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Figure 4.	

	


Figure 4. NAT activity of recombinant hNaa10p WT or p.Ser37Pro 
towards synthetic N-terminal peptides. A) and B) Purified MBP-hNaa10p 
WT or p.Ser37Pro were mixed with the indicated oligopeptide substrates (200 
µM for SESSS and 250 µM for DDDIA) and saturated levels of acetyl-CoA 
(400 µM). Aliquots were collected at indicated time points and the acetylation 
reactions were quantified using reverse phase HPLC peptide separation. 
Error bars indicate the standard deviation based on three independent 
experiments. The five first amino acids in the peptides are indicated, for 
further details see materials and methods. Time dependent acetylation 
reactions were performed to determine initial velocity conditions when 
comparing the WT and Ser37Pro NAT-activities towards different 
oligopeptides. C) Purified MBP-hNaa10p WT or p.Ser37Pro were mixed with 
the indicated oligopeptide substrates (200 µM for SESSS and AVFAD, and 
250 µM for DDDIA and EEEIA) and saturated levels of acetyl-CoA (400 µM) 
and incubated for 15 minutes (DDDIA and EEEIA) or 20 minutes (SESSS and 
AVFAD), at 37°C in acetylation buffer. The acetylation activity was determined 
as above. Error bars indicate the standard deviation based on three 
independent experiments. Black bars indicate the acetylation capacity of the 
MBP-hNaa10p wild type (WT), while white bars indicate the acetylation 
capacity of the MBP-hNaa10p mutant p.Ser37Pro. The five first amino acids 
in the peptides are indicated. 
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The	  role	  of	  thyroid	  hormone	  in	  cre4nism,	  which	  is	  
caused	  by	  lack	  of	  iodine	  during	  maternal	  
pregnancy,	  so	  this	  is	  an	  environmentally	  triggered	  
disease.	  
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Bacterial	  communica/on	  via	  small	  molecules	  
	  and	  pep/des	  

O

O H
N

O
R

Acyl Homoserine 
Lactones (AHL’s) =  

R = (CH2)nCH3, 
CO(CH2)nCH3 

Autoinducing 
Peptides (AIP’s) =  

~6-10 amino acid peptides 

Modifications include 
geranylation, thiolactone 
formation (cyclization)  

Lyon, G. & Muir, T.W., Chem. Biol. 2004	

Bassler, B., Cell, 2004, 109, 421	






I	  moved	  to	  Utah	  in	  July	  2009	  to	  find	  at	  least	  
one	  new	  human	  disease,	  thus	  revealing	  new	  
biology.	  
	  

u  July	  2009-‐December	  2009:	  AGended	  weekly	  
gene4cs	  case	  conference	  in	  which	  10-‐30	  gene4c	  
cases	  are	  presented	  weekly,	  led	  by	  Dr.	  Alan	  Rope	  
and	  aGended	  by	  Drs.	  John	  Carey	  and	  John	  Opitz.	  

	  

u  There	  are	  indeed	  MANY	  idiopathic	  disorders	  not	  
described	  in	  the	  literature,	  many	  of	  which	  have	  
neuropsychiatric	  manifesta4ons.	  I	  thought	  about	  
hundreds	  of	  such	  cases,	  looking	  for	  the	  ideal	  first	  
family	  to	  sequence.	  



Discovering	  a	  new	  syndrome	  and	  its	  
gene/c	  basis.	  



I	  met	  the	  en/re	  family	  on	  March	  29,	  2010	  

Photo	  of	  mother	  
with	  son	  in	  late	  1970’s	  



First	  boy.	  Called	  “a	  li[le	  old	  man”	  by	  
the	  family.	  Died	  around	  ~1	  year	  of	  
age,	  from	  cardiac	  arrhythmias.	  

This	  is	  the	  first	  boy	  in	  the	  late	  1970’s.	  



prominence	  of	  eyes,	  down-‐sloping	  palpebral	  fissures,	  thickened	  
eyelids,	  large	  ears,	  beaking	  of	  nose,	  flared	  nares,	  hypoplas/c	  nasal	  
alae,	  short	  columella,	  protruding	  upper	  lip,	  micro-‐retrognathia	  
	  

This	  is	  the	  “Proband”	  photograph	  presented	  at	  Case	  Conference.	  



Family	  now	  in	  October	  2011,	  with	  five	  muta4on-‐
posi4ve	  boys	  dying	  from	  the	  disease.	  

I

II 

III 

1 +/ 2 +/mt 

1 mt/ 

1

2 +/mt 

2 +/ 3 +/+ 4 mt/ 

3  +/mt 

5 7 mt/ 

4 5 +/mt 6 7 +/+ 8 +/ 

SB 

6 mt/ 



An	  unrelated	  second	  family	  was	  also	  
iden/fied,	  due	  to	  sharing	  the	  same	  
genotype,	  i.e.	  the	  same	  muta/on.	  

II-1 III-2 

Contributed	  by	  Les	  Biesecker	  and	  colleagues	  at	  NIH	  



Ogden	  Syndrome	  –	  in	  2011	  	  

We	  found	  the	  SAME	  muta/on	  in	  two	  unrelated	  families,	  with	  a	  very	  similar	  
phenotype	  in	  both	  families,	  helping	  prove	  that	  this	  genotype	  contributes	  to	  the	  
phenotype	  observed.	  



These	  are	  the	  Major	  Features	  of	  the	  Syndrome.	  



II-1 III-2 

A	  

B	  

C	   D	  

II-‐1	   II-‐6	   III-‐7	  III-‐4	   III-‐6	  



u We	  performed	  X-‐chromosome	  exon	  capture	  
with	  Agilent,	  followed	  by	  Next	  Gen	  
Sequencing	  with	  Illumina.	  

u We	  analyzed	  the	  data	  with	  ANNOVAR	  and	  
VAAST	  (Variant	  Annota4on,	  Analysis	  and	  
Search	  Tool).	  New	  computa4onal	  tools	  for	  
iden4fying	  disease-‐causing	  muta4ons	  by	  
individual	  genome	  sequencing.	  	  

	  
Yandell,	  M.	  et	  al.	  2011.	  “A	  probabilis/c	  disease-‐gene	  finder	  for	  personal	  
genomes.”	  Genome	  Res.	  21	  (2011).	  doi:10.1101/gr.123158.111.	  	  	  
	  
Wang,	  K.,	  Li,	  M.,	  and	  Hakonarson,	  H.	  (2010).	  ANNOVAR:	  func/onal	  annota/on	  
of	  gene/c	  variants	  from	  high-‐throughput	  sequencing	  data.	  Nucleic	  Acids	  Res	  
38,	  e164.	  
	  	  
	  
	  



VAAST	  integrates	  AAS	  &	  Variant	  frequencies	  
in	  a	  single	  probabilis4c	  framework	  	  

 
•   non-coding variants scored using allele frequency differences 

•  ni : frequency of variant type among all variants observed in 
Background and Target genomes 
 

•  ai: frequency of variant type among disease causing mutations in 
OMIM 

•  This approach means that every variant can be scored, non-synonymous,   
  synonymous, coding, and non-coding. Phylogenetic conservation not     
  required. 





Mutation 

WT 

C C C 
Pro37 

Proband  

Unaffected 
Brother 

C T T G G	  T C T C 
Ser37 

C 

T 

This is the mutation we found… one nucleotide change 
out of 6 billion nucleotides in a diploid genome… 



u Present	  in	  two	  unrelated	  families	  with	  very	  similar	  
phenotype	  of	  affected	  boys.	  

u Blinded	  Sanger	  sequencing	  showed	  perfect	  segrega4on	  of	  
the	  muta4on	  with	  the	  disease.	  Muta4on	  present	  in	  
Proband,	  Carrier	  Mother,	  Carrier	  Grandmother	  and	  other	  
carrier	  mothers.	  Absent	  in	  unaffected	  brother	  and	  
unaffected	  uncle.	  

u Also	  present	  in	  DNA	  from	  formalin-‐fixed	  paraffin-‐
embedded	  4ssue	  from	  two	  other	  deceased	  affected	  boys,	  
found	  in	  pathology	  department,	  saved	  in	  one	  case	  for	  30	  
years.	  

u Muta4on	  NOT	  present	  in	  ~6000	  exomes	  or	  genomes	  
sequenced	  at	  BGI,	  CHOP	  and	  Utah	  for	  other	  projects.	  

Proving Relevance of the mutation 



Ogden Syndrome, in honor of where the first family 
lives, in Ogden, Utah 



 
The mutation is a missense resulting in 

Serine to Proline change in Naa10p 
 

 - Ser 37 is conserved from yeast to human 
 - Ser37Pro is predicted to affect functionality 
  (SIFT and other prediction programs) 

    - Structural modelling of hNaa10p wt (cyan) and 
  S37P (pink)  

 
 
 
 
 
 
 



The	  muta4on	  disrupts	  the	  N-‐terminal	  
acetyla4on	  machinery	  (NatA)	  in	  

human	  cells.	  	  

Slide	  courtesy	  of	  Thomas	  Arnesen	  



Introduction: acetyltransferases 
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Figure 1.3: Nİ-acetylation. Lysine acetyltransferases (KATs) transfer the acetyl group of acetyl-CoA 
to the side chain of lysine, and thus remove the positive charge of the amino acid. Deacetylases 
(HDACs) catalyze the reverse reaction. 
 

1.2.3 NĮ-acetylation 

In NĮ-acetylation, the acetyl group of acetyl-CoA is transferred to the backbone of the 

N-terminal amino acid of the target protein (figure 1.4). 

 
Figure 1.4: NĮ-acetylation. The acetyl group of acetyl-CoA is irreversibly transferred to the N-
terminal amino acid of the target protein by an N-terminal acetyltransferase (NAT). 
 

The reaction takes place post-initial rather than post-translational [34] as the nascent 

protein is acetylated when 20-50 amino acids protrude from the ribosome [39]. NĮ-

acetylation neutralizes the positive charge of the protein N-terminal, which may affect 

the protein’s function, its stability, its interaction with other molecules and its 

susceptibility to further modifications [37]. Unlike Nİ-acetylation, N-terminal 

acetylation appears to be irreversible [37]. NĮ-acetylation occurs in all kingdoms of 

life, but the fraction of acetylated proteins varies widely. In mammals, supposedly 80-

90 % of all proteins are acetylated; more simple eukaryotes like yeast only show about 

50 % of acetylated proteins, while proteins in prokaryotes and archaea are rarely 

acetylated [40]. The methionine that resides at the N-terminal of most proteins is 

Nε-‐acetyla/on:	  Lysine	  Acetyla/on	  (KATs,	  HATs)	  
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Figure 1.3: Nİ-acetylation. Lysine acetyltransferases (KATs) transfer the acetyl group of acetyl-CoA 
to the side chain of lysine, and thus remove the positive charge of the amino acid. Deacetylases 
(HDACs) catalyze the reverse reaction. 
 

1.2.3 NĮ-acetylation 

In NĮ-acetylation, the acetyl group of acetyl-CoA is transferred to the backbone of the 

N-terminal amino acid of the target protein (figure 1.4). 

 
Figure 1.4: NĮ-acetylation. The acetyl group of acetyl-CoA is irreversibly transferred to the N-
terminal amino acid of the target protein by an N-terminal acetyltransferase (NAT). 
 

The reaction takes place post-initial rather than post-translational [34] as the nascent 

protein is acetylated when 20-50 amino acids protrude from the ribosome [39]. NĮ-

acetylation neutralizes the positive charge of the protein N-terminal, which may affect 

the protein’s function, its stability, its interaction with other molecules and its 

susceptibility to further modifications [37]. Unlike Nİ-acetylation, N-terminal 

acetylation appears to be irreversible [37]. NĮ-acetylation occurs in all kingdoms of 

life, but the fraction of acetylated proteins varies widely. In mammals, supposedly 80-

90 % of all proteins are acetylated; more simple eukaryotes like yeast only show about 

50 % of acetylated proteins, while proteins in prokaryotes and archaea are rarely 

acetylated [40]. The methionine that resides at the N-terminal of most proteins is 
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N-terminal processing in human cells 

Van Damme P et al., PLoS Genet, 2011 



Protein acetylation in higher eukaryotes 

CYTOPLASM NUCLEUS

KAT Ac

KDAC

posttranslational N-epsilon acetylation

KAT Ac

KDAC

1. 

2. 

-‐Irreversible	  
-‐N-‐terminus	  
-‐Cytoplasm 

-‐Reversible	  
-‐Lysine	  
-‐Nucleus-‐cytoplasm 

3. 
-‐Irreversible?	  
-‐N-‐terminus	  
-‐Vesicles	  etc. 



NAT	  ac4vity	  of	  recombinant	  hNaa10p	  
WT	  or	  p.Ser37Pro	  towards	  synthe4c	  

N-‐terminal	  pep4des	  	  

Assay	  performed	  in	  Thomas	  Arnesen	  lab	  



Protein	  Expression	  and	  purifica/on	  
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Expression plasmid was transformed in chemically competent E. coli BL21 DE3 (NEB). A starting culture (100 ml LB media + antibiotic) was incubated for 12 h  at 37°C. 30 ml of this culture were 

added to 400 ml expression culture (LB media + 1 % (m/v) glucose + antibiotic) and were incubated at 37°C until an optical density of 0.8 was reached. Expression was induced with 0.5 mM IPTG 

(Milipore) at 30°C for 1h. The bacteria were pelleted at 6000 x g for 15 min and resuspended in 8 ml lysis buffer (40 mM Tris/Cl, pH 8.0; 100 mM NaCl) or HIS-lysis buffer (50 mM NaH2PO4, 300 mM 

NaCl, pH 8,0). The cells were ultrasonificated on ice and cellular debris was pelleted at 20,800 x g  for 30 min at 4°C.

Protein was bound to 0.7 ml GSH beads/Glutathione sepharose (Sigma-Aldrich) or Ni-NTA (Qiagen), the beads were washed twice with lysis buffer or HIS-lysis buffer + 50 mM imidazole and purified 

protein was eluted with 20 mM L-Glutathione (Sigma-Aldrich) or 250 mM imidazole. Fractions of 0.5 ml were collected and aliquots separated on SDS-PAGE.
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(Milipore) at 30°C for 1h. The bacteria were pelleted at 6000 x g for 15 min and resuspended in 8 ml lysis buffer (40 mM Tris/Cl, pH 8.0; 100 mM NaCl) or HIS-lysis buffer (50 mM NaH2PO4, 300 mM 

NaCl, pH 8,0). The cells were ultrasonificated on ice and cellular debris was pelleted at 20,800 x g  for 30 min at 4°C.

Protein was bound to 0.7 ml GSH beads/Glutathione sepharose (Sigma-Aldrich) or Ni-NTA (Qiagen), the beads were washed twice with lysis buffer or HIS-lysis buffer + 50 mM imidazole and purified 

protein was eluted with 20 mM L-Glutathione (Sigma-Aldrich) or 250 mM imidazole. Fractions of 0.5 ml were collected and aliquots separated on SDS-PAGE.

   



Big	  Ques/ons	  though:	  
 

Simulated	  structure	  of	  S37P	  mutant	  	  

?	  

What	  is	  the	  molecular	  basis	  of	  Ogden	  syndrome?	  
•  Naa10/Naa15	  complex	  
•  Naa10	  localisa/on	  
•  Naa10	  func/on	  

what	  can	  we	  learn	  from	  ogden	  syndrome?	  
•  characterizing	  different	  model	  systems	  (fibroblasts,	  yeast,	  C.	  elegans)	  



These	  are	  the	  Major	  Features	  of	  the	  Syndrome.	  



Family	  1:	  II-‐1	  	  



Family	  1:	  II-‐1	  	  



Family	  1:	  II-‐6	  



Family	  1:	  III-‐4	  



Family	  1:	  III-‐6	  



Family	  1:	  III-‐6	  



Family	  1:	  III-‐6	  



These	  are	  the	  Major	  Features	  of	  the	  Syndrome.	  



Family	  2:	  II-‐1	  



Family	  2:	  II-‐1	  



Family	  2:	  III-‐2	  	  



Family	  2:	  III-‐2	  	  



Family	  2:	  III-‐4	  	  



NAA10/NatA is essential for life  
 
 

C. elegans 
 

T. Brucei 
 

D. melanogaster 
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The human N-Acetylome 

•  A majority of soluble human proteins are N-terminally acetylated 
•  NatA is a major protein modifying enzyme of the human proteome   
Arnesen T et al., Proc Natl Acad Sci USA, 2009; Van Damme P et al., PLoS Genet, 2011 
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Protein N-terminal acetyltransferases in cancer
TV Kalvik1 and T Arnesen1,2

The human N-terminal acetyltransferases (NATs) catalyze the transfer of acetyl moieties to the N-termini of 80 -- 90% of all
human proteins. Six NAT types are present in humans, NatA -- NatF, each is composed of specific subunits and each acetylates a
set of substrates defined by the N-terminal amino-acid sequence. NATs have been suggested to act as oncoproteins as well
as tumor suppressors in human cancers, and NAT expression may be both elevated and decreased in cancer versus non-cancer
tissues. Manipulation of NATs in cancer cells induced cell-cycle arrest, apoptosis or autophagy, implying that these enzymes
target a variety of pathways. Of particular interest is hNaa10p (human ARD1), the catalytic subunit of the NatA complex, which
was coupled to a number of signaling molecules including hypoxia inducible factor-1a, b-catenin/cyclin D1, TSC2/mammalian
target of rapamycin, myosin light chain kinase , DNA methyltransferase1/E-cadherin and p21-activated kinase-interacting
exchange factors (PIX)/Cdc42/Rac1. The variety of mechanistic links where hNaa10p acts as a NAT, a lysine acetyltransferase or
displaying a non-catalytic role, provide insights to how hNaa10p may act as both a tumor suppressor and oncoprotein.

