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Results	
  from	
  Exome	
  and	
  WGS	
  requires	
  
both	
  Analy/c	
  and	
  Clinical	
  Validity	
  

•  Analy/cal	
  Validity:	
  the	
  test	
  is	
  accurate	
  with	
  
high	
  sensi/vity	
  and	
  specificity.	
  

•  Clinical	
  Validity:	
  Given	
  an	
  accurate	
  test	
  result,	
  
what	
  impact	
  and/or	
  outcome	
  does	
  this	
  have	
  
on	
  the	
  individual	
  person?	
  

Illusions	
  of	
  Certainty.	
  Everything	
  is	
  Probabilis/c.	
  





hWp://en.wikipedia.org/wiki/Accuracy_and_precision	
  
	
  

High	
  accuracy,	
  but	
  low	
  precision	
   High	
  precision,	
  but	
  low	
  accuracy	
  

In	
  the	
  fields	
  of	
  science,	
  engineering,	
  industry,	
  and	
  sta/s/cs,	
  the	
  accuracy	
  of	
  a	
  measurement	
  
system	
  is	
  the	
  degree	
  of	
  closeness	
  of	
  measurements	
  of	
  a	
  quan/ty	
  to	
  that	
  quan/ty's	
  actual	
  
(true)	
  value.	
  The	
  precision	
  of	
  a	
  measurement	
  system,	
  also	
  called	
  reproducibility	
  or	
  
repeatability,	
  is	
  the	
  degree	
  to	
  which	
  repeated	
  measurements	
  under	
  unchanged	
  condi/ons	
  
show	
  the	
  same	
  results.	
  





Accuracy	
  

An	
  accuracy	
  of	
  100%	
  means	
  that	
  the	
  measured	
  values	
  are	
  exactly	
  the	
  same	
  as	
  the	
  
given	
  values.	
  
	
  
	
  



“ground	
  truth”	
  Genome	
  from	
  blood	
  of	
  one	
  person	
  
	
  (of	
  course,	
  that	
  is	
  from	
  millions	
  of	
  cells	
  and	
  only	
  blood,	
  	
  

not	
  other	
  /ssues)	
  
	
  

~3	
  billion	
  nucleo/des	
  

True	
  nega/ve	
  

True	
  posi/ve	
  	
  



“exon	
  capture	
  and	
  sequencing”	
  
	
  
Exon	
  =	
  set	
  of	
  con/guous	
  nucleo/des	
  
predicted	
  to	
  contribute	
  toward	
  a	
  protein	
  



“Exome”	
  



Chose	
  to	
  sequence	
  15	
  “exomes”	
  



2-­‐3	
  rounds	
  of	
  sequencing	
  at	
  BGI	
  to	
  a=ain	
  
goal	
  of	
  >80%	
  of	
  target	
  region	
  at	
  >20	
  reads	
  

per	
  base	
  pair	
  
Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615 K24510-88962 

Target region (bp) 46,401,121  46,401,121  46,401,121  46,257,379  

Raw reads 138,779,950  161,898,170  156,985,870  104,423,704  

Raw data yield (Mb) 12,490  14,571  14,129  9,398  

Reads mapped to genome 110,160,277  135,603,094  135,087,576  83,942,646  

Reads mapped to target region 68,042,793  84,379,239  80,347,146  61,207,116  

Data mapped to target region (Mb) 5,337.69  6,647.18  6,280.01  4,614.47  

Mean depth of target region 115.03 143.25 135.34 99.76 

Coverage of target region (%) 0.9948  0.9947  0.9954  0.9828  

Average read length (bp) 89.91  89.92  89.95  89.75  

Fraction of target covered >=4X 98.17  98.38  98.47  94.25  

Fraction of target covered >=10X 95.18  95.90  95.97  87.90  

Fraction of target covered >=20X 90.12  91.62  91.75  80.70  

Fraction of target covered >=30X 84.98  87.42  87.67  74.69  

Capture specificity (%) 61.52  62.12  59.25  73.16  

Fraction of unique mapped bases on or near target 65.59  65.98  63.69  85.46  

Gender test result M M M F 



Depth	
  of	
  Coverage	
  in	
  15	
  exomes	
  >	
  20	
  
reads	
  per	
  bp	
  in	
  target	
  region	
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Experimental	
  Design	
  

  Evaluate	
  robustness	
  of	
  variant	
  calling	
  implemented	
  by	
  
different	
  bioinforma/cs	
  analysts.	
  

	
  
  Looking	
  at	
  False	
  Posi/ves	
  and	
  False	
  Nega/ves.	
  

  How	
  reliable	
  are	
  variants	
  that	
  are	
  uniquely	
  called	
  by	
  
individual	
  pipelines?	
  

  Are	
  some	
  pipelines	
  beWer	
  at	
  detec/ng	
  rare,	
  or	
  novel	
  
variants	
  than	
  others?	
  



Promo/on	
  Details	
  (valid	
  for	
  Americas	
  and	
  Europe	
  customers	
  NOW	
  through	
  MAY	
  31)	
  
	
  

A.	
  The	
  899	
  USD/sample	
  package	
  –	
  50X	
  human	
  exome	
  sequencing	
  	
  
	
  

	
  	
  	
  	
  Agilent	
  SureSelect	
  50/51M	
  Capture	
  kit	
  	
  
	
  	
  	
  	
  100	
  bp	
  paired-­‐end	
  sequencing	
  on	
  HiSeq	
  2000	
  
	
  	
  	
  	
  5	
  Gb	
  high	
  quality*	
  sequencing	
  data	
  
	
  	
  	
  	
  50X	
  average	
  coverage	
  for	
  target	
  regions	
  guaranteed	
  	
  
	
  	
  	
  	
  SNP	
  &	
  Indel	
  calling	
  and	
  annota/on	
  included	
  
	
  
B.	
  The	
  1299	
  USD/sample	
  package	
  –	
  100X	
  human	
  exome	
  sequencing	
  
	
  

	
  	
  	
  	
  Agilent	
  SureSelect	
  50/51M	
  Capture	
  kit	
  
	
  	
  	
  	
  100	
  bp	
  paired-­‐end	
  sequencing	
  on	
  HiSeq	
  2000	
  
	
  	
  	
  	
  10	
  Gb	
  high	
  quality*	
  sequencing	
  data	
  
	
  	
  	
  	
  100X	
  average	
  coverage	
  for	
  target	
  regions	
  guaranteed	
  	
  
	
  	
  	
  	
  SNP	
  &	
  Indel	
  calling	
  and	
  annota/on	
  included	
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Table 1. A descriptive summary of the variant calling pipelines included in the comparative analyses. 

Pipeline name Alignment method  Variant-calling module  Description of variant-calling algorithm 

    
SOAP SOAPaligner 

version 2.21/ 

BWA version 

0.5.9 

SOAPsnp version 

1.03/ SOAPindel 

version 2.01 

SOAP uses a method based on Bayes’ theorem to call 

consensus genotype by carefully considering the data 

quality, alignment, and recurring experimental errors [22]. 

GATK version 1.5 BWA version 

0.5.9 

UnifiedGenotyper 

version 1.5 

GATK employs a general Bayesian framework to 

distinguish and call variants. Error correction models are 

guided by expected characteristics of human variation to 

further refine variant calls [19].  

