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ABSTRACT

As a powerful tool to reveal gene functions, gene
mutation has been used extensively in molecular
biology studies. With high throughput technologies,
such as DNA microarray, genome-wide gene
expression changes can be monitored in mutants.
Here we present a simple approach to detect the
transcription-factor-binding motif using microarray
expression data from a mutant in which the relevant
transcription factor is deleted. A core part of our
approach is clustering of differentially expressed
genes based on functional annotations, such as
Gene Ontology (GO). We tested our method with
eight microarray data sets from the Rosetta
Compendium and were able to detect canonical
binding motifs for at least four transcription factors.
With the support of chromatin IP chip data, we also
predict a possible variant of the Swi4 binding motif
and recover a core motif for Arg80. Our approach
should be readily applicable to microarray experi-
ments using other types of molecular biology
techniques, such as conditional knockout/overex-
pression or RNAi-mediated `knockdown', to perturb
the expression of a transcription factor. Functional
clustering included in our approach may also pro-
vide new insights into the function of the relevant
transcription factor.

INTRODUCTION

After the completion of human genome sequencing, the next
great challenge is to understand the functions of all human
genes. Elucidating the regulation of genes and eventually
deciphering the entire genetic network will reveal the
functions of genes during development processes and
responses to environmental stimuli. This provides a deeper
insight into the mechanisms of diseases and the identi®cation
of therapeutic targets. However, even in a relatively `simple'
organism, such as yeast, understanding the gene regulation
network is still a formidable task.

The ®rst step towards the goal of understanding gene
regulation is to identify the regulator±target relations.
Generations of biologists have made tremendous efforts to
delineate such relations experimentally. Databases, such as

TRANSFAC (1) and SCPD (2), have been established to
collect information from the literature about transcription
factors (TFs), their target genes and binding sites. However,
experimental identi®cation of TF binding sites is slow and
laborious. Computational methods have become increasingly
important, especially after the emergence of high throughput
technologies, such as DNA microarrays. In addition, large-
scale projects such as the Saccharomyces Genome Deletions
Consortium (3), Compendium of expression pro®les (4) and
Gene Ontology Consortium (5), also provide computational
biologists with new opportunities to cross-check and integrate
information from different sources to infer TF±target relations
and determine the binding motifs of TFs.

A popular method to analyze microarray data at present is to
cluster genes based on the similarity of their expression
pro®les (6,7). It has also been used to identify cis-regulatory
elements (8,9). The rationale is that co-expressed genes are
likely to be co-regulated and, therefore, may share common
regulatory elements. A further development is to incorporate
TF binding information and identify combinatorial regulation
of TFs (Kato et al., submitted for publication). Bussemaker
et al. (10) took an alternative strategy to identify motifs
correlated with gene expression by ®tting a linear regression
model. These methods successfully discovered some motifs
corresponding to known binding sites and predicted some new
motifs, but they did not directly reveal which TFs might bind
to those sequence elements. More recently, Birnbaum et al.
(11) and Zhu et al. (12) searched for TF/cis-element relation-
ships by correlating the expression pro®le of a TF to
composite or simple pro®les of putative target genes.
Methods described above achieve various degrees of success,
however, each of them is limited in their effectiveness in some
aspects. For example, a gene may be regulated by several TFs
cooperatively or by different TFs under different conditions.
Therefore, mRNA levels of genes regulated by the same TF
may not be well correlated with each other or with the mRNA
level of the regulating TF across all experimental conditions.
In addition, a TF may require cofactors or be regulated post-
translationally, thus the transcriptional activity of that TF,
which is determined by the concentration of related functional
proteins, is not always correlated with its mRNA level.

Mutants have been used to study gene function extensively
in the history of genetics. Since the invention of DNA
microarrays, this technology has been widely applied to large-
scale experiments in which a TF is deleted or overexpressed
via genetic manipulation, in order to identify the global target
genes of the TF (see for example 13,14). However, a big
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challenge to this type of method is the dif®culty in
distinguishing between direct and indirect effects of the
genetic manipulation. When a TF is deleted or overexpressed,
some of its affected target genes may be TFs as well, which in
turn up-regulate or down-regulate target genes not directly
regulated by the original TF. In this paper, we present a simple
method to make use of TF mutant microarray data to discover
the binding motif of the manipulated TF. To deal with the
indirect effects mentioned previously, we use a functional
clustering technique based on GO annotation of yeast genes
(15). The rationale of our approach is that genes involved in
the same process or pathway are more likely to be co-regulated
(16). Functional clustering may not separate direct and
indirect target genes completely, but if direct target genes of
the TF are concentrated in one of the clusters and the motif
sequence signal is suf®ciently strong, our motif search
algorithm will likely detect the binding motif of the TF. In
fact, many known cis-regulatory elements are recovered by
applying promoter motif search tools to functional groups of
genes (17,18), such as MIPS gene categories. Although a
similar GO-based method has been proposed by Pavlidis et al.
(19), the effectiveness of this type of clustering for TF binding
motif detection has not been assessed. A more recent
publication of large-scale chromatin immunoprecipitation
(ChIP) chip experiments (20) provides genome-wide in vivo
TF binding information, which is very valuable for TF motif
searches. We do not include those data in our primary analysis
(see Discussion), but use them to validate the clusters and
motifs we obtained. We tested our method with eight
microarray datasets from the Rosetta Compendium (4), in
which a TF with a known binding motif is deleted in each
experiment. We were able to detect the canonical binding
motif of the deleted TF in ®ve experiments (four with high
con®dence), suggesting that our method may be able to predict
candidate motifs for TFs whose binding sites are unknown and
provide a guide for future experimental design. We believe
that the method presented here is not limited to TF gene
deletion, but should be applicable to other types of manipu-
lations of TFs, such as overexpression or RNAi. We name our
algorithm BEAUTI, for binding element analysis using TF
intervention (available at http://rulai.cshl.edu/tools/beauti/).