Oncogene advance online publication, 5 March 2012; doi:10.1038/onc.2012.82

Keywords: N-terminal acetylation; NAT; Naa10p; oncoprotein; tumor suppressor

PROTEIN N-TERMINAL ACETYLATION
Most eukaryotic proteins undergo cotranslational and/or post-
translational modifications, and this is often crucial for their
regulation and function. One of the most common covalent
modifications in eukaryotes is Na-terminal acetylation (Nt-acetylation),
which is believed to occur on B80--90% of all soluble human
proteins and 50--70% of soluble yeast proteins.1 -- 4

Nt-acetylation was long believed to protect proteins from
degradation by increasing their stability.5 However, a recent study
suggests that Nt-acetylation of proteins may act as a general
degradation signal in yeast, being a central part of the N-end rule
pathway.6,7 Additional roles range from regulation of protein --
protein interactions,8 -- 11 sub-cellular targeting to membranous
compartments12 -- 17 and inhibition of endoplasmic reticulum
translocation,18 making this a very diverse protein modifier.19

PROTEIN N-TERMINAL ACETYLTRANSFERASES (NATs)
Nt-acetylation is a catalytic process where Na-terminal acetyl-
transferases (NATs) transfer an acetyl group from acetyl coenzyme
A (Ac-CoA) to the a-amino group of a polypeptide N-terminus.
This process occurs cotranslationally after the first 20 -- 50 residues
have left the ribosomal exit tunnel,20 -- 22 but Nt-acetylation has
also been shown to occur post-translationally.23,24

The amino-acid sequences of the N-termini determine which
proteins are Nt-acetylated and by which NAT the acetylation is
catalyzed.2,25,26 In humans, six different NATs have been defined
on the background of their unique subunits and their defined set
of substrates, although in recent years it was discovered that there
exists some overlap in the substrate profiles of the different NATs.
The human NATs have been classified as hNatA, hNatB, hNatC,
hNatD, hNatE and hNatF, where all have been found to associate
with ribosomes. Figure 1 summarizes the current knowledge
about their subunit composition and substrate specifici-
ties.1,2,15,27 -- 33 The NatA-E complexes are conserved throughout

evolution from yeast to humans with respect to substrate
specificity and the composition of the complexes.25,34 -- 36 NatF,
on the other hand, is present only in higher eukaryotes and its
presence may partially explain the higher level of Nt-acetylation
seen in humans as compared with yeast.2

Some of the catalytic NAT subunits were also demonstrated to
catalyze N-e-acetylation, which is the acetylation of e-lysine groups
on internal sites of proteins. This reaction is normally catalyzed by
lysine acetyltransferases (KATs).37 The fact that NAT subunits are
also found in non-ribosomal forms, including in the nucleus,15,28 --

30 may suggest that they have functions besides the co-
translational Nt-acetyltransferase activity.

Very recently, a mutation in hNAA10 was shown to be the
underlying cause of Ogden syndrome, a lethal infantile syndrome
in males. The resulting hNaa10p-Ser37Pro protein displayed
reduced NAT-activity, in agreement with a functional hNaa10p
being essential for development and life in humans.38 This is so far
the only NAT-mutation directly linked to disease.

The hallmarks of cancerous cells are their ability to escape
apoptosis, sustain an active cell proliferation and eventually
invade other tissues. Induction of apoptosis and/or reducing the
cell proliferation in cancer cells could retard the cancerous tissue
from developing and cure the patient. In the search for ways to
combat cancer, NATs and especially hNaa10p have emerged as
potential candidates for this task. In this review we will summarize
the current knowledge of the NATs in relation to cancer and
provide an overview of the properties of hNaa10p supporting its
candidacies as an oncoprotein and tumor suppressor.

Naa10p AS A PRO-PROLIFERATIVE AND ANTI-APOPTOTIC
PROTEIN IN CANCER CELLS
During the last couple of years, several studies have shed light on
the biological importance of hNaa10p and the human NatA
complex in cancer cells, both with respect to expression patterns
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and the multiple cellular pathways under its control. A growing
number of studies have reported that a high expression of hNaa10p
in certain cancers seems to correlate to a low survival rate and
aggressiveness of tumors.39,40 NAA10 was found overexpressed in
cancers of different types and tissues such as hepatocellular
carcinoma,41 colorectal cancer,40,42 lung cancer39,42 and breast
cancer.42,43 Overexpression of hNaa10p was also reported in the
urinary bladder cancer, breast cancer and cervical carcinoma.42

Experiments with the MCF-7 breast cancer cell line show that
expression of hNaa10p increases the proliferation of this cell line by
promoting passage of the G1/S and G2/M checkpoints as suggested
by flow cytometry analysis.43 The same study also confirmed that
hNaa10p expression is significantly higher in the breast cancer tissue
than in tissue adjacent to the cancerous tissue.43

Indeed, ectopic expression of hNaa10p increased cell prolifera-
tion and upregulation of genes involved in cell survival,
proliferation and metabolism.44 Among them was Beclin 1, a
protein involved in autophagy and anti-apoptotic pathways.45 In
agreement with these findings, it was observed that the cell
proliferation was markedly reduced in hNAA10 knockdown cells.
These studies strongly support a role for hNaa10p in promoting
cell proliferation and cell survival.

Furthermore, early studies reported that siRNA mediated
knockdown of hNAA10 and hNAA15 resulted in a significant
reduction of viable HeLa cells. This reduction in viability was
apparently caused by caspase-dependent apoptosis of G0/G1
phase cells.46 This phenotype was recently also confirmed for
human colon carcinoma HCT116 p53þ /þ cells treated with
sihNAA10, whereas HCT116 p53"/" cells showed reduced cell
growth.47 This latter study also pointed to pathways implicated in
the sihNAA10-induced apoptosis. Depletion of hNaa10p leads to
activation and stabilization of p53, specifically by phosphorylation
of Ser15. This indicates that the apoptosis observed is p53
dependent, and depletion of hNaa10p indeed leads to increased
transcription of p53-dependent pro-apotopic genes. The same
study shed light on the events upstream of p53 activation. They
reported that gH2A.X and chk2 were activated by phosphorylation
independent of the functional status of TP53. As activation of
gH2A.X and chk2 is normally seen with double-strand DNA breaks,
Gromyko et al.47 postulated that depletion of hNaa10p and

consequently loss of hNatA activity result in DNA damage
signaling through gH2A.X/chk2 module and phosphorylation of
Ser15 of p53 leading to the ultimate fate of apoptosis. Three
anaplastic thyroid carcinoma cell lines with non-functional TP53
were in the same study reported to be sensitized to chemother-
apeutic drugs in a drug and cell type specific manner by hNAA10
knockdown.47

In non-small lung cell cancer cells, knockdown of hNAA10 was
shown to suppress cell proliferation due to reduced cyclin D1
expression.48 This tendency was also reported in two anaplastic
thyroid carcinoma cell lines with non-functional TP53.47

In addition, the latter study also reported reduced levels of
cyclin E and an upregulation of cyclin-dependent kinase inhibitor
p27/Kip1, possibly contributing to cell-cycle arrest.47 Apparently,
the observed effects in non-small lung cell cancer cells are
mediated via hNaa10p catalyzed N-e-acetylation of one or more
lysine residues of b-catenin, a known regulator of cyclin D1
through binding to the cyclin D1 promoter.48 In addition, hNaa10p
synergetically activates the cyclin D1 promoter by activating AP-1
proteins (c-Jun and c-Fos) via the ERK1/2 pathway and in complex
with b-catenin induce the transcription of the cyclin D1
promoter.49 Cyclin D1 is a prominent regulator of cell proliferation
and has been coupled to tumorigenesis.50,51 In a separate study
where hNaa10p was depleted from anaplastic thyroid carcinoma
cells by RNAi, it was reported that the acetylation status of
b-catenin was unchanged.47 This could indicate that growth
inhibition and cell-cycle arrest mediated by reduced levels of
cyclin D1 can be independent of the hNaa10p-mediated regula-
tion of b-catenin, perhaps solely mediated via the ERK1/2-AP-1
pathway.

Studies by Lee et al.39 suggest yet another interaction partner of
hNaa10p that may influence its oncogenic properties, DNA
methyltransferase1 (DNMT1). DNMT1 is responsible for the
methylation of DNA and aberrant methylation is characteristic of
tumor development.52,53 hNaa10p directly interacts with DNMT1
and increases its enzymatic capability in an acetyltransferase (AT)-
independent manner by facilitating the interaction between
DNMT1 and its substrate DNA. Specifically, the oncogenic
potential of hNaa10p lies within its capability to recruit DNMT1
to the E-cadherin promoter, where DNMT1 can silence the

Figure 1. Overview of human NATs and their substrate specificities. The human NATs are composed of catalytic subunits (yellow) and auxiliary
subunits (green), and all are associated with ribosomes (blue). NatA potentially acetylates Ser-, Ala-, Thr-, Gly- and Val- N-termini after the iMet
has been removed by methionine aminopeptidases (MetAPs). NatB potentially acetylates Met-Asp-, Met-Glu- and Met-Asn-, whereas NatC may
target Met-Leu-, Met-Ile-, Met-Phe- and Met-Trp-. NatD apparently only acetylates the Ser- N-termini of histones H2A and H4. NatE and NatF
demonstrate some specificity towards NatC-type substrates as well as Met-Lys-, Met-Ala-, Met-Met- and Met-Val-. *NatA or hNaa10p may also
mediate post-translational acetylation of mature actins harboring Asp- and Glu- N-termini.
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promoting passage of the G1/S and G2/M checkpoints as suggested
by flow cytometry analysis.43 The same study also confirmed that
hNaa10p expression is significantly higher in the breast cancer tissue
than in tissue adjacent to the cancerous tissue.43

Indeed, ectopic expression of hNaa10p increased cell prolifera-
tion and upregulation of genes involved in cell survival,
proliferation and metabolism.44 Among them was Beclin 1, a
protein involved in autophagy and anti-apoptotic pathways.45 In
agreement with these findings, it was observed that the cell
proliferation was markedly reduced in hNAA10 knockdown cells.
These studies strongly support a role for hNaa10p in promoting
cell proliferation and cell survival.

Furthermore, early studies reported that siRNA mediated
knockdown of hNAA10 and hNAA15 resulted in a significant
reduction of viable HeLa cells. This reduction in viability was
apparently caused by caspase-dependent apoptosis of G0/G1
phase cells.46 This phenotype was recently also confirmed for
human colon carcinoma HCT116 p53þ /þ cells treated with
sihNAA10, whereas HCT116 p53"/" cells showed reduced cell
growth.47 This latter study also pointed to pathways implicated in
the sihNAA10-induced apoptosis. Depletion of hNaa10p leads to
activation and stabilization of p53, specifically by phosphorylation
of Ser15. This indicates that the apoptosis observed is p53
dependent, and depletion of hNaa10p indeed leads to increased
transcription of p53-dependent pro-apotopic genes. The same
study shed light on the events upstream of p53 activation. They
reported that gH2A.X and chk2 were activated by phosphorylation
independent of the functional status of TP53. As activation of
gH2A.X and chk2 is normally seen with double-strand DNA breaks,
Gromyko et al.47 postulated that depletion of hNaa10p and

consequently loss of hNatA activity result in DNA damage
signaling through gH2A.X/chk2 module and phosphorylation of
Ser15 of p53 leading to the ultimate fate of apoptosis. Three
anaplastic thyroid carcinoma cell lines with non-functional TP53
were in the same study reported to be sensitized to chemother-
apeutic drugs in a drug and cell type specific manner by hNAA10
knockdown.47

In non-small lung cell cancer cells, knockdown of hNAA10 was
shown to suppress cell proliferation due to reduced cyclin D1
expression.48 This tendency was also reported in two anaplastic
thyroid carcinoma cell lines with non-functional TP53.47

In addition, the latter study also reported reduced levels of
cyclin E and an upregulation of cyclin-dependent kinase inhibitor
p27/Kip1, possibly contributing to cell-cycle arrest.47 Apparently,
the observed effects in non-small lung cell cancer cells are
mediated via hNaa10p catalyzed N-e-acetylation of one or more
lysine residues of b-catenin, a known regulator of cyclin D1
through binding to the cyclin D1 promoter.48 In addition, hNaa10p
synergetically activates the cyclin D1 promoter by activating AP-1
proteins (c-Jun and c-Fos) via the ERK1/2 pathway and in complex
with b-catenin induce the transcription of the cyclin D1
promoter.49 Cyclin D1 is a prominent regulator of cell proliferation
and has been coupled to tumorigenesis.50,51 In a separate study
where hNaa10p was depleted from anaplastic thyroid carcinoma
cells by RNAi, it was reported that the acetylation status of
b-catenin was unchanged.47 This could indicate that growth
inhibition and cell-cycle arrest mediated by reduced levels of
cyclin D1 can be independent of the hNaa10p-mediated regula-
tion of b-catenin, perhaps solely mediated via the ERK1/2-AP-1
pathway.

Studies by Lee et al.39 suggest yet another interaction partner of
hNaa10p that may influence its oncogenic properties, DNA
methyltransferase1 (DNMT1). DNMT1 is responsible for the
methylation of DNA and aberrant methylation is characteristic of
tumor development.52,53 hNaa10p directly interacts with DNMT1
and increases its enzymatic capability in an acetyltransferase (AT)-
independent manner by facilitating the interaction between
DNMT1 and its substrate DNA. Specifically, the oncogenic
potential of hNaa10p lies within its capability to recruit DNMT1
to the E-cadherin promoter, where DNMT1 can silence the
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has been removed by methionine aminopeptidases (MetAPs). NatB potentially acetylates Met-Asp-, Met-Glu- and Met-Asn-, whereas NatC may
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between Lys29 and Gln15 of Naa10p and Asp532 and Gln491 of 
Naa15p. Single point mutations in this region did not break up the 
complex and had only modest effects on substrate binding and cataly-
sis (Table 2), probably owing to the extensiveness of the interface. 
A smaller hydrophobic interface is formed between Naa10p His20 
and Naa15p Phe449 and Trp494 and is supplemented with a hydro-
gen bond between Naa10p Gln25 and Naa15p Arg448. This region 
of Naa15p directly stabilizes the position of the Naa10p 1 helix as 
well as the Naa10p 1– 2 loop and as a result is crucial for proper 
complex formation. This is evident from the observation that alanine 
point mutations at either Naa15p Arg448 or Naa15p Phe449 were 
able to disrupt NatA complex formation. Several additional scattered 
intermolecular interactions serve to supplement the Naa10p-Naa15p 
interface (Supplementary Fig. 3).

Molecular basis for Naa15p modulation of Naa10p acetylation
To explore the molecular basis for Naa15p modulation of Naa10p 
acetyltransferase activity, we determined the X-ray crystal structure of 
Naa10p of S. pombe in the absence of Naa15p, for comparison with the 
holo-NatA complex (Table 1). We determined the structure of Naa10p 
(residues 1–156) to 2.00-Å resolution, using a combination of single- 
wavelength anomalous diffraction and molecular replacement (model, 
NAA50) to phase data collected on a selenomethionine-derivatized 
Naa10p protein. An alignment of the complexed and uncomplexed 
forms of Naa10p revealed that the 1–loop– 2 segment assumes  
a substantially different conformation in the presence of Naa15p  
(Fig. 2a). Notably, this conformational change is driven by the move-
ment of several hydrophobic residues in Naa10p 2 (Leu28, Leu32 
and Ile36), which make intramolecular interactions with residues in 
Naa10p 1 and 3 (Ile8, Leu11, Met14, Tyr55 and Tyr57) in apo-
Naa10p but shift to make alternative intermolecular interactions 
with helices of Naa15p in the NatA complex (Figs. 1c and 2b). As 
a result of this interaction, the C-terminal region of the 1 helix 
undergoes an additional helical turn, which helps to reposition the 

1– 2 loop. Notably, docking of the apo-Naa10p structure into the 
corresponding binding pocket of Naa15p showed a clash between the 
Naa10p 1–loop– 2 and Naa15p Arg448 and Naa15p Phe449 of 25  
(Fig. 2c)—the same interface that we have shown to be necessary for 
proper complex formation (Fig. 1d and Table 2).

As a result of the Naa15p interaction along one side of the Naa10p 
1–loop– 2 region, residues on the opposite side of this loop region 

appear to adopt a specific conformation that is essential for catalysis 

of traditional substrates (alanine, cysteine, glycine, serine, threonine 
or valine) (Supplementary Videos 2 and 3). Specifically, Naa10p  
residues Leu22 and Tyr26 shift about 5.0 Å from surface-exposed 
positions to buried positions in the active site, and Naa10p Glu24 
moves by about 4.0 Å, substantially altering the landscape of the NatA 
active site (Fig. 2d). All of these residues are well ordered in both 
structures (Supplementary Fig. 4). Our comparison of the com-
plexed and uncomplexed structures suggests that the auxiliary subunit 
induces an allosteric change in the Naa10p active site to an extent that 
is required for the mechanism of catalysis by the NatA complex, and 
Naa10p is likely to represent an active GNAT fold. Consistent with 
this hypothesis, a backbone alignment of key active site elements in 
active Naa10p with the corresponding region in the independently 
active human NAA50 that selects a 1-Met-Leu-2 N-terminal sequence  
shows a high degree of structural conservation (r.m.s. deviation of 
1.52 Å). The corresponding alignment of the complexed and uncom-
plexed forms of Naa10p showed less structural conservation, with an 
r.m.s. deviation of 2.43 Å (Fig. 2e).

Substrate peptide binding and NatA inhibition
To determine the molecular basis for substrate-specific peptide bind-
ing by NatA, and in particular how, unlike most other NATs, it is able 
to accommodate a number of nonmethionine N-terminal substrates, 
we synthesized a bisubstrate conjugate in which CoA is covalently 
linked to a biologically relevant substrate peptide fragment with the 
sequence 1-SASEA-5 (CoA-SASEA). We performed inhibition stud-
ies with CoA-SASEA and with a control compound, acetonyl CoA, 
which is a nonhydrolyzable acetyl CoA analog (Fig. 3a). Half-maxi-
mum inhibitory concentration (IC50) determinations revealed that 
CoA-SASEA had an IC50 of 1.4  1.0 M, whereas acetonyl CoA 
had an IC50 of 380  10 M (Fig. 3b). To assess the specificity of this 
inhibitor toward NatA, we also calculated IC50 values of CoA-SASEA 
and acetonyl CoA with NAA50, a NAT that requires a substrate  
N-terminal methionine residue. We found that CoA-SASEA has an 
IC50 of 11  2 M, whereas acetonyl CoA has an IC50 of 130  12 M 
(Fig. 3b). With NAA50, the addition of a SASEA peptide portion 
was able to increase the potency of acetonyl CoA by only about ten-
fold, whereas with NatA this peptide addition exhibited an increase 
in potency of about 300-fold. The greater potency of acetonyl CoA 
with NAA50 over Naa10p can be explained by the stronger binding of 
acetyl CoA to NAA50 (Km = 27  2 M) than to Naa10p (Km = 59   
5 M). The markedly higher potency of the CoA-SASEA inhibitor 
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The cotranslational process of N-terminal acetylation occurs on ~85% 
of human proteins and ~50% of yeast proteins and mediates a wide 
range of biological processes including cellular apoptosis, enzyme 
regulation, protein localization and the N-end rule for protein degra-
dation1–6. At least three NAT complexes that perform this modifica-
tion, NatA, NatB and NatC, exist as heterodimers with one unique 
catalytic subunit and an additional unique auxiliary subunit that both 
activates the enzymatic component and anchors the complex to the 
ribosome during translation7–13. Aberrant expression of the proteins 
that make up the NatA complex has been observed in a number of 
cancer-cell tissues; consequently, NAT enzymes are emerging targets 
for chemotherapeutic development14–21.