SNVer version 

0.2.1 

BWA version 

0.5.9 

SNVer version 0.2.1  SNVer uses a more general frequentist framework, and 

formulates variant calling as a hypothesis-testing problem 

[25]. 
GNUMAP version 

3.1.0 

GNUMAP version 

3.1.0 

GNUMAP version 

3.1.0 

GNUMAP incorporates the base uncertainty of the reads 

into mapping analysis using a probabilistic Needleman-

Wunsch algorithm [24]. 

SAMtools version 

0.1.18 
BWA version 

0.5.9 

mpileup version 0.1.18 SAMtools [20] calls variants by generating a consensus 

sequence using the MAQ model framework, which uses 

a general Bayesian framework for picking the base that 

maximizes the posterior probability with the highest 

Phred quality score. 





Known	
   Novel	
  

All	
  



B)	
  Mean	
  #	
  of	
  known	
  SNVs	
  (present	
  in	
  dbSNP135)	
  found	
  by	
  5	
  pipelines	
  across	
  
15	
  exomes.	
  The	
  percentage	
  in	
  the	
  center	
  of	
  the	
  the	
  Venn	
  diagram	
  is	
  the	
  
percent	
  of	
  known	
  SNVs	
  called	
  by	
  all	
  five	
  pipelines.	
  	
  

Known	
  SNVs	
  



C)	
  Mean	
  #	
  of	
  novel	
  SNVs	
  (not	
  present	
  in	
  dbSNP135)	
  found	
  by	
  5	
  pipelines	
  across	
  15	
  
exomes.	
  The	
  percentage	
  in	
  the	
  center	
  of	
  the	
  Venn	
  diagram	
  is	
  the	
  percent	
  of	
  novel	
  
SNVs	
  called	
  by	
  all	
  five	
  pipelines.	
  

Novel	
  SNVs	
  



Indels	
  called	
  by	
  GATK,	
  SOAP	
  and	
  SAMtools	
  

.	
   .	
   .	
   .	
  
.	
  .	
  
.	
   .	
  .	
  
.	
  



“ground	
  truth”	
  exons	
  from	
  blood	
  of	
  one	
  person	
  

True	
  nega/ve	
  

True	
  posi/ve	
  	
  



False	
  posi/ves	
  
False	
  Nega/ves	
  



Cross	
  valida/on	
  using	
  orthogonal	
  
sequencing	
  technology	
  
	
  (Complete	
  Genomics)	
  



Complete	
  Genomics	
  chemistry	
  -­‐	
  combinatorial	
  
probe	
  anchor	
  liga/on	
  (cPAL)	
  



homozygous reference criteria are considered not called. 
Genome-Genome-Genome comparisons are performed 
using CGATM Tools v1.512 calldiff, snpdiff, and testvariants 
methods, which take into account complex variants (for 
example, loci with a SNP on one allele and a substitution 
on another) and called versus no-called sites.

Call rate and coverage: Call rate and coverage data 
are averaged over all shipments from Q3 2011 to Q1 
2012. Call rate and coverage are both measured relative 
to the 2.85GB Build 37 reference genome (excluding 
random contigs). Exome call rates are from Q1 2012 and 
are relative to RefSeq 37.2 gene models. They are up 
from the 2011 exome call rates, which averaged 95%-
96%.

There are many ways to measure coverage. Complete 
Genomics uses the gross mapped coverage (single 
and paired, unique and non-unique) from the 
coverageRefScore and summary !les11. Attributes 
of recent Complete Genomics data in the literature 
(speci!cally papers where call rate and/or coverage were 
reported) are described in Table 1. Improvements to 
call rate over time are clear from these results and have 
continued since this analysis was performed.

Trio Analysis: Called VQHIGH and homozygous 
reference sites from the YRI family trio were processed 
with the CGA Tools 1.5 listvariants and testvariants 
commands, and additional analysis was performed 
to extract MIEs. All sites fully called in the trio were 
considered, including sites called either variant or 
reference in the child. Repetitive sequences were de!ned 
using the union of the RepeatMasker, SegDup, and 
Simple Repeats tracks from the UCSC genome browser 

(genome.ucsc.edu), which collectively cover about 
53.7% of the reference genome.

Clustered MIE Analysis: The genome was segmented 
into non-overlapping windows containing 50kb of fully 
called genomic bases each, which were then sorted by 
the number of MIEs contained within each block. This 
list was then traversed until 30% of the total MIEs were 
encountered.

Technical Replicates: Two libraries independently 
constructed from NA19240 DNA were sequenced and 
analyzed. Sites called variant at VQHIGH in replicate 1 
and reference (RefScore>10) in replicate 2 were counted 
as discordant. A Bayesian statistical model was used to 
partition all discordances into putative FPs in replicate 
1 versus FNs in replicate 2 (see Reference 11, Score 
Calibration Documentation) (Table 2).

Calculation of the FP:FN tradeoff in direct 
comparisons of technical replicates: The CGA Tools 
1.5 calldiff command was used to compute the somatic 
score for each discordance between technical replicates. 
Sites called heterozygous or homozygous at a variant in 
replicate 1, and reference (for both alleles) in replicate 2, 
were counted as discordant. 

False Positive Rate: 2009 data were published in 
Reference 2. 2010 data were published in Reference 5, 
see Table 3.

Ti/Tv analysis: See References 7 and 8. Ti/Tv is 
reported for all genomes delivered from Q3 2011 to 
Q1 2012. The Ti/TV ratios in the 69 publicly available 
Complete Genomics genomes are in the same range. 

FALSE POSITIVES EST FPs FALSE NEGATIVES TOTAL DISCORDANCES CONCORDANCE

Discordant SNVs per called MB 1.56 x 10-6 4,450 1.67 x 10-6 3.23 x 10-6 99.9997% of bases

Table 2. Concordance of Technical Replicates.

COMPLETE GENOMICS CALL
OTHER PLATFORM PLATFORM-

SPECIFIC SNVs
VALIDATION RATE EST FPs FPR

Het or Hom SNV No SNV Reported 99K 17/18 = 94.4% 5,577 0.16%

No-call or Hom-Ref SNV Reported 345K 2/15 = 13.3% 299,115 8.2%

Table 3. False Positive Rate.

5

Accuracy of Complete Genomics Whole 
Human Genome Sequencing Data
Analysis Pipeline v2.0

High accuracy is critical to the effective use of whole genome sequencing (WGS) data 
by researchers and clinicians alike. Given the size of the human genome, even a small 
error rate can lead to a large total number of errors. Complete Genomics understands 
the importance of accuracy in WGS and we strive to deliver the most accurate data 
to our customers. We describe here some of the key factors to consider in measuring 
accuracy and provide an accuracy analysis for our Analysis Pipeline v2.0.

The accuracy of WGS data can be measured by a wide variety of methods, none of 
which is perfect, but many of which are informative for practical use. At the same time, 
accuracy estimates can be slanted to appear better or worse than they are; thus it is 
important that the detailed methods of their calculation be considered along with the 
results.

Techniques to improve variant detection accuracy include read and SNP !ltering 
or increasing call stringency1, but their use leads to a signi!cant and often poorly 
measured cost to sensitivity. Reports in the scienti!c literature show that Complete 
Genomics WGS, which avoids such coarse !ltering approaches, not only produces the 
lowest error rates but also does so at the highest call rates.