MATERIALS AND METHODS

Data source

We use yeast microarray expression data from the Rosetta
Compendium (4). Among the 276 deletion mutants examined

by Rosetta, 40 deleted genes are identi®ed as TFs or cofactors
in the MIPS gene functional category `transcriptional control'
(http://mips.gsf.de/proj/yeast/catalogues/funcat/). Among those
40 genes, eight DNA-binding TFs are documented in SCPD
(2). The consensus sequences of the binding sites are also
veri®ed in TRANSFAC (1) or the literature (Table 1). The
deletion mutant expression pro®les of those eight genes were
selected to test our method for detecting the binding motif of
each of the factors. In an attempt to predict novel binding
motifs, we also applied our method to a few other TF deletion
experiments in the Rosetta Compendium in which the binding
sites of the relevant TFs are not well de®ned. TF binding
(ChIP chip) data from Lee et al. (20) and Iyer et al. (21) were
used to verify the motifs found with our method.

Signi®cant gene and background gene selection

The Rosetta dataset provides the log10 ratio (mutant versus
wild-type or control) of the expression level for each gene on
the arrays. A P-value calculated based on their error model is
also available to indicate the likelihood of differential
expression between the mutant and the control (4,
Supplementary Material). We say that a gene is signi®cant if
its expression is up-regulated or down-regulated at least 1.5-
fold in the mutant with a P-value <0.05. For the purpose of
motif search, we also need speci®c background genes. For
each TF, we select all the genes on the array with a P-value
>0.5 and sort them by the log10 ratio of expression, the 2000
genes with the least absolute log10 ratio being selected as
background genes.

Functional clustering based on GO annotation

We downloaded Biological Process Gene Ontology (5) from
the GO Consortium website (http://www.geneontology.org/).
The annotation of all yeast genes in GO terms in the
Saccharomyces Genome Database (SGD) (15) is also avail-
able on the GO Consortium website. In GO relationships, one
node may have more than one parent. Therefore, strictly
speaking, the relationships between GO terms (nodes) form a
directed acyclic graph (DAG). In addition, one gene may be
assigned to more than one node because it may be involved in
multiple processes/pathways.

Conceptually, we regard every node in the GO DAG as a
potential cluster that contains all the signi®cant genes assigned
to this node and all its descendent (direct and indirect children)
nodes. With a limited number of signi®cant genes, the vast
majority of these clusters are typically empty and we discard
all the clusters containing less than ®ve genes because a

Table 1. Known binding consensus sequences of the TFs under study

TF SCPD TRANSFAC Other

Gcn4 TGANTN RTGACTCATNS or ARTGACTCW
Gln3 3 sites in record, consensus not constructed TTNCTGATAAGG (34)
Mac1 GAGCAAA
Mbp1 WCGCGW ACGCGT (8)
Ste12 TGAAACA ATGAAAC
Swi4 CNCGAAA CACGAAA or CGCGAAA (8)
Swi5 KGCTGR RRCCAGCR (8)
Yap1 TTANTAA (as AP-1) TGASTCAG or TGASTMA (AP-1 of multiple species pooled) TTACTAA (25)
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suf®cient number of genes are usually required for a
successful motif search. The key to identify meaningful
clusters is to assess their statistical signi®cance. We use a
hypergeometric distribution to calculate the P-value for each
candidate cluster,

pc � P�x � sc� �
Xnc
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x
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� �
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where N is the total number of genes on the array, S is the
number of signi®cant genes obtained in our previous step, nc is
the number of genes on the array that is assigned to the current
GO node c and all its descendents and sc is the cluster size, i.e.
the number of signi®cant genes in or under node c. Only
clusters with a P-value <5E±6 are selected for further motif
search. Very often clusters formed on a parent and a child node
are identical. Because one gene can be assigned to different
nodes, we occasionally obtained identical clusters from two
`unrelated' nodes. Whenever this happens, we collapse the
identical clusters and obtain a ®nal set of unique clusters.

To enhance the sensitivity to detect the binding site of
different types of transcription factors (activator, repressor or
those with both activator and repressor functions), we
performed functional clustering on three sets of genes for
each array: all signi®cant genes, only up-regulated genes in the
signi®cant gene set (positive log10 ratio) and only down-
regulated genes in the signi®cant gene set (negative log10

ratio).

Motif search

An in-house word-counting based program (Hata et al.,
submitted for publication) is used for motif searches. This
program takes a set of foreground sequences and a set of
background sequences and identi®es the over-represented
words in the foreground against the background. In this study,
the promoter region is de®ned as the 700 bp sequence
upstream of the translation start site (ATG) of a gene in the
yeast genomic sequence. Previous studies showed that most
transcription start sites in yeast are located close to the coding
regions and the majority of mapped TF binding sites are
located within 700 bp upstream of ATG (2). The sequences are
cut from 1000 bp UTR5 sequences downloaded from the SGD.
The promoters of the genes in each cluster are taken as the
foreground and the promoters of the least differentially
expressed 2000 genes are taken as the background. We
selected a word length of seven for the motif search. With this
word length and a relatively small foreground sequence set,
the expected occurrence frequency of a word is normally
smaller than ®ve and very often smaller than one. Therefore,
we used the Fisher's exact test instead of the c2 approximation
to estimate the P-value of each word. A 7mer with a P-value
<1E±4 is empirically determined as signi®cant and for each
cluster, we rank the signi®cant words by their P-value and
pick the top two to pool into the ®nal result as the candidate
binding motifs for the deleted transcription factor. In addition,
we require that a signi®cant motif must be present in >50% of
the promoters in the foreground set, to avoid very skewed
distributions.

Random control

Two sets of random control experiments are conducted to
verify the robustness of our algorithm and parameter selection.
The ®rst control experiment is designed to test the procedure
from signi®cant gene selection up to functional clustering, in
which we shuf¯e the gene IDs in an array so that the gene
expression values are dissociated from the functional anno-
tations. We repeat the procedure on the shuf¯ed data 500 times
for eight TFs in our test set. The second control experiment is
to test our motif search algorithm. In this experiment, we
randomly select 5±50 foreground genes and 2000 background
genes from all the genes on the array, then extract the
promoter sequences and perform a motif search and ®ltering.
This test procedure is repeated 2000 times in total. Such
repetition times for the control tests are chosen as a
compromise between the resolution of P-value estimation
and computation time.

