Toward more accurate variant calling for personal genomes

Gholson Lyon, M.D. Ph.D.

Acknowledgments

Martin Reese Edward Kiruluta

David Mittelman

Barry Moore Alan Rope Jeffrey J Swensen Lynn Jorde **Mark Yandell**

Jason O'Rawe Yiyang Wu Michael Schatz Giuseppe Narzisi

Kai Wang

Tina Hambuch Erica Davis Dawn Barry

our study families

O'Rawe et al. Genome Medicine 2013, 5:28 http://genomemedicine.com/content/5/3/28

RESEARCH

Open Access

Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing

Jason O'Rawe^{1,2}, Tao Jiang³, Guangqing Sun³, Yiyang Wu^{1,2}, Wei Wang⁴, Jingchu Hu³, Paul Bodily⁵, Lifeng Tian⁶, Hakon Hakonarson⁶, W Evan Johnson⁷, Zhi Wei⁴, Kai Wang^{8,9*} and Gholson J Lyon^{1,2,9*}

 "If you want something hard, try clinical medicine" - Bruce Korf

yet

"proprietary databases" = "walled gardens"

Biometry

Mutation ≠ Phenotype

- Ancestry matters!
- Context matters!
- Other mutations matter!
- Environment matters!
- Longitudinal course matters!

Categorical Thinking Misses Complexity

Expression Issues

- We do not really know the expression of pretty much ALL mutations in **humans**, as we have not systematically sequenced or karyotyped any genetic alteration in **Thousands to Millions** of **randomly** selected people, nor categorized into ethnic classes, i.e. clans.
- There is a MAJOR clash of world-views, i.e. do single mutations drive outcome predominately, or are the results modified substantially by genetic background and/or environment? i.e. is there really such a thing as genetic determinism for MANY mutations?

Vignette #1: One person with very severe obsessive compulsive disorder, severe depression and intermittent psychoses

40 year old Caucasian man from Utah

Nucleus accumbens

Fig. 1. Coronal section of the brain near the nucleus accumbens with the track of the electrodes on the left and right side.

Two year follow-up

Contents lists available at SciVerse ScienceDirect

Applied & Translational Genomics

journal homepage: www.elsevier.com/locate/atg

Practical, ethical and regulatory considerations for the evolving medical and research genomics landscape

Gholson J. Lyon ^{a,b,*}, Jeremy P. Segal ^{c,**}

^a Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, NY, United States

^b Utah Foundation for Biomedical Research, Salt Lake City, UT, United States

^c New York Genome Center, New York City, NY, United States

Table 1

Processes involved in a CLIA-certified genetic test.

Preanalytic system

- 1) Test request and specimen collection criteria
- 2) Specimen submission, handling and referral procedures
- 3) Preanalytic systems assessment

Analytic system

1) A detailed step-by-step procedure manual

2) Test systems, equipment, instruments, reagents, materials and supplies

3) Establishment and verification of performance specifications

4) Maintenance and function checks

- 5) Calibration and calibration verification procedures
- 6) Control procedures, test records, and corrective actions
- 7) Analytic systems assessment

Post-analytic system

- 1) Test report, including (among other things):
 - a) interpretation
- b) reference ranges and normal values
- 2) Post-analytic systems assessment

1. Sample Collection and handling

2. Sequencing/Analytics

3. Interpretation

Individual Genome Sequencing Service

Available from Illumina's CLIA-certified laboratory.

"This laboratory test was developed, and its performance characteristics were determined by the Illumina Clinical Services Laboratory (CLIA-certified, CAP-accredited). Consistent with laboratory-developed tests, it has not been cleared or approved by the U.S. Food and Drug Administration. If you have any questions or concerns about what you might learn through your genome sequence information, you should contact your doctor or a genetic counselor. Please note that Illumina does not accept orders for Individual Genome Sequencing services from Florida and New York."

Sample Collection and Handling

The Sample Collection kit includes barcoded collection tubes, a <u>Test Requisition form</u>, an <u>Informed Patient Consent form</u>, and a pre-paid shipping envelope. All paperwork must be completed and returned for sample processing. Requests for Sample Collection kits must be submitted by a physician.

http://www.illumina.com/clinical/illumina_clinical_laboratory/igs_for_doctors/ how_to_order.ilmn

Sequencing and Analytics

Data Volume and Quality							
			Yiel	d (Gigabases)	% Bases ≥ Q30	% Bases Aligne	ed
	Passin	g Filter	113	.10	87.10%	87.80%	
		% Call	able	% ≥ 5x depth	% ≥ 10x depth	$\% \ge 20x \text{ depth}$	Mean depth(x)
Non-N Ref	erence	93.289	6	97.57%	96.22%	88.54%	33.35
% of Passing Filter and Algned Basecalis	18	20			4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	0 20 30 40	50 60 70 80