Complete Genomics’ approach to WGS is described below along with some 
suggestions on what to look for in measuring and comparing the accuracy of different 
sequencing approaches.

Results
Coverage and Call Rate: A key to Complete Genomics’ approach to WGS is deep 
sequencing. Complete Genomics has delivered more than 55x average gross coverage 
for all customer genomes shipped since the launch of its service. Complete Genomics 
applies an advanced bioinformatics pipeline using local de novo assembly to generate 
all small variant calls2,3, and using these methods currently achieves mean genome-
wide call rates of more than 97%, while call rates in coding regions currently average 
greater than 98%. These results are corroborated by recent reports of Complete 
Genomics’ data in the scienti!c literature (see Table 1 below).
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Whole-genome sequencing is becoming commonplace, but 
the accuracy and completeness of variant calling by the most 
widely used platforms from Illumina and Complete Genomics 
have not been reported. Here we sequenced the genome  
of an individual with both technologies to a high average 
coverage of ~76×, and compared their performance with 
respect to sequence coverage and calling of single-nucleotide 
variants (SNVs), insertions and deletions (indels). Although 
88.1% of the ~3.7 million unique SNVs were concordant 
between platforms, there were tens of thousands of platform-
specific calls located in genes and other genomic regions.  
In contrast, 26.5% of indels were concordant between 
platforms. Target enrichment validated 92.7% of the 
concordant SNVs, whereas validation by genotyping array 
revealed a sensitivity of 99.3%. The validation experiments 
also suggested that >60% of the platform-specific variants 
were indeed present in the genome. Our results have important 
implications for understanding the accuracy and completeness 
of the genome sequencing platforms.

The ability to sequence entire human genomes has the potential to 
provide enormous insights into human diversity and genetic disease, 
and is likely to transform medicine1,2. Several platforms for whole-
genome sequencing have emerged3–7. Each uses relatively short reads 
(up to 450 bp) and through high-coverage DNA sequencing, vari-
ants are called relative to a reference genome. The platforms of two 
companies, Illumina and Complete Genomics (CG), have become 
particularly commonplace, and >90% of the complete human 
genome sequences reported thus far have been sequenced using these  
platforms5,8–11. Each of these platforms uses different technologies, 
and despite their increasingly common use, a detailed compari-
son of their performance has not been reported previously. Such a 

 comparison is crucial for understanding accuracy and completeness 
of variant calling by each platform so that robust conclusions can be 
drawn from their genome sequencing data.

RESULTS
Sequence data generation
To examine the performance of Illumina and CG whole-genome 
sequencing technologies, we used each platform to sequence two 
sources of DNA, peripheral blood mononuclear cells (PBMCs) and 
saliva, from a single individual to high coverage. An Illumina HiSeq 
2000 was used to generate 101-bp paired-end reads, and CG gener-
ated 35-bp paired-end reads. The average sequence coverage for each  
sample was ~76× (Table 1), which resulted in a total coverage equiva-
lent to 300 haploid human genomes.

We aligned reads from both platforms to the human reference  
genome (NCBI build 37/HG19)12 and called SNVs. For Illumina, a 
total of 4,539,328,340 sequence reads, comprising 1,499,021,500 reads  
(151.4 Gb) from PBMCs and 3,040,306,840 reads (307.1 Gb) from 
saliva, were mapped to the reference genome using the Burrows-
Wheeler Aligner13. About 88% mapped successfully. Duplicate reads 
were removed using the Picard software tool, resulting in 3,588,531,824 
(79%, 362 Gb) mapped, nonduplicate reads (Table 1). Targeted realign-
ment and base recalibration was performed using the Genome Analysis 
ToolKit (GATK)14. We used GATK to detect a total of 3,640,123 SNVs 
(3,570,658 from PBMCs and 3,528,194 from saliva) with a quality  
filter as defined by the 1000 Genomes Project11. CG generated a gross 
mapping yield of 233.2 Gb for the PBMC sample and 218.6 Gb for the 
saliva sample for a total of 451.8 Gb of sequence (Table 1). We analyzed 
these data using the CG Analysis pipeline to identify 3,394,601 SNVs 
(3,277,339 from PBMCs and 3,286,645 from saliva). A detailed com-
parison of PBMCs versus saliva differences has revealed that few of the 
tissue-specific calls could be validated by independent methods, and 
these results will be published elsewhere.

To examine the completeness of sequencing, we analyzed the 
depth and breadth of genomic coverage by each platform with the 
PBMC genome sequences. Both platforms covered the majority of  
the genome, and >95% of the genome was covered by 17 or more reads 
(Fig. 1a). The Illumina curve drops to zero coverage at much lower 
read depth than the CG curve because there are substantially fewer 
reads in the Illumina data set. We also noticed that CG generally is less 
uniform in coverage (Fig. 1b). This suggests that to achieve a certain 
level of coverage for most of the genome, CG requires more overall 
sequencing than Illumina.

Performance comparison of whole-genome sequencing 
platforms
Hugo Y K Lam1,8, Michael J Clark1, Rui Chen1, Rong Chen2,8, Georges Natsoulis3, Maeve O’Huallachain1,  
Frederick E Dewey4, Lukas Habegger5, Euan A Ashley4, Mark B Gerstein5–7, Atul J Butte2, Hanlee P Ji3 & Michael Snyder1

1Department of Genetics, Stanford University, Stanford, California, USA. 2Division 
of Systems Medicine, Department of Pediatrics, Stanford University, Stanford, 
California, USA. 3Department of Medicine, Stanford University, Stanford, California, 
USA. 4Center for Inherited Cardiovascular Disease, Division of Cardiovascular 
Medicine, Stanford University, Stanford, California, USA. 5Program in Computational 
Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA. 
6Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, 
Connecticut, USA. 7Department of Computer Science, Yale University, New Haven, 
Connecticut, USA. 8Present address: Personalis, Inc., Palo Alto, California, USA. 
Correspondence should be addressed to M.S. (mpsnyder@stanford.edu).

Received 1 September; accepted 15 November; published online 18 December 
2011; doi:10.1038/nbt.2065

78 VOLUME 30 NUMBER 1 JANUARY 2012   NATURE BIOTECHNOLOGY

A N A LY S I S

Whole-genome sequencing is becoming commonplace, but 
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ABSTRACT
Motivation: Genome resequencing and short read mapping are two
of the primary tools of genomics and are used for many important
applications. The current state-of-the-art in mapping uses the quality
values and mapping quality scores to evaluate the reliability of the
mapping. These attributes, however, are assigned to individual
reads and don’t directly measure the problematic repeats across
the genome. Here we present the Genome Mappability Score
(GMS) as a novel measure of the complexity of resequencing a
genome. The GMS is a weighted probability that any read could be
unambiguously mapped to a given position, and thus measures the
overall composition of the genome itself.
Results: We have developed the Genome Mappability Analyzer
(GMA) to compute the GMS of every position in a genome. It
leverages the parallelism of cloud computing to analyze large
genomes, and enabled us to identify the 5-14% of the human,
mouse, fly, and yeast genomes that are difficult to analyze with short
reads. We examined the accuracy of the widely used BWA/SAMtools
polymorphism discovery pipeline in the context of the GMS, and
found discovery errors are dominated by false negatives, especially in
regions with poor GMS. These errors are fundamental to the mapping
process and cannot be overcome by increasing coverage. As such,
the GMS should be considered in every resequencing project to
pinpoint the dark matter of the genome, including of known clinically
relevant variations in these regions.
Availability: The source code and profiles of several model
organisms are available at http://gma-bio.sourceforge.net
Contact: hlee@cs.stonybrook.edu

