Journal club: April 09, 2013 Genome Engineering Using CRISPR

RNA-Guided Human Genome Engineering via Cas9

Prashant Mali,¹* Luhan Yang,^{1,3}* Kevin M. Esvelt,² John Aach,¹ Marc Guell,¹ James E. DiCarlo,⁴ Julie E. Norville,¹ George M. Church^{1,2}†

SCIENCE VOL 339 15 FEBRUARY 2013

Multiplex Genome Engineering Using CRISPR/Cas Systems

Le Cong,^{1,2}* F. Ann Ran,^{1,4}* David Cox,^{1,3} Shuailiang Lin,^{1,5} Robert Barretto,⁶ Naomi Habib,¹ Patrick D. Hsu,^{1,4} Xuebing Wu,⁷ Wenyan Jiang,⁸ Luciano A. Marraffini,⁸ Feng Zhang¹†

SCIENCE VOL 339 15 FEBRUARY 2013

background - genome editing

J. Keith Joung and Jeffry D. Sander NATURE REVIEWS MOLECULAR CELL BIOLOGY VOLUME 14 JANUARY 2013

genome editing – how to induce DSB?

zinc-finger nucleases (ZFNs)

- Cys2His2 DNA bindingdomains
- recognize approx. 3 bp
- modifying DNA binding specificity
- array-design
- fusion with nonspecific endonuclease domain

transcription activator-like effector nucleases (TALENs)

- 33-35 aa bacterial repeats
- specifically binding to 1 base of DNA
- array-design
- fusion with nonspecific endonuclease domain

J. Keith Joung and Jeffry D. Sander NATURE REVIEWS MOLECULAR CELL BIOLOGY VOLUME 14 JANUARY 2013

background - CRISPR

the adaptive immune system of bacteria and archaea

- clustered regularly interspaced short palindromic repeats
- found in 90 % of archaea and 40 % of bacteria
- direct repeats + spacers
- cas gene (CRISPR-associated)
- proto-spacer adjacent motiv (PAM)

Evolution and classification of the CRISPR–Cas systems *Kira S. Makarova* NATURE REVIEWS | MICROBIOLOGY VOLUME 9 | JUNE 2011 | **467** the adaptive immune system of bacteria and archaea

- pre-crRNA processed into crRNAs (23-47 nt)
- matches proto-spacer of invading nucleic acid
- Type II uses a trans-encoded small RNA (tracrRNA)

VOLUME 9 | JUNE 2011 | **467**

the adaptive immune system of bacteria and archaea

- pre-crRNA processed into crRNAs (23-47 nt)
- matches proto-spacer of invading nucleic acid
- Type II uses a trans-encoded small RNA (tracrRNA)

Cas9 programmed by crRNA:tracrRNA duplex

A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity Martin Jinek *et al.* SCIENCE VOL 337 17 AUGUST 2012

background - CRISPR

the adaptive immune system of bacteria and archaea

- pre-crRNA processed into crRNAs (23-47 nt)
- matches proto-spacer of invading nucleic acid
- Type II uses a trans-encoded small RNA (tracrRNA)

Cas9 programmed by crRNA:tracrRNA duplex

Cas9 programmed by single chimeric RNA

A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity Martin Jinek *et al.* SCIENCE VOL 337 17 AUGUST 2012

Multiplex Genome Engineering Using CRISPR/Cas Systems

Le Cong,^{1,2}* F. Ann Ran,^{1,4}* David Cox,^{1,3} Shuailiang Lin,^{1,5} Robert Barretto,⁶ Naomi Habib,¹ Patrick D. Hsu,^{1,4} Xuebing Wu,⁷ Wenyan Jiang,⁸ Luciano A. Marraffini,⁸ Feng Zhang¹†

SCIENCE VOL 339 15 FEBRUARY 2013

RNA-Guided Human Genome Engineering via Cas9

Prashant Mali,¹* Luhan Yang,^{1,3}* Kevin M. Esvelt,² John Aach,¹ Marc Guell,¹ James E. DiCarlo,⁴ Julie E. Norville,¹ George M. Church^{1,2}†

SCIENCE VOL 339 15 FEBRUARY 2013

construction of the system

type II CRISPR locus from S. pvogenes

- codon-optimized Cas9
- introduced NLS

Le Cong et al.

construction of the system

type II CRISPR locus from S. pvogenes

- codon-optimized Cas9
- introduced NLS

Le Cong et al.

