn B. Jorde,⁴ Hakon Hakonarson,² Johan R. Lillehaug,³ Leslie G. Biesecker,⁵ Mark Yandell,⁴ Thomas Arnesen,^{3,17} and Gholson J. Lyon^{15,18,20,*}

The American Journal of Human Genetics 89, 1–16, July 15, 2011

I met the entire family on March 29, 2010

Photo of mother with son in late 1970's

This is the first boy in the late 1970's.

First boy. Called "a little old man" by the family. Died around ~1 year of age, from cardiac arrhythmias.

This is the "Proband" photograph presented at Case Conference.

prominence of eyes, down-sloping palpebral fissures, thickened eyelids, large ears, beaking of nose, flared nares, hypoplastic nasal alae, short columella, protruding upper lip, micro-retrognathia

Family now in October 2011, with five mutationpositive boys dying from the disease.

An unrelated second family was also identified, due to sharing the same genotype, i.e. the same mutation.

Contributed by Les Biesecker and colleagues at NIH

Ogden Syndrome – in 2011

We found the SAME mutation in two unrelated families, with a very similar phenotype in both families, helping prove that this genotype contributes to the phenotype observed.

These are the Major Features of the Syndrome.

Table 1. Featur	res of the syndrome
Growth	post-natal growth failure
Development	global, severe delays
Facial	prominence of eyes, down-sloping palpebral fissures, thickened lids large ears beaking of nose, flared nares, hypoplastic alae, short columella protruding upper lip micro-retrognathia
Skeletal	delayed closure of fontanels broad great toes
Integument	redundancy / laxity of skin minimal subcutaneous fat cutaneous capillary malformations
Cardiac	structural anomalies (ventricular septal defect, atrial level defect, pulmonary artery stenoses) arrhythmias (Torsade de points, PVCs, PACs, SVtach, Vtach) death usually associated with cardiogenic shock preceded by arrythmia.
Genital	inguinal hernia hypo- or cryptorchidism
Neurologic	hypotonia progressing to hypertonia cerebral atrophy neurogenic scoliosis
Shaded regions genital and neur	include features of the syndrome demonstrating variability. Though variable findings of the cardiac, ologic systems were observed, all affected individuals manifested some pathologic finding of each.

II-1

II-6

Α

В

We performed X-chromosome exon capture with Agilent, followed by Next Gen Sequencing with Illumina.

We analyzed the data with ANNOVAR and VAAST (Variant Annotation, Analysis and Search Tool). New computational tools for identifying disease-causing mutations by individual genome sequencing.

Yandell, M. *et al.* 2011. "A probabilistic disease-gene finder for personal genomes." *Genome Res.* 21 (2011). doi:10.1101/gr.123158.111.

Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164.

VAAST integrates AAS & Variant frequencies in a single probabilistic framework

- non-coding variants scored using allele frequency differences
- *n*_i: frequency of variant type among all variants observed in Background and Target genomes
- a_i : frequency of variant type among disease causing mutations in OMIM
- This approach means that *every* variant can be scored, non-synonymous, synonymous, coding, and non-coding. Phylogenetic conservation not required.

Analysis with VAAST readily identified a few likely candidates.

Table 3. Summary of the filtering procedure and candidate genes using VAAST											
SNV calling pipeline	GATK	Samtools	GNUMAP								
III-4 (total SNVs)	1546	1499	2168								
III-4 (nsSNVs)	146	114	155								
VAAST candidate genes (NAA10 ranking)	4 (3)	3 (2)	5 (2)								
Present in III-4 and mother II-2 (nsSNVs)	122	107	116								
VAAST candidate genes (NAA10 ranking)	3 (2)	2 (1)	2 (2)								
Present in III-4, mother II-2, and grandmother I- 2 (nsSNVs)	115	95	104								
VAAST candidate genes (NAA10 ranking)	2 (1)	2 (1)	1 (1)								
Present in III-4, II-2, and I-2, absent in brother III-2 and uncle II-8 (nsSNVs)	8	6	8								
VAAST candidate genes (NAA10 ranking)	1 (1)	1 (1)	2 (1)								

This is the mutation we found... one nucleotide change out of 6 billion nucleotides in a diploid genome...