SNP Assessment

Total	Het/Hom	% in dbSNP	% in Genes	% in Coding
3,308,246	1.61	98.13%	45.47%	0.63%

Variant Statistics

	SNVs
Total Number	3,308,246
Number in Genes	1,504,121
Number in Coding Regions	20,879
Number in UTRs	24,946
Splice Site Region	2,917
Stop Gained	72
Stop Lost	16
Non-synonymous	9,884
Synonymous	10,907
Mature miRNA	36

Gene Symbol 🕕 🕕	Variant Min	ər			ੈ Reset Fi	lters Mar	nage Filters	O Relat	ion Miner	O Export	Report O Report Version
م	Overview	Overview									
Omicia Category 🕕	Genome: PG Current Versi Pipeline Versi	0000644-BLD.genor on: ion: 3.0	ne.block.anno.vcf.g	JZ							
Disease Set 🕕	Gene	Position	Change	Zygosity	Effect	Quality	Frequency	Omicia	Polyphen Mut-Taster	SIFT	Evidence
Drug Set 🛛 🕕	ACADS	chr12 121176083	G→A,G c.625G>A	het	non-synon	58 22:15:7	G:82% A:18%	0.928	damaging	5.5	CMIM HGMD
My Set ()	EPHX1	rs1799958 chr1	p.Gly209Ser T→C,T	het	non-synon	136	T:68%	0.923	damaging		OMIM HGMD PGKB
Exclude Set ()		226019633 rs1051740	c.337T>C p.Tyr113His			38:21:17	C:32%		benign	4.97	
Chromosome 🕕	BDNF	chr11 27679916 rs6265	C→C,T c.196G>A p.Val66Met	het	non-synon	259 51:22:29	C:77% T:23%	0.861	benign benign	3.69	ONIM HGMD PGKB GWAS
ilter By 🕕	MTHER	chr1 11854476 rs1801131	T→G,T c.1286A>C p.Glu429Ala	het	non-synon	196 47:22:25	T:77% G:23%	0.84	benign benign	0.12 4.27	OMIM HGMD PGKB
1515 ality	MBL2	chr10 54531235 rs1800450	C→C,T c.161G>A p.Gly54Asp	het	non-synon	223 32:12:20	C:88% T:12%	0.838	damaging benign	0.01 3.14	CMM HGMD
3070 quency	SLC6A20	chr3 45814094 rs17279437	G→A,G c.596C>T p.Thr199Met	het	non-synon	190 42:21:21	G:95% A:5%	0.837	damaging damaging	4.18	OMIM GWAS
100 T Score	NQO1	chr16 69745145 rs1800566	G→A,A c.559C>T p.Pro187Ser	hom	non-synon	458 33:0:33	G:72% A:28%	0.836	damaging benign	0.11 5.86	CMIM HGMD PGKB
nicia Score	DNAH11	chr7 21582963 rs2285943	G→G,T c.100G>T p.Glu34*	het	stop gained	57 28:19:9	G:62% T:38%	0.832	benign	0.74 2.22	CMIM
tequire 🕕	ABCC11	chr16 48258198 rs17822931	C→C, T c.538G>C p.Gly180Arg	het	non-synon	239 52:25:27	C:69% T:31%	0.818	damaging benign	0.01 2.74	OMIM HGMD
Heterozygous Homozygous	FGFR4	chr5 176520243 rs351855	G→A,G c.1162G>C p.Gly388Arg	het	non-synon	160 28:12:16	G:70% A:30%	808.0	damaging	0.09 3.82	OMIM HGMD PGKB
All Stop Gained/Lost	LRP8	chr1 53712727 rs5174	C→C,T c.2066A>A p.Asp689Asp	het	non-synon	241 39:15:24	C:82% T:18%	0.789	damaging benign	0.05 5.04	ONIM HGMD POKB
Splice Site Non-synonymous	FRZB	chr2 183703336 rs288326	G→A,G c.598C>T p.Arg200Trp	het	non-synon	118 38:25:13	G:95% A:5%	0.76	damaging benign	1.62	CNIIM
Any OMIM e Models	HNMT	chr2 138759649 rs11558538	C→C,T c.314C>T p.Thr105lle	het	non-synon	143 17:7:10	C:94% T:6%	0.745	damaging damaging	0.01 2.66	OMIM HGMD
CCDS RefSeq phen Prediction	OCA2	chr15 28230318 rs1800407	C→C,T c.1256G>A p.Arg419Gin	het	non-synon	189 38:17:21	C:96% T:4%	0.73	damaging benign	0.05 3.72	OMIM HGMD
Probably Damaging Possibly Damaging	TYR	chr11 88911696	C→A,C c.575C>A	het	non-synon	227 41:17:24	C:82% A:18%	0.705	damaging benign	0.07 4.53	OMIM HGMD POKB LSDB GW
xclude 🕕		rs1042002	p.aeriaziyr								
ort By 🕕											
Position Gene Symbol Omicia Score	(100 \$)	N Page 1	of 1 🕨 🕨	5 D	isplaying 1 to 1	5 of 15 items					

Omicia Home - Privacy Policy - Blog © 2013, Omicia, Inc. All rights reserved.