Motif search without functional clustering

For comparison, the motif search algorithm is applied (as
previously described) to three sets of genes for each array: all
signi®cant genes, only up-regulated genes in the signi®cant
gene set (positive log10 ratio) and only down-regulated genes
in the signi®cant gene set (negative log10 ratio). The signi®-
cant genes are not subdivided into clusters or, in other words,
there is only one cluster for each case. We will refer to this test
as NOGO in the following text.

RESULTS

Veri®cation using TFs with a known binding motif

The eight yeast transcription factors used to test our method
are: Gcn4, Gln3, Mac1, Mbp1, Ste12, Swi4, Swi5 and Yap1.
Their binding motifs (consensus sequences) are shown in
Table 1. The clustering and motif search results are
summarized in Table 2. More detailed results, including GO
terms associated with the clusters and ChIP veri®cations, are
available in Supplementary Material Table S1. In most cases,
we obtain ~100 signi®cant genes that meet our criteria (fold
change > 1.5, P-value < 0.05). The mbp1 and swi4 arrays are
notable exceptions (Table 2). With the mbp1 array, we ®nd 11
signi®cant genes. At the other extreme, we obtain 854
signi®cant genes with the swi4 array. The proportion of up-
regulated or down-regulated genes varies from array to array.
For example, nearly all the signi®cant genes on the gcn4 array
are down-regulated, while almost all the signi®cant genes on
the mbp1 array are up-regulated. Among the signi®cant genes
from most of the arrays, a portion (up to nearly 50%) are
annotated as `biological_process unknown' (GO id:
GO:0000004). We did not explicitly exclude those genes in
our analysis, however, node GO:0000004 never reached our
threshold for signi®cant clusters. Therefore, these genes never
entered our motif search step. For the background genes
selected, their expression ratios were typically within 10%
deviation from one.

With our criteria for signi®cant clusters, we obtained no
more than 19 clusters for each set of signi®cant genes. When
the number of signi®cant genes was relatively small, we
sometimes obtained no signi®cant clusters for that set, e.g. the
positive gene set of the ste12 array and the negative gene set of
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Table 2. Summary of signi®cant motifs found with each set of deletion mutant microarray data

Experiment Motif Best rank Occurrence

gcn4 AAAAAAT, ATTTTTT 2 all(1), neg(1)
signi®cant genes: 108 (4+/104±) AAATTCC, GGAATTT 2 all(1), neg(1)
biological_process unknown: 26 (0+/26±) AAGCCAC, GTGGCTT 2 all(1), neg(1)
signi®cant clusters: all(17), neg(16) AATTCCG, CGGAATT 1 all(1), neg(1)
signi®cant motifs: 10 ATATATA, TATATAT 1 all(1), neg(1)

ATGACTC, GAGTCAT 1 all(3), neg(3)
CACGTGA, TCACGTG 1 all(4), neg(4)
GAGTCAC, GTGACTC 1 all(1), neg(1)
GGAGTCA, TGACTCC 2 all(1), neg(1)
TGACTCA, TGAGTCA 1 all(12), neg(11)

gln3 AAATTCC, GGAATTT 2 all(2), pos(2)
signi®cant genes: 118 (83+/35±) AATTCCG, CGGAATT 1 all(2), pos(3)
biological_process unknown: 29 (21+/8±) ACAGCGG, CCGCTGT 2 all(1), pos(1)
signi®cant clusters: all(13), pos(11), neg(3) ACTGTGG, CCACAGT 1 all(1), neg(1)
signi®cant motifs: 10 AGAAATA, TATTTCT 2 all(1)

ATATATA, TATATAT 1 all(2), neg(2)
ATGACTC, GAGTCATa 1 all(4), pos(4)
CACGTGA, TCACGTG 1 all(1), neg(3)
CTATGTC, GACATAG 1 pos(1)
TGACTCA, TGAGTCAa 1 all(5), pos(6)

mac1 ATAAGGG, CCCTTAT 1 all(1), neg(1)
signi®cant genes: 89 (46+/43±) ATGACTC, GAGTCATa 1 all(2), neg(3)
biological_process unknown: 24 (17+/7±) CAGGTGC, GCACCTG 2 pos(1)
signi®cant clusters: all(11), pos(7), neg(5) GAGCAAA, TTTGCTC 2 all(1), pos(1)
signi®cant motifs: 8 GCAAAAA, TTTTTGC 2 all(1)

GGGTGCA, TGCACCC 1 all(7), pos(7)
GGTGCAA, TTGCACC 2 all(1), pos(1)
TGACTCA, TGAGTCAa 1 all(2), neg(2)

mbp1 AACGCGT, ACGCGTT 1 all(2), pos(2)
signi®cant genes: 11 (10+/1±) ACGCGTA, TACGCGT 2 all(1), pos(1)
biological_process unknown: 1 (1+/0±) ACGCGTC, GACGCGT 2 all(1), pos(1)
signi®cant clusters: all(2), pos(2)
signi®cant motifs: 3

ste12 ATGAAAC, GTTTCAT 2 all(3), neg(3)
signi®cant genes: 79 (26+/53±) TGAAACA, TGTTTCA 1 all(3), neg(3)
biological_process unknown: 38 (13+/25±)
signi®cant clusters: all(3), neg(4)
signi®cant motifs: 2

swi4 AAATAGC, GCTATTT 1 neg(1)
signi®cant genes: 854 (573+/281±) AAATTCC, GGAATTT 1 all(2), pos(2)
biological_process unknown: 341 (261+/80±) AAGCGAA, TTCGCTT 2 neg(1)
signi®cant clusters: all(15), pos(19), neg(5) AATTCCG, CGGAATT 2 all(1), pos(1)
signi®cant motifs: 11 ACCGGCT, AGCCGGT 2 all(1)

