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Abstract
Background: The challenges of accurate gene prediction and enumeration are further aggravated
in large genomes that contain highly repetitive transposable elements (TEs). Yet TEs play a
substantial role in genome evolution and are themselves an important subject of study. Repeat
annotation, based on counting occurrences of k-mers, has been previously used to distinguish TEs
from low-copy genic regions; but currently available software solutions are impractical due to high
memory requirements or specialization for specific user-tasks.

Results: Here we introduce the Tallymer software, a flexible and memory-efficient collection of
programs for k-mer counting and indexing of large sequence sets. Unlike previous methods,
Tallymer is based on enhanced suffix arrays. This gives a much larger flexibility concerning the
choice of the k-mer size. Tallymer can process large data sizes of several billion bases. We used it
in a variety of applications to study the genomes of maize and other plant species. In particular,
Tallymer was used to index a set of whole genome shotgun sequences from maize (B73) (total size
109 bp.). We analyzed k-mer frequencies for a wide range of k. At this low genome coverage (≈
0.45×) highly repetitive 20-mers constituted 44% of the genome but represented only 1% of all
possible k-mers. Similar low-complexity was seen in the repeat fractions of sorghum and rice.
When applying our method to other maize data sets, High-C0t derived sequences showed the
greatest enrichment for low-copy sequences. Among annotated TEs, the most highly repetitive
were of the Ty3/gypsy class of retrotransposons, followed by the Ty1/copia class, and DNA
transposons. Among expressed sequence tags (EST), a notable fraction contained high-copy k-
mers, suggesting that transposons are still active in maize. Retrotransposons in Mo17 and McC
cultivars were readily detected using the B73 20-mer frequency index, indicating their conservation
despite extensive rearrangement across cultivars. Among one hundred annotated bacterial artificial
chromosomes (BACs), k-mer frequency could be used to detect transposon-encoded genes with
92% sensitivity, compared to 96% using alignment-based repeat masking, while both methods
showed 92% specificity.

Conclusion: The Tallymer software was effective in a variety of applications to aid genome
annotation in maize, despite limitations imposed by the relatively low coverage of sequence
available. For more information on the software, see http://www.zbh.uni-hamburg.de/Tallymer.
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Background
Repetitive elements abound in the genomes of higher
organisms. Tandem repeats, simple sequence repeats,
long terminal repeats (LTRs), segmental duplications, and
transposable elements (TEs) are among those types com-
monly found in eukaryotic species. The biological role of
these entities in genome evolution has been documented
[1,2], but from a computational standpoint, the frequency
with which repetitive elements occur may confound gene
finding and the alignment of homologous sequences.

For anticipated plant genome projects and those currently
underway, effective and rapid annotation of their many
repeats has acquired a new urgency. For example, the
maize genome is estimated to be 60–70% repetitive,
mainly in the form of retrotransposons that proliferated
in the last 2 to 6 million years [3-5]. Extensive repeats in
maize has required a BAC-by-BAC sequencing approach
with finishing primarily focused on the unique space. In
this context, computational methods designed to anno-
tate unique sequences have become indispensable.

Repeat identification strategies fall under two broad cate-
gories: de novo detection and similarity-based detection.
RepeatMasker [6], one of the most widely used computa-
tional tools in repeat analysis, employs the latter method
and is therefore reliant on precompiled repeat databases
specific to the genome in question. RepeatMasker is an
essential annotation tool for organisms whose repeat con-
tent has been well characterized. However, for many
novel genomes a specific repeat library is either nonexist-
ent or insufficient.

De novo methods address many of these concerns.
RECON [7] currently the dominant tool for de novo
repeat detection, builds a set of repeat families through
pairwise similarity, clustering and boundary calling.
RECON and other de novo detection programs like
REPuter [8], Vmatch [9], RepeatFinder [10], RepeatGluer
[11], and PILER [12], are designed to generate a repeat
library rather than to use one. But to define repeat fami-
lies, these self-alignment approaches are best suited to
genomes that have been assembled into sizable scaffolds.
If sequence is not available at that depth or with that con-
tiguity, de novo methods may prove inaccurate especially
with respect to repeat boundaries.

Other more recent programs like ReAS [13] and RepeatS-
cout [14] attempt to build repeat families around frequent
k-mers. K-mer frequency based methods were originally
used in whole genome shotgun assemblers [15-17] that
omit reads containing frequent k-mers for the purposes of
assembly. Programs like ReAS operate in an inverse fash-
ion, using only high copy reads to seed a sophisticated
repeat finding strategy. But these methods, like genome

assemblers, require significant sequence depth to assure
adequate coverage over repeat families. Though we pro-
pose a similar strategy, our goal is not to identify repeat
families. We have found that even if available sequences
cover only a fraction of the genome, k-mer frequencies
alone capture rich statistical information on the repeat
profiles of plant genomes.

