MOLECULAR AND CELLULAR BIOLOGY, Apr. 2010, p. 1898-1909 Vol. 30, No. 8
0270-7306/10/$12.00  doi:10.1128/MCB.01199-09
Copyright © 2010, American Society for Microbiology. All Rights Reserved.

The Chaperone-Like Protein HYPK Acts Together with NatA in
Cotranslational N-Terminal Acetylation and Prevention of
Huntingtin Aggregation'f

Thomas Arnesen,">>* Kristian K. Starheim,’*? Petra Van Damme,*> Rune Evjenth,1 Huyen Dinh,!
Matthew J. Betts,® Anita Ryningen,’” Joél Vandekerckhove,*> Kris Gevaert,*> and Dave Anderson®;

Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway"; Department of Surgical Sciences, University of
Bergen, N-5020 Bergen, Norway?; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway®;
Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium®; Department of Biochemistry,

Ghent University, B-9000 Ghent, Belgium®; EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany®;

Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway’; and
Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229%

Received 3 September 2009/Returned for modification 26 October 2009/Accepted 27 January 2010



Coomassie of beads

e . @™ — HYPK

WB after incubation and wash

B HYPK

T sy
Acidic |
putative SH3
binding domain

Interaction?

hNaa15p

1 46 79 113 374 407 441 583 635 866

| I — TS ]
TPR TPR TPR TPR Coiled coil

FIG. 1. The C terminus of hNaal5p interacts directly with HYPK. (A) Purified MBP-hNaal5p fusion proteins containing N-terminal MBP and
a His tag fused to a segment of the hNaalSp protein, as indicated, were purified and bound to Ni-affinity beads. HYPK was separately fully purified
and added to the beads containing different MBP-hNaal5p fusions. After incubation with rotation for 10 min and several washing steps, the
MBP-hNaal5p beads were analyzed for HYPK binding by SDS-PAGE and Western blotting using anti-HYPK. A positive signal indicates that
purified HYPK binds to the MBP-hNaal5p fusion protein. Equal amounts of the different MBP-hNaalSp fusions used were confirmed by
SDS-PAGE and Coomassie staining. (B) Schematic model of the predicted domains of hNaal5p and HYPK and the potential regions involved
in the hNaal5p-HYPK interaction. TPR, tetratricopeptide repeat.
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Supplementary figure S1. HYPK identified in hNaalOp-hNaalSp immunoprecipitates.
(A) The amino acid sequence of the HYPK protein is shown, with the identified tryptic
peptides from anti-hNaalOp and anti-hNaal 5p affinity extracts in bold and underlined.
Based on the HYPK-specific peptides identified by MS/MS in our immunoprecipitation
experiments, we are not able to distinguish between the three potential variants of HYPK.
(B) MS/MS spectrum of the HYPK peptide >*EIQSSNLETAMSVIGDR"’, identified in a
hNaalOp affinity extraction. The peptide precursor ion current was 2.16 x 10 5. The
fragments of the +2 peptide precursor ion fragments were identified by the program
SEQUEST (16) as +1 individual b or y ions, which are labeled in the spectrum. Almost
all major peaks are assigned; the peptide had an Xcorr of 4.58, and a probability of
correct sequencing, based on a machine learning analysis of the mass spectrometry data
and SEQUEST parameters (Anderson, D. C. et al., J.Proteome.Res. 2003 2:137-146) of
99%. The mass assignments for the individual b and y ions are shown in the inset table,
with the major matched ions indicated in bold.



TABLE S1. Overview of HYPK peptides identified in hNaalOp-hNaalSp

immunoprecipitates”.
HYPK peptides

2KEDLELIMTEMEISR '
**EIQSSNLETAMSVIGDR"
SKHDSGAADLER®
SEDLELIMTEMEISR '
2ZKEDLELIM#TEM#EISR '
VTDYAEEK??
SEDLELIM#TEM#EISR '
"SEHM#GNVVEALIALTN'?
**EIQSSNLETAMSVIGDRR"!
**EIQSSNLETAM#SVIGDR”’
SEDLELIMTEM#EISR '

*VTDYAEEKEIQSSNLETAM#SVIGDR"

anti-hNaal5p extracts
peptide probability
0.99

0.95
0.65
0.50
0.92
0.85
0.84
0.74
0.61
0.58
0.52

anti-hNaalOp extracts
peptide probability
0.98
0.99
0.98
0.94
0.93
0.86

0.54
0.57

HYPK (gi|27734984) was identified in 4 of 4 hNaalOp and hNaal5p affinity

extracts.