ATATATA, TATATAT 1 all(2), pos(3)
ATGACTC, GAGTCATa 2 all(1), pos(6)
ATGCGAA, TTCGCAT 2 neg(1)
CACGTGA, TCACGTG 1 all(1), pos(3)
TATATAA, TTATATA 1 neg(1)
TGACTCA, TGAGTCAa 1 all(9), pos(12)

swi5 AAGCCAC, GTGGCTT 2 all(2), pos(2)
signi®cant genes: 103 (81+/22±) ATGACTC, GAGTCATa 1 all(2), pos(2)
biological_process unknown: 45 (36+/9±) CACGTGA, TCACGTG 1 all(4), pos(4)
signi®cant clusters: all(7), pos(7) TGACTCA, TGAGTCAa 1 all(3), pos(3)
signi®cant motifs: 4

yap1 AAGCCAC, GTGGCTT 2 all(2), pos(2)
signi®cant genes: 98 (72+/26±) AATGACT, AGTCATTa 2 all(1), pos(1)
biological_process unknown: 30 (20+/10±) ATGACTC, GAGTCATa 1 all(1), pos(2)
signi®cant clusters: all(10), pos(9), neg(3) CACGTGA, TCACGTG 1 all(4), pos(4)
signi®cant motifs: 8 CAGGGTC, GACCCTG 1 all(2), pos(2)

GTGAATA, TATTCAC 1 all(1)
TGACTCA, TGAGTCAa 1 all(2), pos(3)
TTACTAA, TTAGTAA 1 neg(1)

In column one, the experiment name represents the TF being deleted in the mutant. +, up-regulated genes; ±, down-regulated genes. In the ®rst column, all(n)
means that n signi®cant clusters are obtained when we perform functional clustering using all signi®cant genes from that array. Similarly, pos(n) and neg(n)
mean that n signi®cant clusters are obtained when we use only up-regulated genes or only down-regulated genes, respectively. In column two, motifs are
presented as pairs of reverse complement sequences. Motifs in bold are those matching the known consensus. Motifs in italic are those similar to the known
consensus. Column three shows the best rank of the motif found in the clusters. Column four shows the number of clusters in which the motif was detected.
The meanings of `all', `pos' and `neg' are the same as those in column one.
aMotifs matching the consensus Gcn4 binding site in experiments other than gcn4 deletion (see also Discussion).
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the swi5 array (Table 2). Although the ®nal clusters are
distinct, in the sense that they differ by at least one gene, they
often overlap with each other. Some clusters are completely
contained within another one. Since each cluster may repre-
sent a different functional group, we performed a motif search
with each of them. As expected, many clusters generate
identical or similar signi®cant motifs.

An interesting observation is that even when we pooled up-
regulated and down-regulated genes in the functional cluster-
ing, the resulting clusters tended to be homogeneous. In other
words, all or the majority of the genes in a cluster tended to
change their expression in the same direction, suggesting a
correlation between gene function and expression regulation.
This notion has already been demonstrated with other
clustering methods [see for example ®gure 2 of Ashburner
et al. (5)]. An example with a mac1 array experiment is shown
in Figure 1.

Among the eight TFs in the test set, our method reported
between two and eleven candidate motifs for each (Table 2).
Overall, in ®ve of the eight test cases, at least one signi®cant 7 nt
word (motif) found with our method matched the known
consensus binding sequence of the deleted TF in Table 1. These
were Gcn4, Mac1, Mbp1, Ste12 and Yap1 (Table 2, bold
motifs). Some of the matching motifs rank the best in several
clusters. There are cases where several closely related words all
match the consensus. In addition, in most cases where a
canonical motif was found in a cluster, the promoters of the
majority of genes in this cluster bound the corresponding
transcriptional regulator based on data from Lee et al. (20)

(Supplementary Material Table S1). The only exception is
Mac1. Although three of the ®ve genes in the cluster `iron
transport' (GO:0006826) contain at least one copy of
GAGCAAA in their promoters, only FRE1 is shown to bind
Mac1. Therefore, this hit may be questionable (see Discussion).

On the other hand, although the canonical Swi4 motif
CRCGAAA is not found in any cluster of the Swi4 deletion

Figure 1. Relation and polarity of clusters obtained from mac1 array experi-
ment when all the signi®cant genes are used. Cn, cluster label; >, the cluster
on the left completely contains the cluster on the right; ++, all the genes in
the cluster are up-regulated; +, at least 80% of the genes in the cluster are
up-regulated; ± ±, all the genes in the cluster are down-regulated; ±, at least
80% of the genes in the cluster are down-regulated.

Table 3. Four pairs of histone genes in `chromatin assembly/disassembly' (GO:0006333) cluster from an swi4 experiment

Systematic
name

Gene
name

Expression Lee et al.
Swi4 ChIP P-value

Iyer et al.
Swi4 target

Lee et al.
Mbp1 ChIP P-value

Iyer et al.
Mbp1 target

Position relative to ATG

log ratio P-value ATGCGAA TTCGCAT

YBL002W HTB2 ±0.402 8.72E±05 1.1E±03a 3.9E±03a Yes ±397
YBL003C HTA2 ±0.39 4.47E±05 ±309

YBR009C HHF1 ±0.403 9.76E±05 2.3E±02a 9.3E±02 ±375 ±299
YBR010W HHT1 ±0.198 1.00E±02 ±354 ±278

YDR224C HTB1 ±0.25 2.73E±03 5.6E±06b 6.0E±02
YDR225W HTA1 ±0.444 1.67E±05

YNL030W HHF2 ±0.387 1.17E±04 4.5E±01 Yes 1.0E+00 Yes ±383 ±316
YNL031C HHT2 ±0.185 1.83E±03 ±367 ±300

aP < 0.05.
bP < 0.001.