1 INTRODUCTION
1.1 Background
DNA sequencing technology has dramatically improved in the past
decade so that today an individual human genome can be sequenced
for less than $10,000 and in less then two weeks (Drmanac et al.,
2010), compared to years of effort and hundreds of millions
of dollars for the first sequenced human genome (Stein, 2010).
This dramatic improvement has lead to an exponential growth in
sequencing, including several large projects to sequence thousands
of human genomes and exomes, such as the 1000 Genomes Project

∗to whom correspondence should be addressed

Consortium (2010) or International Cancer Genome Consortium
(2010). Other projects, such as ENCODE Project Consortium
(2004) and modENCODE Consortium (2010) are extensively using
resequencing and read mapping to discover novel genes and binding
sites.
The output of current DNA sequencing instruments consists of

billions of short, 25− 200 base pairs (bp) sequences of DNA called
reads, with an overall per base error rate around 1%-2% (Bentley
et al., 2008). In the case of whole genome resequencing, these
short reads will originate from random locations in the genome,
but nevertheless, entire genomes can be accurately studied by
oversampling the genome, and then aligning or ”mapping” each
read to the reference genome to computationally identify where it
originated. Once the entire collection of reads has been mapped,
variations in the sample can be identified by the pileup of reads that
significantly disagree from the reference genome (Fig. 1).
The leading short read mapping algorithms, including BWA (Li

and Durbin, 2009), Bowtie (Langmead et al., 2009), and SOAP (Li
et al., 2009b), all try to identify the best mapping position for each
read that minimizes the number of differences between the read and
the genome, i.e., the edit distance of the nucleotide strings, possibly
weighted by base quality value. This is made practical through
sophisticated indexing schemes, such as the Burrows-Wheeler
transform (Burrows and Wheeler, 1994), so that many billions of
reads can be efficiently mapped allowing for both sequencing errors
and true variations. The primary complication of short read mapping
is that a read may map equally well or nearly equally well to
multiple positions because of repetitive sequences in the genome.
Notably, nearly 50% of the human genome consists of repetitive
elements, including certain repeats that occur thousands of times
throughout (International Human Genome Sequencing Consortium,
2001).
For resequencing projects, the fraction of repetitive content

depends on read length and allowed error rate. At one extreme, all
single base reads would be repetitive, while chromosome length
reads would not be repetitive at all. Similarly, increasing the
allowed error rate increases the fraction of the genome that is
repetitive. The short read mapping algorithms use edit distance and
other read characteristics to compute a mapping quality score for
each mapped read (Li et al., 2008). The mapping quality score
estimates the probability that the assigned location is the correct
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•  Genome	
  Mappability	
  Score	
  (GMS)	
  -­‐-­‐	
  measure	
  of	
  the	
  complexity	
  of	
  resequencing	
  a	
  
genome	
  =	
  a	
  weighted	
  probability	
  that	
  any	
  read	
  could	
  be	
  unambiguously	
  mapped	
  to	
  a	
  
given	
  posi/on,	
  and	
  thus	
  measures	
  the	
  overall	
  composi/on	
  of	
  the	
  genome	
  itself.	
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Higher	
  Valida/on	
  by	
  CG	
  of	
  SNVs	
  with	
  
the	
  BWA-­‐GATK(v1.5)	
  pipeline	
  

•  Reveals	
  higher	
  valida/on	
  rate	
  of	
  unique-­‐to-­‐
pipeline	
  variants,	
  as	
  well	
  as	
  uniquely	
  
discovered	
  novel	
  variants,	
  for	
  the	
  variants	
  
called	
  by	
  BWA-­‐GATK(v1.5),	
  in	
  comparison	
  to	
  
the	
  other	
  4	
  pipelines	
  (including	
  SOAP).	
  



Valida/ng	
  Indels	
  with	
  Complete	
  
Genomics	
  Data	
  for	
  the	
  3	
  pipelines	
  



Comparing	
  to	
  New	
  Versions	
  of	
  GATK	
  



Valida/on	
  of	
  SNVs	
  and	
  Indels	
  called	
  by	
  GATK,	
  
SOAP	
  and	
  both,	
  with	
  another	
  plavorm	
  

Indels	
  



ValidaKon	
  with	
  PCR	
  amplicons	
  and	
  MiSeq	
  150	
  bp	
  
reads	
  at	
  ~5000x	
  coverage	
  

1,140	
  SNVs,	
  with	
  random	
  sampling	
  of	
  380	
  from	
  the	
  set	
  of	
  unique-­‐to-­‐GATK	
  SNVs,	
  380	
  from	
  
the	
  set	
  of	
  unique-­‐to-­‐SOAPsnp	
  SNVs,	
  and	
  380	
  from	
  the	
  set	
  that	
  were	
  overlapping	
  between	
  
these	
  two	
  pipelines.	
  	
  
	
  

960	
  indels,	
  with	
  random	
  sampling	
  of	
  386	
  from	
  the	
  unique-­‐to-­‐GATK	
  indel	
  set,	
  387	
  from	
  the	
  
unique-­‐to-­‐SOAPindel	
  set,	
  and	
  187	
  from	
  the	
  set	
  of	
  indels	
  overlapping	
  between	
  the	
  two	
  
(SOAPindel	
  and	
  GATK).	
  	
  



GATK v1.5 indel validation

153 / 369

216 / 369

Validation of overlaping indels
(GATK and SOAPindel)

109 / 183

74 / 183

SOAPindel v2.01 indel validation

145 / 365

220 / 365 Validated
Not validated

GATK v1.5 SNV validation

289 / 357

68 / 357

Validation of overlaping SNVs
(GATK and SOAPsnp)

336 / 375
39 / 375

SOAPsnp v1.03 SNV validation

133 / 339

206 / 339

ValidaKon	
  of	
  ~2000	
  PCR	
  amplicons	
  with	
  PacBio	
  reads	
  from	
  
two	
  SMRT	
  cells	
  (~50,000	
  useable	
  reads	
  per	
  cell)	
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Op/mizing	
  the	
  Variant	
  Calling	
  Pipeline	
  
Using	
  Family	
  Rela/onships	
  

We	
  looked	
  for	
  SNVs	
  that	
  were	
  detected	
  in	
  children	
  but	
  
not	
  in	
  parents	
  using	
  3	
  different	
  strategies:	
  
	
  	
  
1.	
  We	
  used	
  all	
  of	
  the	
  SNVs	
  that	
  were	
  detected	
  by	
  all	
  5	
  
pipelines	
  for	
  both	
  parents	
  and	
  children	
  
2.	
  We	
  used	
  all	
  of	
  the	
  detected	
  SNVs	
  for	
  parents,	
  but	
  only	
  
the	
  concordant	
  SNVs	
  between	
  the	
  5	
  different	
  pipelines	
  
for	
  children.	
  