					1						~
Gene Symbol 🕕	Variant Miner	r			ੈ Reset F	lters Mar	nage Filters	O Relat	ion Miner	C Export	Report O Report Version
م	Overview										
Omicia Category 🕕	Current Versio Pipeline Versio	n: 00:3.0	ne.biock.anno.vct.gz								
vging Cardiovascular Drugs and Pharmacology	Gene	Position dbSNP	Change	Zygosity	Effect	Quality Coverage	Frequency	Omicia Score	Polyphen Mut-Taster	SIFT PhyloP	Evidence
Endocrinological and Metabolic Sastrointestinal Blood and Lymphatic	NQO1	chr16 69745145 rs1800566	G→A,A c.559C>T p.Pro187Ser	hom	non-synon	458 33:0:33	G:72% A:28%	0.836	damaging benign	0.11 5.86	OMIM HGMD PGKB
mmune and Joints nfectious Disease Gdney and Urinary Tract	DPYD	chr1 98348885 rs1801265	G→A,A c.85C>T p.Arg29Cys	hom	non-synon	317 20:0:20	G:23% A:77%	0.708	:	0.18 2.55	HGMD PGKB
leonatal leurological lutrition	ABCA1	chr9 107562804 rs2230808	T→C,C c.4760A>G p.Lys1587Arg	hom	non-synon	536 38:0:38	T:41% C:59%	0.7	benign benign	1 4.87	HGMD
Dther Psychiatric Respiratory	NAT2	chr8 18258103 rs1799930	G→A,G c.590G>A p.Arg197GIn	het	non-synon	220 37:16:21	G:76% A:24%	0.653	damaging benign	0.08 3.11	OMM HGMD PGKB
light learing, Smell and Taste	ABCA1	chr9 107589255 rs2066718	C→C,T c.2311G>A p.Val771Met	het	non-synon	195 40:19:21	C:94% T:6%	0.562	benign damaging	1 1.4	HGMD
Disease Set () Drug Set ()	CYP4F2	chr19 15990431 rs2108622	C→C,T c.1297G>A p.Val433Met	het	non-synon	183 30:12:18	C:78% T:22%	0.473	damaging benign	0.01 2.31	HGMD PGKB GWAS
Pathway Set 🕕 🕕	NAT2	chr8 18257854 rs1801280	T→C,T c.341T>C p.lle114Thr	het	non-synon	191 39:20:19	T:70% C:30%	0.467	benign benign	0.08 0.74	OMM HGMD PGKB
My Set () Exclude Set ()	DPYD	chr1 97981395 rs1801159	T→C,T c.1627A>G p.Ile543Val	het	non-synon	153 24:11:13	T:80% C:20%	0.295	benign benign	1 0.86	HGMD PGKB
Chromosome 🕕	OGG1	chr3 9798773 rs1052133	C→C,G c.294C>G p.Ile98Met	het	non-synon	146 30:16:14	C:70% G:30%	0.258	:	0.01 -0.25	HGMD
Filter By () Require ()	OGG1	chr3 9798773 rs1052133	C→C,G c.994C>G p.Pro332Ala	het	non-synon	146 30:16:14	C:70% G:30%	0.258	:	0.01 -0.25	HGMD
enotype Heterozygous	OGG1	chr3 9798773 rs1052133	C→C,G c.977C>G p.Ser326Cys	het	non-synon	146 30:16:14	C:70% G:30%	0.258	:	0.01 -0.25	HGMD
All Stop Gained/Lost	CYP2C9	chr10 96741053 rs1057910	A→C,C c.1076A>C p.Ile359Leu	hom	non-synon	496 36:0:36	A:96% C:4%	0.189	benign damaging	0.11	OMIM HGMD PGKB
Indel/Frameshift Splice Site Non-synonymous	ABCA1	chr9 107620867 rs2230806	C→C,T c.656G>A p.Arg219Lys	het	non-synon	131 30:18:12	C:58% T:42%	0.187	benign benign	0.32 0.16	CMIM HGMD PGKB
Any OMIM	CYP2B6	chr19 41515263 rs28399497	A→A,G c.785A>G p.Lys262Arg	het	non-synon	54 17:8:9	-	0.178	benign benign	1 0.84	HGMD
ene Models CCDS RefSeq	NBN	chr8 90990479 rs1805794	C→C,G c.553G>C p.Glu185Gln	het	non-synon	193 30:12:18	C:67% G:33%	0.172	benign benign	1 0.5	HGMD
Nyphen Prediction Probably Damaging Possibly Damaging	CYP4F12	chr19 15789140 rs609290	A→G,G c.267+1A>G	hom	splice site	578 44:0:44	A:6% G:94%	0.172	:	-0.6	HGMD
Exclude ()	CYP3A7	chr7 99306685 rs2257401	C→G,G c.1226G>C p.Arg409Thr	hom	non-synon	331 22:0:22	C:27% G:73%	0.163	benign benign	0.16 0.35	POKB
Position	CYP4F12	chr19 15789140 rs609290	A→G,G c.269A>G p.Ile90Val	hom	non-synon	578 44:0:44	A:6% G:94%	0.126	- benign	0.7 -0.6	HGMD
Omicia Score	CETP	chr16	G→A,G	het	non-synon	203	G:45%	0.088	benign	1	HGMD PGKB