Table 4. Seven genes in `regulation of CDK activity' (GO:0000079) cluster from an swi4 experiment

Systematic
name

Gene
name

Expression Lee et al.
Swi4 ChIP P-value

Iyer et al.
Swi4 target

Lee et al.
Mbp1 ChIP P-value

Iyer et al.
Mbp1 target

Position relative to ATG

log ratio P-value ATGCGAA TTCGCAT

YBL056W PTC3 ±0.193 3.89E±02 6.6E±01 5.2E±01 ±536
YDL155W CLB3 ±0.207 2.13E±02 5.1E±01 7.8E±01 ±225 ±52
YGR108W CLB1 ±0.674 8.69E±06 7.8E±02 Yes 1.1E±01 Yes
YGR109C CLB6 ±0.642 1.31E±03 5.7E±05b Yes 1.1E±08b Yes
YMR199W CLN1 ±0.42 6.48E±05 1.2E±06b Yes 1.5E±04b ±185
YPL256C CLN2 ±0.253 1.11E±02 5.0E±03a Yes 4.3E±02a ±80
YPR119W CLB2 ±0.517 1.49E±05 4.9E±05b Yes 5.1E±03a ±326

aP < 0.05.
bP < 0.001.
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experiment, two similar motifs, ATGCGAA and AAGCGAA,
are found in the `chromatin assembly/disassembly'
(GO:0006333) cluster and `regulation of CDK activity'
(GO:0000079) cluster, respectively (Tables 3 and 4). The
eight genes in Table 3 are four pairs of divergent histone
genes. Each pair of genes shares a common promoter region of
~650±820 bp long. ATGCGAA is the second ranked motif
following the TATA box (TATATAA) in the histone cluster
(Supplementary Material Table S1). In fact, if we allow one
degenerate letter in the motif, ABGCGAA becomes the most
signi®cant motif and each of the four histone gene promoters
contains one to three copies of this motif. A striking feature is
that the occurrences of this motif are highly localized around
the mid-point of the promoter region (~300±400 bp from the
translation start site ATG). Upstream activation (UAS)
elements with consensus GCGAAAAANTNNGAAC have
been experimentally identi®ed within the promoters of these
histone genes (22) and additional putative UAS elements were
found by a Gibbs sampling motif search algorithm (23). The
occurrences of the motif ATGCGAA found with our method
all overlap with the previously found UAS elements. As
Zhang (23) pointed out, the similarity of the Swi4 motif to part
of this histone UAS element might suggest the involvement of
Swi4 in the regulation of histone genes. The fact that all these
eight histone genes are repressed after Swi4 deletion supports
this notion. ChIP chip data also appear to support this,
although the discrepancy between Lee et al. (20) and Iyer et al.
(21) may suggest a relatively weak binding af®nity.

In the `regulation of CDK activity' (GO:0000079) cluster
(Table 4), AAGCGAA is the second ranked motif
(Supplementary Material Table S1). The top motif
AAATAGC matches a sub-string of some URS1H elements
in SCPD (2) and the `repressor of CAR1 expression' binding
sites (related to URS1 elements) in TRANSFAC (1).
However, AAATAGC is not the core but at the ¯ank of the
binding matrix of the `repressor of CAR1 expression' in
TRANSFAC. So, it may not be related to the URS1 element.
We do not ®nd a match to this motif in CompareACE (http://
atlas.med.harvard.edu/) either. Therefore, its identity or
plausibility is unclear to us. Among the genes in this cluster,
CLN1 and CLN2 are known Swi4 targets documented in
SCPD. An intriguing one is CLB2, a known Mcm1 + SFF
target. It was shown to be a target of Swi4 by both Lee et al.
(20) and Iyer et al. (21) and yet does not have a single copy of
a relatively relaxed CNCGAAA motif in its 700 bp promoter
region. It is possible that the binding site for Swi4 is beyond
700 bp upstream of the translation start site, since the ChIP
chip experiments used the whole intergenic sequences.
However, it is also possible that AAGCGAA is a new variant
of the binding motif for Swi4 detected by our method, as is
ATGCGAA in the histone cluster discussed previously. In
fact, if we look more closely, the putative motif site in the
CLB2 promoter is actually AAGCGAAA, with only one
mismatch to the canonical Swi4 motif. We will further discuss
the implications of this in the next section.

Random control tests

In our ®rst random control test, we shuf¯ed the gene IDs in an
array to disrupt the association between gene expression
values and the functional annotations. Only eight signi®cant
clusters were obtained in 12 000 trials on eight arrays with the

same parameters as in the previous experiments, suggesting
that the probability of obtaining a signi®cant cluster purely by
chance is ~0.00067. In our second random control test, we
performed a motif search on different sizes of randomly
picked foreground gene sets against 2000 random background
genes. On average, 0.13 motifs per trial were found and passed
our ®ltering procedure from a total of 2000 trials. Therefore,
the clusters and motifs found with our method are likely to be
biologically meaningful.

These results indicate that our method is capable of
detecting the binding elements of the relevant TFs from the
deletion mutant microarray expression data without using any
a priori knowledge about the motif sequence patterns. Even
when ChIP data are not available, there is a good chance that
the candidate motif list generated by our method includes the
true binding motif of the relevant TF.

Comparison to motif search without functional
clustering (NOGO)

When we apply the same ®ltering criteria for signi®cant motifs
as previously described, i.e. saving only the top two ranked
motifs and requiring the motif to be present in >50% of the
promoters in the foreground set, we only obtained signi®cant
motifs for four of the eight tested TFs (Gcn4, Gln3, Mbp1 and
Ste12). Among those, the motif for Gln3 is a TA repeat. For
the remaining three TFs, at least one signi®cant motif matched
the corresponding known consensus. This may not be a fair
comparison, however, because we typically obtained several
clusters (up to 19 in the case of swi4) with functional
clustering and each cluster may generate two signi®cant
candidate motifs. Another issue is that functional clustering
divides the signi®cant genes into smaller clusters. There is a
greater chance of a small cluster satisfying the 50% presence
criterion.