3.	
  We	
  used	
  SNVs	
  concordant	
  between	
  the	
  5	
  different	
  
pipelines	
  for	
  children	
  and	
  parents.	
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Analysis	
  based	
  on	
  various	
  pipelines	
  

•  “Parents”	
  in	
  this	
  case	
  means	
  the	
  mother,	
  father	
  
AND	
  grandmother.	
  

•  Taking	
  the	
  Union	
  of	
  SNVs	
  from	
  all	
  5	
  pipelines	
  
from	
  “Parents”,	
  and	
  subtract	
  that	
  from	
  the	
  Union	
  
of	
  all	
  SNVs	
  in	
  each	
  child.	
  

•  Or	
  Subtract	
  the	
  Union	
  of	
  these	
  “Parents”	
  from	
  
the	
  SNVs	
  in	
  the	
  child	
  concordant	
  between	
  5	
  
pipelines.	
  

•  Or,	
  subtract	
  the	
  concordant	
  variants	
  from	
  5	
  
pipelines	
  in	
  “Parents”	
  from	
  the	
  concordant	
  
variants	
  for	
  5	
  pipelines	
  in	
  each	
  child.	
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Table 3. De novo single-nucleotide variants (SNVs) were detected in 

two families contained within the 15 study exomes.  

Family 1 

Number of putative de novo coding non-synonymous or nonsense 

SNVs detected  

Without using the grandparents 

as a filter 

Using the grandparents as a filter 

Child A 241 1 

Child B 211 0 

Child C 102 6 

Child D 242 3 

 

Family 2 

 

    

Child A 49 NAa 

Child B 41 NAa 

 aN/A, no grandparent available. 

Family 1 had a grandparent available for filtering purposes, whereas family 2 did not. To minimize false positives in the 

pool of SNVs associated with each child, only highly concordant SNVs were used (SNVs detected by all five pipelines). 

To construct a comprehensive set of SNVs for each parent, and hence increase filtering accuracy, false negatives for 

parent SNVs were reduced by taking the union of all SNV calls from all five pipelines.



hWp://en.wikipedia.org/wiki/Accuracy_and_precision	
  
	
  

High	
  accuracy,	
  but	
  low	
  precision	
   High	
  precision,	
  but	
  low	
  accuracy	
  

In	
  the	
  fields	
  of	
  science,	
  engineering,	
  industry,	
  and	
  sta/s/cs,	
  the	
  accuracy	
  of	
  a	
  measurement	
  
system	
  is	
  the	
  degree	
  of	
  closeness	
  of	
  measurements	
  of	
  a	
  quan/ty	
  to	
  that	
  quan/ty's	
  actual	
  
(true)	
  value.	
  The	
  precision	
  of	
  a	
  measurement	
  system,	
  also	
  called	
  reproducibility	
  or	
  
repeatability,	
  is	
  the	
  degree	
  to	
  which	
  repeated	
  measurements	
  under	
  unchanged	
  condi/ons	
  
show	
  the	
  same	
  results.	
  



Conclusions	
  
•  Sequencing	
  a	
  grandparent	
  seems	
  to	
  help	
  
eliminate	
  errors	
  derived	
  from	
  the	
  current	
  
depth	
  of	
  sequencing	
  coverage	
  in	
  the	
  mother	
  
and	
  father.	
  	
  

•  For	
  now,	
  we	
  advocate	
  using	
  more	
  than	
  one	
  
pipeline	
  on	
  one	
  set	
  of	
  sequencing	
  data,	
  but	
  we	
  
expect	
  the	
  field	
  to	
  move	
  toward	
  >2	
  sequencing	
  
plavorms	
  per	
  sample.	
  

•  S/ll	
  need	
  substan/al	
  work	
  on	
  indel-­‐calling	
  and	
  
valida/on.	
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Additional file 2, Table S1.  Concordance rates with common SNPs genotyped 

on Illumina 610K genotyping chips. All pipelines are very good with identifying 

already known, common SNPs. 

 

Additional file 2, Figure S1.  Of the fifteen exomes that were sequenced, 14 

were sequenced from families chosen for future disease discovery related work.  

Each sequenced individual (numbered) is displayed in the context of his or her 

constituent family pedigree.  

 

Additional file 2, Figure S2.  Fraction of target capture region covered versus 

coverage depth for 15 exomes. All exomes have at least 20 reads or more per 

base pair in >80% or more of the 44 MB target region 

 

Additional file 2, Figure S3. Histograms of Illumina read depth taken from each 

pipeline’s independently aligned BAM file at genomic coordinates of SNVs 

called by each of the 5 alignment and variant calling pipelines. A) SOAPsnp, B) 

SNVer, C) SAMTools, D) GNUMAP and E) GATK, respectively.  Frequency of 

read depths for all SNVs (A, B, C, D, and E) as well as for SNVs having depths 

between 0 and 50 (a, b, c, d, and e) were plotted.   

 

Additional file 2, Figure S4. SNV concordance for a single exome, “k8101-

49685”, between five alignment and variant detection pipelines: GATK, 

SOAPsnp, SNVer, SAMTools, and GNUMAP.  Concordance between each 

pipeline was determined by matching the genomic coordinate as well as the 

base pair change and zygosity for each detected SNV.  Concordance was 

measured at varying Illumina read depth threshold values in each independently 

aligned BAM file, ranging from >0 (no threshold) to >30 reads.  

 

Additional file 2, Figure S5. Histograms of read depth taken from each of the 

five Illumina pipeline’s independently aligned BAM file at genomic coordinates of 

SNVs that were found by Complete Genomics but not by any of the 5 Illumina 

pipelines: GATK, GNUMAP, SNVer, SAMTools and SOAPsnp, A, B, C, D and E 

respectively.  All coordinates fell within the range of the Agilent SureSelect v.2 

exons. 
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base pair in >80% or more of the 44 MB target region 

 

Additional file 2, Figure S3. Histograms of Illumina read depth taken from each 

pipeline’s independently aligned BAM file at genomic coordinates of SNVs 

called by each of the 5 alignment and variant calling pipelines. A) SOAPsnp, B) 

SNVer, C) SAMTools, D) GNUMAP and E) GATK, respectively.  Frequency of 

read depths for all SNVs (A, B, C, D, and E) as well as for SNVs having depths 

between 0 and 50 (a, b, c, d, and e) were plotted.   

 

Additional file 2, Figure S4. SNV concordance for a single exome, “k8101-

49685”, between five alignment and variant detection pipelines: GATK, 

SOAPsnp, SNVer, SAMTools, and GNUMAP.  Concordance between each 

pipeline was determined by matching the genomic coordinate as well as the 

base pair change and zygosity for each detected SNV.  Concordance was 

measured at varying Illumina read depth threshold values in each independently 

aligned BAM file, ranging from >0 (no threshold) to >30 reads.  

 

Additional file 2, Figure S5. Histograms of read depth taken from each of the 

five Illumina pipeline’s independently aligned BAM file at genomic coordinates of 

SNVs that were found by Complete Genomics but not by any of the 5 Illumina 

pipelines: GATK, GNUMAP, SNVer, SAMTools and SOAPsnp, A, B, C, D and E 

respectively.  All coordinates fell within the range of the Agilent SureSelect v.2 

exons. 
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Additional file 2, Table S1.  Concordance rates with common SNPs genotyped 

on Illumina 610K genotyping chips. All pipelines are very good with identifying 

already known, common SNPs. 