Omicia Home - Privacy Policy - Blog © 2013, Omicia, Inc. All rights reserved.

3 common SNVs in this person that have been implicated in the literature as predisposing to mental illness.

Gene name	Genomic coordinates	Amino acid change	Zygosity	Mutation type	Population Frequency	Clinical significance
MTHFR	chr1: 11854476	Glu>Ala	heterozygous	non-synon	T:77% G:23%	Susceptibility to psychoses, schizophrenia, occlusive vascular disease, neural tube defects, colon cancer, acute leukemia, and methylenetetra-hydrofolate reductase deficiency
BDNF	chr11: 27679916	Val>Met	heterozygous	non-synon	C:77% T:23%	Susceptibility to OCD, psychosis, and diminished response to exposure therapy
CHAT	chr10: 50824117	Asp>Asn	heterozygous	non-synon	G:85% A:15%	Susceptibility to schizophrenia and other psychopathological disorders.

Gene Summary for CHAT

					Q
50.82Mb	50.84Mb	50.86Mb	50.88Mb	50.9Mb	
I				HGMD (PUBLIC)	
1.1.1		1111		LSDB	
II				DEDCONAL	
				PERSONAL	
		CHAT-201, NM_001142929.1, NM	_001142934.1, NM_020986.3, NM_0	20985.3, NM_020984.3	
•• • •			+	CHAT-202	
F + H			+ •	CHAT-007	
• • • • • • • • • • • • • • • • • • • 		1 11 1 1		HAT-881 NM 828549 4	

Gene Overv	iew
Symbol	CHAT
Name	choline O-acetyltransferase
Location	10q11.2
Summary	This gene encodes an enzyme which catalyzes the biosynthesis of the neurotransmitter acetylcholine. This gene product is a characteristic feature of cholinergic neurons, and changes in these neurons may explain some of the symptoms of Alzheimer's disease. Polymorphisms in this gene have been associated with Alzheimer's disease and mild cognitive impairment. Mutations in this gene are associated with congenital myasthenic syndrome associated with episodic apnea. Multiple transcript variants encoding different isoforms have been found for this gene, and some of these variants have been shown to encode more than one isoform. [provided by RefSeq, May 2010]

Relevant Reference Resources				
NCBI Gene	http://www.ncbi.nlm.nih.gov/gene/1103			
GeneTests	http://www.ncbi.nlm.nih.gov/sites/GeneTests/lab/gene/CHAT			
Ensembl	http://www.ensembl.org/human/Gene/Summary?g=ENSG00000070748			
UCSC Gene Browser	http://genome.ucsc.edu/cgi-bin/hgTracks?org=human&db=hg19&singleSearch=knownCanonical&position=CHAT			
Genetics Home Reference	http://ghr.nlm.nlh.gov/gene/CHAT			

Associated Disease Categories

Category	Disease	Citation
DRUGS, CLINICAL PHARMACOLOGY AND ENVIRONMENT	Drug toxicity	Roden et al., 2002

Associated Knowledge Sets					
Name	Туре	Description			
ODG - Alzheimers	disease	Omicia Disease Genes (ODG) Top 10 Neurological - Alzheimers			
TruSight Exome	disease	Illumina's targeted rare genetic conditions exome test containing 2,761 genes covered in the HGMD database.			
MitoGO	myset				
Longo - Phenomizer Fatty Acid Big	myset	A list of genes from phenomizer build from Patient Features HP:0004359. Long List ~3000 genes			

Personal Variants in this Gene											
Position	Transcript	Transcript HGVS	Protein	Protein HGVS	Zyg	Effect					
50824117	NM_001142933.1	c.19G>A	NP_001136405	p.Asp7Asn	het	non-synon					
50824619	NM_001142933.1	c.112G>A	NP_001136405	p.Ala38Thr	het	non-synon					
50856652	NM_020549	c.1382G>A	NP_065574	p.Val461Met	hom	non-synon					
50863147	NM_020549	c.1642T>C	NP_065574	p.His548His	hom	synonymous					

×

Lessons

- Should look at entire genome.
- Should archive and store genomic data for reanalysis for many years to come.

