
Automated correction of genome sequence errors
Pawel Gajer*, Michael Schatz and Steven L. Salzberg

The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA

Received November 7, 2003; Revised and Accepted December 16, 2003

ABSTRACT

By using information from an assembly of a
genome, a new program called AutoEditor signi®-
cantly improves base calling accuracy over that
achieved by previous algorithms. This in turn
improves the overall accuracy of genome
sequences and facilitates the use of these
sequences for polymorphism discovery. We
describe the algorithm and its application in a large
set of recent genome sequencing projects. The
number of erroneous base calls in these projects
was reduced by 80%. In an analysis of over one
million corrections, we found that AutoEditor made
just one error per 8828 corrections. By substantially
increasing the accuracy of base calling, AutoEditor
can dramatically accelerate the process of ®nishing
genomes, which involves closing all gaps and
ensuring minimum quality standards for the ®nal
sequence. It also greatly improves our ability to
discover single nucleotide polymorphisms (SNPs)
between closely related strains and isolates of the
same species.

INTRODUCTION

Large-scale genome sequencing has progressed rapidly in
recent years, with advances in sequencing technology leading
to a wealth of new genomes for the scienti®c community.
Software for assembling and analyzing genomes has improved
dramatically, allowing genome scientists to tackle large,
mammalian genomes using the whole genome shotgun (WGS)
method, which is much faster and cheaper than earlier
approaches.

All sequencing projects depend critically on a base caller, a
program that turns the ¯uorescent signal intensities detected
by an automated sequencing machine into a sequence of the
four bases of DNA. Base calling software also assigns a
probability of error to each base. Since the advent of the Phred
program (1,2), virtually all genome sequencing projects have
come to rely on these probabilities to help extract the
maximum amount of information possible from each se-
quence. Improvements in capillary sequencing technology
have allowed some laboratories to routinely acquire 800 bases
of high quality sequence from each sequencing reaction (or
`read').

At present, the rate of genome sequencing far surpasses the
rate of ®nishing genomes. Finishing refers to the process of
®lling in all the gaps in the initial assembly of a genome and of
providing guarantees about the minimum quality of the overall
sequence. A WGS project typically results in many islands of
overlapping reads called contigs, which are generated by a
genome assembler from the collection of sequence reads. The
®nishing process attempts to turn these contigs into a
complete, accurate representation of an organism's chromo-
somes. Depending on the genome size and the amount of
sequence generated, an assembler may produce anywhere
from one to many thousands of contigs, each representing two
or more reads; only very rarely does it produce contigs
representing entire chromosomes and even those are usually
very small chromosomes, such as bacterial plasmids. The
®nishing process requires laboratory scientists to run
additional reactions to ®ll in the gaps in the assembly. It
may also involve extensive manual curation of contigs that
appear to overlap but that were not correctly assembled
together. Sequence ®nishers often edit the reads comprising
these contigs to create a better assembly.

Our experience with dozens of genome projects led us to
realize that we could automate much of the ®nishing process,
greatly accelerating it and at the same time producing a far
higher quality genome assembly. To accomplish this goal, we
have developed a new type of base caller, one that uses the
assembled sequences to guide the algorithm. A critical idea
behind our new algorithm, called AutoEditor, is that WGS
projects typically produce 6-fold (also called 6X) or higher
coverage of a genome, i.e. each base in a genome is covered,
on average, by six distinct reads. A genome assembler
produces a multiple alignment showing how all the reads
map to each contig. Thus for any base in a 6X assembly, on
average there are ®ve other bases that align to the same contig
position.

This leads naturally to the following observation: a base
calling algorithm does not need to limit its input to the raw
data (called a chromatogram or, equivalently, an electropher-
ogram) from a single read. For genomes that have been
assembled into contigs, a base caller can use the information
from all reads that align to a given position in order to inform
its decision. In this way we can discover sequencing errors
within a read and re-analyze it in a more robust way.
Assembling the corrected reads improves the overall quality of
the consensus sequence.

A number of algorithms for correcting errors in shotgun
sequences have been described previously, including those of
Tammi (3), Kececioglu (4), Pevzner (5) and Batzloglou (6).
These earlier methods use the alignment of reads produced by

*To whom correspondence should be addressed. Tel: +1 301 795 7854; Fax: +1 301 795 7208; Email: pgajer@tigr.org

562±569 Nucleic Acids Research, 2004, Vol. 32, No. 2
DOI: 10.1093/nar/gkh216

Nucleic Acids Research, Vol. 32 No. 2 ã Oxford University Press 2004; all rights reserved

Published online January 26, 2004
 at C

old Spring H
arbor L

aboratory-L
ibrary on M

arch 15, 2013
http://nar.oxfordjournals.org/

D
ow

nloaded from

http://nar.oxfordjournals.org/

an assembler, but none of them uses or re-analyzes the
chromatogram data to make the correction. AutoEditor is
the ®rst system that genuinely recalls bases using both the
assembly and the primary signal from the sequencing
machine. In principal, this should lead to dramatically more
accurate base calling software. As we show below, our
experience bears this out.