The three NAT complexes are highly conserved in eukaryotes  
from yeast to humans and are differentiated from one another on the 
basis of their substrate specificities1,5,22–24. NatA, which is composed 
of the catalytic NAA10 subunit and the auxiliary NAA15 subunit, is 
the most promiscuous of all NAT enzymes; classically, it acetylates an 
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recent studies demonstrate that NAA10 also exists as a monomer  
in cells and that it can acetylate the -amino group of substrates 
with N-terminal aspartate and glutamate residues that can be gen-
erated post-translationally, but it will not acetylate traditional  
NatA substrates26. The NatB and NatC complexes acetylate the  
N termini of proteins with an N-terminal methionine with further 
specificity dependent upon the identity of the second residue13,23,25,27. 
Although NATs as well as many other lysine side chain acetyl-
transferases require binding partners for optimal catalytic activity,  

no acetyltransferase has been structurally characterized in the  
presence of its activating partner28–30.

Three additional NAT enzymes, NatD–NatF, have been identified 
and appear to be independently active. They also have a more limited  
set of biologically relevant substrates and are not well characterized 
across eukaryotes31–35. Currently, there is no structure of a NAT 
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strate-specific catalytic regulation by the auxiliary subunits remains 
uncharacterized. The only eukaryotic NAT for which structural data 
is available is the human NatE (NAA50) enzyme, which is independ-
ently active and has only one known biologically relevant substrate; 
this substrate, containing a 1-MLGP-4 N-terminal sequence, was 
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acetylates a unique subset of substrates, and carried out structure-
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N-terminal acetylation is ubiquitous among eukaryotic proteins and controls a myriad of biological processes. Of the N-terminal 
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subunit, an interaction that alters the Naa10p active site for substrate-specific acetylation. These studies have implications  
for understanding the mechanistic details of other NAT complexes and how regulatory subunits modulate the activity of the 
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De novo mutations in histone-modifying genes in
congenital heart disease
Samir Zaidi1,2*, Murim Choi1,2*, Hiroko Wakimoto3, Lijiang Ma4, Jianming Jiang3,5, John D. Overton1,6,7,
Angela Romano-Adesman8, Robert D. Bjornson7,9, Roger E. Breitbart10, Kerry K. Brown3, Nicholas J. Carriero7,9,
Yee Him Cheung11, John Deanfield12, Steve DePalma3, Khalid A. Fakhro1,2, Joseph Glessner13, Hakon Hakonarson13,14,
Michael J. Italia15, Jonathan R. Kaltman16, Juan Kaski12, Richard Kim17, Jennie K. Kline18, Teresa Lee4, Jeremy Leipzig15,
Alexander Lopez1,6,7, Shrikant M. Mane1,6,7, Laura E. Mitchell19, Jane W. Newburger10, Michael Parfenov3, Itsik Pe’er20,
George Porter21, Amy E. Roberts10, Ravi Sachidanandam22, Stephan J. Sanders1,23, Howard S. Seiden24, Mathew W. State1,23,
Sailakshmi Subramanian22, Irina R. Tikhonova1,6,7, Wei Wang15,25, Dorothy Warburton4,26, Peter S. White14,15, Ismee A. Williams4,
Hongyu Zhao1,27, Jonathan G. Seidman3, Martina Brueckner1,28, Wendy K. Chung4,29, Bruce D. Gelb22,24,30,
Elizabeth Goldmuntz14,31, Christine E. Seidman3,5,32 & Richard P. Lifton1,2,6,7,33

Congenital heart disease (CHD) is the most frequent birth defect,
affecting 0.8% of live births1. Many cases occur sporadically and
impair reproductive fitness, suggesting a role for de novo muta-
tions. Here we compare the incidence of de novo mutations in 362
severe CHD cases and 264 controls by analysing exome sequencing
of parent–offspring trios. CHD cases show a significant excess of
protein-altering de novo mutations in genes expressed in the deve-
loping heart, with an odds ratio of 7.5 for damaging (premature
termination, frameshift, splice site) mutations. Similar odds ratios
are seen across the main classes of severe CHD. We find a marked
excess of de novo mutations in genes involved in the production,
removal or reading of histone 3 lysine 4 (H3K4) methylation,
or ubiquitination of H2BK120, which is required for H3K4
methylation2–4. There are also two de novo mutations in SMAD2,
which regulates H3K27 methylation in the embryonic left–right
organizer5. The combination of both activating (H3K4 methyla-
tion) and inactivating (H3K27 methylation) chromatin marks
characterizes ‘poised’ promoters and enhancers, which regulate
expression of key developmental genes6. These findings implicate
de novo point mutations in several hundreds of genes that collec-
tively contribute to approximately 10% of severe CHD.

From more than 5,000 probands enrolled in the Congenital Heart
Disease Genetic Network Study of the National Heart, Lung, and Blood
Institute Paediatric Cardiac Genomics Consortium7, we selected 362
parent–offspring trios comprising a child (proband) with severe CHD
and no first-degree relative with identified structural heart disease. Pro-
bands with an established genetic diagnosis were excluded. There were 154
probands with conotruncal defects, 132 with left ventricular obstruction,
70 with heterotaxy and six with other diagnoses (Supplementary Table 1).

Genomic DNA samples from trios underwent exome sequencing8

(see Methods). Targeted bases in each sample were sequenced a mean of
107 times by independent reads, with 96.0% read eight or more times. In
parallel, 264 trios comprising unaffected siblings of autism cases and
their unaffected parents (Supplementary Table 1) were sequenced in the
same facility using the same protocol and were analysed as a control
group9 (Supplementary Table 2 and Supplementary Fig. 1). Family
relationships were confirmed from sequence data in all trios.

High-probability de novo variants in probands were identified using
a Bayesian quality score (QS; see Methods). Sanger sequencing of 181
putative de novo mutations across the QS spectrum demonstrated
strong correlation of confirmation with QS (R2 5 0.89), with 100%
confirmation of 90 calls with QS . 50 (Supplementary Table 3 and
Supplementary Fig. 2). Consequently, de novo mutation calls with
QS $ 50 were included in the study; this set is estimated to include
90% of mutations with QS . 0, with ,100% specificity; 90% of these
have the maximum QS of 100 (Supplementary Fig. 3). Sensitivity is
further diminished by ,5% owing to bases with very low read cover-
age. We found 0.88 de novo mutations per subject in CHD cases and
0.85 in controls. These mutation rates (1.34 and 1.29 3 1028 per tar-
geted base) are not significantly different (P 5 0.63, binomial test) and
are similar to previous estimates10. The set of de novo mutations is
shown in Supplementary Table 4.

CHD cases and controls had very similar maternal and paternal
ages, which had a small effect on the mutation rate (Supplementary
Fig. 4). We found no significant effect of geographic ancestry on the
mutation rate (Supplementary Fig. 5). The number of de novo muta-
tions per subject closely approximated the Poisson distribution, pro-
viding no evidence for mutation clustering (Supplementary Fig. 6).

*These authors contributed equally to this work.
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(missense), encoding a histone H4 methylase; MED20 (splice site), a
component of the mediator complex; HUWE1 (missense), a ubiquitin
ligase targeting histones and TP53; CUL3 (frameshift), a scaffold for
assembly of many RING ubiquitin ligases8; and NUB1 (missense), which
inhibits NEDD8, a cofactor for cullin-based ubiquitin ligases. Last,
NAA15, an N-acetyltransferase13, had two damaging mutations, unlikely
a chance event (P 5 0.01, Monte Carlo simulation). Among the 17 above
genes, ten have no damaging variants and seven have one to five among
.9,500 exomes in National Heart, Lung, and Blood Exome Sequencing
Project, 1000 Genomes and Yale exome databases.

Phenotypes of the eight patients with de novo mutations in the
H3K4me pathway revealed diverse cardiac phenotypes (Table 2 and
Supplementary Table 10). Other structural, neurodevelopmental and
growth abnormalities were common. In addition, consistent with a
role in left–right axis determination5, both patients with SMAD2
mutations had dextrocardia with unbalanced complete atrioventricu-
lar canal and pulmonary stenosis. For other genes mutated more than
once (for example, NAA15), probands had dissimilar cardiac pheno-
types (Supplementary Table 11).

Before initiating exome sequencing, we defined a set of 277 candid-
ate CHD genes (Supplementary Table 12) from human and model
system studies. There were 13 CHD probands with de novo mutations
in these genes (Table 2 and Supplementary Table 13), more than
expected by chance (P 5 7 3 1024, Monte Carlo simulation) or in
controls (n 5 1; P 5 0.006, binomial test). This set included several
genes known to cause Mendelian CHD; however, affected subjects
lacked cardinal disease manifestations or had atypical cardiac features.
For example, the patient with the CHD7 mutation had none of the
main criteria (coloboma, choanal atresia or hypoplastic semicircular
canals) for CHARGE syndrome12. Similarly, the patient with the MLL2
mutation was not prospectively diagnosed with Kabuki syndrome;
however, re-evaluation at age 2 after sequencing identified character-
istic facial features. Additionally, a patient with an NF1 mutation had a

complex conotruncal defect, an unusual finding in neurofibromatosis.
These findings support variable expressivity and a broader phenotypic
spectrum resulting from mutations at known disease loci. Other genes
of interest in this set included RAB10 and BCL9, identified as candi-
dates by rare de novo copy-number variants14.

Our results implicate de novo point/insertion–deletion (indel)
mutations that by chance occur in genes required for normal heart
development in the pathogenesis of diverse CHDs. Consistent with
this inference, genes with damaging and conserved missense muta-
tions in CHD probands showed higher expression in E14.5 mouse
heart compared to controls (Supplementary Fig. 8; median 45 versus
16 r.p.m.; P 5 5 3 1024, Wilcoxon signed-rank test), whereas expres-
sion of genes with silent mutations show no significant difference
(median 21 versus 19 r.p.m.; P 5 0.7, Wilcoxon signed-rank test).
Expression at E9.5 shows similar results (Supplementary Fig. 8). The
increased mutation burden of HHE genes in cases is not due to a higher
intrinsic mutation rate of these genes because the rate is significantly
higher than in controls; moreover, there is no significant difference in
mutation rate between HHE and LHE genes in controls. Further, par-
titioning genes into analogous high- and low-expression groups for
four control adult tissues (brain, heart, liver and lung) showed no
significant differences in mutation burden between cases and controls
or between high- and low-expression groups (Supplementary Fig. 9).

From the increased fraction of patients with protein-altering muta-
tions in HHE genes in CHD patients (0.22) versus controls (0.12), we
estimate that such mutations have a role in about 10% of these patients
(95% confidence interval, 5–15%). This could be somewhat underesti-
mated, as mutation detection is incomplete, analysis is limited to genes
with identified mouse orthologues, and the HHE set may not include all
trait loci. Similarly, the observed odds ratios may be somewhat under-
estimated as not all mutations in cases are likely to confer risk.

These findings establish that mutations in many genes in the
H3K4me–H3K27me pathway disrupt cardiac development and are
consistent with previous evidence implicating these chromatin marks
in regulating key developmental genes6, including those involved in
cardiac development15,16. Targeted sequencing in larger CHD cohorts
will enable assessment of the role of each individual gene in this path-
way. These findings imply dosage sensitivity for these chromatin
marks in CHD, similar to recent findings implicating haploin-
sufficiency for chromatin modifying/remodelling genes in diverse

Table 2 | Genes of interest with de novo mutations in probands
ID Gene Mutation Dx Other structural/neuro/ht-wt

1-00596 MLL2{ p.Ser1722Arg fs*9 LVO Y/Y/N
1-00853 WDR5{ p.Lys7Gln CTD N/Y/N
1-00534 CHD7{ p.Gln1599* CTD Y/Y/Y
1-00230 KDM5A{ p.Arg1508Trp LVO N/N/Y
1-01965 KDM5B{ p.IVS12 1 1 G.A LVO N/N/Y
1-01907 UBE2B{ p.Arg8Thr CTD N/N/N
1-00075 RNF20{ p.Gln83* HTX Y/Y/Y
1-01260 USP44{ p.Glu71Asp LVO N/N/N
1-02020 SMAD2{{ p.IVS6 11 G.A HTX Y/N/N
1-02621 SMAD2{{ p.Trp244Cys HTX Y/NA/N
1-01451 MED20 p.IVS2 1 2 T.C HTX N/Y/Y
1-01151 SUV420H1 p.Arg143Cys CTD N/Y/N
1-00750 HUWE1 p.Arg3219Cys LVO N/Y/N
1-00577 CUL3 p.Iso145Phe fs*23 LVO Y/Y/N
1-00116 NUB1 p.Asp310His CTD Y/Y/Y
1-01828 DAPK3 p.Pro193Leu CTD N/N/NA
1-03151 SUPT5H p.Glu451Asp LVO N/NA/N
1-00455 NAA15 p.Lys336Lys fs*6 HTX Y/Y/N
1-00141 NAA15 p.Ser761* CTD N/NA/Y
1-01138 USP34 p.Leu432Pro LVO N/NA/N
1-00448 NF1 p.IVS6 14 del A CTD N/NA/N
1-00802 PTCH1 p.Arg831Gln LVO N/NA/N
1-02458 SOS1 p.Thr266Lys Other Y/Y/Y
1-02952 PITX2 p.Ala47Val LVO N/NA/N
1-01913 RAB10 p.Asn112Ser Other N/NA/N
1-00638 FBN2 p.Asp2191Asn CTD N/NA/N
1-00197 BCL9 p.Met1395Lys LVO N/NA/N
1-02598 LRP2 p.Glu4372Lys HTX N/NA/N

Gene symbols are as in NCBI RefSeq database. Other structural/neuro/ht-wt denotes presence (Y) or
absence (N) of other structural abnormalities, impaired cognitive speech or motor development, and
height (ht) and/or weight (wt) less than 5th percentile for age, respectively. Further clinical details in
Supplementary Tables 10 and 11. Associated syndromes: MLL2, Kabuki syndrome; CHD7, CHARGE
syndrome; CUL3, pseudohypoaldosteronism, type 2E.
*Premature termination mutation.
{Gene involved in production, removal or reading of H3K4 methylation mark.
{{Gene involved in removal of H3K27 methylation mark.
Del, deletion; Dx, diagnosis; fs, frameshift mutation; fs*n, frameshift mutation followed by premature
termination n codons later; NA, data not available.
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Figure 2 | de novo mutations in the H3K4 and H3K27 methylation
pathways. Nucleosome with histone octamer and DNA, with H3K4
methylation bound by CHD7, H3K27 methylation and H2BK120
ubiquitination is shown. Genes mutated in CHD that affect the production,
removal and reading of these histone modifications are shown; genes with
damaging mutations are shown in red, those with missense mutations are shown
in blue. SMAD2 (2) indicates there are two patients with a mutation in this gene.
Genes whose products are found together in a complex are enclosed in a box.
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Table S10. Chromatin modifying and other genes of interest with de novo mutations in CHD probands   

ID Gene Heart 
Exp† Mutation Primary Classification: Specific 

Cardiovascular Diagnoses§ Extracardiac Structural Anomalies 
Neuro-
Develop-
mental 

Somatic Growth 

Ht(%) Wt(%) 

1-00596 MLL2 216 p.Ser1722 
Argfs*9 

LVO: Mitral atresia, HLHS, aortic 
atresia, dbl AA 

Epicanthal folds, telecanthus, large 
low-set ears, excess nuchal skin, 
high arched palate, wide-spaced 
nipples, undescended testes, club 
foot, hyperpigmented lesions,  

motor 
delay, 
hypotonia 

50 <5 

1-00853 WDR5 39 p.Lys7Gln 
CTD: TOF, right aortic arch, 
aberrant LSA, coronary 
abnormality 

No abnormal 90 90 

1-00534 CHD7 125 p.Gln1599* CTD: TOF-PA 
Cleft lip, cleft palate, inguinal 
hernia, micropenis, sensorineural 
hearing loss 

abnormal <5 <5 

1-00230 KDM5A 70 p.Arg1508Trp LVO: LSVC, Primum ASD, cleft 
MV, sub-AS, BAV No  normal <5 <5 

1-01965 KDM5B 68 p.IVS12+1 
G>A LVO: Coarctation No n/a <5 <5 

1-01907 UBE2B 146 p.Arg8Thr CTD: TOF No normal 50 10 

1-00075 RNF20 58 p.Gln83* 
HTX: Dextrocardia, RAI, TAPVR, 
L-ventricular loop, CAVC 
unbalanced-right dominant, PA 

Low-set ears,excess nuchal skin, 
hydronephrosis, wide-spaced 2nd 
toe, Asplenia, primary cilia 
dyskinesia 

abnormal <5 <5 

1-01260 USP44 0 p.Glu71Asp LVO: ASD, mitral atresia, aortic 
atresia, HLHS No normal 25 25 

1-02020 SMAD2 38 p.IVS6+1 G>A HTX: Dextrocardia, ASD, CAVC-
unbalanced, DORV, D-TGA, PS Asplenia normal 95 10 

1-02621 SMAD2 38 p.Trp244Cys 
HTX: Dextrocardia, LSVC to LA, 
PAPVR, CAVC unbalanced-right 
dominant, DORV, PS 

Abnormal nose, foot syndactyly, 
malrotation n/a 50 50 

1-01451 MED20 25 p.IVS2+2 T>C 
HTX: Dextrocardia,  PAPVR,  
mitral atresia, HLHS, aortic 
atresia, hypoplastic AA 

No abnormal <5 10 

1-01151 SUV420H1 44 p.Arg143Cys CTD: dbl AA No abnormal 50 10 

1-00750 HUWE1 260 p.Arg3219Cys LVO: Mitral stenosis, aortic 
stenosis, HLHS No mild 

abnormal 25 25 

1-00577 CUL3 57 p.Iso144Phe 
fs*23  

LVO: Hypoplastic mitral valve, 
hypoplastic aortic annulus, aortic 
stenosis, coarctation 

Congenital hip dysplasia, 
congenital scoliosis n/a 12 60 

1-00116 NUB1 45 p.Asp310His 
CTD: LSVC, sinus venosus ASD, 
truncus arteriosus, VSD-
muscular 