Proving Relevance of the mutation

- Present in two unrelated families with very similar phenotype of affected boys.
- Blinded Sanger sequencing showed perfect segregation of the mutation with the disease. Mutation present in Proband, Carrier Mother, Carrier Grandmother and other carrier mothers. Absent in unaffected brother and unaffected uncle.
- Also present in DNA from formalin-fixed paraffinembedded tissue from two other deceased affected boys, found in pathology department, saved in one case for 30 years.
- Mutation NOT present in ~6000 exomes or genomes sequenced at BGI, CHOP and Utah for other projects.

Ogden Syndrome, in honor of where the first family lives, in Ogden, Utah

<u>The mutation is a missense resulting in</u> <u>Serine to Proline change in Naa10p</u>

- Ser 37 is conserved from yeast to human
- Ser37Pro is predicted to affect functionality (SIFT and other prediction programs)
- Structural modelling of hNaa10p wt (cyan) and S37P (pink)

The mutation disrupts the N-terminal acetylation machinery (NatA) in human cells.

Slide courtesy of Thomas Arnesen

N^{ϵ} -acetylation: Lysine Acetylation (KATs, HATs)

Figure 1.3: N^{ε}-acetylation. Lysine acetyltransferases (KATs) transfer the acetyl group of acetyl-CoA to the side chain of lysine, and thus remove the positive charge of the amino acid. Deacetylases (HDACs) catalyze the reverse reaction.

Annette Katharina Brenner

Dissertation for the degree philosophiae doctor (PhD) 2012

at the University of Bergen

N^{α} -acetylation: Amino-terminal Acetylation

In N^{α} -acetylation, the acetyl group of acetyl-CoA is transferred to the backbone of the N-terminal amino acid of the target protein (figure 1.4).

Figure 1.4: N^{α} -acetylation. The acetyl group of acetyl-CoA is irreversibly transferred to the N-terminal amino acid of the target protein by an N-terminal acetyltransferase (NAT).

Annette Katharina Brenner

Dissertation for the degree philosophiae doctor (PhD) 2012

at the University of Bergen

N-terminal processing in human cells

Van Damme P et al., PLoS Genet, 2011

Protein acetylation in higher eukaryotes

NAT activity of recombinant hNaa10p WT or p.Ser37Pro towards synthetic N-terminal peptides

Assay performed in Thomas Arnesen lab

Protein Expression and purification

@Proteinchemist.com 2003

NO 2

COOH.

Big Questions though:

Simulated structure of S37P mutant

What is the molecular basis of Ogden syndrome?

- Naa10/Naa15 complex
- Naa10 localisation
- Naa10 function

what can we learn from ogden syndrome?

• characterizing different model systems (fibroblasts, yeast, C. elegans)

These are the Major Features of the Syndrome.

Table 1. Featur	res of the syndrome
Growth	post-natal growth failure
Development	global, severe delays
Facial	prominence of eyes, down-sloping palpebral fissures, thickened lids large ears beaking of nose, flared nares, hypoplastic alae, short columella protruding upper lip micro-retrognathia
Skeletal	delayed closure of fontanels broad great toes
Integument	redundancy / laxity of skin minimal subcutaneous fat cutaneous capillary malformations
Cardiac	structural anomalies (ventricular septal defect, atrial level defect, pulmonary artery stenoses) arrhythmias (Torsade de points, PVCs, PACs, SVtach, Vtach) death usually associated with cardiogenic shock preceded by arrythmia.
Genital	inguinal hernia hypo- or cryptorchidism
Neurologic	hypotonia progressing to hypertonia cerebral atrophy neurogenic scoliosis
Shaded regions genital and neur	include features of the syndrome demonstrating variability. Though variable findings of the cardiac, ologic systems were observed, all affected individuals manifested some pathologic finding of each.

These are the Major Features of the Syndrome.