Another major task of genome sequencing is ensuring the
overall accuracy of the genome. For example, the human
genome project sought to attain an overall error rate of less
than one error per 10 000 bp. Other projects have striven to
achieve similar accuracies, and in many cases have signi®-
cantly surpassed this rate; for example, in bacterial genome
projects, ®nished sequence has been reported to have error
rates approaching 1/100 000 (7,8). For the human genome and
other large, diploid genomes, differences between overlapping
reads might come from several sources, including: (i) true
genetic differences such as single nucleotide polymorphisms
(SNPs); (ii) sequencing errors; (iii) cloning errors.
Considerable effort has already been devoted to SNP discov-
ery in the human genome, however, this process is made much
more dif®cult by sequencing errors, which occur at a higher
rate than SNPs. To illustrate, note that individual sequences,
after trimming off the `bad' sequence at the ends, have an error
rate of ~1%. The human SNP rate is currently still a topic of
much debate, but it has been estimated at ~0.16% (9,10). Thus
one might expect roughly six times more sequencing errors
than true SNPs in a human genome assembly (depending on,
among other things, how many different individuals contrib-
uted DNA to the sequencing pool). This makes validation of
each SNP much more dif®cult.

AutoEditor eliminates ~80% of sequencing errors, greatly
increasing the signal-to-noise ratio in SNP discovery projects.
As we show below, it achieves these results consistently
across a wide range of genomes.

MATERIALS AND METHODS

AutoEditor consists of an input parser, a module for aligning
reads to the consensus sequence, a module for error correction
and a module to output corrected sequences. This section
describes the error correction algorithm of AutoEditor.

The input to the error correction module is an alignment of
reads to a consensus sequence. A sample of this alignment
data is depicted in Figure 1.

The set of base calls aligned to a given position is called a
slice of the alignment. For example, the slice at position 17 in
Figure 1 is the sequence TTC*. A homogeneous slice is a slice
all of whose base calls are the same. If any of the bases
disagree within a slice, it is a non-homogeneous slice or a
discrepancy slice. In Figure 1 the slices at positions 15, 17 and
22 are non-homogeneous.

If at least half of the elements of a slice agree with one
another, we call this set the homogeneous majority part of the
slice. In WGS data at a reasonable depth of coverage it is very
rare that a slice fails to have a homogeneous majority. (In our
data, this accounts for <0.01% of discrepancy slices.) We only
attempt error corrections on non-homogeneous slices with a
homogeneous majority portion, i.e. if no base accounts for at
least half of the slice, then we do not attempt to correct it. In
the very rare event where a slice consists of just two bases in a

50/50 split, for example TTTTCCCC, the homogeneous
majority part is chosen based on lexicographic order, i.e. A
is chosen over C, C over G and G over T. This implies that
AutoEditor may fail to correct a few miscalled bases, but it
will not make any errors as a result of this lexicographic bias.

If the homogeneous majority portion of a slice consists of
gaps, the other elements are called insertion bases or insertion
elements. For example, the slice ***C at the consensus
sequence position 22 in Figure 1 has a single insertion base, C.
If the elements of the homogeneous majority part are not gaps,
then any gap in the slice is called a deletion element, and each
disagreeing base is called a substitution base or a substitution
element. For example, the slice TTC* at position 17 in the
assembly fragment from Figure 1 has one deletion element (*)
and one substitution base, C.

Before any errors are corrected, AutoEditor recomputes the
consensus sequence using simple majority rule (ignoring
quality values), using lexicographic order to break ties. After
the corrections are made, the consensus sequence is re-called
again, using a more sophisticated consensus call function that
takes into account quality values of the reads. The output of
the consensus caller uses ambiguity codes. The ®nal consensus
recall is done to ensure that the output of AutoEditor has the
consensus sequence consistent with the one computed by other
TIGR tools.

The error correction module of AutoEditor consists of three
components for processing insertion, deletion and substitution
elements of non-homogeneous slices, respectively. Before we
describe these modules we will discuss types of errors or
anomalies found on the chromatogram level and then address
the issue of selection of an appropriate fragment of a
chromatogram to analyze a discrepant base.