Spine lipoma abnormal <5 5 

1-01828 DAPK3 55 p.Pro193Leu CTD: TOF No n/a n/a n/a 

1-03151 SUPT5H 133 p.Glu451Asp LVO: BAV, aortic stenosis No n/a 75 90 

1-00455 NAA15 214 p.Lys335Lys 
fs*6 

HTX: Dextrocardia, TAPVR, 
LSVC, hypoplastic TV, DORV, 
hypoplastic RV, D-TGA, PS 

Hydronephrosis, asplenia, 
malrotation normal 50 50 

1-00141 NAA15 214 p.Ser761* CTD: TOF, single LCA No n/a <5 20 
1-01138 USP34 65 p.Leu432Pro LVO: supra MS, BAV, CoA No n/a 25 >95 
1-00448 NF1 55 p.IVS6+4 del A CTD: PA VSD-MAPCAs No n/a 5 5 
1-00802 PTCH1 32 p.Arg831Gln LVO: HLHS No n/a 50 50 

1-02458 SOS1 28 p.Thr266Lys 
Other: ASD (multiple), dysplastic 
mitral, tricuspid and pulmonic 
valves 

Macrocephaly, dolichocephaly,low-
set ears, hyperextensible fingers, 
foot syndactyly, café-au-lait spots 

abnormal <5 5 

1-02952 PITX2 18 p.Ala47Val LVO: CoA No n/a 75 >95 
1-01913 RAB10 119 p.Asn112Ser Other: DILV, D-TGA, BAV, CoA No n/a 30 95 
†Heart expression refers to # reads per million at murine e14.5. Mutation denotes the impact on encoded protein in three letter code; * denotes termination 
mutation. Frameshift mutation in MLL2, CUL3 and NAA15. ‘IVS’ stands for intervening sequence. ‘fs’ stands for frameshift. Splice site mutation in KDM5B, 
MED20, and SMAD2 occur at 1st base of canonical splice donor of intron 12, at 2nd base of canonical splice donor of intron 2 and 1st base of canonical splice 
donor of intron 6 respectively.  
§HLHS-hypoplastic left heart syndrome; Dbl AA-double aortic arch; TOF-tetralogy of Fallot; PAPVR-partial anomalous pulmonary venous return; LSVC-left 
superior vena cava; LA-left atrium; CAVC-complete atrioventricular canal defect; TAPVR- total anomalous pulmonary venous return; MV-mitral valve; BAV-
bicuspid aortic valve; ASD-atrial septal defect; VSD- ventricular septal defect; PA-pulmonary atresia; RAI- right atrial isomerization. 
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Table S10. Chromatin modifying and other genes of interest with de novo mutations in CHD probands   

ID Gene Heart 
Exp† Mutation Primary Classification: Specific 

Cardiovascular Diagnoses§ Extracardiac Structural Anomalies 
Neuro-
Develop-
mental 

Somatic Growth 

Ht(%) Wt(%) 

1-00596 MLL2 216 p.Ser1722 
Argfs*9 

LVO: Mitral atresia, HLHS, aortic 
atresia, dbl AA 

Epicanthal folds, telecanthus, large 
low-set ears, excess nuchal skin, 
high arched palate, wide-spaced 
nipples, undescended testes, club 
foot, hyperpigmented lesions,  

motor 
delay, 
hypotonia 

50 <5 

1-00853 WDR5 39 p.Lys7Gln 
CTD: TOF, right aortic arch, 
aberrant LSA, coronary 
abnormality 

No abnormal 90 90 

1-00534 CHD7 125 p.Gln1599* CTD: TOF-PA 
Cleft lip, cleft palate, inguinal 
hernia, micropenis, sensorineural 
hearing loss 

abnormal <5 <5 

1-00230 KDM5A 70 p.Arg1508Trp LVO: LSVC, Primum ASD, cleft 
MV, sub-AS, BAV No  normal <5 <5 

1-01965 KDM5B 68 p.IVS12+1 
G>A LVO: Coarctation No n/a <5 <5 

1-01907 UBE2B 146 p.Arg8Thr CTD: TOF No normal 50 10 

1-00075 RNF20 58 p.Gln83* 
HTX: Dextrocardia, RAI, TAPVR, 
L-ventricular loop, CAVC 
unbalanced-right dominant, PA 

Low-set ears,excess nuchal skin, 
hydronephrosis, wide-spaced 2nd 
toe, Asplenia, primary cilia 
dyskinesia 

abnormal <5 <5 

1-01260 USP44 0 p.Glu71Asp LVO: ASD, mitral atresia, aortic 
atresia, HLHS No normal 25 25 

1-02020 SMAD2 38 p.IVS6+1 G>A HTX: Dextrocardia, ASD, CAVC-
unbalanced, DORV, D-TGA, PS Asplenia normal 95 10 

1-02621 SMAD2 38 p.Trp244Cys 
HTX: Dextrocardia, LSVC to LA, 
PAPVR, CAVC unbalanced-right 
dominant, DORV, PS 

Abnormal nose, foot syndactyly, 
malrotation n/a 50 50 

1-01451 MED20 25 p.IVS2+2 T>C 
HTX: Dextrocardia,  PAPVR,  
mitral atresia, HLHS, aortic 
atresia, hypoplastic AA 

No abnormal <5 10 

1-01151 SUV420H1 44 p.Arg143Cys CTD: dbl AA No abnormal 50 10 

1-00750 HUWE1 260 p.Arg3219Cys LVO: Mitral stenosis, aortic 
stenosis, HLHS No mild 

abnormal 25 25 

1-00577 CUL3 57 p.Iso144Phe 
fs*23  

LVO: Hypoplastic mitral valve, 
hypoplastic aortic annulus, aortic 
stenosis, coarctation 

Congenital hip dysplasia, 
congenital scoliosis n/a 12 60 

1-00116 NUB1 45 p.Asp310His 
CTD: LSVC, sinus venosus ASD, 
truncus arteriosus, VSD-
muscular 

Spine lipoma abnormal <5 5 

1-01828 DAPK3 55 p.Pro193Leu CTD: TOF No n/a n/a n/a 

1-03151 SUPT5H 133 p.Glu451Asp LVO: BAV, aortic stenosis No n/a 75 90 

1-00455 NAA15 214 p.Lys335Lys 
fs*6 

HTX: Dextrocardia, TAPVR, 
LSVC, hypoplastic TV, DORV, 
hypoplastic RV, D-TGA, PS 

Hydronephrosis, asplenia, 
malrotation normal 50 50 

1-00141 NAA15 214 p.Ser761* CTD: TOF, single LCA No n/a <5 20 
1-01138 USP34 65 p.Leu432Pro LVO: supra MS, BAV, CoA No n/a 25 >95 
1-00448 NF1 55 p.IVS6+4 del A CTD: PA VSD-MAPCAs No n/a 5 5 
1-00802 PTCH1 32 p.Arg831Gln LVO: HLHS No n/a 50 50 

1-02458 SOS1 28 p.Thr266Lys 
Other: ASD (multiple), dysplastic 
mitral, tricuspid and pulmonic 
valves 

Macrocephaly, dolichocephaly,low-
set ears, hyperextensible fingers, 
foot syndactyly, café-au-lait spots 

abnormal <5 5 

1-02952 PITX2 18 p.Ala47Val LVO: CoA No n/a 75 >95 
1-01913 RAB10 119 p.Asn112Ser Other: DILV, D-TGA, BAV, CoA No n/a 30 95 
†Heart expression refers to # reads per million at murine e14.5. Mutation denotes the impact on encoded protein in three letter code; * denotes termination 
mutation. Frameshift mutation in MLL2, CUL3 and NAA15. ‘IVS’ stands for intervening sequence. ‘fs’ stands for frameshift. Splice site mutation in KDM5B, 
MED20, and SMAD2 occur at 1st base of canonical splice donor of intron 12, at 2nd base of canonical splice donor of intron 2 and 1st base of canonical splice 
donor of intron 6 respectively.  
§HLHS-hypoplastic left heart syndrome; Dbl AA-double aortic arch; TOF-tetralogy of Fallot; PAPVR-partial anomalous pulmonary venous return; LSVC-left 
superior vena cava; LA-left atrium; CAVC-complete atrioventricular canal defect; TAPVR- total anomalous pulmonary venous return; MV-mitral valve; BAV-
bicuspid aortic valve; ASD-atrial septal defect; VSD- ventricular septal defect; PA-pulmonary atresia; RAI- right atrial isomerization. 
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ID Gene Heart 
Exp† Mutation Primary Classification: Specific 

Cardiovascular Diagnoses§ Extracardiac Structural Anomalies 
Neuro-
Develop-
mental 

Somatic Growth 

Ht(%) Wt(%) 

1-00596 MLL2 216 p.Ser1722 
Argfs*9 

LVO: Mitral atresia, HLHS, aortic 
atresia, dbl AA 

Epicanthal folds, telecanthus, large 
low-set ears, excess nuchal skin, 
high arched palate, wide-spaced 
nipples, undescended testes, club 
foot, hyperpigmented lesions,  

motor 
delay, 
hypotonia 

50 <5 

1-00853 WDR5 39 p.Lys7Gln 
CTD: TOF, right aortic arch, 
aberrant LSA, coronary 
abnormality 

No abnormal 90 90 

1-00534 CHD7 125 p.Gln1599* CTD: TOF-PA 
Cleft lip, cleft palate, inguinal 
hernia, micropenis, sensorineural 
hearing loss 

abnormal <5 <5 

1-00230 KDM5A 70 p.Arg1508Trp LVO: LSVC, Primum ASD, cleft 
MV, sub-AS, BAV No  normal <5 <5 

1-01965 KDM5B 68 p.IVS12+1 
G>A LVO: Coarctation No n/a <5 <5 

1-01907 UBE2B 146 p.Arg8Thr CTD: TOF No normal 50 10 

1-00075 RNF20 58 p.Gln83* 
HTX: Dextrocardia, RAI, TAPVR, 
L-ventricular loop, CAVC 
unbalanced-right dominant, PA 

Low-set ears,excess nuchal skin, 
hydronephrosis, wide-spaced 2nd 
toe, Asplenia, primary cilia 
dyskinesia 

abnormal <5 <5 

1-01260 USP44 0 p.Glu71Asp LVO: ASD, mitral atresia, aortic 
atresia, HLHS No normal 25 25 

1-02020 SMAD2 38 p.IVS6+1 G>A HTX: Dextrocardia, ASD, CAVC-
unbalanced, DORV, D-TGA, PS Asplenia normal 95 10 

1-02621 SMAD2 38 p.Trp244Cys 
HTX: Dextrocardia, LSVC to LA, 
PAPVR, CAVC unbalanced-right 
dominant, DORV, PS 

Abnormal nose, foot syndactyly, 
malrotation n/a 50 50 

1-01451 MED20 25 p.IVS2+2 T>C 
HTX: Dextrocardia,  PAPVR,  
mitral atresia, HLHS, aortic 
atresia, hypoplastic AA 

No abnormal <5 10 

1-01151 SUV420H1 44 p.Arg143Cys CTD: dbl AA No abnormal 50 10 

1-00750 HUWE1 260 p.Arg3219Cys LVO: Mitral stenosis, aortic 
stenosis, HLHS No mild 

abnormal 25 25 

1-00577 CUL3 57 p.Iso144Phe 
fs*23  

LVO: Hypoplastic mitral valve, 
hypoplastic aortic annulus, aortic 
stenosis, coarctation 

Congenital hip dysplasia, 
congenital scoliosis n/a 12 60 

1-00116 NUB1 45 p.Asp310His 
CTD: LSVC, sinus venosus ASD, 
truncus arteriosus, VSD-
muscular 

Spine lipoma abnormal <5 5 

1-01828 DAPK3 55 p.Pro193Leu CTD: TOF No n/a n/a n/a 

1-03151 SUPT5H 133 p.Glu451Asp LVO: BAV, aortic stenosis No n/a 75 90 

1-00455 NAA15 214 p.Lys335Lys 
fs*6 

HTX: Dextrocardia, TAPVR, 
LSVC, hypoplastic TV, DORV, 
hypoplastic RV, D-TGA, PS 

Hydronephrosis, asplenia, 
malrotation normal 50 50 

1-00141 NAA15 214 p.Ser761* CTD: TOF, single LCA No n/a <5 20 
1-01138 USP34 65 p.Leu432Pro LVO: supra MS, BAV, CoA No n/a 25 >95 
1-00448 NF1 55 p.IVS6+4 del A CTD: PA VSD-MAPCAs No n/a 5 5 
1-00802 PTCH1 32 p.Arg831Gln LVO: HLHS No n/a 50 50 

1-02458 SOS1 28 p.Thr266Lys 
Other: ASD (multiple), dysplastic 
mitral, tricuspid and pulmonic 
valves 

Macrocephaly, dolichocephaly,low-
set ears, hyperextensible fingers, 
foot syndactyly, café-au-lait spots 

abnormal <5 5 

1-02952 PITX2 18 p.Ala47Val LVO: CoA No n/a 75 >95 
1-01913 RAB10 119 p.Asn112Ser Other: DILV, D-TGA, BAV, CoA No n/a 30 95 
†Heart expression refers to # reads per million at murine e14.5. Mutation denotes the impact on encoded protein in three letter code; * denotes termination 
mutation. Frameshift mutation in MLL2, CUL3 and NAA15. ‘IVS’ stands for intervening sequence. ‘fs’ stands for frameshift. Splice site mutation in KDM5B, 
MED20, and SMAD2 occur at 1st base of canonical splice donor of intron 12, at 2nd base of canonical splice donor of intron 2 and 1st base of canonical splice 
donor of intron 6 respectively.  
§HLHS-hypoplastic left heart syndrome; Dbl AA-double aortic arch; TOF-tetralogy of Fallot; PAPVR-partial anomalous pulmonary venous return; LSVC-left 
superior vena cava; LA-left atrium; CAVC-complete atrioventricular canal defect; TAPVR- total anomalous pulmonary venous return; MV-mitral valve; BAV-
bicuspid aortic valve; ASD-atrial septal defect; VSD- ventricular septal defect; PA-pulmonary atresia; RAI- right atrial isomerization. 
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ID
Primary 
Cardiac 

Classification
Gene Mutation Amino Acid Change dbSNP RefSeq NM 

Accesion IDs
RefSeq NP 

Accesion IDs Chr Position 
(hg19)

Base 
change

Mean 
Heart 
Exp.

Variant 
Quality 
Score

Ref 
Cov

Nonref 
Cov

Ref 
Cov

Nonref 
Cov

Ref 
Cov

Nonref 
Cov

Bayesian 
Quality 
Score

Damaging mutations in HHE genes in CHD Cases
1-00534 CTD CHD7 Nonsense Q1599X Novel NM_017780 NP_060250 8 61754556 C>T 124.85 228 53 68 128 0 121 0 100
1-02279 LVOTO AHNAK Nonsense G254X Novel NM_001620 NP_001611 11 62301129 C>A 175.75 228 27 23 88 0 96 0 100
1-02144 CTD LIG1 Nonsense Y765X Novel NM_000234 NP_000225 19 48624517 G>T 118.41 228 33 27 34 0 58 0 100
1-01360 LVOTO NCKAP1 Nonsense E1057X Novel NM_013436 NP_038464 2 183792856 C>A 103.97 228 70 76 175 0 128 4 100
1-01965 LVOTO KDM5B Splice 1 bp beyond exon 12 Novel NM_006618 NP_006609 1 202722032 C>T 68.06 228 47 39 112 0 76 0 100
1-00075 HTX RNF20 Nonsense Q83X Novel NM_019592 NP_062538 9 104302602 C>T 58.23 228 66 47 129 0 114 0 100
1-01028 CTD GTPBP4 Nonsense K332X Novel NM_012341 NP_036473 10 1051839 A>T 67.83 228 132 138 235 0 263 0 100
1-00596 LVOTO MLL2 Frameshift S1722 Novel NM_003482 NP_003473 12 49438005 -A 216.12 Indel-Pass 80 44 131 0 126 0 100
1-00455 HTX NAA15 Frameshift D335 Novel NM_057175 NP_476516 4 140272757 -AAAG 213.74 Indel-Pass 68 17 57 0 72 0 100
1-00577 LVOTO OS9 Frameshift T158 Novel NM_001017956 NP_001017956 12 58089814 -A 67.99 Indel-Pass 78 39 72 0 74 0 100
1-02227 LVOTO FTSJ3 Frameshift 786/847 Novel NM_017647 NP_060117 17 61897350 -GA/+C 59.29 Indel-Pass 62 69 118 0 125 0 100
1-00577 LVOTO CUL3 Frameshift I144 Novel NM_003590 NP_003581 2 225379434 -TAAT 57.06 Indel-Pass 163 49 172 0 149 0 100
1-00448 CTD NF1 Splice 4 bp beyond exon 6 Novel NM_001128147 NP_001121619 17 29508511 -A 54.87 Indel-Pass 139 48 110 0 145 0 100
1-00141 CTD NAA15 Nonsense S761X Novel NM_057175 NP_476516 4 140306112 C>A 213.74 196 16 12 30 0 41 0 92
1-01907 CTD SERPINH1 Nonsense R415X Novel NM_001235 NP_001226 11 75283114 C>T 847.33 137 5 15 32 0 21 0 55