Table 1. Featur	res of the syndrome
Growth	post-natal growth failure
Development	global, severe delays
Facial	prominence of eyes, down-sloping palpebral fissures, thickened lids large ears beaking of nose, flared nares, hypoplastic alae, short columella protruding upper lip micro-retrognathia
Skeletal	delayed closure of fontanels broad great toes
Integument	redundancy / laxity of skin minimal subcutaneous fat cutaneous capillary malformations
Cardiac	structural anomalies (ventricular septal defect, atrial level defect, pulmonary artery stenoses) arrhythmias (Torsade de points, PVCs, PACs, SVtach, Vtach) death usually associated with cardiogenic shock preceded by arrythmia.
Genital	inguinal hernia hypo- or cryptorchidism
Neurologic	hypotonia progressing to hypertonia cerebral atrophy neurogenic scoliosis
Shaded regions genital and neur	include features of the syndrome demonstrating variability. Though variable findings of the cardiac, ologic systems were observed, all affected individuals manifested some pathologic finding of each.

Family 2: II-1

Family 2: II-1

NAA10/NatA is essential for life

C. elegans

T. Brucei

D. melanogaster

Wang et al., Dev Dyn, 2010; Ingram et al., Mol Biochem Parasitol, 2000; Sonnichsen et al., Nature, 2005

The human N-Acetylome

A majority of soluble human proteins are N-terminally acetylated
NatA is a major protein modifying enzyme of the human proteome

Arnesen T et al., Proc Natl Acad Sci USA, 2009; Van Damme P et al., PLoS Genet, 2011

Figure 1. Overview of human NATs and their substrate specificities. The human NATs are composed of catalytic subunits (yellow) and auxiliary subunits (green), and all are associated with ribosomes (blue). NatA potentially acetylates Ser-, Ala-, Thr-, Gly- and Val- N-termini after the iMet has been removed by methionine aminopeptidases (MetAPs). NatB potentially acetylates Met-Asp-, Met-Glu- and Met-Asn-, whereas NatC may target Met-Leu-, Met-Ile-, Met-Phe- and Met-Trp-. NatD apparently only acetylates the Ser- N-termini of histones H2A and H4. NatE and NatF demonstrate some specificity towards NatC-type substrates as well as Met-Lys-, Met-Ala-, Met-Met- and Met-Val-. *NatA or hNaa10p may also mediate post-translational acetylation of mature actins harboring Asp- and Glu- N-termini.

REVIEW Protein N-terminal acetyltransferases in cancer

TV Kalvik¹ and T Arnesen^{1,2}

Naa10 function

cytosolic (co-translational)

- Rho (Rac/Cdc42 cell migration)
 - Caspase2 (apoptosis)
- TSC2 (mTOR cell proliferation)
 - HIF-1α (angiogenesis)
 - α -Tubulin

protein stability, activity and sorting

Naa10 function

localization of Naa10

Immunofluorescence

- HEK293 cells +/- V5-hNaa10 wt or mutants
- IF with anti-V5

V5-Naa10 wt

interaction of Naa10 and Naa15

Co-IP of Naa10 and Naa15 in HEK293 cells

• precipitating antibody: α -Myc

reduced interaction of Naa15 and Naa10 S37P?

interaction of Naa10 and Naa15

Co-IP of Naa10 and Naa15 in HEK293 cells

• precipitating antibody: α -V5

reduced interaction of Naa15 and Naa10 S37P?

Molecular basis for N-terminal acetylation by the heterodimeric NatA complex

Glen Liszczak^{1,2}, Jacob M Goldberg², Håvard Foyn³, E James Petersson², Thomas Arnesen^{3,4} & Ronen Marmorstein^{1,2}

VOLUME 20 NUMBER 9 SEPTEMBER 2013 NATURE STRUCTURAL & MOLECULAR BIOLOGY

Figure 1 Overall structure of the NatA complex bound to acetyl CoA. (a) Naa10p (teal) and Naa15p (brown) subunits, shown in cartoon, bound to acetyl CoA (CPK coloring and stick format). Only Naa15p helices that contact Naa10p are labeled. The dashed brown line represents a disordered loop region in Naa15p. The dimensions of the complex are 107 Å \times 85 Å \times 70 Å. (b) A 90° rotation of the view in **a**. Helices that are depicted in **c** and **d** are labeled. (c) Zoom view highlighting key residues that compose the predominantly hydrophobic interface between Naa10p α 1- α 2 and Naa15p α 29- α 30. (d) Zoom view of the intersubunit interface at the C-terminal region of Naa10p α 1 and the Naa15p α 25- α 27- α 28 helices.