Like other k-mer frequency approaches [18-20] our
method does not require a precompiled repeat library.
Rather than simple hashing methods (which only work
for small values of k), we employ enhanced suffix arrays
[21] to compute occurrence counts and construct an index
(called k-mer frequency index) from which we can effi-
ciently retrieve the frequency of each stored k-mer. This
strategy allows us to process very large datasets for a wide
variety of values of k, and to assign frequency annotations
with unprecedented speed. We developed this method in
the context of the Maize Genome Sequencing Project
where rapid genome-scale frequency annotation is inte-
gral to genome finishing. The project employs a tradi-
tional BAC-by-BAC sequencing strategy, but directed
sequence finishing will proceed only in those regions des-
ignated as unique with respect to a 0.45 × WGS data set
generated by the Joint Genome Institute (see Section
"Maize WGS data set"). During development of this novel
finishing strategy we expanded k-mer frequencies into a
powerful comparative genomics tool, highlighting the dif-
ferences in complexity and overall repetitiveness in several
grass genomes.

Methods
Sequence data sets
This study used publicly available datasets, including
expressed sequence tags (ESTs), gene-enriched genome
fractions, representative whole genome sequences, and
repeat libraries, as summarized in Table 1. In addition, we
sequenced and assembled four BAC clones from maize
(B73) chromosome 8, which map to fingerprint contig
ctg362 of the AGI agarose FPC map [22,23]. Sublibrary
construction, sequencing on ABI 3700 machines, and
assembly were essentially as described in [24]. Clone
names and their GenBank accession numbers are as fol-
lows: ZMMBBb0483G05 [Genbank: AC157776],
ZMMBBb0284N04 [Genbank: AC157977],
ZMMBBb0614J24 [Genbank: AC157487], and
ZMMBBb0448F23 [Genbank: AC160211]. A polymerase
chain reaction was used on template ZMMBBb0382K21
to give a unique 1864 bp sequence [Genbank: AC163004]
that served to fill a physical gap between
ZMMBBb0483G05 and ZMMBBb0284N04. Overlap
between clone sequences allowed assembly of a complete
supercontig of 453,421 bp.
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Maize WGS data set
Whole-genome shotgun reads for Maize (Zea mays L. ssp.
mays), generated by the Joint Genome Institute were
downloaded from the NCBI Trace Archive on February 13,
2006 and clipped to remove vector sequences using cross
match [25] and the NCBI UniVec database [26]. The
resulting dataset, called maize 0.45 × WGS, included
1,124,441 reads and 1,088,525,270 nucleotides.

Gene annotation
Ab initio gene prediction was conducted using FGE-NESH
(monocot matrix) on non-masked BAC sequences. Result-
ing predictions were subjected to BLASTP against the
NCBI non-redundant Gen-Pept database with the low-
complexity filter turned on, and presumptive genes were
identified as having an E-value ≤ 1e-5. Transposable ele-
ments were screened out by matching their hits against a
manually curated list of 2852 transposable element genes.

Annotation of transposable elements
Transposable elements were identified using Repeat-
Masker [6] and MIPS Repeat Element Database (mips-
REdat) and Catalog (mips-REcat) [27,28]. This database
provides a hierarchical classification of plant transposable
elements and other repeat types. Before use, the database
was screened for non-TE related sequences and the follow-
ing identifiers were removed: 'bsr1' (containing cyto-
chrome P450 and hydrolase sequences), 'k_1' (containing
proton-ATPase sequence), and 'magellan_cone' (contain-
ing myb transcription factor sequence).

Receiver operating characteristic (ROC) curves were com-
pared by the method of [29], as implemented in the Med-
Calc® statistical software package.

Basic notions for sequence processing
We consider sequences over the DNA alphabet {A, C, G,
T, N}, where N denotes an undetermined base (usually
represented by one of the IUPAC characters S, Y, W, R, K,
V, B, D, H, M, N). For fixed length k > 0, a k-mer is a
sequence of length k, only containing the characters A, C,
G, and T. Let v be some sequence. merk(v) denotes the set
of all different k-mers in v. For any set M, |M| denotes the
number of elements in M. So |merk(v)| is the number of
different k-mers in v. For any sequence w of length k, let
occ(w, v) be the number of positions in v where w occurs.
For a set S of sequences we define merk(S) = ∪v∈S merk(v)
and occ(w, S) = ∑v∈S occ(w, v). That is, merk(S) is the set of
different k-mers in all sequences from S and occ(w, S) is
the number of positions in any sequence from S where w
occurs.