Mutations at conserved position in HHE genes in CHD Cases
1-00148 LVOTO LAMC1 Missense G170E Novel NM_002293 NP_002284 1 183072553 G>A 510.65 169 22 15 54 0 63 0 100
1-00522 LVOTO TLN1 Missense L684V Novel NM_006289 NP_006280 9 35717729 G>C 321.59 228 53 49 96 0 132 0 100
1-01664 HTX OBSCN Missense F5295S Novel NM_001098623 NP_001092093 1 228521311 T>C 298.14 228 43 52 125 1 96 0 100
1-00750 LVOTO HUWE1 Missense R3219C Novel NM_031407.5 NP_113584.3 X 53576300 G>A 259.79 228 38 56 48 0 146 0 100
1-00522 LVOTO LAMA5 Missense C1625Y Novel NM_005560 NP_005551 20 60902649 C>T 208.82 228 39 39 73 0 96 0 100
1-01637 CTD KIAA0664 Missense H823Y Novel NM_015229 NP_056044 17 2598535 G>A 182.48 228 70 61 186 0 135 0 100
1-01907 CTD UBE2B Missense R8T Novel NM_003337 NP_003328 5 133707309 G>C 146.23 228 26 21 101 0 63 0 100
1-00808 CTD RAVER1 Missense H93R Novel NM_133452 NP_597709 19 10441195 T>C 130.73 228 124 82 125 0 132 0 100
1-00479 LVOTO GANAB Missense N171S Novel NM_198334 NP_938148 11 62402341 T>C 129.52 228 81 83 123 0 69 0 100
1-02394 LVOTO DST Missense K2653I Novel NM_015548 NP_056363 6 56417763 T>A 121.78 189 46 67 104 0 58 1 100
1-02189 LVOTO EIF3H Missense H109R Novel NM_003756 NP_003747 8 117671183 T>C 118.19 228 66 60 116 0 147 0 100
1-00161 HTX SBNO1 Missense T1339M Novel NM_001167856 NP_001161328 12 123782548 G>A 108.82 228 84 114 239 0 240 0 100
1-00753 LVOTO FYCO1 Missense E1286K Novel NM_024513 NP_078789 3 45996829 C>T 96.55 228 78 80 124 0 60 0 100
1-02153 CTD RNF44 Missense R421Q Novel NM_014901 NP_055716 5 175956066 C>T 88.67 228 15 17 43 0 54 0 100
1-00197 LVOTO BCL9 Missense M1395K Novel NM_004326 NP_004317 1 147096663 T>A 87.75 228 12 16 47 0 71 0 100
1-00325 LVOTO TSHZ1 Missense Q288R Novel NM_005786 NP_005777 18 72998360 A>G 82.03 228 30 24 65 0 49 0 100
1-01026 LVOTO RUFY2 Missense P621L Novel NM_017987 NP_060457 10 70105589 G>A 77.03 228 90 105 216 0 221 0 100
1-00541 HTX EFHD2 Missense A230V Novel NM_024329 NP_077305 1 15755186 C>T 76.90 228 73 86 143 0 99 0 100
1-00230 LVOTO KDM5A Missense R1508W Novel NM_001042603 NP_001036068 12 402269 G>A 69.89 228 53 36 90 0 108 0 100
1-02923 LVOTO PHIP Missense S674C Novel NM_017934 NP_060404 6 79707311 G>C 67.31 193 34 30 91 0 106 0 100
1-02264 LVOTO C11orf9 Missense F387S Novel NM_001127392 NP_001120864 11 61541483 T>C 66.17 228 22 18 48 1 87 0 100
1-01783 LVOTO FADS3 Missense G412S Novel NM_021727 NP_068373 11 61643375 C>T 65.71 228 22 19 45 0 84 0 100
1-01138 LVOTO USP34 Missense L432P Novel NM_014709 NP_055524 2 61577785 A>G 64.48 228 56 69 154 0 115 1 100
1-02133 CTD CPSF1 Missense N29K Novel NM_013291 NP_037423 8 145634456 G>C 63.04 228 41 29 80 0 82 0 100
1-02437 HTX LZTR1 Missense G248R Novel NM_006767 NP_006758 22 21344765 G>A 60.72 228 35 27 107 0 99 0 100
1-01365 CTD GTPBP1 Missense E291K Novel NM_004286 NP_004277 22 39117783 G>A 56.59 228 45 55 129 0 150 0 100
1-00934 LVOTO FREM2 Missense D2206N Novel NM_207361 NP_997244 13 39425119 G>A 51.87 228 68 69 132 1 157 0 100
1-01341 CTD KIAA0196 Missense V167D Novel NM_014846 NP_055661 8 126093921 A>T 48.07 228 95 72 138 0 134 0 100
1-00587 LVOTO SMAD4 Missense I500V Novel NM_005359 NP_005350 18 48604676 A>G 45.78 228 47 56 82 0 139 0 100
1-00491 LVOTO KPNA1 Missense P350S Novel NM_002264 NP_002255 3 122156091 G>A 45.35 228 101 110 199 0 144 0 100
1-03300 LVOTO DHX38 Missense G332D Novel NM_014003 NP_054722 16 72133665 G>A 40.76 228 34 28 84 0 103 0 100
1-02093 CTD LOXL2 Missense R327Q Novel NM_002318 NP_002309 8 23186065 C>T 110.95 190 27 17 27 0 25 0 91
1-01828 CTD DAPK3 Missense P193L Novel NM_001348 NP_001339 19 3963893 G>A 54.61 228 34 38 50 0 63 0 90
1-01984 LVOTO PCDHGA2 Missense L172F Novel NM_032009 NP_061738 5 140719052 C>T 182.84 228 28 29 33 0 43 0 89
1-03151 LVOTO SUPT5H Missense E451D Novel NM_001130825 NP_001124297 19 39960029 G>C 132.72 228 22 23 33 0 25 0 72
1-02788 CTD MINK1 Missense R299C Novel NM_153827 NP_722549 17 4789867 C>T 77.77 150 16 16 23 0 27 0 66
1-01696 CTD GLT25D1 Missense R471W Novel NM_024656 NP_078932 19 17691524 C>T 73.64 228 35 33 47 0 57 0 55
1-00116 CTD NUB1 Missense D310H Novel NM_016118.4 NP_057202.3 7 151064080 G>C 45.07 228 95 86 149 0 176 0 100
1-01036 CTD BCL2L11 Missense P59S Novel NM_001204113.1 NP_001191042.1 2 111881677 C>T 41.14 228 51 48 104 0 119 0 100

Mutations at nonconserved position in HHE genes in CHD Cases
1-01505 LVOTO TTN Missense T4852N Novel NM_001256850.1 NP_001243779 2 179598610 G>T 2093.26 154 12 10 35 0 23 0 71
1-00638 CTD FBN2 Missense D2191N Novel NM_001999 NP_001990 5 127624885 C>T 263.94 228 127 111 325 0 312 0 100
1-00258 CTD PFKM Missense A522G Novel NM_001166686 NP_001160158 12 48535104 C>G 218.03 228 88 81 208 0 151 0 100
1-01817 CTD MAPK8IP3 Missense P852R Novel NM_001040439 NP_001035529 16 1816090 C>G 134.18 228 16 16 51 0 45 0 100
1-01432 CTD LAMB2 Missense R1661W Novel NM_002292 NP_002283 3 49159236 G>A 129.86 176 26 11 50 0 43 0 100
1-00222 LVOTO NUCB1 Missense R189C Novel NM_006184 NP_006175 19 49416352 C>T 123.31 228 115 70 258 0 164 0 100
1-00381 LVOTO STAB1 Missense A1102V Novel NM_015136 NP_055951 3 52547767 C>T 122.21 228 71 47 89 0 128 0 100
1-02121 CTD DST Missense G2936D Novel NM_015548 NP_056363 6 56401671 C>T 121.78 228 104 64 229 0 180 0 100
1-01913 Other RAB10 Missense N112S Novel NM_016131 NP_057215 2 26350020 A>G 118.86 225 23 21 59 0 56 0 100
1-01933 LVOTO CPD Missense P425R Novel NM_001304 NP_001295 17 28748818 C>G 98.86 228 108 69 169 2 142 0 100
1-02141 CTD LRPPRC Missense D486N Novel NM_133259 NP_573566 2 44190759 C>T 93.03 228 100 98 278 0 169 0 100
1-00186 CTD DSG2 Missense L499Q Novel NM_001943 NP_001934 18 29116237 T>A 89.11 228 79 69 157 0 90 0 100
1-01788 LVOTO MYEF2 Missense I264V Novel NM_016132 NP_057216 15 48451047 T>C 69.68 228 87 106 191 0 201 0 100
1-02888 LVOTO AP3B1 Missense E771K Novel NM_003664 NP_003655 5 77406117 C>T 63.56 228 81 74 108 0 116 0 100
1-00323 HTX NUP62 Missense Q70R Novel NM_001193357 NP_001180286 19 50412856 T>C 62.55 228 55 64 99 0 93 0 100
1-00465 LVOTO TOMM40L Missense S171I Novel NM_032174 NP_115550 1 161198003 G>T 62.29 228 69 67 96 0 73 0 100
1-00174 CTD ZNF326 Missense E338A Novel NM_182976 NP_892021 1 90482962 A>C 54.95 228 137 100 125 0 110 0 100
1-00934 LVOTO TRIM41 Missense P167S Novel NM_033549 NP_291027 5 180651498 C>T 53.73 228 28 20 56 0 62 0 100
1-00824 HTX MAP2K7 Missense V409I Novel NM_145185 NP_660186 19 7977281 G>A 52.58 228 26 25 41 0 43 0 100
1-01151 CTD SUV420H1 Missense R143C Novel NM_017635 NP_060105 11 67942601 G>A 44.49 228 110 105 295 0 411 0 100
1-02254 LVOTO ELMO2 Missense N332S Novel NM_133171 NP_573403 20 45003945 T>C 44.31 228 87 71 201 0 111 0 100
1-01941 CTD NOP2 Missense I351V Novel NM_006170 NP_006161 12 6671053 T>C 42.04 228 55 44 129 0 210 0 100
1-03190 CTD OBSCN Missense T4421M Novel NM_001098623 NP_001092093 1 228503797 C>T 298.14 228 15 30 21 0 45 0 87
1-00373 LVOTO DGCR2 Missense A64T Novel NM_001184781 NP_001171710 22 19076893 C>T 77.33 228 22 17 28 0 47 0 72
1-01997 CTD PRPF4B Missense E14Q Novel NM_003913.4 NP_003904.3 6 4021699 G>C 129.14 228 26 21 58 0 71 0 100
1-00344 CTD SERINC4 Missense R65H Novel NM_001258032.1 NP_001244961.1 15 44089057 C>T 43.79 228 68 73 112 0 126 0 100
1-00305 CTD GRIP2 Missense T954M Novel NM_001080423.2 NP_001073892.2 3 14547126 G>A 51.51 228 38 24 70 0 53 0 100

Silent mutations in HHE genes in CHD cases
1-03234 HTX NDUFA13 Silent I50I Novel NM_015965 NP_057049 19 19637046 A>C 428.99 228 23 27 84 0 139 0 100
1-00650 HTX RYR2 Silent T1464T Novel NM_001035 NP_001026 1 237756892 A>C 343.20 228 46 29 105 0 90 0 100
1-01816 LVOTO ARHGDIA Silent T132T Novel NM_001185077 NP_001172006 17 79827068 C>T 289.36 228 32 34 77 0 46 0 100
1-01637 CTD PSMB1 Silent T5T Novel NM_002793 NP_002784 6 170862316 T>C 243.58 194 23 11 94 0 66 0 100
1-01696 CTD PKP4 Silent S812S Novel NM_003628 NP_003619 2 159519816 G>A 173.79 228 67 68 97 0 119 0 100
M003-10 #N/A SARS Silent P384P Novel NM_006513 NP_006504 1 109779065 G>A 137.97 228 57 72 153 0 132 0 100
1-01505 LVOTO AKAP8 Silent Y53Y Novel NM_005858 NP_005849 19 15484809 G>A 121.48 228 57 31 98 0 75 0 100
1-00465 LVOTO CAND1 Silent L180L Novel NM_018448 NP_060918 12 67691235 A>G 101.74 228 129 108 122 0 118 0 100
1-00425 LVOTO ANLN Silent T232T Novel NM_018685 NP_061155 7 36445998 C>T 97.65 228 65 61 198 0 152 0 100
M004-11 HTX TAX1BP1 Silent G325G Novel NM_001206902 NP_001193831 7 27833977 G>A 93.81 228 229 218 322 0 494 0 100
1-00344 CTD UBR5 Silent L291L Novel NM_015902 NP_056986 8 103357639 G>A 92.92 228 145 55 220 0 149 0 100
1-01816 LVOTO SPARCL1 Silent Q448Q Novel NM_001128310 NP_001121782 4 88411978 T>C 83.47 228 90 85 210 0 153 0 100
1-00738 CTD WWC2 Silent T157T Novel NM_024949 NP_079225 4 184130127 T>C 63.65 228 40 46 111 0 149 0 100
1-00534 CTD FAM111A Silent E219E Novel NM_022074 NP_071357 11 58919798 A>G 54.71 228 46 52 131 0 115 0 100
1-02708 LVOTO FOXM1 Silent P451P Novel NM_001243089 NP_001230018 12 2968698 A>G 52.16 228 74 66 124 0 160 0 100

Proband Father MotherTable S4. All de novo mutations with Bayesian QS�50
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1-00305 CTD SHANK3 Silent C290C Novel NM_033517.1 NP_277052.1 22 51117841 T>C 65.68 111 28 9 55 1 38 1 91
1-02093 CTD LIFR Silent Q527Q Novel NM_002310 NP_002301 5 38502758 T>C 42.39 228 69 62 142 0 121 0 100
1-01341 CTD NISCH Silent H989H Novel NM_007184 NP_009115 3 52522475 C>T 490.14 228 15 14 24 0 34 0 77
1-02786  OTHER CCNL1 Silent A19A Novel NM_020307 NP_064703 3 156877827 G>A 40.50 199 13 14 32 0 28 0 76
1-01933 LVOTO FBLN2 Silent P312P Novel NM_001165035 NP_001158507 3 13612791 A>C 46.48 130 20 10 18 0 18 0 55
1-01365 CTD C20orf152 Silent G297G Novel NM_080834.2 NP_543024.2 20 34582995 G>T 45.23 228 110 91 226 0 207 2 100

Damaging mutations in LHE genes in CHD Cases
1-00604 CTD SLC5A2 Nonsense W172X Novel NM_003041 NP_003032 16 31497537 G>A 3.43 228 20 23 100 0 78 0 100
1-02282 LVOTO DNAH10 Nonsense W1406X Novel NM_207437 NP_997320 12 124317687 G>A 0.29 228 27 31 65 0 65 0 100
1-00323 HTX CATSPERG Nonsense Y752X Novel NM_021185 NP_067008 19 38853114 C>G 0.24 228 48 26 47 0 43 0 100
1-02020 HTX SMAD2 Splice 1 bp beyond exon 6 Novel NM_001135937 NP_001129409 18 45374845 C>T 38.29 228 38 35 114 2 96 0 100
1-01451 HTX MED20 Splice 2 bp beyond exon 2 Novel NM_004275 NP_004266 6 41884521 A>G 25.19 168 118 33 153 0 158 0 100
1-03300 LVOTO NTM Frameshift 204/344 Novel NM_016522 NP_057606 11 132177668 -A 14.02 Indel-Pass 25 70 95 0 80 0 100
1-00185 LVOTO NAT8L Frameshift S217 Novel NM_178557 NP_848652 4 2065595 +A 9.34 Indel-Pass 47 20 35 0 37 0 100
1-00141 CTD GREB1L Nonsense W1373X Novel NM_001142966 NP_001136438 18 19085419 G>A 3.96 228 94 87 159 0 151 0 100
1-00393 CTD PLCZ1 Frameshift Y603 Novel NM_033123 NP_149114 12 18836193 +AAAC 0.00 Indel-Pass 321 91 250 0 190 0 100
1-01664 HTX IQCB1 Nonsense Q51X Novel NM_001023571 NP_001018865 3 121547429 G>A 9.73 163 35 14 49 0 14 0 57

Mutations at conserved position in LHE genes in CHD Cases
1-02956 HTX HYDIN Missense I2216N Novel NM_001270974.1 NP_001257903.1 16 70977734 A>T 0.98 188 54 19 66 0 51 0 100
1-01412 LVOTO ODZ4 Missense R1444K Novel NM_001098816.2 NP_001092286.2 11 78413327 C>T 22.75 228 60 61 95 0 115 2 100
1-01179 CTD C11orf41 Missense S303C Novel NM_012194.2 NP_036326.2 11 33564908 C>G 0.02 228 77 75 138 0 207 0 100
1-00381 LVOTO COL4A3BP Missense G131D Novel NM_005713 NP_005704 5 74722260 C>T 39.13 228 76 57 122 0 111 0 100
1-02621 HTX SMAD2 Missense W244C Novel NM_001135937 NP_001129409 18 45375021 C>G 38.29 228 45 39 134 0 42 0 100
1-01053 CTD FAM135A Missense R1138H Novel NM_001105531 NP_001099001 6 71245998 G>A 37.73 228 156 113 205 0 190 0 100
1-00753 LVOTO KIAA1737 Missense P132L Novel NM_033426 NP_219494 14 77579856 C>T 36.17 228 65 58 91 0 36 0 100
1-00373 LVOTO PAPSS1 Missense T399S Novel NM_005443 NP_005434 4 108574688 G>C 33.63 228 89 78 178 0 181 0 100
1-01943 CTD PES1 Missense P409T Novel NM_001243225 NP_001230154 22 30975867 G>T 33.10 228 12 22 80 0 88 0 100
1-01995 CTD TM2D2 Missense T74A Novel NM_001024381 NP_001019552 8 38851146 T>C 27.69 228 40 23 81 0 76 0 100
1-02515 HTX KCNH6 Missense T274M Novel NM_030779.2 NP_110406.1 17 61611392 C>T 0.38 228 28 25 47 0 37 0 83
1-02955 CTD MAK16 Missense R122L Novel NM_032509 NP_115898 8 33346630 G>T 21.55 228 101 83 265 1 365 0 100
1-00998 CTD INTS6 Missense T86R Novel NM_012141 NP_036273 13 52025243 G>C 20.84 228 109 83 251 0 246 0 100
1-00750 LVOTO SSH2 Missense V108L Novel NM_033389 NP_203747 17 28011657 C>A 20.74 228 70 64 149 0 189 0 100
1-02955 CTD XRCC5 Missense K238Q Novel NM_021141 NP_066964 2 216990668 A>C 20.47 228 58 52 166 0 226 0 100
1-01119 CTD NAA16 Missense R70C Novel NM_024561 NP_078837 13 41893010 C>T 12.47 228 142 121 234 0 219 0 100
1-01312 CTD SESTD1 Missense R24Q Novel NM_178123 NP_835224 2 180047900 C>T 11.25 228 77 101 191 0 195 0 100
1-02461 CTD DTNA Missense P295S Novel NM_001392 NP_001383 18 32400761 C>T 10.09 228 56 49 97 0 133 0 100
1-01175 HTX ITGA7 Missense R279W Novel NM_001144997 NP_001138469 12 56092245 G>A 7.79 228 53 40 91 0 94 0 100
1-00096 CTD PIK3CD Missense L347V Novel NM_005026 NP_005017 1 9778770 C>G 4.38 210 40 19 107 0 117 0 100
1-02364 CTD NR6A1 Missense C120R Novel NM_033334 NP_201591 9 127316634 A>G 3.40 228 44 62 145 0 198 0 100
1-02126 CTD BICD1 Missense D760E Novel NM_001714 NP_001705 12 32490460 T>A 3.39 228 22 29 70 0 76 0 100
1-03171 CTD ALPL Missense A102T Novel NM_001177520 NP_001170991 1 21890596 G>A 3.10 215 34 19 40 0 87 0 100
1-02107 LVOTO RDH5 Missense R280S Novel NM_001199771 NP_001186700 12 56118210 C>A 2.42 228 21 28 59 0 62 0 100
1-00734 LVOTO MYO16 Missense R1164H Novel NM_001198950 NP_001185879 13 109777481 G>A 1.45 228 28 24 68 0 59 0 100
1-00938 LVOTO FGFR4 Missense D297N Novel NM_002011 NP_002002 5 176519483 G>A 0.55 228 34 18 42 0 86 0 100
1-01179 CTD TDRD12 Missense A155E Novel NM_001110822 NP_001104292 19 33239405 C>A 0.20 228 60 58 92 0 171 0 100
1-00323 HTX IL2RB Missense R170Q Novel NM_000878 NP_000869 22 37533655 C>T 0.16 228 25 34 35 0 35 0 100
1-02527 CTD GRM8 Missense N778S Novel NM_001127323 NP_001120795 7 126173103 T>C 0.12 228 65 68 269 0 150 0 100
1-02144 CTD KNDC1 Missense T81M Novel NM_152643 NP_689856 10 134981024 C>T 0.02 228 18 16 30 0 44 0 100
1-02023 LVOTO SIGLEC5 Missense C269Y Novel NM_003830 NP_003821 19 52131278 C>T 0.02 228 15 24 84 0 67 0 100
1-01536 CTD C1orf94 Missense R222Q Novel NM_032884 NP_116273 1 34666598 G>A 0.00 228 36 32 121 0 58 0 100
1-00619 LVOTO KLF2 Missense C334Y Novel NM_016270 NP_057354 19 16437775 G>A 21.00 104 17 8 29 0 47 0 86
1-03173 CTD IGFN1 Missense I1864M Novel NM_001164586 NP_001158058 1 201179613 A>G 0.06 109 40 17 26 1 24 0 82
1-00281 HTX SPATA2 Missense D203V Novel NM_001135773 NP_001129245 20 48523111 T>A 23.64 194 21 14 27 0 29 0 64
1-00788 CTD MARCH5 Missense E28K Novel NM_017824.4 NP_060294.1 10 94070938 G>A 38.87 228 67 47 143 0 162 0 100
1-01411 LVOTO EPDR1 Missense T209M Novel NM_017549.4 NP_060019.2 7 37989949 C>T 15.67 228 57 59 78 0 76 0 100