For a more convincing comparison, we therefore relaxed
the ®ltering criteria in NOGO such that up to 40 top ranked
motifs were saved (motif P-value cut-off still applied) and the
50% presence criterion was dropped. The detailed results are
shown in Supplementary Material Table S2. With such
relaxed criteria, NOGO still failed to ®nd a motif that matched
the known consensus in the mac1 and yap1 experiments.
Neither did it ®nd the two possible motif variants for Swi4. On
the other hand, NOGO succeeded in ®nding motifs matching
the known consensus in the swi5 experiment. However, those
motifs were only present in ~20±30% of the foreground
promoters.

Application to less known TFs

To test our method on less studied TFs, we applied the same
procedure to a few TFs documented in TRANSFAC but
without well-de®ned binding motifs, including Arg80, Cin5
(Yap4), Ppr1 and Oaf1 (Yaf1). Cin5 has one arti®cial binding
site TTACTAA in TRANSFAC. The other three TFs have one
relatively long binding sequence (16±24 bp) each, but the core
motifs are unknown. We did not obtain any signi®cant
functional clusters for Rosetta ppr1 and oaf1 deletion experi-
ments. In both cases, the numbers of signi®cant genes were
small (18 for the ppr1 and 4 for the oaf1 experiment). A
signi®cant motif TGACTCA was detected in a few clusters in
the cin5 experiment, similar to its family member Yap1.
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However, no genes in these clusters were shown to bind Cin5
according to the data of Lee et al. (20).

The most interesting experiment was with arg80. Arg80
escaped our initial screening for TFs with known binding sites
because its binding site documented in SCPD is referred to as
ARC (ARginine Control) element without an associated TF
name and in older literature Arg80 is referred to as ArgRI. In
TRANSFAC, there is only one Arg80 binding sequence (23 bp
long) documented for human. Before our awareness of the
known Arg80 binding motif, we applied our method to the
Rosetta arg80 deletion experiment and found a signi®cant
motif CACTTAA (or TTAAGTG) in the `arginine biosynth-
esis' (GO:0006526) cluster second to the top motif
TGACTCA. All ®ve genes in this cluster (ARG5,6, ARG3,
ARG1, ARG8 and CPA1) bind Arg80 in the ChIP chip
experiment of Lee et al. (20) and the expression of all of them
was up-regulated in the arg80 deletion experiment, consistent
with the known function of Arg80 as a repressor of arginine
syntheses. Based on these lines of evidence, we predicted that
CACTTAA might be the core motif of the yeast Arg80
binding site. A further literature search con®rmed this
conclusion. Motif TTAAGTG is very similar to part of the
consensus of the ARC element de®ned by Crabeel et al. (24).
Particularly, TAA is one of the most conserved cores of ARC
elements. It is also interesting that the top motif found in this
cluster was TGACTCA, the binding motif of Gcn4, and most
of the genes in this cluster were shown to bind Gcn4 with ChIP
chip data. Gcn4 is known to be a regulator of a large number of
amino acid biosynthetic genes (14). Therefore, the motifs
found in this `arginine biosynthesis' cluster are consistent with
the knowledge of a hierarchical regulation scheme in which
these genes are regulated by a general amino acid control
factor (Gcn4) and an amino acid-speci®c factor (reviewed in
24). This result again demonstrates that our method is capable
of discovering potentially new TF binding motifs when
suf®cient information is available in the data sources.

DISCUSSION

In the three experiments with gcn4, mbp1 and ste12, the
correct motifs found by our method were very strong: they
were detected in several clusters with top ranks. These motifs
could also be detected without functional clustering. The yap1
experiment demonstrated the advantage of our method. The
canonical Yap1 binding motif, TTACTAA, is detected in one
`negative' cluster consisting of ®ve genes on GO node
`oxygen and reactive oxygen species metabolism', consistent
with the previous ®nding of Yap1 function in the oxidative
stress response (25). This motif could not be detected in the
NOGO test even when we relax the ®ltering criteria in the
motif search. The reason may be that the majority of the
signi®cant genes do not have Yap1 canonical binding sites in
their promoters. Some of them may be Yap1 targets using
degenerate/variant motifs, but more likely, many of them
change their expression due to indirect effects of YAP1
deletion.

It is interesting to see that the canonical Gcn4 motif was
found in several other experiments besides the GCN4 mutant,
including GLN3, MAC1, SWI4, SWI5 and YAP1 (Table 2,
marked a). Since Gcn4 was suggested to be a master regulator
of gene expression in response to cellular stresses (14), it is

possible that those mutations may have triggered some
compensatory responses involving GCN4. The yap1 experi-
ment is complicated by the fact that Yap1 was shown to bind
to the Gcn4 site less optimally than to its canonical site (25).
However, ChIP chip data do not support the binding of Yap1
to the Gcn4 site because positive Yap1 binding is only seen in
the promoters of a small fraction (<20%) of genes in clusters
where a signi®cant Gcn4 motif is found (Supplementary
Material Table S1). Consistent with the known function of
Gcn4 as an activator responding to amino acid starvation and
other cellular stresses in yeast (14), the vast majority of the
signi®cant genes in the GCN4 mutant were down-regulated
and most of the signi®cant clusters obtained with our method
were on GO nodes related to amino acid metabolism or
biosynthesis (Supplementary Material Table S1). The Gcn4
binding motif is detected in almost all of the above clusters,
suggesting that these genes are likely to be activated by Gcn4
in the wild type even under non-starved conditions.