In order to illustrate the different types of chromatogram
anomalies, let us consider the non-homogeneous slice TTC* at
position 17 in Figure 1. The consensus base T associated with
this slice is a part of a short poly(T) region within the
consensus sequence [¼CTTTA¼]. Usually, a discrepancy
within a single base repeat region is caused either by poor
quality in the ¯uorescent signal or by a shift of the signal in the
repeat base channel with respect to the signals in the other
channels. (Note that each of the four bases are captured in a
different, independent color channel. Thus A residues are
green, C residues are blue, G residues are yellow and T
residues are red.) These two scenarios are illustrated in the
following ®gures. We will refer to signal shift and poor quality
anomalies as `shift error' and `unresolved peaks error'
respectively. An unresolved peaks error is characterized by
shallow or poorly de®ned local minima between signal peaks.

Figure 1. Alignment of four reads with a consensus sequence. Asterisks (*)
indicate gaps inserted in the reads in order to align them with the
consensus.

Nucleic Acids Research, 2004, Vol. 32, No. 2 563

 at C
old Spring H

arbor L
aboratory-L

ibrary on M
arch 15, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

http://nar.oxfordjournals.org/

Looking at the examples in Figure 2, we see that analysis of
the chromatogram has to be performed in a range that may go
well beyond the immediate vicinity of a discrepant base. More
precisely, if the discrepancy occurs within a single base repeat
region, then one should analyze a region of the chromatogram
that contains the entire repeat region together with the ¯anking
bases of the repeat. We will use the phrase `search region' to
refer to the portion of the chromatogram that the algorithm
needs to consider in order to analyze a discrepancy slice. For
example, in the case of deletion illustrated in Figure 2, the
search region would be the fragment of the chromatogram
associated with the sequence CTTA.

Computing well-resolved peaks

The heart of the error correction module of AutoEditor is a
function that computes the number of well-resolved peaks
(captured by the variable wrp) in a search region of a
chromatogram. We begin with a precise de®nition of well-
resolved peaks and of the function that computes this number.

A peak in a given channel is de®ned as a fragment of the signal
in this channel that contains one local maximum plus its two
¯anking local minima. With each peak we associate three
values: (i) its amplitude, (ii) its `support' and (iii) the
minimum of the differences between its amplitude and its
local minima. The amplitude of the peak distinguishes a true
peak from noise in the chromatogram. Values (ii) and (iii)
determine if the signal is well resolved. The support is
intended to capture the width of the peak, but we do not
compute this as the distance between the ¯anking local
minima, because of the tendency of peaks to have long tails.
Instead, we measure support as the peak width at a certain
fraction f of the peak's amplitude (by default f = 0.25),
illustrated in Figure 3. Note that if the support of two
consecutive signal peaks is small, then they must be close to
each other. Therefore, support gives us information about the
spacing between the peaks.

The number of well-resolved peaks in a given channel
within a given search region of a chromatogram is determined
as follows. First we compute the median and MAD values of
the height and support of wSize peaks in the speci®ed channel
to the left and to the right of the search region, where wSize is a
constant (default 15) and MAD is the median absolute
deviation of the parameter in question. We take into account
only signal peaks for which the base caller assigned a base that
agrees with the consensus base. Next, we walk the peaks of the
search region, accepting a peak if the following three
conditions are satis®ed: (i) the height of the peak satis®es
maxVal > median(height) ± hMult 3 MAD(height), where
hMult is a constant (default 3); (ii) the support of the peak is
less than or equal to median(support) + sMult 3
MAD(support), where sMult is a constant (default 2); and
(iii) the minimum of the differences between the amplitude
and local minima of the peak, relMin, is greater than a constant
(default 50) and relMin/maxVal > mMult, where mMult is a
constant (default 0.2).

The number of well-resolved peaks is equal to the number
of accepted peaks within the search region.

The statistics of the amplitude and support of the signal are
computed only in the vicinity of the search region because of
the tendency for peaks to vary in intensity and resolution over
the range of the chromatogram (see Fig. 4) and the tendency
for the channels to vary in noise. Thus a peak considered at a
given position in a given channel may be acceptable, but that
same peak considered in a different position or different
channel or different chromatogram might not.

Deletion, insertion, and substitution errors

The search regions described above are computed using
information about the length of the repetitive regions in the
consensus sequence and individual reads. The consensus
multiplicity (cm) of a consensus sequence element c, or the
associated slice, is equal to 1 if c is not an element of a single
base repeat region and it is equal to len if c is a part of a single
base repeat region, where len is the length of this repeat
fragment. Note that we ignore gaps when looking for a single
base repeat region. For example, in Figure 1 the consensus
base C at position 13 (in the middle of the subsequence
ATCAA) has consensus multiplicity 1 and the C at position 23
(in the middle of ACCCA) has consensus multiplicity 3.