doi:10.1038/nature12141

LETTER

De novo mutations in histone-modifying genes in congenital heart disease

Samir Zaidi^{1,2}*, Murim Choi^{1,2}*, Hiroko Wakimoto³, Lijiang Ma⁴, Jianming Jiang^{3,5}, John D. Overton^{1,6,7}, Angela Romano–Adesman⁸, Robert D. Bjornson^{7,9}, Roger E. Breitbart¹⁰, Kerry K. Brown³, Nicholas J. Carriero^{7,9}, Yee Him Cheung¹¹, John Deanfield¹², Steve DePalma³, Khalid A. Fakhro^{1,2}, Joseph Glessner¹³, Hakon Hakonarson^{13,14}, Michael J. Italia¹⁵, Jonathan R. Kaltman¹⁶, Juan Kaski¹², Richard Kim¹⁷, Jennie K. Kline¹⁸, Teresa Lee⁴, Jeremy Leipzig¹⁵, Alexander Lopez^{1,6,7}, Shrikant M. Mane^{1,6,7}, Laura E. Mitchell¹⁹, Jane W. Newburger¹⁰, Michael Parfenov³, Itsik Pe'er²⁰, George Porter²¹, Amy E. Roberts¹⁰, Ravi Sachidanandam²², Stephan J. Sanders^{1,23}, Howard S. Seiden²⁴, Mathew W. State^{1,23}, Sailakshmi Subramanian²², Irina R. Tikhonova^{1,6,7}, Wei Wang^{15,25}, Dorothy Warburton^{4,26}, Peter S. White^{14,15}, Ismee A. Williams⁴, Hongyu Zhao^{1,27}, Jonathan G. Seidman³, Martina Brueckner^{1,28}, Wendy K. Chung^{4,29}, Bruce D. Gelb^{22,24,30}, Elizabeth Goldmuntz^{14,31}, Christine E. Seidman^{3,5,32} & Richard P. Lifton^{1,2,6,7,33}

ID	Gene	Mutation	Dx	Other structural/neuro/ht-wt
1-00596	MLL2†	p.Ser1722Arg fs*9	LVO	Y/Y/N
1-00853	WDR5†	p.Lys7GIn	CTD	N/Y/N
1-00534	CHD7†	p.Gln1599*	CTD	Y/Y/Y
1-00230	KDM5A†	p.Arg1508Trp	LVO	N/N/Y
1-01965	KDM5B†	p.IVS12 + 1 G>A	LVO	N/N/Y
1-01907	UBE2B†	p.Arg8Thr	CTD	N/N/N
1-00075	RNF20†	p.Gln83*	HTX	Y/Y/Y
1-01260	USP44†	p.Glu71Asp	LVO	N/N/N
1-02020	SMAD2††	p.IVS6 +1 G>A	HTX	Y/N/N
1-02621	SMAD2††	p.Trp244Cys	HTX	Y/NA/N
1-01451	MED20	p.IVS2 + 2 T>C	HTX	N/Y/Y
1-01151	SUV420H1	p.Arg143Cys	CTD	N/Y/N
1-00750	HUWE1	p.Arg3219Cys	LVO	N/Y/N
1-00577	CUL3	p.lso145Phe fs*23	LVO	Y/Y/N
1-00116	NUB1	p.Asp310His	CTD	Y/Y/Y
1-01828	DAPK3	p.Pro193Leu	CTD	N/N/NA
1-03151	SUPT5H	n Glu451Asn		Ν/ΝΔ/Ν
1-00455	NAA15	p.Lys336Lys fs*6	HTX	Y/Y/N
1-00141	NAA15	p.Ser761*	CTD	N/NA/Y
1-01138	USP34	p.Leu432Pro	LVU	N/NA/N
1-00448	NF1	p.IVS6 +4 del A	CTD	N/NA/N
1-00802	PICH1	p.Arg831GIn	LVO	N/NA/N
1-02458	SOS1	p.Thr266Lys	Other	Y/Y/Y
1-02952	PITX2	p.Ala47Val	LVO	N/NA/N
1-01913	RAB10	p.Asn112Ser	Other	N/NA/N
1-00638	FBN2	p.Asp2191Asn	CTD	N/NA/N
1-00197	BCL9	p.Met1395Lys	LVO	N/NA/N
1-02598	LRP2	p.Glu4372Lys	HTX	N/NA/N