- transiently express constructs in HEK293
- pooled genomic DNA
- amplified EMX locus
- survey assay
 - denature DNA

- transiently express constructs in HEK293
- pooled genomic DNA
- amplified EMX locus
- survey assay
 - denature and re-anneal DNA

- transiently express constructs in HEK293
- pooled genomic DNA
- amplified EMX locus
- survey assay
 - denature and re-anneal DNA
 - heteroduplexes are cut by SURVEY nuclease

SURVEY nuclease

- pooled genomic DNA
- amplified EMX locus
- survey assay
 - denature and re-anneal DNA
 - heteroduplexes are cut by SURVEY nuclease
- Sanger seq

indels in human EMX1 locus

DAM

	PAM
WT	5'GGAGGAAGGGCCTGAGTCCGAGCAGAAG-AAGAAGGGCTC3'
D1	GGAGGAAGGGCCTGAGTCCGAGCAGAAGAGAAGGGCTC
+1	GGAGGAAGGGCCTGAGTCCGAGCAGAAGAAGAAGGGCTC
D2	GGAGGAAGGGCCTGAGTCCGAGCAGAAGGAAGGGCTC
D3	GGAGGAAGGGCCTGAGTCCGAGCAGAAGAAGGGCTC
D6	GGAGGAAGGGCCTGAGTCCGAGCAGAAGGGCTC
m1, D6	GGAGGAAGGGCCTGAG <mark>C</mark> CCGAGCAGAAGGGCTC

Le Cong et al.

Le Cong *et al.*

array design (NHEJ)

array design (NHEJ)

homologous recombination

homologous recombination

Multiplex Genome Engineering Using CRISPR/Cas Systems

Le Cong,^{1,2}* F. Ann Ran,^{1,4}* David Cox,^{1,3} Shuailiang Lin,^{1,5} Robert Barretto,⁶ Naomi Habib,¹ Patrick D. Hsu,^{1,4} Xuebing Wu,⁷ Wenyan Jiang,⁸ Luciano A. Marraffini,⁸ Feng Zhang¹†

SCIENCE VOL 339 15 FEBRUARY 2013

RNA-Guided Human Genome Engineering via Cas9

Prashant Mali,¹* Luhan Yang,^{1,3}* Kevin M. Esvelt,² John Aach,¹ Marc Guell,¹ James E. DiCarlo,⁴ Julie E. Norville,¹ George M. Church^{1,2}†

SCIENCE VOL 339 15 FEBRUARY 2013

testing the system (NHEJ)

type II CRISPR locus from S. pvogenes

- codon-optimized Cas9
- introduced NLS
- transfected HEK293 cells
- MiSeq to analyze deletions
 - gDNA was pooled
 - target region was amplified
 - MiSeq

Α

В

endogenous 'native' hAAVS1 locus sequence

TTATCTGTCCCCTCCACCCCACAGTGGGGCCACTAGGGACAGGATTGGTGA...

T1 target

NHEJ rates evaluated using NGS of targeted AAVS1 locus

T2 target

Prashant Mali et al.

homologous repair/specificity

donor +

hCas9 + T2

gRNA

8.07%

donor +

hCas9 + T1

gRNA

3.26%

GFP reporter assay in HEK293T

donor

< 0.01%

- stable cell line bearing disrupted GFP
 - insertion of stop

plain

< 0.01%

РЕ

Phase

GFP

- a 68 bp from AAVS1 locus
- repair donor to restore GFP expression

donor +

AAVS1

TALENs

0.37%

Prashant Mali et al.

homologous repair/specificity

GFP reporter assay in HEK293T

- stable cell line bearing disrupted GFP
 - insertion of stop
 - a 68 bp from AAVS1 locus
- repair donor to restore GFP expression

genome editing at endogenous locus

- target endogenous AAVS1 locus
- onor DNA
 - puromycin resistance
 - GFP
- selection of single clones for puromycin

D	72 hours post transfection																						
		[donor +																			
1kb +	plain	donor	hCas9 +	hCas9 +	1kb +	1kB+						_		1kB+	1kB+								1kB+
ladder	293Ts	uonor	T2 gRNA	T2 gRNA	ladder	Ladder ^{c1}	c2	c3	c4	c5	c6	c7	c8	Ladder	Ladder ^{C9}	c10	c11	c12	c13	c14	c15	c16	Ladder
															W W								
\approx				-	=									-	-					~	~	~	
					-	-								ww.									
-					-									-									-
~					-	-																	
-					-									-	-								-
-					-	-								-	-								-
-					-								293	BTs								293	STs

Prashant Mali et al.

genome editing at endogenous locus

- target endogenous AAVS1 locus
- donor DNA
 - puromycin resistance
 - GFP
- selection of single clones for puromycin

Prashant Mali et al.

Thank you very much for your attention!!!

D10A mutation

endogenous 'native' hAAVS1 locus sequence (293T)

..TTATCTGTCCCCTCCACCCCACAGTGGGGCCACTAGGGACAGGATTGGTGA..

T2 target

NHEJ rates evaluated using NGS of targeted AAVS1 locus

Prashant Mali et al.