Figure 2. (A) Illustrates an unresolved peak error, where the three red T
peaks have been interpreted as two broader peaks. (B) Shows a signal shift
error, where the three red T peaks are clearly resolved, but are shifted left
so that the ®rst peak is hidden by the preceding blue C peak. The x- and y-
axes represent chromatogram positions and signal intensities, respectively.

564 Nucleic Acids Research, 2004, Vol. 32, No. 2

 at C
old Spring H

arbor L
aboratory-L

ibrary on M
arch 15, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

http://nar.oxfordjournals.org/

Read multiplicity is de®ned in essentially the same way as
consensus multiplicity, but it is done on the level of a read, not
the consensus sequence. More precisely, the read multiplicity
(rm) of an element c of a read is equal to 1 if c is not a part of a
single base repeat region within the read and len if c is a part of
a single base repeat region, where len is the length of this
repeat region. For example, in read [2] from Figure 1, the C in
consensus sequence position 17 (in the middle of ACCTT) has
read multiplicity 2, while the consensus sequence has a T at
that position (in the middle of ACTTT) and its consensus
multiplicity is 3. With these de®nitions, we can now describe
the structure of the deletion, insertion and substitution
modules of AutoEditor.

The deletion correction module of AutoEditor processes
every slice containing a deletion element, i.e. the correction
module processes every slice that contains a gap and whose
homogeneous majority part consists of non-gap elements.
(Note that the consensus base associated with such a slice is
not a gap.) The correction module tests if wrp[c] = cm, where
wrp[c] is the number of well-resolved peaks in the consensus
base channel within the search region and cm is the consensus
multiplicity of the slice. If this condition is satis®ed, the gap is
changed by setting it equal to the consensus base. If wrp[c] ¹
cm, wrp[c] ¹ 0 and cm > 1, AutoEditor searches other reads of
the selected slice and checks if the condition wrp[c] = cm is
satis®ed in at least two of them (where two is a user-speci®ed
parameter). The reason AutoEditor searches the other reads to

correct the deletion error is that the conditions wrp[c] ¹ cm,
wrp[c] ¹ 0 and cm > 1 indicate that we are dealing with an
unresolved peaks error. This in turn means that the
chromatogram does have a signal in the search region, but
the base caller likely made an error in reporting the correct
number of bases. Since we assume that the consensus
sequence is a reasonable estimate of the truth (the problems
of misassembly are addressed below), we use the other reads
in a slice to suggest how to correct base caller errors. For
example, in the case of the deletion element in the slice TTC*
at position 17 in the assembly fragment in Figure 1, the
deletion correction module checks if there are three well-
resolved `T' peaks in the chromatogram region corresponding
to the sequence CTTA in read [3]. If the number of well-
resolved peaks is three (as in the case of a signal shift error, as
depicted in Fig. 2), AutoEditor replaces CTTA with CTTTA.
If the number of well-resolved peaks is non-zero but different
from three (as it would be in the case of an unresolved peaks
error, as depicted in Fig. 2), AutoEditor analyzes the two other
reads to check if they contain three well-resolved `T' peaks in
the search region. If this is the case, AutoEditor again replaces
CTTA with CTTTA.

In the insertion correction module, AutoEditor checks slices
in which the minority of reads (usually just one) have a base
inserted with respect to the majority. It tests whether wrp[c] =
cm, where wrp[c] and cm are computed in the consensus base
channel on the read(s) containing the insertion base. If this

Figure 3. Signal parameters. Black dots on the signal curve correspond to local maxima and open circles correspond to local minima.

Nucleic Acids Research, 2004, Vol. 32, No. 2 565

 at C
old Spring H

arbor L
aboratory-L

ibrary on M
arch 15, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

http://nar.oxfordjournals.org/

condition is true, the insertion is considered to be valid and no
change is made. If wrp[c] ¹ cm, the inserted base is changed to
a gap. Searching other reads is done in the same fashion as in

the deletion module. If all insertions in a slice are corrected,
the slice is removed from the assembly, because the edited
slice will then consist entirely of gaps. For example, in the

Figure 4. Dependency of signal intensity (A) and signal support (B) on the position of the signal within a chromatogram. Each line corresponds to a different
channel with the color coding as follows: A, green; T, red; C, blue; G, orange.