Vignette #2: New Syndrome with Intellectual Disability, "Autism", "ADHD"

Likely X-linked or Autosomal Recessive, with X-linked being supported by extreme X-skewing in the mother

1.5 years old

Dysmorphic Mental Retardation "autism" "ADHD" Hearing difficulties

3 years old

5 years old

Workup Ongoing for past 10 years

 Numerous genetic tests negative, including negative for Fragile X and MANY candidate genes.

- Whole genome sequencing was performed using :
 - Complete Genomics sequencing and analysis pipeline v2.0
 - Ilumina HiSeq 2000 sequencing platform.
 - Illumina reads were mapped to the hg19 reference genome using BWA v. 0.6.2-r126
 - Variant detection was performed using the GATK v. 2.4-9.
 - A second analytical pipeline was used to map reads to the hg19 reference genome using Novoalign, and variants were also detected using the FreeBayes caller.
- For each sequenced individual, a union of the calls made by both sequencing platforms, as well as all bioinformatics analysis platforms, was taken.

- Standard approaches can then be used to identify potentially deleterious mutations conforming to classical disease models for genetic disorders.
- We subset the full dataset to evaluate differences between raw numbers of mutations detected between different data sets:
 - WGS data from the nuclear family,
 - WGS from a larger portion of the family.

Using only nuclear family:

55195 Variants were found to be *de-novo* in the two affected boys **122** were coding :

- 107 non-synonymous missense
- 4 splicing
- 3 frame-shift deletions
- 3 frame-shift insertions
- 2 frame-shift substitutions
- 2 stop-gain
- 1 stop-loss

26514 Variants were found to conform to an X-linked disease model28 were coding:

27 non-synonymous missense

1 splicing

Using information from a greater portion of the family structure:

17726 Variants were found to be *de-novo* in the two affected boys**40** were coding :

- 32 non-synonymous missense
- 3 splicing
- 2 frame-shift deletions
- 1 stop-loss
- 1 frame-shift insertion
- 1 frame-shift substitution

2824 Variants were found to conform to an X-linked disease model4 were coding:

- 3 non-synonymous missense
- 1 splicing

- The numbers of mutations differ as expected between these two sets of analyses:
 - More mutations are filtered when a greater portion of the family is incorporated into the analysis.
 - This is likely due to false positive and false negative rates across sequencing and informatics platforms.

Using only nuclear family:

De-novo ranked genes:

RANK	Gene	p-value	p-value-ci	Score	Variants
1	PRAMEF4	0.00192	0.00144,0.00265	13.13	chr1:12939476;13.13;G->C;N->K;0,1
2	PRAMEF10	0.00318	0.00243,0.00417	20.77	chr1:12954852;20.77;T->C;H->R;3,2
3	LOC440563	0.00523	0.00416,0.00653	9.89	chr1:13183056;9.89;T->C;N->D;0,1

X-linked ranked genes:

RANK	Gene	p-value	p-value-ci	Score	Variants
1	ASB12	0.000898	0.000898,0.00119	18.7	chrX:63444792;18.70;C->A;G->C;0,1
2	TAF1	0.00153	0.00117,0.00214	14.59	chrX:70621541;14.59;T->C;I->T;0,1
3	ZNF41	0.002	0.0015,0.00275	12.9	chrX:47307978;12.90;G->T;D->E;0,1

Using information from a greater portion of the family structure:

De-novo ranked genes:

RANK	Gene	p-value	p-value-ci	Score	Variants
1	PRAMEF10	0.00342	0.00262,0.00445	20.77	chr1:12954852;20.77;T->C;H->R;3,2

X-linked ranked genes:

RANK	Gene	p-value	p-value-ci	Score	Variants
1	TAF1	0.002	0.0015,0.00275	14.59	chrX:70621541;14.59;T->C;I->T;0,1

The two brothers with the P111L mutations reported in the prior paper do have mental deficiency, hyperkinesia, no motor or neurologic sign except for the delay, and slight dysmorphic facial anomalies: large low-set ears, thin upper lip, slight downward palpebral slants, but no upturned nose, and a short philtrum. The mother was normal in appearance. Previously reported P111L change in the ZNF41 protein has now also been found in two "male controls" (EVS server, ESP6500), and furthermore, there are two rare, likely heterozygous ZNF41 frameshift mutations and one heterozygous stop-gained mutation reported in control individuals (ESP6500) (personal communication from Dr. Vera Kalscheuer).