Table 2 | Genes of interest with *de novo* mutations in probands

Gene symbols are as in NCBI RefSeq database. Other structural/neuro/ht-wt denotes presence (Y) or absence (N) of other structural abnormalities, impaired cognitive speech or motor development, and height (ht) and/or weight (wt) less than 5th percentile for age, respectively. Further clinical details in Supplementary Tables 10 and 11. Associated syndromes: *MLL2*, Kabuki syndrome; *CHD7*, CHARGE syndrome; *CUL3*, pseudohypoaldosteronism, type 2E.

* Premature termination mutation.

†Gene involved in production, removal or reading of H3K4 methylation mark.

††Gene involved in removal of H3K27 methylation mark.

Del, deletion; Dx, diagnosis; fs, frameshift mutation; fsn, frameshift mutation followed by premature termination *n* codons later; NA, data not available.

Table S10. Chromatin modifying and other genes of interest with *de novo* mutations in CHD probands

	Cono	Heart Mutation		Primary Classification: Specific	Extragording Structural Anomalian	Neuro-	Somatic Growth		
ID Gene		Exp	[†] Mutation	Cardiovascular Diagnoses§	Extracardiac Structural Anomalies	mental	Ht(%)	Wt(%)	
1-00455	NAA15	214	p.Lys335Lys fs*6	HTX: Dextrocardia, TAPVR, LSVC, hypoplastic TV, DORV, hypoplastic RV, D-TGA, PS	Hydronephrosis, asplenia, malrotation	normal	50	50	
1-00141	NAA15	214	p.Ser761*	CTD: TOF, single LCA	No	n/a	<5	20	

[†]Heart expression refers to # reads per million at murine e14.5. Mutation denotes the impact on encoded protein in three letter code; * denotes termination mutation. *Frameshift* mutation in *MLL2*, *CUL3* and *NAA15*. 'IVS' stands for intervening sequence. 'fs' stands for frameshift. *Splice site* mutation in *KDM5B*, *MED20*, and *SMAD2* occur at 1st base of canonical splice donor of intron 12, at 2nd base of canonical splice donor of intron 2 and 1st base of canonical splice donor of intron 6 respectively.

[§]HLHS-hypoplastic left heart syndrome; Dbl AA-double aortic arch; TOF-tetralogy of Fallot; PAPVR-partial anomalous pulmonary venous return; LSVC-left superior vena cava; LA-left atrium; CAVC-complete atrioventricular canal defect; TAPVR- total anomalous pulmonary venous return; MV-mitral valve; BAV-bicuspid aortic valve; ASD-atrial septal defect; VSD- ventricular septal defect; PA-pulmonary atresia; RAI- right atrial isomerization.

Table S4. All <i>de novo</i> mutations with Bayesian QS≥50												Proband			Fa	ather	Mother		
ID	Primary Cardiac Classification	Gene	Mutation	Amino Acid Change	dbSNP	RefSeq NM Accesion IDs	RefSeq NP Accesion IDs	Chr	Position (hg19)	Base change	Mean Heart Exp.	Variant Quality Score	Ref Cov	Nonref Cov	Ref Cov	Nonref Cov	Ref Cov	Nonref Cov	Bayesian Quality Score
1-00141	CTD	NAA15	Nonsense	S761X	Novel	NM_057175	NP_476516	4	140306112	C>A	213.74	196	16	12	30	0	41	0	92
1-00455	HTX	NAA15	Frameshift	D335	Novel	_ NM_057175	_ NP_476516	4	140272757	-AAAG	213.74	Indel-Pass	s 68	17	57	0	72	0	100
1-01119	CTD	NAA16	Missense	R70C	Novel	NM_024561	NP_078837	13	41893010	C>T	12.47	228	142	121	234	0	219	0	100

"Model Organisms" to study this in?