Several factors may have contributed to the failure of our
approach to detect expected TF binding motifs. First, the
experimental conditions may not be appropriate for the TF to
manifest its function. For example, Gln3 is known to activate
genes involved in the usage of poor nitrogen sources and those
genes are repressed when readily used nitrogen sources are
available (26). Therefore, it is possible that under normal
culture conditions, as in the Rosetta experiments, the target
genes of Gln3 are repressed in wild-type cells and the deletion
of GLN3 would have no effect. In fact, among the 118
signi®cant genes in the gln3 experiment, only two gene
promoters were shown to bind Gln3 in the ChIP chip data,
even at a very loose P-value cut-off (0.05). Second, our
knowledge of gene functions, as represented in the GO
annotation, is far from complete. This prevents us from a
successful functional clustering in some cases. For example, a
NOGO motif search detected a Swi5 motif in the down-
regulated gene set, but we did not obtain any signi®cant
functional clusters with the same set of genes. Among the 22
genes in this set, 7 (32%) are annotated as `biological_process
unknown' (GO:0000004). Even those genes with some known
functions may still have other functions that have not been
annotated. Third, functional redundancy of some TFs may
have reduced the effect of gene deletion on the direct targets,
therefore reducing the signals in the expression data. This
could be one reason why we did not detect the canonical
binding motif for SCB (Swi4) because it is well known that
Mbp1 and Swi4 have overlapping functions. In addition,
expression pro®ling using non-synchronized yeast cell popu-
lations may also have reduced the TF deletion effect on some
cell cycle-related target genes. One example was reported by
Koch et al. (27): the mRNA levels of some Mbp1 target genes
in the MBP1 null mutant were intermediate between the peaks
and troughs observed in wild-type cells during the cell cycle,
possibly because the Mbp1±Swi6 complex could be an
activator or repressor depending on the phase of the cell
cycle. Therefore, the average mRNA levels for some cell
cycle-related Mbp1 targets may be similar in the non-
synchronized cell populations of both mutant and wild-type.
Similar effects could be relevant to the Swi4 null mutant as
well.

The mac1 experiment may be a special case deserving more
discussion. Our method reported the canonical Mac1 binding
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motif GAGCAAA (CuRE, copper-response element) in the
cluster `iron transport' (GO:0006826), second to the most
signi®cant motif TGCACCC (Supplementary Material
Table S1). However, a close examination of this cluster raises
questions about the validity of this result. First, among the ®ve
genes (FET5, FRE2, FRE1, FET3 and ENB1) in this cluster,
only FRE1, a known Mac1 target (28,29), showed signi®cant
promoter binding in the ChIP chip data. In fact, only between
two and ®ve promoters among the 89 signi®cant genes in the
MAC1 mutant experiment were shown to bind Mac1 in ChIP
chip data at P-value cut-offs of 0.001 and 0.05, respectively.
Second, it is known that two copies of CuRE in the promoter
are necessary for ef®cient activation of downstream gene
transcription (TRANSFAC database). Among the known
Mac1 target genes, CuREs tend to be close to each other in
the promoter. However, the FET5 promoter contains only one
CuRE and the two CuREs in the promoter of ENB1 are >350
bp apart, with one very far from the translation start site.
Therefore, these two genes may not be true Mac1 targets
(unless other variant or degenerate CuREs exist). On the other
hand, the top motif, TGCACCC, perfectly matches the core of
the RCS1 (AFT1) motif consensus in the TRANSFAC
database. RCS1 is known to be involved in high af®nity iron
ion transport (SGD annotation), which is consistent with the
`iron transport' cluster. In fact, TGCACCC is detected as the
top motif in all positive clusters in the mac1 experiment
(Supplementary Material Table S1) and we see a 26% increase
in RCS1 mRNA level in MAC1 mutant versus wild-type (ratio
= 1.26, P-value = 0.07), consistent with the role of RCS1 as a
transcriptional activator (29). Although the fold change and P-
value does not reach our criteria for signi®cant genes, it may
be biologically signi®cant, as it is well known that a small
¯uctuation in TF expression may have a big impact on
downstream genes. Therefore, we think a more plausible
interpretation is that many of the signi®cant genes in the mac1
experiment are due to increased expression of RCS1, an
indirect effect of MAC1 deletion, and that the detection of a
CuRE in our analysis may be due to the coupling between iron
and copper transport. Alternatively, the detection of a CuRE in
our analysis could be an artifact. It is reported that the CuRE is
strongly bound by Mac1 only under copper starvation (28).
Therefore, it is also possible that under the yeast culture
conditions used in the Rosetta Compendium, Mac1 was not
active in the wild-type. In this case, deletion of MAC1 will not
change expression of most of the Mac1 targets. This echoes
our point in the previous paragraph, the experimental condi-
tions are critical in the study of TF functions.

Although we do not detect the published SCB (Swi4)
binding motif in the SWI4 deletion mutant experiment, our
method identi®ed two very similar motifs in the histone cluster
and the CDK regulation cluster. An interesting point with
these two motifs is that they are in the form A?GCGAA, which
is somewhat similar to both the canonical Swi4 binding motif
CGCGAAA and the Mbp1 binding motif ACGCGT. As can be
seen in Tables 3 and 4, the promoters of many genes in these
two clusters were shown to bind Mbp1 in the ChIP chip
experiments of Lee et al. (20) and/or Iyer et al. (21). Some of
these genes do not have a single copy of even a degenerate
Mbp1 site, ACGCGN. Although a motif like A?GCGAA may
have a lower af®nity for Swi4 and Mbp1 than their canonical
binding motifs, it may provide a mechanism for cross-talk

between the two pathways, as it is known that Swi4 and Mbp1
overlap functionally. A relatively low af®nity for this motif
may be compensated for by multiple occurrences of this motif
in the promoters or via cooperation with other factors, like
those of histone genes. It is also worth noting that in a recent
study by Liu et al. (30), who applied their motif discovery
algorithm (MDscan) to earlier published ChIP chip data, the
top ranked motifs reported for Swi4 were ACGCGAA and
AACGCGA, resembling the motif we found.

One difference between our method and many early
microarray data analysis methods is that our method attempts
to combine the information from genome-wide expression
data and known gene functions, while others mostly use
functional information ad hoc to con®rm or interpret the
resulting clusters. Another feature of our approach is that our
motif search algorithm uses the promoters of a set of non-
signi®cant control genes as background instead of sequences
based on a random model. That may have enhanced the
sensitivity of our motif search because we at least partially
corrected the bias in the sequence word distribution. As a
consequence, our motif search algorithm does not seem to be
severely affected by simple repeats [e.g. poly(A), poly(T) and
dinucleotide repeats] in promoter sequences while some other
motif search methods often need to mask these simple repeats
before searching.