Major Conclusion: Clinical Validity?

This is so complex that the only solid way forward is with a "networking of science" model, i.e. online database with genotype and phenotype longitudinally tracked for thousands of volunteer families.

We need a 1 Million Genome/ Phenome Project!

Creating a Global Alliance to Enable Responsible Sharing of Genomic and Clinical Data

June 3, 2013

Organizing Committee

David Altshuler Peter Goodhand David Haussler Thomas Hudson Brad Margus Betsy Nabel* Charles Sawyers Michael Stratton* Broad Institute of Harvard and MIT, MGH Ontario Institute for Cancer Research HHMI/University of California, Santa Cruz Ontario Institute for Cancer Research A-T Children's Project Brigham and Women's Hospital HHMI / Memorial Sloan-Kettering Wellcome Trust Sanger Institute

Need sharing of thousands to millions of "individuated genomes" – credit Nathaniel Pearson http://www.slideshare.net/NathanielPearson/pearsontcgc2013

The End

Extra slides appear hereafter, not shown in the main talk

"We'd now like to open the floor to shorter speeches disguised as questions."

Mutations in the *ZNF41* Gene Are Associated with Cognitive Deficits: Identification of a New Candidate for X-Linked Mental Retardation

Sarah A. Shoichet,¹ Kirsten Hoffmann,¹ Corinna Menzel,¹ Udo Trautmann,² Bettina Moser,¹ Maria Hoeltzenbein,¹ Bernard Echenne,³ Michael Partington,⁴ Hans van Bokhoven,⁵ Claude Moraine,⁶ Jean-Pierre Fryns,⁷ Jamel Chelly,⁸ Hans-Dieter Rott,² Hans-Hilger Ropers,¹ and Vera M. Kalscheuer¹

¹Max-Planck-Institute for Molecular Genetics, Berlin; ²Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen-Nuremberg; ³Centre Hospitalier Universitaire de Montpellier, Hôpital Saint-Eloi, Montpellier, France, ⁴Hunter Genetics and University of Newcastle, Waratah, Australia; ⁵Department of Human Genetics, University Medical Centre, Nijmegen, The Netherlands; ⁶Services de Génétique–INSERM U316, CHU Bretonneau, Tours, France; ⁷Center for Human Genetics, Clinical Genetics Unit, Leuven, Belgium; and ⁸Institut Cochin de Génétique Moleculaire, Centre National de la Recherche Scientifique/INSERM, CHU Cochin, Paris

Am. J. Hum. Genet. 73:1341-1354, 2003

- Whole genome sequencing was performed using :
 - Complete Genomics sequencing and analysis pipeline v2.0
 - Ilumina HiSeq 2000 sequencing platform.
 - Illumina reads were mapped to the hg19 reference genome using BWA v. 0.6.2-r126
 - Variant detection was performed using the GATK v. 2.4-9.
 - A second analytical pipeline was used to map reads to the hg19 reference genome using Novoalign, and variants were also detected using the FreeBayes caller.
- For each sequenced individual, a union of the calls made by both sequencing platforms, as well as all bioinformatics analysis platforms, was taken.

- Standard approaches can then be used to identify potentially deleterious mutations conforming to classical disease models for genetic disorders.
- We subset the full dataset to evaluate differences between raw numbers of mutations detected between different data sets:
 - WGS data from the nuclear family,
 - WGS from a larger portion of the family.

Using only nuclear family:

55195 Variants were found to be *de-novo* and shared in the two affected boys

122 were coding :

107 non-synonymous missense

4 splicing

- 3 frame-shift deletions
- 3 frame-shift insertions
- 2 frame-shift substitutions
- 2 stop-gain
- 1 stop-loss

26514 Variants were found to conform to an X-linked disease model28 were coding:

27 non-synonymous missense

1 splicing

			ZNF	41														
Query seq.		125	250		375				500				e	25			750	779 1
Specific hits	KRAB_A-			zf-H		zf-H		zf-H										
Non-specific hits	KRAB											zf-H		zf-		zf-H		
Superfamilies	KRAB_A-			zf-H	zf-	zf-H	zf-H											
Multi-domains	KRAB		(COG	504	8							

- KRAB (Kruppel-associated box) domain -A box.
- The KRAB domain is a transcription repression module, found in a subgroup of the zinc finger proteins (ZFPs) of the C2H2 family, KRAB-ZFPs. KRAB-ZFPs comprise the largest group of transcriptional regulators in mammals, and are only found in tetrapods.
- The KRAB domain is a protein-protein interaction module which represses transcription through recruiting corepressors. The KAP1/ KRAB-AFP complex in turn recruits the heterochromatin protein 1 (HP1) family, and other chromatin modulating proteins, leading to transcriptional repression through heterochromatin formation.