Mutations at nonconserved position in LHE genes in CHD Cases
1-02411 CTD CDH23 Missense R1136C Novel NM_001171930.1 NP_001165401.1 10 73483838 C>T 0.30 228 43 45 158 0 199 0 100
1-00878 HTX CCDC57 Missense A77T Novel NM_198082.2 NP_932348.2 17 80159592 C>T 10.18 228 18 23 58 0 48 0 100
1-01184 HTX APLP1 Missense R330C Novel NM_005166.3 NP_005157.1 19 36364547 C>T 11.43 228 66 52 86 0 208 0 100
1-00853 CTD WDR5 Missense K7Q Novel NM_052821 NP_438172 9 137005018 A>C 39.47 228 35 25 75 0 62 0 100
1-01538 HTX MPI Missense A38V Novel NM_002435 NP_002426 15 75182964 C>T 39.04 228 36 39 99 0 84 0 100
1-02013 LVOTO TFIP11 Missense M432T Novel NM_001008697 NP_001008697 22 26895104 A>G 36.10 228 51 45 90 0 101 0 100
1-02772 LVOTO TARS2 Missense P155R Novel NM_025150 NP_079426 1 150463153 C>G 35.84 228 51 37 148 0 130 0 100
1-00802 LVOTO PTCH1 Missense R831Q Novel NM_001083607 NP_001077076 9 98220518 C>T 32.19 228 21 28 34 0 51 0 100
1-02772 LVOTO TBC1D4 Missense P634R Novel NM_014832 NP_055647 13 75900465 G>C 29.44 228 131 85 273 0 239 0 100
1-00980 CTD NCAPD3 Missense A1041V Novel NM_015261 NP_056076 11 134038929 G>A 29.32 228 62 38 93 0 101 0 100
1-01048 LVOTO SDK1 Missense V625M Novel NM_152744 NP_689957 7 4014056 G>A 29.25 228 93 104 155 0 138 1 100
1-02458 other SOS1 Missense T266K Novel NM_005633 NP_005624 2 39278352 G>T 28.25 228 97 70 228 0 125 0 100
1-02020 HTX SLC38A3 Missense T174I Novel NM_006841.4 NP_006832.1 3 50253226 C>T 1.34 228 24 18 50 0 45 0 100
1-00482 HTX NFATC2 Missense D584A Novel NM_001258296 NP_001245225 20 50071183 T>G 26.75 228 97 86 210 0 205 0 100
1-02254 LVOTO ZNFX1 Missense Y1789C Novel NM_021035 NP_066363 20 47864195 T>C 25.62 228 46 70 143 0 70 0 100
1-01795 CTD DDX10 Missense V427L Novel NM_004398 NP_004389 11 108577521 G>T 25.53 228 128 92 188 1 295 0 100
1-01106 HTX TMEM63A Missense I413V Novel NM_014698 NP_055513 1 226047036 T>C 25.32 228 73 62 155 0 216 0 100
1-00140 CTD KIAA1468 Missense S416P Novel NM_020854 NP_065905 18 59895629 T>C 23.72 228 55 73 129 0 148 0 100
1-00347 LVOTO C9orf64 Missense L144F Novel NM_032307 NP_115683 9 86570461 T>A 23.30 228 45 36 105 0 95 0 100
1-00448 CTD ITPR3 Missense R1027H Novel NM_002224 NP_002215 6 33642006 G>A 23.06 228 60 64 191 0 232 0 100
1-01457 HTX VPS13C Missense T423A Novel NM_017684 NP_060154 15 62283959 T>C 22.39 228 121 79 229 0 228 0 100
1-00312 LVOTO FAM76A Missense I228V Novel NM_001143912 NP_001137384 1 28075646 A>G 21.69 228 54 43 143 0 123 0 100
1-01360 LVOTO NEURL2 Missense S92T Novel NM_080749 NP_542787 20 44519356 C>G 21.38 228 23 21 47 0 36 0 100
1-02020 HTX WIBG Missense G203V Novel NM_032345 NP_115721 12 56295663 C>A 20.50 228 86 78 191 0 169 0 100
1-01621 HTX TWF2 Missense E185Q Novel NM_007284 NP_009215 3 52264942 C>G 20.49 228 72 68 184 0 311 0 100
1-00230 LVOTO BACH2 Missense T803A Novel NM_021813 NP_068585 6 90642246 T>C 20.11 228 60 33 107 0 78 1 100
1-00111 LVOTO PPWD1 Missense I190V Novel NM_015342 NP_056157 5 64867712 A>G 19.27 228 47 51 55 0 103 1 100
1-02265 LVOTO PKN3 Missense R255Q Novel NM_013355 NP_037487 9 131469613 G>A 19.26 228 25 21 53 0 62 0 100
1-00982 HTX CREB5 Missense T236M Novel NM_182899.3 NP_878902.2 7 28843919 C>T 27.24 228 125 125 193 1 111 0 100
1-00230 LVOTO MKRN2 Missense R50W Novel NM_001271707 NP_001258636 3 12610495 C>T 18.87 228 62 59 110 0 115 0 100
1-01538 HTX MKRN2 Missense A251V Novel NM_001271707 NP_001258636 3 12616400 C>T 18.87 228 35 38 100 0 81 0 100
1-00293 LVOTO HIVEP2 Missense P123L Novel NM_006734 NP_006725 6 143095508 G>A 18.54 228 63 62 141 0 109 0 100
1-01106 HTX GPRC5B Missense I205T Novel NM_016235 NP_057319 16 19883554 A>G 18.06 228 29 23 54 0 84 0 100
1-02952 LVOTO PITX2 Missense A47V Novel NM_153426 NP_700475 4 111553543 G>A 17.99 228 77 52 156 0 101 0 100
1-01836 CTD KIAA2018 Missense S1168L Novel NM_001009899 NP_001009899 3 113377026 G>A 17.96 228 103 35 215 1 165 0 100
1-01019 HTX PCDH1 Missense K1203R Novel NM_032420 NP_115796 5 141233713 T>C 17.66 228 88 90 194 0 172 0 100
M007-20 HTX SBNO2 Missense V78M Novel NM_014963 NP_055778 19 1147355 C>T 16.34 228 84 40 115 0 68 0 100
1-03171 CTD EEPD1 Missense E414D Novel NM_030636 NP_085139 7 36327313 G>T 16.10 228 34 38 47 0 84 0 100
1-01190 HTX ATM Missense S821N Novel NM_000051 NP_000042 11 108129798 G>A 15.91 228 116 96 313 0 111 1 100
1-00096 CTD LPHN3 Missense K1406R Novel NM_015236 NP_056051 4 62936433 A>G 15.44 228 50 42 150 0 154 0 100
M007-20 HTX MASTL Missense D537N Novel NM_001172304 NP_001165775 10 27459497 G>A 12.82 228 162 143 276 0 168 0 100
1-02212 CTD ZNF536 Missense E727K Novel NM_014717 NP_055532 19 31025762 G>A 11.70 129 24 10 53 0 39 0 100
1-00878 HTX CRB2 Missense R1189Q Novel NM_173689 NP_775960 9 126137555 G>A 11.59 228 45 36 153 0 99 0 100
1-00820 LVOTO PABPC4L Missense K224Q Novel NM_001114734.1 NP_001108206.2 4 135121679 T>G 9.05 228 53 46 78 0 96 0 100
1-01327 CTD KLHDC4 Missense V443I Novel NM_001184854 NP_001171783 16 87742022 C>T 10.94 228 36 34 81 0 69 0 100
1-00818 LVOTO C16orf48 Missense A192T Novel NM_032140.1 NP_115516.1 16 67697845 C>T 9.31 228 39 27 100 0 124 0 100
1-02070 CTD HAUS3 Missense F572L Novel NM_024511 NP_078787 4 2233750 G>T 8.44 228 27 17 72 0 90 0 100
1-00235 CTD ZC3HAV1 Missense A371T Novel NM_020119 NP_064504 7 138764576 C>T 8.33 228 91 79 151 0 174 0 100
1-00325 LVOTO LYST Missense N3017T Novel NM_000081 NP_000072 1 235892952 T>G 6.80 228 51 24 118 0 89 0 100
1-00151 CTD FAN1 Missense T905M Novel NM_014967 NP_055782 15 31221527 C>T 6.18 228 61 56 83 0 75 0 100
1-01994 LVOTO DFFB Missense A91S Novel NM_004402 NP_004393 1 3782405 G>T 5.85 218 25 17 50 0 30 0 100
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Damaging mutations in HHE genes in CHD Cases
1-00534 CTD CHD7 Nonsense Q1599X Novel NM_017780 NP_060250 8 61754556 C>T 124.85 228 53 68 128 0 121 0 100
1-02279 LVOTO AHNAK Nonsense G254X Novel NM_001620 NP_001611 11 62301129 C>A 175.75 228 27 23 88 0 96 0 100
1-02144 CTD LIG1 Nonsense Y765X Novel NM_000234 NP_000225 19 48624517 G>T 118.41 228 33 27 34 0 58 0 100
1-01360 LVOTO NCKAP1 Nonsense E1057X Novel NM_013436 NP_038464 2 183792856 C>A 103.97 228 70 76 175 0 128 4 100
1-01965 LVOTO KDM5B Splice 1 bp beyond exon 12 Novel NM_006618 NP_006609 1 202722032 C>T 68.06 228 47 39 112 0 76 0 100
1-00075 HTX RNF20 Nonsense Q83X Novel NM_019592 NP_062538 9 104302602 C>T 58.23 228 66 47 129 0 114 0 100
1-01028 CTD GTPBP4 Nonsense K332X Novel NM_012341 NP_036473 10 1051839 A>T 67.83 228 132 138 235 0 263 0 100
1-00596 LVOTO MLL2 Frameshift S1722 Novel NM_003482 NP_003473 12 49438005 -A 216.12 Indel-Pass 80 44 131 0 126 0 100
1-00455 HTX NAA15 Frameshift D335 Novel NM_057175 NP_476516 4 140272757 -AAAG 213.74 Indel-Pass 68 17 57 0 72 0 100
1-00577 LVOTO OS9 Frameshift T158 Novel NM_001017956 NP_001017956 12 58089814 -A 67.99 Indel-Pass 78 39 72 0 74 0 100
1-02227 LVOTO FTSJ3 Frameshift 786/847 Novel NM_017647 NP_060117 17 61897350 -GA/+C 59.29 Indel-Pass 62 69 118 0 125 0 100
1-00577 LVOTO CUL3 Frameshift I144 Novel NM_003590 NP_003581 2 225379434 -TAAT 57.06 Indel-Pass 163 49 172 0 149 0 100
1-00448 CTD NF1 Splice 4 bp beyond exon 6 Novel NM_001128147 NP_001121619 17 29508511 -A 54.87 Indel-Pass 139 48 110 0 145 0 100
1-00141 CTD NAA15 Nonsense S761X Novel NM_057175 NP_476516 4 140306112 C>A 213.74 196 16 12 30 0 41 0 92
1-01907 CTD SERPINH1 Nonsense R415X Novel NM_001235 NP_001226 11 75283114 C>T 847.33 137 5 15 32 0 21 0 55

Mutations at conserved position in HHE genes in CHD Cases
1-00148 LVOTO LAMC1 Missense G170E Novel NM_002293 NP_002284 1 183072553 G>A 510.65 169 22 15 54 0 63 0 100
1-00522 LVOTO TLN1 Missense L684V Novel NM_006289 NP_006280 9 35717729 G>C 321.59 228 53 49 96 0 132 0 100
1-01664 HTX OBSCN Missense F5295S Novel NM_001098623 NP_001092093 1 228521311 T>C 298.14 228 43 52 125 1 96 0 100
1-00750 LVOTO HUWE1 Missense R3219C Novel NM_031407.5 NP_113584.3 X 53576300 G>A 259.79 228 38 56 48 0 146 0 100
1-00522 LVOTO LAMA5 Missense C1625Y Novel NM_005560 NP_005551 20 60902649 C>T 208.82 228 39 39 73 0 96 0 100
1-01637 CTD KIAA0664 Missense H823Y Novel NM_015229 NP_056044 17 2598535 G>A 182.48 228 70 61 186 0 135 0 100
1-01907 CTD UBE2B Missense R8T Novel NM_003337 NP_003328 5 133707309 G>C 146.23 228 26 21 101 0 63 0 100
1-00808 CTD RAVER1 Missense H93R Novel NM_133452 NP_597709 19 10441195 T>C 130.73 228 124 82 125 0 132 0 100
1-00479 LVOTO GANAB Missense N171S Novel NM_198334 NP_938148 11 62402341 T>C 129.52 228 81 83 123 0 69 0 100
1-02394 LVOTO DST Missense K2653I Novel NM_015548 NP_056363 6 56417763 T>A 121.78 189 46 67 104 0 58 1 100
1-02189 LVOTO EIF3H Missense H109R Novel NM_003756 NP_003747 8 117671183 T>C 118.19 228 66 60 116 0 147 0 100
1-00161 HTX SBNO1 Missense T1339M Novel NM_001167856 NP_001161328 12 123782548 G>A 108.82 228 84 114 239 0 240 0 100
1-00753 LVOTO FYCO1 Missense E1286K Novel NM_024513 NP_078789 3 45996829 C>T 96.55 228 78 80 124 0 60 0 100
1-02153 CTD RNF44 Missense R421Q Novel NM_014901 NP_055716 5 175956066 C>T 88.67 228 15 17 43 0 54 0 100
1-00197 LVOTO BCL9 Missense M1395K Novel NM_004326 NP_004317 1 147096663 T>A 87.75 228 12 16 47 0 71 0 100
1-00325 LVOTO TSHZ1 Missense Q288R Novel NM_005786 NP_005777 18 72998360 A>G 82.03 228 30 24 65 0 49 0 100
1-01026 LVOTO RUFY2 Missense P621L Novel NM_017987 NP_060457 10 70105589 G>A 77.03 228 90 105 216 0 221 0 100
1-00541 HTX EFHD2 Missense A230V Novel NM_024329 NP_077305 1 15755186 C>T 76.90 228 73 86 143 0 99 0 100
1-00230 LVOTO KDM5A Missense R1508W Novel NM_001042603 NP_001036068 12 402269 G>A 69.89 228 53 36 90 0 108 0 100
1-02923 LVOTO PHIP Missense S674C Novel NM_017934 NP_060404 6 79707311 G>C 67.31 193 34 30 91 0 106 0 100
1-02264 LVOTO C11orf9 Missense F387S Novel NM_001127392 NP_001120864 11 61541483 T>C 66.17 228 22 18 48 1 87 0 100
1-01783 LVOTO FADS3 Missense G412S Novel NM_021727 NP_068373 11 61643375 C>T 65.71 228 22 19 45 0 84 0 100
1-01138 LVOTO USP34 Missense L432P Novel NM_014709 NP_055524 2 61577785 A>G 64.48 228 56 69 154 0 115 1 100
1-02133 CTD CPSF1 Missense N29K Novel NM_013291 NP_037423 8 145634456 G>C 63.04 228 41 29 80 0 82 0 100
1-02437 HTX LZTR1 Missense G248R Novel NM_006767 NP_006758 22 21344765 G>A 60.72 228 35 27 107 0 99 0 100
1-01365 CTD GTPBP1 Missense E291K Novel NM_004286 NP_004277 22 39117783 G>A 56.59 228 45 55 129 0 150 0 100
1-00934 LVOTO FREM2 Missense D2206N Novel NM_207361 NP_997244 13 39425119 G>A 51.87 228 68 69 132 1 157 0 100
1-01341 CTD KIAA0196 Missense V167D Novel NM_014846 NP_055661 8 126093921 A>T 48.07 228 95 72 138 0 134 0 100
1-00587 LVOTO SMAD4 Missense I500V Novel NM_005359 NP_005350 18 48604676 A>G 45.78 228 47 56 82 0 139 0 100
1-00491 LVOTO KPNA1 Missense P350S Novel NM_002264 NP_002255 3 122156091 G>A 45.35 228 101 110 199 0 144 0 100
1-03300 LVOTO DHX38 Missense G332D Novel NM_014003 NP_054722 16 72133665 G>A 40.76 228 34 28 84 0 103 0 100
1-02093 CTD LOXL2 Missense R327Q Novel NM_002318 NP_002309 8 23186065 C>T 110.95 190 27 17 27 0 25 0 91
1-01828 CTD DAPK3 Missense P193L Novel NM_001348 NP_001339 19 3963893 G>A 54.61 228 34 38 50 0 63 0 90
1-01984 LVOTO PCDHGA2 Missense L172F Novel NM_032009 NP_061738 5 140719052 C>T 182.84 228 28 29 33 0 43 0 89
1-03151 LVOTO SUPT5H Missense E451D Novel NM_001130825 NP_001124297 19 39960029 G>C 132.72 228 22 23 33 0 25 0 72
1-02788 CTD MINK1 Missense R299C Novel NM_153827 NP_722549 17 4789867 C>T 77.77 150 16 16 23 0 27 0 66
1-01696 CTD GLT25D1 Missense R471W Novel NM_024656 NP_078932 19 17691524 C>T 73.64 228 35 33 47 0 57 0 55
1-00116 CTD NUB1 Missense D310H Novel NM_016118.4 NP_057202.3 7 151064080 G>C 45.07 228 95 86 149 0 176 0 100
1-01036 CTD BCL2L11 Missense P59S Novel NM_001204113.1 NP_001191042.1 2 111881677 C>T 41.14 228 51 48 104 0 119 0 100