• S. cerevisiae (yeast)

- S. pombe (yeast)
- C. elegans (worms)
- D. melanogaster (flies)
 - M. musculus (mouse)
- Microcebus (mouse lemur- primate)
 - C. Jacchus (marmoset-primate)
- Cell lines from the Ogden Syndrome boys
- Induced Pluripotent Stem (iPS) cells human

S. cerevesiae (yeast)

Figure 1. Life cycles of heterothallic and homothallic strains of *S. cerevisiae*. Heterothallic strains can be stably maintained as diploids and haploids, whereas homothallic strains are stable only as diploids, because the transient haploid cells switch their mating type, and mate.

hNaa10p-S37P is functionally impaired *in vivo* using a yeast model.

Unpublished data, do not further distribute.

Open question: Function of N-terminal acetylation?

Protein stability? Protein secretion?

Figure courtesy of Kris Gevaert

NAA10 + NAA15

Cell Fractionation

Strain 18

MATa ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 ard1::LEU2 nat1::KanMX p[BEVY hNAT1 hARD1 URA3]

Strain 94

MATa ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 ard1::LEU2 nat1::KanMX p[BEVY hNAT1 hARD1-S37P URA3]

N-Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals

Cheol-Sang Hwang, Anna Shemorry, Alexander Varshavsky*

N-Terminal Acetylation Inhibits Protein Targeting to the Endoplasmic Reticulum

Gabriella M. A. Forte, Martin R. Pool*, Colin J. Stirling*

Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom

Abstract

Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%–80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species.

Proteomics Analysis of EBV-transformed cell lines from family members

= male 🝼

= female Q

= FFPE DNA (for patient III.7.) or DNA from blood available (and for some of them: EBV transformed cell lines available + skin fibroblast of patient III.6.)

SB = stillborn

f i

= proband

= patient samples analyzed by N-terminal COFRADIC analyses (#1 to #5)

= patient samples prepared for N-terminal COFRADIC analyses (but still to be analyzed) (#8 and #9)

- III.4. proband hemizygous, mutant (89323) (#1a) (#1b)
- II.2. mother of proband, carrier (89324) (#2)
- II.A. married-in father of proband, WT(89325)
- III.2. brother of proband, WT(90526) (#3)
- III.1. sister of proband, WT (90527) (#4)
- *I.2. grandmother of proband, carrier (90528)*
 - I.1. married-in grandfather of proband, WT(90529) (#5)
- II.7. aunt of proband, WT (90530) (#6)
- II.3. aunt of proband, carrier (90531)
- II.B. married-in uncle of proband, WT(90532) (#8)
- II.8. uncle of proband, WT(90688) (#9)
- II.5. aunt of proband, carrier with deceased boy (90797) (#7)

N-terminal COFRADIC

PROTOCOL

Selecting protein N-terminal peptides by combined fractional diagonal chromatography

An Staes^{1,2}, Francis Impens^{1,2}, Petra Van Damme^{1,2}, Bart Ruttens^{1,2}, Marc Goethals^{1,2}, Hans Demol^{1,2}, Evy Timmerman^{1,2}, Joël Vandekerckhove^{1,2} & Kris Gevaert^{1,2}

¹Department of Medical Protein Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium. ²Department of Biochemistry, Ghent University, Ghent, Belgium. Correspondence should be addressed to K.G. (kris.gevaert@vib-ugent.be).