Figure 6 Northern blot hybridization of *ZNF41*, by use of a probe corresponding to nucleotides 621–1099 of *ZNF41* transcript variant 1. *A*, Adult tissues (left to right): heart, brain, placenta, lung, liver, skeletal muscle, kidney, and pancreas. *B*, Fetal tissues (left to right): brain, lung, liver, and kidney. *C*, Adult brain structures (left to right): amygdala, caudate nucleus, corpus callosum, hippocampus, whole brain, substantia nigra, and thalamus. Black arrowheads highlight the presence of a novel 6-kb transcript. *Actin* (*A* and *C*) or *GAPDH* (*B*) served as controls for RNA loading.

Proving Causality

- Will need to find a second, unrelated family with same exact mutation and similar phenotype.
- Can also perform in vitro/in vivo studies and structural modeling, and make knock-in mice and/or test in zebrafish, etc... for biological function.

Nuclear family, using only Illumina data

50715 Variants were found to be *de-novo* in the two affected boys **107** were coding :

2 frame-shift substitutions	94 non-synonymous missense
2 frame-shift deletions	4 splicing
3 frame-shift insertions	2 stop-gain

25157 Variants were found to conform to an X-linked disease model29 were coding:

1 frame-shift deletions

28 non-synonymous missense

RANK	Gene	p-value	p-value-ci	Score	Variants
1	PRAMEF4	0.00216	0.00162,0.00294	13.13	chr1:12939476;13.13;G->C;N->K;0,1
2	LOC440563	0.00538	0.00429,0.00671	9.89	chr1:13183056;9.89;T->C;N->D;0,1
X-linked ranked genes:					
RANK	Gene	p-value	p-value-ci	Score	Variants
1	ASB12	0.000898	30.000898,0.00119	18.7	chrX:63444792;18.70;C->A;G->C;0,1
2	VCX3A	0.00145	0.00112,0.00203	13	chrX:6451809;13.00;T->C;M->V;0,1
3	TAF1	0.00169	0.00128,0.00235	14.59	chrX:70621541;14.59;T->C;I->T;0,1
4	ZNF41	0.00231	0.00174,0.00314	12.9	chrX:47307978;12.90;G->T;D->E;0,1

De-novo ranked genes:

Nuclear family, using only CG data

42072 Variants were found to be *de-novo* in the two affected boys **75** were coding :

3 frame-shift deletions	62 non-synonymous missense
4 frame-shift insertions	5 splicing
	1 stop-loss

21397 Variants were found to conform to an X-linked disease model25 were coding:

1 splicing

24 non-synonymous missense

De-novo ranked genes:

RANK	Gene	p-value	p-value-ci	Score	Variants
1	PRAMEF10	0.00318	0.00243,0.00417	20.77	chr1:12954852;20.77;T->C;H->R;3,2
X-linked ranked genes:					
RANK	Gene	p-value	p-value-ci	Score	Variants
1	ASB12	0.000898	0 000898 0 00119	18 7	chrX:63444792:18 70:C->A:G->C:0 1
			0.000000,0.00110	10.1	0117(.001111/02,10.10,0.77(,0.70,0,1
2	TAF1	0.00145	0.00112,0.00203	14.59	chrX:70621541;14.59;T->C;I->T;0,1

A greater portion of the family, using only Illumina data

11675 Variants were found to be *de-novo* in the two affected boys**18** were coding :

- 15 non-synonymous missense
- 2 splicing

De-novo ranked denes.

1 frame-shift substitution

1773 Variants were found to conform to an X-linked disease model3 were coding:

3 non-synonymous missense

RANK	Gene	p-value	p-value-ci	Score	Variants
-	-	-	-	-	-
X-linked ranked genes:					
RANK	Gene	p-value	p-value-ci	Score	Variants
1	TAF1	0.00184	0.00139,0.00255	14.59	chrX:70621541;14.59;T->C;I->T;0,1

Genotype First, Phenotype Second AND Longitudinally

Human Molecular Genetics, 2010, Vol. 19, Review Issue 2 doi:10.1093/hmg/ddq366 Advance Access published on August 31, 2010

Phenotypic variability and genetic susceptibility to genomic disorders

Santhosh Girirajan and Evan E. Eichler*

Department of Genome Sciences, Howard Hughes Medical Institute, University of Washington School of Medicine, PO Box 355065, Foege S413C, 3720 15th Avenue NE, Seattle, WA 98195, USA