566 Nucleic Acids Research, 2004, Vol. 32, No. 2

 at C
old Spring H

arbor L
aboratory-L

ibrary on M
arch 15, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

http://nar.oxfordjournals.org/

case of the insertion base in the slice ***C at position 22 in
Figure 1, the insertion correction module checks if there are
four well-resolved `C' peaks in the chromatogram region
corresponding to the sequence ACCCCA in read [3]. If four
well-resolved peaks are found, AutoEditor leaves the insertion
element intact. If three or fewer well-resolved peaks are
detected, AutoEditor takes this as an indication of an
unresolved peaks error and uses the other reads to determine
if the insertion is a base caller error.

In the substitution correction module, AutoEditor ®rst
checks if wrp[s] = rm, where wrp[s] is the number of well-
resolved peaks in the substitution base channel and rm is the
read multiplicity of the substitution base. If this condition is
true, AutoEditor considers the substitution to be valid and does
not make any corrections. Otherwise, AutoEditor checks if
wrp[c] = cm, where wrp[c] is the number of well-resolved
peaks in the consensus base channel. If this latter condition is
true, then AutoEditor edits the substitution base to make it
equal to the consensus base. If wrp[c] ¹ cm and wrp[c] ¹ 0,
AutoEditor uses other reads to con®rm that the substitution
element should be changed to the consensus base.

The use of other reads in the process of correcting base
caller errors is easy to justify for clonal, haploid genomes,
where the expected rate of polymorphism is close to zero.
Even in these projects, though, one may encounter situations
where the number of discrepant bases in a slice is nearly as
large as the majority, especially in the case of misassembly. In
this case the consensus base is less likely to represent the true
underlying DNA and, therefore, we wish to avoid using other
reads when the number of discrepant elements is too large. To
capture this intuition, AutoEditor will not use other reads to
correct unresolved peaks errors unless the number of
discrepant elements within the slice is below a certain
threshold (default 5) and the fraction of discrepant elements
compared to the number of elements in the homogeneous
majority part is less than a user-speci®ed threshold (default
0.34).

RESULTS

To demonstrate AutoEditor's performance, we ran it on 26
genome projects, all done at TIGR in the period 1999±2003.
These include 24 bacterial species and one eukaryote (the
malaria-causing parasite Plasmodium vivax). For each gen-
ome we conducted the following experiment. First, we
collected all the sequences generated by each WGS project
and assembled them using the Celera Assembler (11). The
assembler creates a set of contiguous DNA sequences
(contigs) and a multiple alignment showing how each
sequence maps to its contig. The average depth of coverage
for all of our test genomes was 8.5, meaning that each position
was covered on average by 8.5 individual sequences. We
scanned all columns of this multiple alignment and identi®ed
columns (or `slices') in which one or more of the sequences
disagreed with the consensus for that column.

For each column containing a discrepancy, AutoEditor
attempts to correct the discrepancy by changing it (if there is
evidence for it) to make it match the consensus base. These
discrepancies represent one of two possibilities: a base calling
error or a true polymorphism in the input data. AutoEditor
attempts to correct every discrepancy and those that go

uncorrected stand as potential polymorphisms. Table 1 shows
how many corrections AutoEditor makes for the 26 genomes
in our study.

The projects used in this study contain over 109 million
base pairs (Mb) of consensus sequences and the total length of
all sequences is 927 Mb. Just over 3.4 Mb were contained in
single coverage regions. Therefore, AutoEditor could not (by
design) detect a disagreement between reads in these regions.
About 4.4 Mb out of 927 Mb disagreed with the consensus
assembly (column 2 in Table 1). If all of these were
sequencing errors, the sequencing error rate would be
0.44%, which is less than half of the 1% error rate commonly
reported for large-scale sequencing centers.

As described in Materials and Methods, AutoEditor re-
analyzed the chromatogram (the underlying raw signal) for
each of the 4 367 697 inconsistent bases and was able to re-call
the base and correct the inconsistency for 3 470 821 bases,
79.5% of the total. Another way to count the corrections is to
look at contig positions: these are columns (slices) in the
multiple alignments that comprise all the contigs. Because
multiple disagreements may occur in one column, the number
of contig discrepancies, 3 854 419, is smaller than the number
of inconsistent bases. Of these positions, 3 198 082, or 83%,
were corrected by AutoEditor. This leaves 656 337 positions
with an inconsistency that AutoEditor could not correct, which
represent either true polymorphisms or additional base calling
errors. A search for polymorphisms would start with those
bases from this ®nal set that have the highest probability
(according to the original base caller) of being correctly
called.