Occurrence ratios
For integers q, q', 1 ≤ q ≤ q', the k-mer occurrence ratio of
S is defined by

That is, ρS, k(q, q') is the ratio of k-mers occurring between
q and q' times in S. ρS, k(1, 1) is the k-mer uniqueness ratio
of S, i.e. the ratio of k-mers occurring exactly once in S. We
define the multiple occurrence ratio by

Note that the denominator in this fraction equals the
number of all positions in S where a k-mer occurs. The
nominator restricts this count to positions where the cor-
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Table 1: The different sequence sets used in the validation experiment. 

class fraction abbrev. size source

WGS Pilot Bacterial Artificial Chromosomes BAC 14.8 [35]
WGS BAC End Sequences BES 8.0 AGI [50]

Repeat Transposable Elements RepI 8.0 MIPS [28]
Repeat DNA transposons RepII 0.1 MIPS [28]

GE Expressed Sequence Clusters EST 56.3 PlantGDB [51]
GE AZM4 High-C0t AZM4 HC 188.8 TIGR [52]
GE AZM4 Methyl-filtered AZM4 MF 156.8 TIGR [52]

GA TIGR4 assembly of rice (Oryza sativa L. ssp. japonica) Osj:TIGR4 420.0 TIGR [37]
GA TAIR7 assembly of Arabidopsis thaliana At:TAIR7 115.4 TAIR [42]
GA JGI1.1 assembly of poplar (Populus trichocarpa) Pt:JGI1.1 410.0 [43]
GA Genoscope1 assembly of grapevine (Vitis vinifera) Vc:GEN1 487.0 [44]

WGS stands for survey of 'Whole Genome Sequences'. GE stands for 'gene enrichment'. GA stands for 'genome assemblies'. The sequence sizes 
are given in million base pairs.
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responding k-mer occurs between q and q' times. While
the occurrence ratio only considers the number of differ-
ent k-mers, the multiple occurrence ratio takes the
number of occurrences of a k-mer into account. We want

to compute ρS, k(q, q') and (q, q') for a range of values

of k and for any pair of values q, q'. We will later see how
to do this efficiently.

Average k-mer frequencies
The average frequency of v with respect to S, denoted by
λ(k, v, S), is defined by

where

That is, C(k, v, S) is the sum of the frequencies of all k-mers
in v with respect to S. Note that λ(k, v, S) is large if the k-
mers in v occur many times in S. It is small if the k-mers in
v rarely occur in S. Thus the average frequency measures
how often the k-mers of some sequence v occur on average
in some reference sequence set. If v is of length k, then it
contains exactly one k-mer, namely v, which implies λ(k,
v, S) = log10(occ(v, S) + 1).

Distribution ratios

Now consider a set  of sequence sets (we will later see

that  contains the first seven sets of Table 1). We want

to compare the sequence data sets in  according to
the distribution of the average k-mer frequencies of the
sequences they contain. The average k-mer frequencies are
determined relative to some reference sequence set S (usu-
ally the 0.45 × WGS data set). To facilitate the compari-
son, we define non-overlapping subintervals of similar
average k-mer frequency and calculate the fraction of
sequences that belong to that subinterval (i.e. they have
similar average k-mer frequency). As the sequence sets
considerably differ in their size, we make these distribu-
tions comparable by computing ratios. To be precise, let

and

be the minimum and maximum possible λ-values for all
sequences in the different sequence sets. We divide the

interval [λmin, λmax] into equal sized non-overlapping
subintervals at some suitable distance Δ. We obtain the
intervals

[-mΔ, -(m - 1)Δ],[-(m - 1)Δ, -(m - 2)Δ],..., [(n - 2)Δ, (n - 
1)Δ], [(n - 1)Δ, nΔ]

such that λmin = -mΔ and (n - 1)Δ ≤ λmax <nΔ. Then for each
integer j ∈ [-m, n - 1] we compute

where λ = jΔ. That is, Ωk, M is the fraction of sequences in
M falling into the jth subinterval. Ωk, M is called λ-distribu-
tion ratio for M.

Efficient computation of occurrence ratios
Note that the occurrence ratios only depend on the k-mers
in S. That is, it is derived from the distribution of occ(w, S)
for all k-mers w in S. Now let δS, k be a table such that for
all i ≥ 1, δS, k[i] is the number of different k-mers occurring
exactly i times in S. For example, δS, k[1] is the number of
unique k-mers in S, i.e. the number of k-mers occurring
exactly once in S. Then the following equations hold:

According to these equations we can efficiently compute

ρS, k(q, q') and (q, q') from table δS, k. To compute this,

one needs to enumerate each k-mer with its occurrence
count, thereby updating counters that were initialized to
zero. That is, if a k-mer w with occurrence count occ(w, S)

is enumerated, then one increments δS, k[occ(w, S)] by one.