 

Additional file 2, Figure S1.  Of the fifteen exomes that were sequenced, 14 

were sequenced from families chosen for future disease discovery related work.  

Each sequenced individual (numbered) is displayed in the context of his or her 

constituent family pedigree.  

 

Additional file 2, Figure S2.  Fraction of target capture region covered versus 

coverage depth for 15 exomes. All exomes have at least 20 reads or more per 

base pair in >80% or more of the 44 MB target region 

 

Additional file 2, Figure S3. Histograms of Illumina read depth taken from each 

pipeline’s independently aligned BAM file at genomic coordinates of SNVs 

called by each of the 5 alignment and variant calling pipelines. A) SOAPsnp, B) 

SNVer, C) SAMTools, D) GNUMAP and E) GATK, respectively.  Frequency of 

read depths for all SNVs (A, B, C, D, and E) as well as for SNVs having depths 

between 0 and 50 (a, b, c, d, and e) were plotted.   

 

Additional file 2, Figure S4. SNV concordance for a single exome, “k8101-

49685”, between five alignment and variant detection pipelines: GATK, 

SOAPsnp, SNVer, SAMTools, and GNUMAP.  Concordance between each 

pipeline was determined by matching the genomic coordinate as well as the 

base pair change and zygosity for each detected SNV.  Concordance was 

measured at varying Illumina read depth threshold values in each independently 

aligned BAM file, ranging from >0 (no threshold) to >30 reads.  

 

Additional file 2, Figure S5. Histograms of read depth taken from each of the 

five Illumina pipeline’s independently aligned BAM file at genomic coordinates of 

SNVs that were found by Complete Genomics but not by any of the 5 Illumina 

pipelines: GATK, GNUMAP, SNVer, SAMTools and SOAPsnp, A, B, C, D and E 

respectively.  All coordinates fell within the range of the Agilent SureSelect v.2 

exons. 
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Additional file 2, Figure S6. Average concordance among 15 exomes between 

three indel detecting pipelines: GATK, SAMTools and SOAPindel.  Concordance 

was measured between raw, pre-standardized, indel calls.  Indels were 

considered in agreement if the genomic coordinates, length and composition of 

indels matched between pipelines. 

 

Additional file 2, Figure S7.  SNV concordance for a single exome, “k8101-

49685”, between two sequencing pipelines: Illumina and Complete Genomics. 

For the Illumina sequencing, exons were captured using the Agilent SureSelect 

v.2 panel of capture probes. Complete Genomics SNVs consist of a subset of all 

SNVs called by CG that fell within the Agilent SureSelect v.2 exons. 

Concordance was determined by matching the genomic coordinates, base pair 

composition, and zygosity status for each detected SNV.  Concordance was 

measured between CG SNVs and A) the union of all SNVs called by 5 variant 

calling pipelines (“Illumina-data calls”) and B) only SNVs that all 5 Illumina 

pipelines collectively called (“concordant Illumina-data calls”). 

 

 

Additional file 2, Figure S8.  SNVs called by each Illumina-data pipeline were 

cross-validated using SNVs called by Complete Genomics, an orthogonal 

sequencing technology, in sample “k8101-49685”.  The percentage of Illumina 

SNVs that were validated by CG sequencing was measured for variants having 

varying degrees of Illumina-data pipeline concordance.  The same analysis was 

performed for variants that were considered novel (absent in dbSNP135). 

 

Additional file 2, Figure S9.  Indels called by each Illumina-data pipeline were 

cross-validated using indels called by Complete Genomics for sample “k8101-

49685”.  The percentage of Illumina indels that were validated by CG 

sequencing was measured across varying degrees of Illumina pipeline 

concordance.  The same analysis was done for novel indels (indels not found in 

dbSNP 135). 
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Additional file 2, Figure S6. Average concordance among 15 exomes between 

three indel detecting pipelines: GATK, SAMTools and SOAPindel.  Concordance 

was measured between raw, pre-standardized, indel calls.  Indels were 

considered in agreement if the genomic coordinates, length and composition of 

indels matched between pipelines. 

 

Additional file 2, Figure S7.  SNV concordance for a single exome, “k8101-

49685”, between two sequencing pipelines: Illumina and Complete Genomics. 

For the Illumina sequencing, exons were captured using the Agilent SureSelect 

v.2 panel of capture probes. Complete Genomics SNVs consist of a subset of all 

SNVs called by CG that fell within the Agilent SureSelect v.2 exons. 

Concordance was determined by matching the genomic coordinates, base pair 

composition, and zygosity status for each detected SNV.  Concordance was 

measured between CG SNVs and A) the union of all SNVs called by 5 variant 

calling pipelines (“Illumina-data calls”) and B) only SNVs that all 5 Illumina 

pipelines collectively called (“concordant Illumina-data calls”). 

 

 

Additional file 2, Figure S8.  SNVs called by each Illumina-data pipeline were 

cross-validated using SNVs called by Complete Genomics, an orthogonal 

sequencing technology, in sample “k8101-49685”.  The percentage of Illumina 

SNVs that were validated by CG sequencing was measured for variants having 

varying degrees of Illumina-data pipeline concordance.  The same analysis was 

performed for variants that were considered novel (absent in dbSNP135). 

 

Additional file 2, Figure S9.  Indels called by each Illumina-data pipeline were 

cross-validated using indels called by Complete Genomics for sample “k8101-

49685”.  The percentage of Illumina indels that were validated by CG 

sequencing was measured across varying degrees of Illumina pipeline 

concordance.  The same analysis was done for novel indels (indels not found in 

dbSNP 135). 

 



Comparing	
  the	
  concordance	
  among	
  the	
  5	
  
pipelines	
  used	
  to	
  analyze	
  Illumina	
  data,	
  also	
  
straKfied	
  by	
  read	
  depth	
  from	
  >0	
  to	
  >30	
  reads.	
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Table 2. Quality evaluation of variant detection using different variant-calling pipelines.  

  Sensitivity  Specificity 

 
Mean* SD 

Mean* SD 
  

SOAPsnp 94.68 2.26 99.79 0.03 
GATK1.5 95.34 1.16 99.72 0.08 
SNVer 92.33 4.40 99.78 0.04 
GNUMAP 86.60 3.23 99.64 0.06 
SAMtools 94.47 4.22 99.59 0.16 
Any pipeline 97.67 1.20 99.62 0.11 
≥2 pipelines* 96.64 2.28 99.69 0.07 
≥3 pipelines* 95.62 3.13 99.73 0.05 
≥4 pipelines* 92.60 3.40 99.82 0.04 
5 pipelines* 80.58 5.26 99.87 0.01 
*Intersection of variants contained in the number of pipelines specified. 

Sensitivity and specificity was calculated for each pipeline by comparing 

Illumina Human610-Quad version 1 SNP arrays with exome-capture 

sequencing results, based on the four samples whose genotyping data 

was available. 



Table S1.  Concordance rates with common SNPs genotyped on Illumina 610K 
genotyping chips.  
 