Mutations at nonconserved position in HHE genes in CHD Cases
1-01505 LVOTO TTN Missense T4852N Novel NM_001256850.1 NP_001243779 2 179598610 G>T 2093.26 154 12 10 35 0 23 0 71
1-00638 CTD FBN2 Missense D2191N Novel NM_001999 NP_001990 5 127624885 C>T 263.94 228 127 111 325 0 312 0 100
1-00258 CTD PFKM Missense A522G Novel NM_001166686 NP_001160158 12 48535104 C>G 218.03 228 88 81 208 0 151 0 100
1-01817 CTD MAPK8IP3 Missense P852R Novel NM_001040439 NP_001035529 16 1816090 C>G 134.18 228 16 16 51 0 45 0 100
1-01432 CTD LAMB2 Missense R1661W Novel NM_002292 NP_002283 3 49159236 G>A 129.86 176 26 11 50 0 43 0 100
1-00222 LVOTO NUCB1 Missense R189C Novel NM_006184 NP_006175 19 49416352 C>T 123.31 228 115 70 258 0 164 0 100
1-00381 LVOTO STAB1 Missense A1102V Novel NM_015136 NP_055951 3 52547767 C>T 122.21 228 71 47 89 0 128 0 100
1-02121 CTD DST Missense G2936D Novel NM_015548 NP_056363 6 56401671 C>T 121.78 228 104 64 229 0 180 0 100
1-01913 Other RAB10 Missense N112S Novel NM_016131 NP_057215 2 26350020 A>G 118.86 225 23 21 59 0 56 0 100
1-01933 LVOTO CPD Missense P425R Novel NM_001304 NP_001295 17 28748818 C>G 98.86 228 108 69 169 2 142 0 100
1-02141 CTD LRPPRC Missense D486N Novel NM_133259 NP_573566 2 44190759 C>T 93.03 228 100 98 278 0 169 0 100
1-00186 CTD DSG2 Missense L499Q Novel NM_001943 NP_001934 18 29116237 T>A 89.11 228 79 69 157 0 90 0 100
1-01788 LVOTO MYEF2 Missense I264V Novel NM_016132 NP_057216 15 48451047 T>C 69.68 228 87 106 191 0 201 0 100
1-02888 LVOTO AP3B1 Missense E771K Novel NM_003664 NP_003655 5 77406117 C>T 63.56 228 81 74 108 0 116 0 100
1-00323 HTX NUP62 Missense Q70R Novel NM_001193357 NP_001180286 19 50412856 T>C 62.55 228 55 64 99 0 93 0 100
1-00465 LVOTO TOMM40L Missense S171I Novel NM_032174 NP_115550 1 161198003 G>T 62.29 228 69 67 96 0 73 0 100
1-00174 CTD ZNF326 Missense E338A Novel NM_182976 NP_892021 1 90482962 A>C 54.95 228 137 100 125 0 110 0 100
1-00934 LVOTO TRIM41 Missense P167S Novel NM_033549 NP_291027 5 180651498 C>T 53.73 228 28 20 56 0 62 0 100
1-00824 HTX MAP2K7 Missense V409I Novel NM_145185 NP_660186 19 7977281 G>A 52.58 228 26 25 41 0 43 0 100
1-01151 CTD SUV420H1 Missense R143C Novel NM_017635 NP_060105 11 67942601 G>A 44.49 228 110 105 295 0 411 0 100
1-02254 LVOTO ELMO2 Missense N332S Novel NM_133171 NP_573403 20 45003945 T>C 44.31 228 87 71 201 0 111 0 100
1-01941 CTD NOP2 Missense I351V Novel NM_006170 NP_006161 12 6671053 T>C 42.04 228 55 44 129 0 210 0 100
1-03190 CTD OBSCN Missense T4421M Novel NM_001098623 NP_001092093 1 228503797 C>T 298.14 228 15 30 21 0 45 0 87
1-00373 LVOTO DGCR2 Missense A64T Novel NM_001184781 NP_001171710 22 19076893 C>T 77.33 228 22 17 28 0 47 0 72
1-01997 CTD PRPF4B Missense E14Q Novel NM_003913.4 NP_003904.3 6 4021699 G>C 129.14 228 26 21 58 0 71 0 100
1-00344 CTD SERINC4 Missense R65H Novel NM_001258032.1 NP_001244961.1 15 44089057 C>T 43.79 228 68 73 112 0 126 0 100
1-00305 CTD GRIP2 Missense T954M Novel NM_001080423.2 NP_001073892.2 3 14547126 G>A 51.51 228 38 24 70 0 53 0 100

Silent mutations in HHE genes in CHD cases
1-03234 HTX NDUFA13 Silent I50I Novel NM_015965 NP_057049 19 19637046 A>C 428.99 228 23 27 84 0 139 0 100
1-00650 HTX RYR2 Silent T1464T Novel NM_001035 NP_001026 1 237756892 A>C 343.20 228 46 29 105 0 90 0 100
1-01816 LVOTO ARHGDIA Silent T132T Novel NM_001185077 NP_001172006 17 79827068 C>T 289.36 228 32 34 77 0 46 0 100
1-01637 CTD PSMB1 Silent T5T Novel NM_002793 NP_002784 6 170862316 T>C 243.58 194 23 11 94 0 66 0 100
1-01696 CTD PKP4 Silent S812S Novel NM_003628 NP_003619 2 159519816 G>A 173.79 228 67 68 97 0 119 0 100
M003-10 #N/A SARS Silent P384P Novel NM_006513 NP_006504 1 109779065 G>A 137.97 228 57 72 153 0 132 0 100
1-01505 LVOTO AKAP8 Silent Y53Y Novel NM_005858 NP_005849 19 15484809 G>A 121.48 228 57 31 98 0 75 0 100
1-00465 LVOTO CAND1 Silent L180L Novel NM_018448 NP_060918 12 67691235 A>G 101.74 228 129 108 122 0 118 0 100
1-00425 LVOTO ANLN Silent T232T Novel NM_018685 NP_061155 7 36445998 C>T 97.65 228 65 61 198 0 152 0 100
M004-11 HTX TAX1BP1 Silent G325G Novel NM_001206902 NP_001193831 7 27833977 G>A 93.81 228 229 218 322 0 494 0 100
1-00344 CTD UBR5 Silent L291L Novel NM_015902 NP_056986 8 103357639 G>A 92.92 228 145 55 220 0 149 0 100
1-01816 LVOTO SPARCL1 Silent Q448Q Novel NM_001128310 NP_001121782 4 88411978 T>C 83.47 228 90 85 210 0 153 0 100
1-00738 CTD WWC2 Silent T157T Novel NM_024949 NP_079225 4 184130127 T>C 63.65 228 40 46 111 0 149 0 100
1-00534 CTD FAM111A Silent E219E Novel NM_022074 NP_071357 11 58919798 A>G 54.71 228 46 52 131 0 115 0 100
1-02708 LVOTO FOXM1 Silent P451P Novel NM_001243089 NP_001230018 12 2968698 A>G 52.16 228 74 66 124 0 160 0 100

Proband Father MotherTable S4. All de novo mutations with Bayesian QS�50
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Damaging mutations in HHE genes in CHD Cases
1-00534 CTD CHD7 Nonsense Q1599X Novel NM_017780 NP_060250 8 61754556 C>T 124.85 228 53 68 128 0 121 0 100
1-02279 LVOTO AHNAK Nonsense G254X Novel NM_001620 NP_001611 11 62301129 C>A 175.75 228 27 23 88 0 96 0 100
1-02144 CTD LIG1 Nonsense Y765X Novel NM_000234 NP_000225 19 48624517 G>T 118.41 228 33 27 34 0 58 0 100
1-01360 LVOTO NCKAP1 Nonsense E1057X Novel NM_013436 NP_038464 2 183792856 C>A 103.97 228 70 76 175 0 128 4 100
1-01965 LVOTO KDM5B Splice 1 bp beyond exon 12 Novel NM_006618 NP_006609 1 202722032 C>T 68.06 228 47 39 112 0 76 0 100
1-00075 HTX RNF20 Nonsense Q83X Novel NM_019592 NP_062538 9 104302602 C>T 58.23 228 66 47 129 0 114 0 100
1-01028 CTD GTPBP4 Nonsense K332X Novel NM_012341 NP_036473 10 1051839 A>T 67.83 228 132 138 235 0 263 0 100
1-00596 LVOTO MLL2 Frameshift S1722 Novel NM_003482 NP_003473 12 49438005 -A 216.12 Indel-Pass 80 44 131 0 126 0 100
1-00455 HTX NAA15 Frameshift D335 Novel NM_057175 NP_476516 4 140272757 -AAAG 213.74 Indel-Pass 68 17 57 0 72 0 100
1-00577 LVOTO OS9 Frameshift T158 Novel NM_001017956 NP_001017956 12 58089814 -A 67.99 Indel-Pass 78 39 72 0 74 0 100
1-02227 LVOTO FTSJ3 Frameshift 786/847 Novel NM_017647 NP_060117 17 61897350 -GA/+C 59.29 Indel-Pass 62 69 118 0 125 0 100
1-00577 LVOTO CUL3 Frameshift I144 Novel NM_003590 NP_003581 2 225379434 -TAAT 57.06 Indel-Pass 163 49 172 0 149 0 100
1-00448 CTD NF1 Splice 4 bp beyond exon 6 Novel NM_001128147 NP_001121619 17 29508511 -A 54.87 Indel-Pass 139 48 110 0 145 0 100
1-00141 CTD NAA15 Nonsense S761X Novel NM_057175 NP_476516 4 140306112 C>A 213.74 196 16 12 30 0 41 0 92
1-01907 CTD SERPINH1 Nonsense R415X Novel NM_001235 NP_001226 11 75283114 C>T 847.33 137 5 15 32 0 21 0 55

Mutations at conserved position in HHE genes in CHD Cases
1-00148 LVOTO LAMC1 Missense G170E Novel NM_002293 NP_002284 1 183072553 G>A 510.65 169 22 15 54 0 63 0 100
1-00522 LVOTO TLN1 Missense L684V Novel NM_006289 NP_006280 9 35717729 G>C 321.59 228 53 49 96 0 132 0 100
1-01664 HTX OBSCN Missense F5295S Novel NM_001098623 NP_001092093 1 228521311 T>C 298.14 228 43 52 125 1 96 0 100
1-00750 LVOTO HUWE1 Missense R3219C Novel NM_031407.5 NP_113584.3 X 53576300 G>A 259.79 228 38 56 48 0 146 0 100
1-00522 LVOTO LAMA5 Missense C1625Y Novel NM_005560 NP_005551 20 60902649 C>T 208.82 228 39 39 73 0 96 0 100
1-01637 CTD KIAA0664 Missense H823Y Novel NM_015229 NP_056044 17 2598535 G>A 182.48 228 70 61 186 0 135 0 100
1-01907 CTD UBE2B Missense R8T Novel NM_003337 NP_003328 5 133707309 G>C 146.23 228 26 21 101 0 63 0 100
1-00808 CTD RAVER1 Missense H93R Novel NM_133452 NP_597709 19 10441195 T>C 130.73 228 124 82 125 0 132 0 100
1-00479 LVOTO GANAB Missense N171S Novel NM_198334 NP_938148 11 62402341 T>C 129.52 228 81 83 123 0 69 0 100
1-02394 LVOTO DST Missense K2653I Novel NM_015548 NP_056363 6 56417763 T>A 121.78 189 46 67 104 0 58 1 100
1-02189 LVOTO EIF3H Missense H109R Novel NM_003756 NP_003747 8 117671183 T>C 118.19 228 66 60 116 0 147 0 100
1-00161 HTX SBNO1 Missense T1339M Novel NM_001167856 NP_001161328 12 123782548 G>A 108.82 228 84 114 239 0 240 0 100
1-00753 LVOTO FYCO1 Missense E1286K Novel NM_024513 NP_078789 3 45996829 C>T 96.55 228 78 80 124 0 60 0 100
1-02153 CTD RNF44 Missense R421Q Novel NM_014901 NP_055716 5 175956066 C>T 88.67 228 15 17 43 0 54 0 100
1-00197 LVOTO BCL9 Missense M1395K Novel NM_004326 NP_004317 1 147096663 T>A 87.75 228 12 16 47 0 71 0 100
1-00325 LVOTO TSHZ1 Missense Q288R Novel NM_005786 NP_005777 18 72998360 A>G 82.03 228 30 24 65 0 49 0 100
1-01026 LVOTO RUFY2 Missense P621L Novel NM_017987 NP_060457 10 70105589 G>A 77.03 228 90 105 216 0 221 0 100
1-00541 HTX EFHD2 Missense A230V Novel NM_024329 NP_077305 1 15755186 C>T 76.90 228 73 86 143 0 99 0 100
1-00230 LVOTO KDM5A Missense R1508W Novel NM_001042603 NP_001036068 12 402269 G>A 69.89 228 53 36 90 0 108 0 100
1-02923 LVOTO PHIP Missense S674C Novel NM_017934 NP_060404 6 79707311 G>C 67.31 193 34 30 91 0 106 0 100
1-02264 LVOTO C11orf9 Missense F387S Novel NM_001127392 NP_001120864 11 61541483 T>C 66.17 228 22 18 48 1 87 0 100
1-01783 LVOTO FADS3 Missense G412S Novel NM_021727 NP_068373 11 61643375 C>T 65.71 228 22 19 45 0 84 0 100
1-01138 LVOTO USP34 Missense L432P Novel NM_014709 NP_055524 2 61577785 A>G 64.48 228 56 69 154 0 115 1 100
1-02133 CTD CPSF1 Missense N29K Novel NM_013291 NP_037423 8 145634456 G>C 63.04 228 41 29 80 0 82 0 100
1-02437 HTX LZTR1 Missense G248R Novel NM_006767 NP_006758 22 21344765 G>A 60.72 228 35 27 107 0 99 0 100
1-01365 CTD GTPBP1 Missense E291K Novel NM_004286 NP_004277 22 39117783 G>A 56.59 228 45 55 129 0 150 0 100
1-00934 LVOTO FREM2 Missense D2206N Novel NM_207361 NP_997244 13 39425119 G>A 51.87 228 68 69 132 1 157 0 100
1-01341 CTD KIAA0196 Missense V167D Novel NM_014846 NP_055661 8 126093921 A>T 48.07 228 95 72 138 0 134 0 100
1-00587 LVOTO SMAD4 Missense I500V Novel NM_005359 NP_005350 18 48604676 A>G 45.78 228 47 56 82 0 139 0 100
1-00491 LVOTO KPNA1 Missense P350S Novel NM_002264 NP_002255 3 122156091 G>A 45.35 228 101 110 199 0 144 0 100
1-03300 LVOTO DHX38 Missense G332D Novel NM_014003 NP_054722 16 72133665 G>A 40.76 228 34 28 84 0 103 0 100
1-02093 CTD LOXL2 Missense R327Q Novel NM_002318 NP_002309 8 23186065 C>T 110.95 190 27 17 27 0 25 0 91
1-01828 CTD DAPK3 Missense P193L Novel NM_001348 NP_001339 19 3963893 G>A 54.61 228 34 38 50 0 63 0 90
1-01984 LVOTO PCDHGA2 Missense L172F Novel NM_032009 NP_061738 5 140719052 C>T 182.84 228 28 29 33 0 43 0 89
1-03151 LVOTO SUPT5H Missense E451D Novel NM_001130825 NP_001124297 19 39960029 G>C 132.72 228 22 23 33 0 25 0 72
1-02788 CTD MINK1 Missense R299C Novel NM_153827 NP_722549 17 4789867 C>T 77.77 150 16 16 23 0 27 0 66
1-01696 CTD GLT25D1 Missense R471W Novel NM_024656 NP_078932 19 17691524 C>T 73.64 228 35 33 47 0 57 0 55
1-00116 CTD NUB1 Missense D310H Novel NM_016118.4 NP_057202.3 7 151064080 G>C 45.07 228 95 86 149 0 176 0 100
1-01036 CTD BCL2L11 Missense P59S Novel NM_001204113.1 NP_001191042.1 2 111881677 C>T 41.14 228 51 48 104 0 119 0 100