*Each peptide was sequenced multiple times in a number of different 2D

lc/ms/ms runs. The probabilities of correct peptide sequencing were derived
from support vector machine learning calculations (Anderson, D. C. et al.,
J.Proteome.Res. 2003 2:137-146). M# refers to oxidized methionine.
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Supplementary figure S2. Test of anti-HYPK antibody. (A) Lysates of different human
cell lines were applied to SDS-PAGE and Western blotting as indicated (see also
materials and methods) using anti-HYPK and anti-B-tubulin. A band at ~15 kDa most
likely representing HYPK is indicated. The asterisks indicate bands possibly representing
unspecificity or perhaps slower migrating forms/complexes of HYPK. (B) HEK293 cells
were transfected with plasmids pXpress-HYPK, pHYPK-V5 or no plasmid as indicated.
After 48 hours cells were harvested and the resulting lysates processed by SDS-PAGE
and Western blotting using anti-Xpress, anti-V5 and anti-HYPK.
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FIG. 2. Subcellular localization of HYPK. (A) (Left) HeLa cells were transfected with a plasmid encoding Xpress-HYPK, and at 48 h
posttransfection, cells were fixed and anti-Xpress antibodies and Alexa 488-conjugated anti-mouse antibodies were used to visualize Xpress-HYPK.
(Middle) DAPI (4',6-diamidino-2-phenylindole) staining was used to visualize the nuclei of the cells. (Right) Overlay of DAPI and Xpress-HYPK
signals. More than 200 transfected cells were inspected, and representative cells are shown. (B) Twenty-four hours after being seeded, HeLa cells
were fixed and anti-HYPK and Alexa 488-conjugated anti-rabbit antibodies were used to visualize endogenous HYPK. Rabbit IgG was used as an
unspecific negative control. DAPI staining is presented next to each sample to visualize nuclei and verify the presence of cells. Pictures are
representative of three independent experiments in which at least 100 cells were taken into account.
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FIG. 3. HYPK cosediments with polysomal fractions in a salt-sen-
sitive manner. Polysomal pellets from HeLa cells were resuspended in
buffer containing increasing concentrations of KCl. Cell lysate and
polysomal pellets after KCl treatment were analyzed by SDS-PAGE
and Western blotting. The membrane was incubated with anti-HYPK,
anti-hNaalSp, anti-L26 (ribosomal protein), and anti-CytC antibodies.
Molecular mass markers (in kDa) are indicated on the left. Results
shown are representative of three independent experiments.
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FIG. 4. HYPK-hNaal5p interaction is independent of active trans-
lation. HEK293 cells were cotransfected with plasmids expressing
Xpress-HYPK and hNaal5p-V5. At 48 h posttransfection, cells were
treated with 50 pwg/ml cycloheximide (CHX) or solvent (control) for 30
min. The cells were then harvested and subjected to immunoprecipi-
tation (IP), using anti-Xpress or negative-control antibodies. The pres-
ence of hNaal5-V5 in complex with Xpress-HYPK was analyzed by
SDS-PAGE and Western blotting, using anti-V5. The inhibitory effect
of CHX on protein translation was verified in parallel samples detect-
ing the reduction of unstable proteins. The results shown are repre-
sentative of three independent experiments.



FIG. 5. HYPK interacts specifically with hNaal5p of hNatA, not
with hNaa25p of hNatB and hNaa35p of hNatC. HEK293 cells were
cotransfected with plasmids encoding Xpress-HYPK plus hNaalSp-
V5, hNaa25p-V5, hNaa35p-V5, or lacZ-V5, as indicated. At 48 h
posttransfection, cells were harvested and subjected to immunopre-
cipitation using anti-Xpress (anti-Xp) antibodies. The presence of
hNaal5p-V5, hNaa25p-VS5, and hNaa35p-V5 in complex with Xpress-
HYPK was investigated by SDS-PAGE and Western blotting, using
anti-V5. (Top) Western blot of immunoprecipitates. (Bottom) West-
ern blot of cell lysates prior to immunoprecipitation. The results shown
are representative of three independent experiments.
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FIG. 6. siRNA-mediated knockdown of HYPK, hNAAIO, and
hNAAIS. (A) Five individual siRNAs potentially targeting HYPK ex-
pression (H1 to H5) were tested by siRNA transfection of HeLa cells
and subsequent RT-PCR analysis at 48 h posttransfection, using prim-
ers specific for HYPK and B-actin. G, siGAPDH (negative control).
(B) siRNA-mediated knockdown in HeLa cells of the specific genes
HYPK, hNAA10, and hNAAI5, as indicated. siLamin and siGAPDH
were used as negative controls. siHYPK is an equal mixture of the four
effective siHYPK siRNAs shown in panel A (H1, H2, H4, and HS; 50
nM total concentration). RT-PCR analysis was performed at 72 h
posttransfection. (C) SDS-PAGE and Western blotting, using anti-
HYPK, anti-hNaalOp, anti-hNaalSp, and antiactin, of HeLLa samples
treated identically to those described for panel B. Protein levels were
quantified using a Fuji Film IR LAS 1000 documentation system and
Image Gauge 3.45. Protein levels in siLamin- and siGAPDH-treated
cells (the mean for these two negative controls) were set to 1.0, and
protein levels in sihNAAI0-, sihNAAI5-, and siHYPK-treated cells
were estimated relative to this and normalized to actin levels. HYPK
appeared as one or two specific bands, and the sum of the two was used
for quantification. All results are representative of at least three inde-
pendent experiments.
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FIG. 7. HYPK knockdown induces cell death and G,/G,, cell cycle
arrest. Flow cytometric cell cycle analysis of HYPK, hNAAI0, and
hNAA15 knockdown cells was performed at 72 h posttransfection.
siLamin- and siGAPDH-treated samples were used as negative con-
trols. (Top panels) No ZVAD treatment. (Bottom panels) ZVAD
treatment to inhibit caspase activity and, thereby, induction of caspase-
mediated cell death. Experiments were performed three times, and
representative values are given.
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FIG. 8. HYPK and hNAA10 knockdown increases Huntingtin aggregation. HeLa cells were transfected with the indicated siRNAs, and at 24 h
posttransfection, the medium was replaced and the cells were transfected with plasmids encoding the indicated Htt-EGFP fusion proteins.
Twenty-four hours after plasmid transfection, the cells were fixed, cells displaying Htt-EGFP aggregates were counted, and the percentage of cells
with aggregates among the transfected cells was calculated. At least 200 transfected cells were counted per sample, and values presented are
means * standard deviations (SD) for three to six independent experiments. P values for independent ¢ tests for samples versus control are
indicated with asterisks (P < 0.05).
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FIG. 9. HYPK and hNaal5p do not colocalize with Htt aggregates. HeLa cells expressing various EGFP-tagged polyQ versions (left column)
were incubated with HYPK- or hNaal5p-specific antibodies, as indicated in the figure (second column from left). Alexa 594-conjugated anti-mouse
antibodies were used to visualize HYPK and hNaal5p. The third column from left presents an overlay of polyQ-EGFP and HYPK or hNaal5p.