Sample Software Compared 
Sites 

Concordance 
Sites 

Concordance 
rate 

Mother-1 SOAPsnp 6088 6074 99.77% 
  GATK 1.5 6249 6224 99.60% 
  SNVer 5723 5708 99.74% 
  GNUMAP 5458 5434 99.56% 
  SAMTools 5885 5848 99.37% 
Son-1 SOAPsnp 6366 6353 99.80% 
  GATK 1.5 6341 6323 99.72% 
  SNVer 6255 6239 99.74% 
  GNUMAP 5850 5828 99.62% 
  SAMTools 6383 6362 99.67% 
Son-2 SOAPsnp 6412 6401 99.83% 
  GATK 1.5 6426 6413 99.80% 
  SNVer 6336 6325 99.83% 
  GNUMAP 5906 5889 99.71% 
  SAMTools 6477 6450 99.58% 
Father-1 SOAPsnp 6247 6238 99.86% 
  GATK 1.5 6304 6288 99.75% 
  SNVer 6205 6192 99.79% 
  GNUMAP 5805 5786 99.67% 
  SAMTools 6344 6327 99.73% 

 
All pipelines are very good with identifying already known, common SNPs. 
 



Taking	
  SNVs	
  concordant	
  in	
  5	
  Illumina	
  pipelines,	
  
and	
  comparing	
  to	
  SNVs	
  in	
  Complete	
  Genomics	
  

Data	
  from	
  same	
  sample	
  	
  



Taking	
  SNVs	
  concordant	
  in	
  5	
  Illumina	
  pipelines	
  
as	
  per	
  READ	
  DEPTH,	
  and	
  comparing	
  to	
  SNVs	
  in	
  
Complete	
  Genomics	
  Data	
  from	
  same	
  sample	
  



Taking	
  SNVs	
  found	
  by	
  ALL	
  5	
  Illumina	
  pipelines	
  
(Union),	
  and	
  comparing	
  to	
  SNVs	
  in	
  Complete	
  

Genomics	
  Data	
  from	
  same	
  sample	
  



Taking	
  the	
  UNION	
  of	
  all	
  SNVs	
  called	
  by	
  Illumina	
  
pipelines,	
  as	
  per	
  READ	
  DEPTH,	
  and	
  comparing	
  to	
  SNVs	
  

in	
  Complete	
  Genomics	
  Data	
  from	
  same	
  sample	
  



Comparing	
  the	
  UNION	
  versus	
  the	
  
CONCORDANCE	
  of	
  5	
  pipelines	
  to	
  the	
  Complete	
  

Genomics	
  Data	
  

Union	
  of	
  Illumina	
  variants	
   Concordant	
  Illumina	
  variants	
  



Read	
  Depth	
  of	
  Illumina	
  Reads	
  for	
  variants	
  
called	
  by	
  Complete	
  Genomics	
  but	
  NOT	
  by	
  

GATK	
  or	
  SOAP	
  pipelines	
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Read	
  Depth	
  of	
  Illumina	
  Reads	
  for	
  variants	
  
called	
  by	
  Complete	
  Genomics	
  but	
  NOT	
  by	
  
GNUMAP,	
  SNVer	
  or	
  SamTools	
  pipelines	
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Genomic	
  Dark	
  MaWer,	
  cont….	
  
•  That	
  means	
  that	
  unlike	
  typical	
  false	
  nega/ves,	
  increasing	
  coverage	
  

will	
  not	
  help	
  iden/fy	
  muta/ons	
  in	
  low	
  GMS	
  regions,	
  even	
  with	
  0%	
  
sequencing	
  error.	
  	
  

•  Instead	
  this	
  is	
  because	
  the	
  SNP-­‐calling	
  algorithms	
  use	
  the	
  mapping	
  
quality	
  scores	
  to	
  filter	
  out	
  unreliable	
  mapping	
  assignments,	
  and	
  low	
  
GMS	
  regions	
  have	
  low	
  mapping	
  quality	
  score	
  (by	
  defini/on).	
  Thus	
  
even	
  though	
  many	
  reads	
  may	
  sample	
  these	
  varia/ons,	
  the	
  mapping	
  
algorithms	
  cannot	
  ever	
  reliably	
  map	
  to	
  them.	
  	
  

•  Since	
  about	
  14%	
  of	
  the	
  genome	
  has	
  low	
  GMS	
  value	
  with	
  typical	
  
sequencing	
  parameters,	
  it	
  is	
  expected	
  that	
  about	
  14%	
  of	
  all	
  
varia/ons	
  of	
  all	
  resequencing	
  studies	
  will	
  not	
  be	
  detected.	
  	
  

•  To	
  demonstrate	
  this	
  effect,	
  we	
  characterised	
  the	
  SNP	
  variants	
  
iden/fied	
  by	
  the	
  1000	
  genomes	
  pilot	
  project,	
  and	
  found	
  that	
  
99.99%	
  of	
  the	
  SNPs	
  reported	
  were	
  in	
  high	
  GMS	
  regions	
  of	
  the	
  
genome,	
  and	
  in	
  fact	
  99.95%	
  had	
  GMS	
  over	
  90.	
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{Figure Legends} 
Figure 1. Mean single-nucleotide variants (SNV) concordance over 15 

exomes between five alignment and variant-calling pipelines. The 

alignment method used, followed by the SNV variant calling algorithm is 

annotated here in shorthand: BWA-GATK, SOAP-Align-SOAPsnp, BWA-SNVer, 

BWA-SAMtools, and GNUMAP-GNUMAP. (A) Mean SNV concordance 

between each pipeline was determined by matching the genomic coordinate as 

well as the base-pair change and zygosity for each detected SNV. (B) The same 

analysis as in (A) but filtered to include only SNVs already found in dbSNP135. 

(C) The same analysis as in (A), but filtered to include novel SNVs (that is, 

SNVs not found in dbSNP135).  

 

Figure 2. Single-nucleotide variant (SNV) concordance, between two 

sequencing pipelines (Illumina and Complete Genomics (CG)) for a single 

exome, k8101-49685. For the Illumina sequencing, exons were captured using 

the Agilent SureSelect version 2 panel of capture probes. CG SNVs consisted of 

a subset of all SNVs called by CG that fell within the Agilent SureSelect version 

2 exons. Concordance was determined by matching the genomic coordinates, 

base-pair composition, and zygosity status for each detected SNVs. Illumina 

SNVs consisted of all SNVs (the union) called by the five variant-calling 

pipelines GATK, SAMtools, SOAPsnp, SNVer, and GNUMAP, which increased 

the false positives but decreased the false negatives. Concordance was 

measured between Illumina SNVs and (A) all CG SNVs, (C) only high-quality 

(VQHIGH) CG SNVs, and (D) only low quality (VQLOW) CG SNVs. (B) Genome 

mappability analyses were performed on 2,085 discordant SNVs, which were 

found by the CG pipeline and not found by any of the five Illumina data pipelines. 