The one outstanding question that needs an answer is: are
the `corrections' that AutoEditor makes truly correct? In order
to answer this question, we need a standard of truth for
genome sequences that has a very small error rate.
Fortunately, such a standard is available, in the form of
completely sequenced bacterial genomes. For all the genomes
that TIGR ®nishes, every position of the genome is guaranteed
to have at least two-fold coverage and every repeat region is
carefully `walked' to ensure the correctness of each repeat
copy. Any positions with low coverage or low quality base
calls are checked manually. The ®nal genome cannot be
guaranteed to be error free, but recent reports indicate that
these genomes have no more than 1 error per 100 000 bases
(7,8). Because AutoEditor made corrections in about 3% of all
positions, the error rate of ®nished genomes is so much lower
that these can be used as a reliable standard of truth.

For each genome in Table 1 that has been completely
®nished, we compared the AutoEditor corrections to the ®nal
sequence and counted any disagreements as potential mistakes
by AutoEditor. Because the number of disagreements was so
small, we checked many of them by hand. Most occurred in
regions of misassembly, where the assembler constructed a
non-optimal multiple alignment. The rest are borderline-type
errors, when the three parameters of a signal (height, depth of
local minima and support) are near their threshold levels. In
Table 2 we show the results of this comparison.

As long as AutoEditor makes fewer than 50% errors, the
total number of errors in a collection of sequences will be
reduced. Fortunately, as shown in Table 2, the error rate of
AutoEditor is far smaller than this, only 149 errors from over
1.3 million corrections or, equivalently, 1 error per 8828

Nucleic Acids Research, 2004, Vol. 32, No. 2 567

 at C
old Spring H

arbor L
aboratory-L

ibrary on M
arch 15, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

http://nar.oxfordjournals.org/

corrections. Thus it accomplishes a dramatic reduction in
the total number of base calling errors for all of the genomes
studied here. As we can see from Table 2, AutoEditor
makes on average fewer than 4.3 errors per 10 Mb of sequence
reads.

AutoEditor recomputes the consensus sequence of the input
assembly. Therefore, contigs processed with AutoEditor will
in some cases have their consensus sequences changed. We
ran the following experiment to estimate how many of these

changes are due to the AutoEditor error correction algorithm.
We compared the consensus sequences re-called by
AutoEditor before and after error correction using the 5 Mb
genome of Pseudomonas syringae. We ®rst recomputed the
consensus using AutoEditor's consensus base caller. Then we
ran the error correction modules and recomputed the consen-
sus again. In total, 173 consensus positions changed, all of the
form áambiguity codeñ ® ánon-ambiguous base or gapñ.

Genome ®nishing

As described in the Introduction, a time consuming and costly
part of genome ®nishing is the process of editing sequences to
improve the overall assembly quality. Large-scale sequencing
centers employ specialists known as `®nishers' or `closure
teams' who examine, by hand, many of the assembly positions
where one or more sequences disagree. Because ®nishers do
not necessarily examine every discrepancy, we also calcu-
lated, for the same set of genomes shown in Table 1, how
many positions would require manual ®nishing using our own
center's standards. Not every position would require manual
editing; for example, if a consensus sequence is supported by
eight high quality A residues with just one low quality G,
the ®nishers need not review it. Of the 3.85 million positions
in Table 1 containing at least one sequence discrepancy,
1 174 392 positions would require manual review by our
standards. Of these, 85% were automatically corrected by
AutoEditor. This illustrates how AutoEditor can not only
improve the overall quality of sequences, but can also