DAPI staining was used to visualize DNA, as included in the overlay shown in the right column. Images were processed by deconvolution (Leica
4000 software). Bar, 25 pm.
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FIG. 10. HYPK knockdown reduces NatA-mediated N-terminal acetylation. HeLa cells were transfected with siRNAs targeting hNAA10,
HYPK, or a control. At 24 h posttransfection, the medium was replaced and cells transfected with pPCNP-V5 plasmid. Forty-eight hours after
plasmid transfection, the cells were harvested and lysed, and PCNP-V5 was immunoprecipitated and processed as described in Materials and
Methods. ZVAD was added every 24 h to prevent induction of apoptosis. MS spectra of doubly charged peptide ions originating from the N
terminus of PCNP (GenBank accession no. Q8WW12) are shown. The peptide was identified as 2-ADGKAGDEKPEKSQR-16. The extent of
PCNP N* acetylation, as determined by an MS isotope pattern calculator (http://prospector.ucsf.edu), was calculated as being 97%, 73%, and 90%
in the control, stihNAA10, and siHYPK samples, respectively. The ellipsoids indicate the relative increases of the in vivo unacetylated N terminus
of PCNP in the sihNAA10- and siHYPK-treated samples compared to that in the control sample. The data are representative of two independent
experiments.
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FIG. 11. hNatA immunoprecipitated from HYPK knockdown cells
displays reduced in vitro acetylation activity. HeLa cells (approximately
5 X 10° per sample) were transfected with the indicated siRNAs, and
at 24 h posttransfection, ZVAD was added to prevent induction of
apoptosis. After 48 h, the cells were harvested and lysed, and the lysate
was subjected to immunoprecipitation (IP) using an anti-hNaal5p
specific antibody. The beads containing functional hNatA complexes
were analyzed for N*-acetyltransferase activity, using [**Clacetyl-CoA
and a Ser-Asp-Ser-Ser (SESS)-starting 24-mer peptide known to be
acetylated by NatA in vitro. The amount of acetyl incorporation was
determined by isolation of the peptides followed by scintillation count-
ing. Verification of knockdown and the presence of equal levels of
hNaal5p in the immunoprecipitates were routinely confirmed. Exper-
iments were performed three times, and values are means = SD. P
values for independent ¢ tests for siHYPK samples versus control are
indicated with an asterisk (P < 0.05).
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Supplementary figure S3. Evolutionary origin of HYPK. The ancestor of HYPK/NACA
probably duplicated sometime after the fungi and metazoa separated, since metazoa have
both HYPK and NACA, but yeast only has NACA. C. elegans only seem to have NACA,
in contrast to fruitfly and mosquito, which have both genes. Phylognetic tree of sequences
from Ensembl families (see methods), with transcripts identified by species names and
Ensembl transcript identifiers and rooted in a way that maximises the separation between
the families. All genes below the named branch are from the named family, except where
noted. The branch support values indicate some overlap between the groups, which is
natural from an automatic definition (as used by Ensembl) of families that are related.
The two branches marked with a circle have support values >= 0.75 and more confidently
indicate the split between HYPK and NACA. Tree drawn with iTOL (Letunic I and
Borch P, Bioinformatics, 2007 23:127-8).