 

Figure 3. Mean indel concordance over 15 exomes between 3 indel-calling 

pipelines: GATK, SOAPindel, and SAMtools. Mean concordance was 

measured between (A) all indels, (B) known indels (indels found in dbSNP135), 

and (C) unknown indels (indels not found in dbSNP135). Indels were left 

normalized and intervalized to a range of 20 genomic coordinates (10 

coordinates on each side of the normalized position) to allow for a reasonably 



Pipelines	
  Used	
  on	
  Same	
  Set	
  of	
  Seq	
  Data	
  by	
  Different	
  
Analysts,	
  using	
  Hg19	
  Reference	
  Genome	
  

1)  BWA	
  -­‐	
  Sam	
  format	
  to	
  Bam	
  format	
  -­‐	
  Picard	
  to	
  remove	
  duplicates	
  -­‐	
  GATK	
  (version	
  
1.5)	
  with	
  recommended	
  parameters	
  	
  (GATK	
  IndelRealigner,	
  base	
  quality	
  scores	
  
were	
  re-­‐calibrated	
  by	
  GATK	
  Table	
  Recalibra/on	
  tool.	
  Genotypes	
  called	
  by	
  GATK	
  
UnifiedGenotyper.	
  	
  

	
  
2)  BWA	
  -­‐	
  Sam	
  format	
  to	
  Bam	
  format-­‐Picard	
  to	
  remove	
  duplicates	
  -­‐	
  SamTools	
  version	
  

0.1.18	
  to	
  generate	
  genotype	
  calls	
  	
  -­‐-­‐	
  The	
  “mpileup”	
  command	
  in	
  SamTools	
  were	
  
used	
  for	
  iden/fy	
  SNPs	
  and	
  indels.	
  

	
  
3)  SOAP-­‐Align	
  –	
  SOAPsnp	
  –	
  then	
  BWA-­‐SOAPindel	
  (adopts	
  local	
  assembly	
  based	
  on	
  an	
  

extended	
  de	
  Bruijn	
  graph	
  )	
  
	
  
4)  GNUMAP-­‐SNP	
  (probabilis/c	
  Pair-­‐Hidden	
  Markov	
  which	
  effec/vely	
  accounts	
  for	
  

uncertainty	
  in	
  the	
  read	
  calls	
  as	
  well	
  as	
  read	
  mapping	
  in	
  an	
  unbiased	
  fashion)	
  
	
  
5)  BWA	
  -­‐	
  Sam	
  format	
  to	
  Bam	
  format	
  -­‐	
  Picard	
  to	
  remove	
  duplicates	
  -­‐	
  SNVer	
  	
  

6)  BWA	
  -­‐	
  Sam	
  format	
  to	
  Bam	
  format	
  -­‐	
  Picard	
  to	
  remove	
  duplicates	
  -­‐	
  SCALPEL	
  





Pipelines	
  Used	
  on	
  Same	
  Set	
  of	
  Seq	
  Data	
  by	
  Different	
  
Analysts,	
  using	
  Hg19	
  Reference	
  Genome	
  

1)  BWA	
  -­‐	
  GATK	
  (version	
  1.5)	
  with	
  recommended	
  parameters	
  	
  (GATK	
  IndelRealigner,	
  
base	
  quality	
  scores	
  were	
  re-­‐calibrated	
  by	
  GATK	
  Table	
  Recalibra/on	
  tool.	
  
Genotypes	
  called	
  by	
  GATK	
  UnifiedGenotyper.	
  For	
  SNVs	
  and	
  indels.	
  

	
  
2)  BWA	
  -­‐	
  SamTools	
  version	
  0.1.18	
  to	
  generate	
  genotype	
  calls	
  	
  -­‐-­‐	
  The	
  “mpileup”	
  

command	
  in	
  SamTools	
  was	
  used	
  for	
  iden/fy	
  SNVs	
  and	
  indels.	
  
	
  
3)  SOAP-­‐Align	
  –	
  SOAPsnp	
  for	
  SNVs–	
  and	
  BWA-­‐SOAPindel	
  (adopts	
  local	
  assembly	
  

based	
  on	
  an	
  extended	
  de	
  Bruijn	
  graph)	
  for	
  indels.	
  
	
  
4)  GNUMAP-­‐SNP	
  (probabilis/c	
  Pair-­‐Hidden	
  Markov	
  which	
  effec/vely	
  accounts	
  for	
  

uncertainty	
  in	
  the	
  read	
  calls	
  as	
  well	
  as	
  read	
  mapping	
  in	
  an	
  unbiased	
  fashion),	
  for	
  
SNVs	
  only.	
  

	
  
5)  BWA	
  -­‐	
  Sam	
  format	
  to	
  Bam	
  format	
  -­‐	
  Picard	
  to	
  remove	
  duplicates	
  –	
  SNVer	
  ,	
  for	
  SNVs	
  

only	
  



All#SNVs,#both#for#
parents#and#children,#
were#considered

All#parental#SNVs#that#were#detected#
were#considered.##Only#SNVs#concordant#
between#the#5#pipelines#were#considered#

for#children#

SNVs#concordant#between#5#
pipelines#for#children#and#

parents

Number#of##SNVs#found#in#child#A#
but#not#in#parents

1057 2 637

Number#of##SNVs#found#in#child#B#
but#not#in#parents

1084 1 672

Number#of##SNVs#found#in#child#C#
but#not#in#parents

2363 20 1703

Number#of##SNVs#found#in#child#D#
but#not#in#parents

1518 5 876

Number#of#nonsyn#SNVs#in#child#A#
but#not#in#parents

411 1 150

Number#of#nonsyn#SNVs#in#child#B#
but#not#in#parents

396 0 135

Number#of#nonsyn#SNVs#in#child#C#
but#not#in#parents

911 6 459

Number#of#nonsyn#SNVs#in#child#D#
but#not#in#parents

619 3 225

Number#of#shared#nonsyn#SNVs#in#
the#children,#but#not#in#parents

8 0 9



Op/mizing	
  pipeline	
  based	
  on	
  literature	
  value	
  of	
  ~1	
  
true	
  de	
  novo	
  protein-­‐altering	
  muta/on	
  per	
  exome	
  

The	
  result	
  is	
  that	
  using	
  all	
  of	
  the	
  detected	
  SNVs	
  for	
  both	
  parents	
  and	
  children	
  should	
  
minimize	
  the	
  false	
  nega/ve	
  rate	
  but	
  similarly	
  show	
  a	
  rela/vely	
  high	
  false	
  posi/ve	
  rate.	
  	
  
Using	
  all	
  of	
  the	
  SNVs	
  detected	
  for	
  parents	
  but	
  only	
  the	
  SNVs	
  concordant	
  among	
  the	
  five	
  
pipelines	
  shows	
  muta/on	
  rates	
  similar	
  to	
  those	
  reported	
  by	
  the	
  literature	
  and	
  is	
  expected	
  
to	
  have	
  moderate	
  false	
  posi/ve	
  rates	
  and	
  moderate	
  false	
  nega/ve	
  rates.	
  	
  Using	
  only	
  the	
  
SNVs	
  concordant	
  among	
  the	
  5	
  different	
  pipelines	
  for	
  both	
  parents	
  and	
  children	
  should	
  
minimize	
  the	
  false	
  posi/ve	
  rate	
  but	
  similarly	
  show	
  a	
  rela/vely	
  high	
  false	
  nega/ve	
  rate.	
  	
  	
  
	
  



Much	
  Higher	
  Valida/on	
  of	
  the	
  Concordantly	
  
Called	
  SNVs	
  (by	
  the	
  CG	
  data)	
  