Table 1. AutoEditor results on a collection of recent genome sequencing projects

Organism Discrepancies Corrected % Contig
discrepancies

Corrected %

Acidobacterium capsulatum 103 539 93 729 90.5 99 555 89 977 90.4
Neorickettsia sennetsu Miyayama 41 408 37 425 90.4 38 355 34 579 90.2
Bacillus anthracis Kruger B 317 745 284 503 89.5 296 222 264 646 89.3
Coxiella burnetii 131 183 117 232 89.4 118 723 105 562 88.9
Dichelobacter nodosus 83 804 73 547 87.8 76 766 67 900 88.5
Clostridium perfringens 71 928 62 822 87.3 66 546 59 929 90.1
Mycoplasma capricolum 17 805 15 444 86.7 16 574 14 584 88.0
Brucella suis 129 870 112 359 86.5 120 799 105 250 87.1
Plasmodium vivax 783 495 655 642 83.7 734 298 618 268 84.2
Pseudomonas ¯uorescens 234 264 194 771 83.1 224 049 186 276 83.1
Campylobacter jejuni 96 231 79 237 82.3 88 800 73 940 83.3
Fibrobacter succinogenes 243 270 196 150 80.6 208 790 175 294 84.0
Erwinia chrysanthemi 219 370 176 354 80.4 205 161 165 070 80.5
Mycobacterium smegmatis 433 105 346 503 80.0 363 017 309 774 85.3
Prevotella intermedia 118 857 94 162 79.2 110 750 87 931 79.4
Pseudomonas syringae 227 887 177 897 78.1 200 223 164 561 82.2
Silicibacter pomeroyi 156 130 116 907 74.9 148 006 112 093 75.7
Chlamydophila caviae 50 137 36 972 73.7 47 875 35 103 73.3
Wolbachia sp. 70 782 51 163 72.3 57 357 45 401 79.2
Burkholderia mallei 139 359 99 711 71.6 130 158 94 540 72.6
Streptococcus agalactiae 152 330 105 878 69.5 109 821 92 153 83.9
Streptococcus pneumoniae 53 566 36 557 68.3 43 093 33 432 77.6
Myxococcus xanthus 33 525 21 789 65.0 33 254 21 699 65.3
Dehalococcoides ethenogenes 71 587 46 416 64.8 61 878 42 649 68.9
Listeria monocytogenes 229 172 145 274 63.4 148 177 123 268 83.2
Streptococcus mitis 157 348 92 377 58.7 106 172 74 203 69.9
Total 4 367 697 3 470 821 79.5 3 854 419 3 198 082 83.0

The number of discrepancies is the total number of bases in individual sequences that disagree with the consensus. The number of contig discrepancies is the
number of positions in all contigs in which at least one sequence disagrees with the consensus. This number is smaller because there are many cases where
multiple sequences disagree at a single position. The Wolbachia sp. is an endosymbiont of Drosophila melanogaster.

Table 2. Comparison of AutoEditor corrections on 14 genomes to the
®nished sequence of those genomes

Organism Read length Corrections AE errors

Listeria monocytogenes 37 420 828 145 274 4
Wolbachia sp. 11 446 011 51 163 0
Burkholderia mallei 47 407 080 99 711 28
Brucella suis 26 629 877 112 359 2
Streptococcus agalactiae 23 485 615 105 878 3
Coxiella burnetii 29 135 115 117 232 30
Campylobacter jejuni 15 013 845 792 37 11
Chlamydophila caviae 10 286 694 36 972 6
Dehalococcoides ethenogenes 10 724 521 46 416 12
Neorickettsia sennetsu Miyayama 8 805 232 37 425 0
Fibrobacter succinogenes 46 463 268 196 150 4
Mycoplasma capricolum 9 353 819 15 444 0
Prevotella intermedia 20 084 365 94 162 3
Pseudomonas syringae 50 369 232 177 897 46
Total 346 625 502 1 315 320 149

568 Nucleic Acids Research, 2004, Vol. 32, No. 2

 at C
old Spring H

arbor L
aboratory-L

ibrary on M
arch 15, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

http://nar.oxfordjournals.org/

signi®cantly lower costs and speed efforts towards ®nishing
genomes.

DISCUSSION

AutoEditor is a second generation base caller that improves
on the abilities of existing base callers such as Phred (1,2)
and TraceTuner (http://www.paracel.com/products/tracetuner.
php). The key to the success of AutoEditor is the use of a
genome assembly, and the redundant sequences at most
positions, to drive the correction algorithm. By using the
multiple sequences covering each position to check one
another, the algorithm not only identi®es possible sequencing
errors, but also knows what the `truth' is likely to be, giving it
a signi®cant advantage over a traditional base caller.

AutoEditor not only improves the quality of the contigs
within the assembly, it can also improve the assembly itself:
typically, an assembly will contain many instances of contigs
that overlap very slightly, but not enough for an assembler to
detect. There are at least two reasons why this happens: ®rst,
the contigs may overlap, but the overlapping portions contain
base calling errors. These errors reduce the percent identity in
the overlap suf®ciently that the assembler does not merge the
contigs. Second, the contigs may overlap by only a few bases,
too little for the assembler to put together. By correcting base
calling errors, AutoEditor sometimes ®xes the ®rst problem
and allows an assembler to make larger contigs. We are
addressing the second problem by using AutoEditor to extend
the `good' portion of the sequencing read, which will create
longer overlapping regions and improve assemblies further.

One of the most active areas of research today, in species
ranging from bacteria to mammals, is the discovery and
understanding of polymorphisms between closely related
organisms. Polymorphisms range from large-scale rearrange-
ments and large DNA insertions and deletions to SNPs [see for
example (10)]. As interest in SNP discovery has grown, more
scientists have looked at the details underlying the consensus
sequences in the public archives; in particular, the scienti®c
community needs to know the accuracy of every base in a
genome in order to determine whether or not a SNP is genuine.
For large genomes even a very small sequencing error rate will
produce a huge number of false SNPs, swamping any attempt
to study SNPs in those sequences. Even for small genomes, the
sequencing error rate can overwhelm the true SNP rate if the
two organisms are highly similar. AutoEditor promises to
dramatically improve our ability to discover true SNPs,
because it corrects over 80% of the incorrect base calls in an
assembly.