Genome-Wide Association Study of Multiplex Schizophrenia Pedigrees

Am J Psychiatry Levinson et al.; AiA:1–11

"Rare CNVs were observed in regions with strong previously documented association with schizophrenia, but with variable patterns of segregation. This should serve as a reminder that we still know relatively little about the distribution of these CNVs in the entire population (e.g., in individuals with no or only mild cognitive problems) or about the reasons for the emergence of schizophrenia in only a minority of carriers, so great caution is required in genetic counseling and prediagnosis." Lyon and Wang Genome Medicine 2012, 4:58 http://genomemedicine.com/content/4/7/58

REVIEW

Identifying disease mutations in genomic medicine settings: current challenges and how to accelerate progress

Gholson J Lyon*12 and Kai Wang*23

Practical, ethical and regulatory considerations for the evolving medical and research genomics landscape

Gholson J. Lyon ^{a,b,*}, Jeremy P. Segal ^{c,**}

^a Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, NY, United States

^b Utah Foundation for Biomedical Research, Salt Lake City, UT, United States

^c New York Genome Center, New York City, NY, United States

2 mutations present in mother and two boys, on X-chromosome, not in father, not in dbSNP135, not in 1000Genomes April 2012 release, and not in NHLBI 6500 Exomes

- Nonsyn SNV ZNF41 c.1191C>A p.Asp397Glu
- Nonsyn SNV TAF1 c.4010T>C p.lle1337Thr

TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 250kDa

Lyon and Wang Genome Medicine 2012, 4:58 http://genomemedicine.com/content/4/7/58

REVIEW

Identifying disease mutations in genomic medicine settings: current challenges and how to accelerate progress

Gholson J Lyon*12 and Kai Wang*23

Practical, ethical and regulatory considerations for the evolving medical and research genomics landscape

Gholson J. Lyon ^{a,b,*}, Jeremy P. Segal ^{c,**}

^a Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, NY, United States

^b Utah Foundation for Biomedical Research, Salt Lake City, UT, United States

^c New York Genome Center, New York City, NY, United States

De novo variants were detected using WGS data from 10 individuals in one family.

	Number of putative <i>de novo</i> variants that were detected	Number of putative <i>de novo</i> coding non- synonymous or splicing variants detected
Using WGS data only from nuclear family	68241	163
Using WGS data including extended family (which includes 6 additional members)	21168	59

Whole genomes for all 10 individuals were sequenced using the Illumia HiSeq 2000 platform and then analyzed using the BWA-GATK and Novalign-FreeBayes informatics pipelines. The mother and father of the affected, as well as the two affected, were additionally sequenced using the Complete Genomics sequencing and analysis pipeline, version 2.0. For each individual, variants detected by each sequencing platform and by each analysis platform were unioned to include all detected variants. Using this combination of data, de novo variants were detected in two affected children.

Understand Your Genome Symposium

During this two-day educational event, industry experts will discuss the clinical implementation of whole-genome next-generation sequencing (NGS) technology.

llumina

Ordering Physician: Gholson Lyon, MD

Steinmann Institute 10 West Broadway, Suite #820 Salt Lake City, UT 84101

Individual Genome Sequence Results

Clinical Report

www.everygenome.com CLIA#: 05D1092911

Variant classification

Variant	Reference	Alternate	Classification	Gene 1	Transcript 1	Exon 1 HGVS Coding 1	HGVS Protein 1
X:47307978-SNV	G	т	Nonsyn SNV	ZNF41	NM_007130	5c.1191C>A	p.Asp397Glu
X:63444792-SNV	С	А	Nonsyn SNV	ASB12	NM_130388	2 c.739G>T	p.Gly247Cys
X:70621541-SNV	т	С	Nonsyn SNV	TAF1	NM_004606	25 c.4010T>C	p.lle1337Thr

SIFT classification

Chromosome	Position	Reference	Coding?	SIFT Score	Score <= 0.05	Ref/Alt Alleles
х	47307978	G	YES	0.649999976	0	G/T
х	63444792	С	YES	0	1	C/A
х	70621541	т	YES	0.009999999776	1	т/с

VAAST score

RANK	Gene	p-value	p-value-ci	Score	Variants
1	ASB12	1.56E-11	1.55557809307134e-11,0.000290464582480396	38.63056297	chrX:63444792;38.63;C->A;G->C;0,3
2	TAF1	1.56E-11	1.55557809307134e-11,0.000290464582480396	34.51696816	chrX:70621541;34.52;T->C;I->T;0,3
3	ZNF41	1.56E-11	1.55557809307134e-11,0.000290464582480396	32.83011803	chrX:47307978;32.83;G->T;D->E;0,3