Published online 14 July 2011; doi:10.1038/nprot.2011.355

In recent years, procedures for selecting the N-terminal peptides of proteins with analysis by mass spectrometry have been established to characterize protease-mediated cleavage and protein α -*N*-acetylation on a proteomic level. As a pioneering technology, N-terminal combined fractional diagonal chromatography (COFRADIC) has been used in numerous studies in which these protein modifications were investigated. Derivatization of primary amines—which can include stable isotope labeling—occurs before trypsin digestion so that cleavage occurs after arginine residues. Strong cation exchange (SCX) chromatography results in the removal of most of the internal peptides. Diagonal, reversed-phase peptide chromatography, in which the two runs are separated by reaction with 2,4,6-trinitrobenzenesulfonic acid, results in the removal of the C-terminal peptides and remaining internal peptides and the fractionation of the sample. We describe here the fully matured N-terminal COFRADIC protocol as it is currently routinely used, including the most substantial improvements (including treatment with glutamine cyclotransferase and pyroglutamyl aminopeptidase to remove pyroglutamate before SCX, and a sample pooling scheme to reduce the overall number of liquid chromatography—tandem mass spectrometry analyses) that were made since its original publication. Completion of the N-terminal COFRADIC procedure takes ~5 d.

Staes A et al. (2011) Nat. Protoc. 6, 1130-1141

Gevaert K et al. (2003) Nat. Biotechnol. 21, 566-569

Proteomics Strategy With Thomas Arnesen, Petra van Damme And Kris Gevaert

Internal peptides: hydrophobic shift: discarded

Some downstream substrates for NatA

AAAEEEDGGPEGPNR								Q99942	RNF5_HUMAN	E3 ubiquitin-	Membrane; Multi-pass
										protein ligase	membrane protein.
										RNF5	Mitochondrion
											membrane.
											Endoplasmic reticulum
	66	86	92	91	87	84	91				membrane.
AADTQVSETLKR								Q92616	GCN1L_HUMAN	Translational	
	52	80	84	84	80	81	85			activator GCN1	
AAESALQVVEKLQAR								Q14241	ELOA1_HUMAN	Transcription	Nucleus.
										elongation factor	
	58	89	92	92	87	87	92			B polypeptide 3	
AVFADLDLR								P78346	RPP30_HUMAN	Ribonuclease P	Nucleus;nucleolus.
										protein subunit	
	66	95	96	96	96	95	100			p30	
MVEKEEAGGGISEEEAAQYDR								Q9UBE0	SAE1_HUMAN	SUMO-activating	Nucleus.
	69	90	91	94	91	95	96			enzyme subunit 1	
MLGAPDESSVR								Q7Z4S6	KI21A_HUMAN	Kinesin-like	Cytoplasm;cytoskeleton.
	51	79	74	79	70	72	80			protein KIF21A	
MLSPEAER								Q9NUG6	PDRG1_HUMAN	p53 and DNA	Cytoplasm.
										damage-regulated	
	74	97	97	97	96	97	97			protein 1	

AAGGGGGSSKASSSASSAGALESSLDR								Q5VT52	RPRD2_HUMAN	Regulation of	
										nuclear pre-mRNA	
										domain-containing	
	72	85	84	85	82	84	87			protein 2	
GEEANDDKKPTTKFELER								Q92989	CLP1_HUMAN	Polyribonucleotide	Nucleus.
										5'-hydroxyl-kinase	
	79	91	93	93	94	93	92			Clp1	

pubs.acs.org/acschemicalbiology

Letters

Design, Synthesis, and Kinetic Characterization of Protein N-Terminal Acetyltransferase Inhibitors

Håvard Foyn,^{†,‡,§} Justin E. Jones,[§] Dan Lewallen,[§] Rashmi Narawane,[†] Jan Erik Varhaug,^{‡,||} Paul R. Thompson,^{*,§} and Thomas Arnesen^{*,†,‡}

[†]Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway

[‡]Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway

[§]Department of Chemistry, The Scripps Research Institute, 120 Scripps Way, Jupiter, Florida 33458, United States

^{II}Department of Surgical Sciences, University of Bergen, N-5020 Bergen, Norway

Summary

- Found first human genetic disease involving Nt-acetylation of proteins
- Characterizing the Nt-acetylation pathway both *in vitro* and *in vivo*
- Working toward identifying interacting components and more downstream substrates of NatA complex.