A recent study by Wang et al. (31) extended the REDUCE
algorithm (10) and applied it to a dataset consisting of more
than 500 microarrays, including the Rosetta Compendium, in
an attempt at systematically reconstructing transcription
networks. REDUCE is a powerful algorithm for motif
detection, as demonstrated by Bussemaker (10) and more
recently by van Steensel (32). Wang et al. (31) successfully
rediscovered the known motifs of several TFs in correspond-
ing TF perturbation experiments. However, their method
appeared to be susceptible to indirect effects of TF perturb-
ations. They reported TGACTCA as the motif for Yap1 and
TGCACCC as the candidate motif for Mac1. In contrast, our
method successfully detected the canonical Yap1 motif
TTACTAA and arguably detected the CuRE GAGCAAA
for Mac1. Therefore, we believe our method is to some extent
complementary to theirs. It also reveals that conclusions based
solely on a single TF perturbation expression study may not be
reliable. Other sources of information, such as ChIP data or
multiple expression arrays with different types of perturb-
ations on a TF, are needed to verify the results and reach a
sensible conclusion.

As discussed previously, the effectiveness of our method
relies on the level of present knowledge about gene functions.
The eight TFs in our test experiments are relatively well
studied. A key question is, did we merely recover TF/target
gene information already in the functional annotation? This
question is critical if one wants to extrapolate the performance
of our method to other less studied TFs. We manually checked
the evidence codes and references used for GO annotation in
SGD for a few small clusters in the mbp1 and yap1
experiments. For the putative target genes in those clusters,
none of the references involved direct binding assays of TF/
cis-elements. Instead, most of the references involved
phenotypic studies. A few annotations are linked to review
papers or with the evidence code IEA (inferred from electronic
annotation), which may include some information from
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binding assays. Therefore, we believe that our method may
have inferred TF/cis-element relations based on mRNA level
changes and promoter sequences, combined with functional
information mostly obtained from phenotypic studies. As an
example, MBP1 is annotated in SGD as involved in `DNA
replication' (GO:0006260). One of the signi®cant clusters
found with our method in the MBP1 mutant experiment is on
node `DNA repair' (GO:0006281) and every gene in that
cluster contains at least one copy of ACGCGT in its promoter.
This suggests that Mbp1 may also be involved in DNA repair
and that our method may be able to reveal new functional
relationships between genes. The effort of GO annotation in
SGD is still ongoing. The current annotation probably re¯ects
only a subset of our knowledge about all yeast genes in the
literature. When more functional annotation information is
available, our method should become more effective.

In this study, we used ChIP chip data to verify the motifs
found with our method. Of course, when ChIP chip data are
available for a TF, it may be more desirable to use these data
directly with a method such as MDscan (30) or that of Kato
et al. (submitted for publication) to detect the binding motif of
that TF. However, even after a large-scale study such as that of
Lee et al. (20), ChIP chip data are still not available for many
TFs in yeast. ChIP chip data for other species are far less
common. Therefore, methods such as ours are valuable in
detecting relevant TF binding motifs when only TF interven-
tion data are available. As we have shown in the last section,
our method is able to provide a promising candidate motif list
without using ChIP chip data. In addition, the functional
clustering algorithm we implemented is not limited to motif
®nding. It can be applied to lists of candidate genes obtained
with other methods, for example, with genes that are
differentially expressed between two tissue samples or genes
signi®cantly bound by a TF in ChIP experiments. This
approach may reveal possible new functional relations among
genes or provide new insights into the function of the TF in
question.

Our method at present is still rather simple and we can
foresee several improvements. For example, in our motif
search we now only count exact word matches without
tolerating variants. The sensitivity may be improved if we
allow degenerate motifs. The challenge, however, is that the
top ranks in such a search will be dominated by variants of the
strongest motif. Thus, better ®ltering methods will be
required. Another issue is the P value cut-off in the functional
clustering. Currently we determined the P value cut-off
empirically as a relatively stringent 5E±6 in order to address
the multiple test problem. While our random control test
suggested that this cut-off should keep the random hits at a
fairly low level, this ®xed cut-off may not be optimal. It may
be too stringent when the number of signi®cant genes is small
and may be too liberal when the number of signi®cant genes is
large. An adaptive cut-off based on a false discovery rate
control (33) may be more desirable. In addition, we currently
examine the distribution of the motif hits among the genes in a
cluster and the locations of the matching sites in the promoters
empirically and ad hoc. A more formal method of handling
these aspects may further enhance the speci®city of our
prediction.

As discussed previously, expression array data of a TF
intervention may not always contain enough information for

motif detection. A similar problem may exist for ChIP chip
experiments as well. In some preliminary tests using the Gln3
and Mac1 ChIP chip data from Lee et al. (20) and an extended
version of MDscan (30), we were unable to detect any motifs
resembling the published motifs for Gln3 or Mac1. The reason
may be similar to that for the Rosetta deletion experiment,
these TFs are not active under the culture conditions of the
experiments and few real targets are bound by the TF studied.
Moreover, some binding detected by a ChIP chip may not be
speci®c or functional. Thus, the signal may be too weak to be
detected by a program like MDscan. With current technolo-
gies, both expression array data and ChIP chip data contain a
signi®cant amount of noise. However, they may re¯ect
different aspects of the same biological process. Methods
that integrate the information from expression arrays and ChIP
chips are de®nitely worth more investigation. Additional
improvement may be gained with further integration of other
sources of information, including, but not limited to, bio-
logical knowledge in the literature and databases. Our study is
a ®rst step in that direction. Even with our current method, the
success rate of our results is nevertheless encouraging. It is our
belief that with the rapid accumulation of biological data, our
approach, with further improvements, will be valuable for
identifying TF/target relationships and for deciphering genetic
networks of yeast and other living organisms.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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