Mutations at nonconserved position in HHE genes in CHD Cases
1-01505 LVOTO TTN Missense T4852N Novel NM_001256850.1 NP_001243779 2 179598610 G>T 2093.26 154 12 10 35 0 23 0 71
1-00638 CTD FBN2 Missense D2191N Novel NM_001999 NP_001990 5 127624885 C>T 263.94 228 127 111 325 0 312 0 100
1-00258 CTD PFKM Missense A522G Novel NM_001166686 NP_001160158 12 48535104 C>G 218.03 228 88 81 208 0 151 0 100
1-01817 CTD MAPK8IP3 Missense P852R Novel NM_001040439 NP_001035529 16 1816090 C>G 134.18 228 16 16 51 0 45 0 100
1-01432 CTD LAMB2 Missense R1661W Novel NM_002292 NP_002283 3 49159236 G>A 129.86 176 26 11 50 0 43 0 100
1-00222 LVOTO NUCB1 Missense R189C Novel NM_006184 NP_006175 19 49416352 C>T 123.31 228 115 70 258 0 164 0 100
1-00381 LVOTO STAB1 Missense A1102V Novel NM_015136 NP_055951 3 52547767 C>T 122.21 228 71 47 89 0 128 0 100
1-02121 CTD DST Missense G2936D Novel NM_015548 NP_056363 6 56401671 C>T 121.78 228 104 64 229 0 180 0 100
1-01913 Other RAB10 Missense N112S Novel NM_016131 NP_057215 2 26350020 A>G 118.86 225 23 21 59 0 56 0 100
1-01933 LVOTO CPD Missense P425R Novel NM_001304 NP_001295 17 28748818 C>G 98.86 228 108 69 169 2 142 0 100
1-02141 CTD LRPPRC Missense D486N Novel NM_133259 NP_573566 2 44190759 C>T 93.03 228 100 98 278 0 169 0 100
1-00186 CTD DSG2 Missense L499Q Novel NM_001943 NP_001934 18 29116237 T>A 89.11 228 79 69 157 0 90 0 100
1-01788 LVOTO MYEF2 Missense I264V Novel NM_016132 NP_057216 15 48451047 T>C 69.68 228 87 106 191 0 201 0 100
1-02888 LVOTO AP3B1 Missense E771K Novel NM_003664 NP_003655 5 77406117 C>T 63.56 228 81 74 108 0 116 0 100
1-00323 HTX NUP62 Missense Q70R Novel NM_001193357 NP_001180286 19 50412856 T>C 62.55 228 55 64 99 0 93 0 100
1-00465 LVOTO TOMM40L Missense S171I Novel NM_032174 NP_115550 1 161198003 G>T 62.29 228 69 67 96 0 73 0 100
1-00174 CTD ZNF326 Missense E338A Novel NM_182976 NP_892021 1 90482962 A>C 54.95 228 137 100 125 0 110 0 100
1-00934 LVOTO TRIM41 Missense P167S Novel NM_033549 NP_291027 5 180651498 C>T 53.73 228 28 20 56 0 62 0 100
1-00824 HTX MAP2K7 Missense V409I Novel NM_145185 NP_660186 19 7977281 G>A 52.58 228 26 25 41 0 43 0 100
1-01151 CTD SUV420H1 Missense R143C Novel NM_017635 NP_060105 11 67942601 G>A 44.49 228 110 105 295 0 411 0 100
1-02254 LVOTO ELMO2 Missense N332S Novel NM_133171 NP_573403 20 45003945 T>C 44.31 228 87 71 201 0 111 0 100
1-01941 CTD NOP2 Missense I351V Novel NM_006170 NP_006161 12 6671053 T>C 42.04 228 55 44 129 0 210 0 100
1-03190 CTD OBSCN Missense T4421M Novel NM_001098623 NP_001092093 1 228503797 C>T 298.14 228 15 30 21 0 45 0 87
1-00373 LVOTO DGCR2 Missense A64T Novel NM_001184781 NP_001171710 22 19076893 C>T 77.33 228 22 17 28 0 47 0 72
1-01997 CTD PRPF4B Missense E14Q Novel NM_003913.4 NP_003904.3 6 4021699 G>C 129.14 228 26 21 58 0 71 0 100
1-00344 CTD SERINC4 Missense R65H Novel NM_001258032.1 NP_001244961.1 15 44089057 C>T 43.79 228 68 73 112 0 126 0 100
1-00305 CTD GRIP2 Missense T954M Novel NM_001080423.2 NP_001073892.2 3 14547126 G>A 51.51 228 38 24 70 0 53 0 100

Silent mutations in HHE genes in CHD cases
1-03234 HTX NDUFA13 Silent I50I Novel NM_015965 NP_057049 19 19637046 A>C 428.99 228 23 27 84 0 139 0 100
1-00650 HTX RYR2 Silent T1464T Novel NM_001035 NP_001026 1 237756892 A>C 343.20 228 46 29 105 0 90 0 100
1-01816 LVOTO ARHGDIA Silent T132T Novel NM_001185077 NP_001172006 17 79827068 C>T 289.36 228 32 34 77 0 46 0 100
1-01637 CTD PSMB1 Silent T5T Novel NM_002793 NP_002784 6 170862316 T>C 243.58 194 23 11 94 0 66 0 100
1-01696 CTD PKP4 Silent S812S Novel NM_003628 NP_003619 2 159519816 G>A 173.79 228 67 68 97 0 119 0 100
M003-10 #N/A SARS Silent P384P Novel NM_006513 NP_006504 1 109779065 G>A 137.97 228 57 72 153 0 132 0 100
1-01505 LVOTO AKAP8 Silent Y53Y Novel NM_005858 NP_005849 19 15484809 G>A 121.48 228 57 31 98 0 75 0 100
1-00465 LVOTO CAND1 Silent L180L Novel NM_018448 NP_060918 12 67691235 A>G 101.74 228 129 108 122 0 118 0 100
1-00425 LVOTO ANLN Silent T232T Novel NM_018685 NP_061155 7 36445998 C>T 97.65 228 65 61 198 0 152 0 100
M004-11 HTX TAX1BP1 Silent G325G Novel NM_001206902 NP_001193831 7 27833977 G>A 93.81 228 229 218 322 0 494 0 100
1-00344 CTD UBR5 Silent L291L Novel NM_015902 NP_056986 8 103357639 G>A 92.92 228 145 55 220 0 149 0 100
1-01816 LVOTO SPARCL1 Silent Q448Q Novel NM_001128310 NP_001121782 4 88411978 T>C 83.47 228 90 85 210 0 153 0 100
1-00738 CTD WWC2 Silent T157T Novel NM_024949 NP_079225 4 184130127 T>C 63.65 228 40 46 111 0 149 0 100
1-00534 CTD FAM111A Silent E219E Novel NM_022074 NP_071357 11 58919798 A>G 54.71 228 46 52 131 0 115 0 100
1-02708 LVOTO FOXM1 Silent P451P Novel NM_001243089 NP_001230018 12 2968698 A>G 52.16 228 74 66 124 0 160 0 100

Proband Father MotherTable S4. All de novo mutations with Bayesian QS�50

��



“Model	  Organisms”	  to	  study	  this	  in?	  

•  S. cerevisiae (yeast) 
•  S. pombe (yeast) 

•  C. elegans (worms) 
•  D. melanogaster (flies) 
•  M. musculus (mouse) 

•  Microcebus (mouse lemur- primate) 
•  C. Jacchus (marmoset- primate) 

•  Cell lines from the Ogden Syndrome boys 
•  Induced Pluripotent Stem (iPS) cells - human 



S. cerevesiae (yeast)	  
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branched chains outward from the center of the colony, and invasive growth under the surface of
agar medium.

“Normal” laboratory haploid strains have a doubling time of approximately 90 min. in
complete YPD (1% yeast extract, 2% peptone, and 2% glucose) medium and approximately 140
min. in synthetic media during the exponential phase of growth at the optimum temperature of
30°C.  However, strains with greatly reduced growth rates in synthetic media are often
encountered.  Usually strains reach a maximum density of 2 x 108 cells/ml in YPD medium.
Titers 10 times this value can be achieved with special conditions, such as pH control,
continuous additions of balanced nutrients, filtered-sterilized media and extreme aeration that
can be delivered in fermenters.

S. cerevisiae can be stably maintained as either heterothallic or homothallic strains, as
illustrated in Figure 1.  Both heterothallic and homothallic diploid strains sporulate under
conditions of nutrient deficiency, and especially in special media, such as potassium acetate
medium.  During sporulation, the diploid cell undergoes meiosis yielding four progeny haploid
cells, which become encapsulated as spores (or ascospores) within a sac-like structure called an
ascus (plural asci).  The percent sporulation varies with the particular strain, ranging from no or
little sporulation to nearly 100%.  Many laboratory strains sporulate to over 50%.  The majority
of asci contains four haploid ascospores, although varying proportions asci with three or less
spores are also observed.

Because the a and D mating types are under control of a pair of MATa/MATD heterozygous
alleles, each ascus contains two MATa and two MATD haploid cells.  Upon exposure to nutrient
condition, the spores germinate, vegetative growth commences and mating of the MATa and
MATD can occur.  However, if the haploid spores are mechanically separated by
micromanipulation, the haplophase of heterothallic strains can be stably maintained, thus
allowing the preparation of haploid strains.  In contrast, the presence of the HO allele in

Figure 1.  Life cycles of heterothallic and homothallic strains of S. cerevisiae.  Heterothallic
strains can be stably maintained as diploids and haploids, whereas homothallic strains are stable
only as diploids, because the transient haploid cells switch their mating type, and mate.
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	  hNaa10p-‐S37P	  is	  func4onally	  
impaired	  in	  vivo	  using	  a	  yeast	  model.	  

	  

Unpublished	  data,	  do	  not	  further	  distribute.	  



Open	  ques4on:	  
Func/on	  of	  N-‐terminal	  acetyla/on?	  

Protein	  stability?	  Protein	  secre4on?	  

Figure	  courtesy	  of	  Kris	  Gevaert	  
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between Lys29 and Gln15 of Naa10p and Asp532 and Gln491 of 
Naa15p. Single point mutations in this region did not break up the 
complex and had only modest effects on substrate binding and cataly-
sis (Table 2), probably owing to the extensiveness of the interface. 
A smaller hydrophobic interface is formed between Naa10p His20 
and Naa15p Phe449 and Trp494 and is supplemented with a hydro-
gen bond between Naa10p Gln25 and Naa15p Arg448. This region 
of Naa15p directly stabilizes the position of the Naa10p 1 helix as 
well as the Naa10p 1– 2 loop and as a result is crucial for proper 
complex formation. This is evident from the observation that alanine 
point mutations at either Naa15p Arg448 or Naa15p Phe449 were 
able to disrupt NatA complex formation. Several additional scattered 
intermolecular interactions serve to supplement the Naa10p-Naa15p 
interface (Supplementary Fig. 3).

Molecular basis for Naa15p modulation of Naa10p acetylation
To explore the molecular basis for Naa15p modulation of Naa10p 
acetyltransferase activity, we determined the X-ray crystal structure of 
Naa10p of S. pombe in the absence of Naa15p, for comparison with the 
holo-NatA complex (Table 1). We determined the structure of Naa10p 
(residues 1–156) to 2.00-Å resolution, using a combination of single- 
wavelength anomalous diffraction and molecular replacement (model, 
NAA50) to phase data collected on a selenomethionine-derivatized 
Naa10p protein. An alignment of the complexed and uncomplexed 
forms of Naa10p revealed that the 1–loop– 2 segment assumes  
a substantially different conformation in the presence of Naa15p  
(Fig. 2a). Notably, this conformational change is driven by the move-
ment of several hydrophobic residues in Naa10p 2 (Leu28, Leu32 
and Ile36), which make intramolecular interactions with residues in 
Naa10p 1 and 3 (Ile8, Leu11, Met14, Tyr55 and Tyr57) in apo-
Naa10p but shift to make alternative intermolecular interactions 
with helices of Naa15p in the NatA complex (Figs. 1c and 2b). As 
a result of this interaction, the C-terminal region of the 1 helix 
undergoes an additional helical turn, which helps to reposition the 

1– 2 loop. Notably, docking of the apo-Naa10p structure into the 
corresponding binding pocket of Naa15p showed a clash between the 
Naa10p 1–loop– 2 and Naa15p Arg448 and Naa15p Phe449 of 25  
(Fig. 2c)—the same interface that we have shown to be necessary for 
proper complex formation (Fig. 1d and Table 2).

As a result of the Naa15p interaction along one side of the Naa10p 
1–loop– 2 region, residues on the opposite side of this loop region 

appear to adopt a specific conformation that is essential for catalysis 

of traditional substrates (alanine, cysteine, glycine, serine, threonine 
or valine) (Supplementary Videos 2 and 3). Specifically, Naa10p  
residues Leu22 and Tyr26 shift about 5.0 Å from surface-exposed 
positions to buried positions in the active site, and Naa10p Glu24 
moves by about 4.0 Å, substantially altering the landscape of the NatA 
active site (Fig. 2d). All of these residues are well ordered in both 
structures (Supplementary Fig. 4). Our comparison of the com-
plexed and uncomplexed structures suggests that the auxiliary subunit 
induces an allosteric change in the Naa10p active site to an extent that 
is required for the mechanism of catalysis by the NatA complex, and 
Naa10p is likely to represent an active GNAT fold. Consistent with 
this hypothesis, a backbone alignment of key active site elements in 
active Naa10p with the corresponding region in the independently 
active human NAA50 that selects a 1-Met-Leu-2 N-terminal sequence  
shows a high degree of structural conservation (r.m.s. deviation of 
1.52 Å). The corresponding alignment of the complexed and uncom-
plexed forms of Naa10p showed less structural conservation, with an 
r.m.s. deviation of 2.43 Å (Fig. 2e).

Substrate peptide binding and NatA inhibition
To determine the molecular basis for substrate-specific peptide bind-
ing by NatA, and in particular how, unlike most other NATs, it is able 
to accommodate a number of nonmethionine N-terminal substrates, 
we synthesized a bisubstrate conjugate in which CoA is covalently 
linked to a biologically relevant substrate peptide fragment with the 
sequence 1-SASEA-5 (CoA-SASEA). We performed inhibition stud-
ies with CoA-SASEA and with a control compound, acetonyl CoA, 
which is a nonhydrolyzable acetyl CoA analog (Fig. 3a). Half-maxi-
mum inhibitory concentration (IC50) determinations revealed that 
CoA-SASEA had an IC50 of 1.4  1.0 M, whereas acetonyl CoA 
had an IC50 of 380  10 M (Fig. 3b). To assess the specificity of this 
inhibitor toward NatA, we also calculated IC50 values of CoA-SASEA 
and acetonyl CoA with NAA50, a NAT that requires a substrate  
N-terminal methionine residue. We found that CoA-SASEA has an 
IC50 of 11  2 M, whereas acetonyl CoA has an IC50 of 130  12 M 
(Fig. 3b). With NAA50, the addition of a SASEA peptide portion 
was able to increase the potency of acetonyl CoA by only about ten-
fold, whereas with NatA this peptide addition exhibited an increase 
in potency of about 300-fold. The greater potency of acetonyl CoA 
with NAA50 over Naa10p can be explained by the stronger binding of 
acetyl CoA to NAA50 (Km = 27  2 M) than to Naa10p (Km = 59   
5 M). The markedly higher potency of the CoA-SASEA inhibitor 
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ABSTRACT: The N-termini of 80−90% of human proteins
are acetylated by the N-terminal acetyltransferases (NATs),
NatA−NatF. The major NAT complex, NatA, and particularly
the catalytic subunit hNaa10 (ARD1) has been implicated in
cancer development. For example, knockdown of hNaa10
results in cancer cell death and the arrest of cell proliferation. It
also sensitized cancer cells to drug-induced cytotoxicity.
Human NatE has a distinct substrate specificity and is essential
for normal chromosome segregation. Thus, NAT inhibitors
may potentially be valuable anticancer therapeutics, either
directly or as adjuvants. Herein, we report the design and
synthesis of the first inhibitors targeting these enzymes. Using
the substrate specificity of the enzymes as a guide, we synthesized three bisubstrate analogues that potently and selectively inhibit
the NatA complex (CoA-Ac-SES4; IC50 = 15.1 μM), hNaa10, the catalytic subunit of NatA (CoA-Ac-EEE4; Ki = 1.6 μM), and
NatE/hNaa50 (CoA-Ac-MLG7; Ki* = 8 nM); CoA-Ac-EEE4 is a reversible competitive inhibitor of hNaa10, and CoA-Ac-MLG7
is a slow tight binding inhibitor of hNaa50. Our demonstration that it is possible to develop NAT selective inhibitors should
assist future efforts to develop NAT inhibitors with more drug-like properties that can be used to chemically interrogate in vivo
NAT function.

Protein acetylation has received significant attention in the
past decade due to its important roles in regulating

eukaryotic cell signaling. Of the various residues known to be
acetylated in vivo, lysine acetylation has received the most
attention due to its critical role in controlling gene transcription
and how dysregulation of this process contributes to the onset
and progression of disease. While the importance of lysine
acetylation is clear, it is now evident that N-terminal (Nt)-
acetylation, the second major type of protein acetylation, also
plays a critical role in eukaryotic cell signaling. This is the case
because the majority of eukaryotic proteins are Nt-acetylated,
mostly cotranslationally,1 and the functional consequences of
this modification are quite diverse,2 including (i) degradation of
Nt-acetylated proteins by a novel branch of the N-end rule
pathway;3 (ii) inhibition of post-translational ER-transloca-
tion;4 (iii) protein complex formation;5 and (iv) protein
targeting to membranes.6,7

Nt-acetylation occurs when the acetyl moiety of acetyl
coenzyme A (Ac-CoA) is transferred to the α-amino group of a
polypeptide by one of the six N-terminal acetyltransferases
(NATs), i.e., NatA−NatF. Each NAT is composed of one or
more distinct subunits, and these enzymes acetylate specific

subsets of proteins that are largely defined by their N-terminal
amino acid sequence.1 For example, the highly conserved NatA
complex, which is composed of the catalytic subunit hNaa10
(Ard1) and the nonenzymatic auxiliary subunit Naa15 (Nat1/
NATH),8−11 acetylates N-termini starting with Ser, Ala, Thr,
Gly, Val, and Cys; NatA acts on these N-termini after the
initiator Met (iMet) has been removed by methionine
aminopeptidases.11,12 Interestingly, the substrate specificity of
hNaa10 shifts when tested independently of hNaa15, such that
on its own, hNaa10 acetylates acidic actin N-termini in vitro.13

Although hNaa50 (Nat5/San), the catalytic subunit of NatE,
interacts with the NatA complex,14,15 it is considered a separate
NAT because it acetylates a distinct group of substrates starting
with the iMet.13,16

A growing number of studies report the upregulated
expression, at both the mRNA and protein level, of the two
main components of the NatA complex (i.e., hNaa10 and
hNaa15) in several different cancer types, suggesting that
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Summary	  

•  Found	  first	  human	  gene/c	  disease	  involving	  
Nt-‐acetyla/on	  of	  proteins	  

•  Characterizing	  the	  Nt-‐acetyla/on	  pathway	  
both	  in	  vitro	  and	  in	  vivo	  

•  Working	  toward	  iden/fying	  interac/ng	  
components	  and	  more	  downstream	  
substrates	  of	  NatA	  complex.	  