We have already used AutoEditor for SNP discovery, most
notably in our work on the anthrax bacterium, Bacillus
anthracis. In the winter of 2001±2002, we sequenced two
near-identical strains of anthrax in an effort to ®nd any
sequence differences that could be used as forensic markers
(8). The reference genome was the Ames strain, originally
isolated in 1981 in Texas. The second genome was an isolate

taken from a patient, the ®rst victim to die from the 2001
anthrax attacks. Our study discovered four single nucleotide
differences between the two chromosomes, which are 5.3 Mb
in length. As we pointed out in that study, a sequencing error
rate of even 10±4 in each genome would produce more than
1000 false SNPs when the two genomes were aligned. To
solve this problem, we used the deep coverage in the
assemblies to reduce this error rate to essentially zero. The
success of this strategy led to the development of AutoEditor,
which is now routinely used in our SNP discovery process for
bacterial genomes.

Code availability

AutoEditor is an open source system. The complete source
code and documentation is freely available at http://www.
tigr.org/software/autoeditor.

ACKNOWLEDGEMENTS

The authors want to thank Martin Shumway and Jessica
Vamathevan for their help and support in the process of
development of AutoEditor. This work was supported in part
by the NIH under NIAID contract N01-AI-15447 and NLM
grant R01-LM06845.

REFERENCES

1. Ewing,B., Hillier,L., Wendl,M.C. and Green,P. (1998) Base-calling of
automated sequencer traces using phred. I. Accuracy assessment.
Genome Res., 8, 175±185.

2. Ewing,B. and Green,P. (1998) Base-calling of automated sequencer
traces using phred. II. Error probabilities. Genome Res., 8, 186±194.

3. Tammi,M.T., Arner,E., Kindlund,E. and Andersson,B. (2003) Correcting
errors in shotgun sequences. Nucleic Acids Res., 31, 4663±4672.

4. Kececioglu,J. and Yu,J. (2001) Separating repeats in DNA sequence
assembly. Proceedings of the Fifth Annual International Conference on
Computational Biology (RECOMB), Montreal, Canada, pp. 176±183.

5. Pevzner,P.A., Tang,H. and Waterman,M.S. (2001) An Eulerian path
approach to DNA fragment assembly. Proc. Natl Acad. Sci. USA, 98,
9748±9753.

6. Batzoglou,S., Jaffe,D.B., Stanley,K., Butler,J., Gnerre,S., Mauceli,E.,
Berger,B., Mesirov,J.P. and Lander,E.S. (2002) ARACHNE: a whole-
genome shotgun assembler. Genome Res., 12, 177±189.

7. Fleischmann,R.D. (2001) Single nucleotide polymorphisms in
Mycobacterium tuberculosis structural genesÐresponse to Dr. Musser.
Emerg. Infect. Dis., 7, 487±488.

8. Read,T.D., Salzberg,S.L., Pop,M., Shumway,M., Umayam,L., Jiang,L.,
Holtzapple,E., Busch,J.D., Smith,K.L., Schupp,J.M. et al. (2002)
Comparative genome sequencing for discovery of novel polymorphisms
in Bacillus anthracis. Science, 296, 2028±2033.

9. Patil,N., Berno,A.J., Hinds,D.A., Barrett,W.A., Doshi,J.M., Hacker,C.R.,
Kautzer,C.R., Lee,D.H., Marjoribanks,C., McDonough,D.P. et al. (2001)
Blocks of limited haplotype diversity revealed by high-resolution
scanning of human chromosome 21. Science, 294, 1719±1723.

10. Kruglyak,L. and Nickerson,D.A. (2001) Variation is the spice of life.
Nature Genet., 27, 234±236.

11. Myers,E.W., Sutton,G.G., Delcher,A.L., Dew,I.M., Fasulo,D.P.,
Flanigan,M.J., Kravitz,S.A., Mobarry,C.M., Reinert,K.H.,
Remington,K.A. et al. (2000) A whole-genome assembly of Drosophila.
Science, 287, 2196±2204.

Nucleic Acids Research, 2004, Vol. 32, No. 2 569

 at C
old Spring H

arbor L
aboratory-L

ibrary on M
arch 15, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

http://nar.oxfordjournals.org/