Traditionally, occurrence counts for k-mers are computed
by hashing methods. However, these only work, if the
number 4k of possible k-mers is considerably smaller than
n. This does not hold for our application, where k ranges
from 10 to 500. We have developed a different approach
based on enhanced suffix arrays [21]. The space require-
ment and running time of our approach does not depend
on the number of possible k-mers, but only on the total
length of the sequences in S. Moreover, we can simultane-
ously compute δS, k[occ(w, S)] for a range of values of k.
This is useful when determining the optimal value for k.
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To explain our approach we begin with the concept of
enhanced suffix arrays, as introduced in [21].

Enhanced suffix arrays

Suppose S consists of r sequences. To process S we con-

catenate all sequences in S into a long string denoted 
with unique separator symbols $1,...,$r-1 between the r

sequences. Additionally we add a sentinel character $r fol-
lowing the last sequence in the concatenation. Obviously,

 contains exactly the same k-mers as S. That is, we can

compute k-mer counts based on .

Suppose that  is of length n + 1. [i] denotes the char-

acter at position i in , for 0 ≤ i ≤ n - 1. For i ≤ j, [i..j]
denotes the substring of S starting with the character at
position i and ending with the character at position j. For

i > j, [i..j] denotes the empty string. A substring of 

beginning at the first position of  is a prefix of  and a

substring ending at the last position of  is a suffix of .

For each h, 0 ≤ h ≤ n, h = [h..n - 1] denotes the h-th

non-empty suffix of , i.e. the suffix beginning at posi-

tion h in .

The key to our method is to lexicographically sort the suf-

fixes of . Suppose that the characters are ordered such
that A < C < G < T < N < $1 < ... <$r. This character order

induces an order on all nonempty suffixes of , which is

captured in the suffix array. The suffix array suf of  is an
array of integers in the range 1 to n, specifying the lexico-

graphic order of the n + 1 non-empty suffixes of . In

other words,  is the sequence of suf-

fixes of  in ascending lexicographic order.

The lcp-table lcp is an array of integers in the range 0 to n.

For each h, 1 ≤ h ≤ n, lcp[h] is the length of the longest

common prefix of  and . Since = $r is the

largest suffix in the lexicographic order,  = $r. Hence

we always have lcp[n] = 0. In the following, the combina-
tion of the suffix array and the lcp-table is called enhanced
suffix array.

The notion of lcp-intervals, introduced in [21] is central
for the computation of the occurrence frequencies for the
k-mers. An interval [i..j], 0 ≤ i <j ≤ n, is an lcp-interval of
lcp-value < if

1. lcp[i] < <,

2. lcp[h] ≥ < for all h, i + 1 ≤ h ≤ j,

3. h = 0 or lcp[h] = < for at least one h satisfying i + 1 ≤ h ≤ j,

4. j = n or lcp[j + 1] < <.

We will also use the shorthand <-interval for an lcp-inter-
val [i..j] of lcp-value <. We say that an <-interval [i..j] rep-

resents the substring [suf[i]..suf[i] + < - 1] of  of length
<.

An interval [i..i], 0 ≤ i ≤ n is a singleton interval. We say
that a singleton interval [i..i] represents the suffix

[suf[i]..n - 1] of . An m-interval [l..r] is said to be
embedded in an <-interval [i..j] if it is a subinterval of [i..j]

(i.e., i ≤ l <r ≤ j) and m > <. Note that we cannot have both
i = l and r = j because m > <. A singleton interval [l..l] is said

to be embedded in an <-interval [i..j], if i ≤ l ≤ j. If an inter-
val [l..r] is embedded in [i..j], then [i..j] is the interval
enclosing [l..r]. If [i..j] encloses [l..r] and there is no inter-
val embedded in [i..j] that also encloses [l..r], then [l..r] is
called a child interval of [i..j].

Enumerating k-mers and their occurrence counts

The parent-child relationship of the intervals constitutes a
conceptual (or virtual) tree which we call the lcp-interval
tree of the suffix array. The leaves of the tree are the single-
ton intervals and the internal nodes of the tree are the lcp-
intervals. In particular, the root of this tree is the 0-interval
[0..n]. An important property of the lcp-interval tree is the
fact that it implicitly stores the number of occurrences of

all substrings of . In particular, an interval [i..j] repre-

sents a string occurring j - i + 1 times in . The idea is to
read these occurrence counts from the lcp-interval tree.
This works as follows: We use an algorithm described in
[21] to enumerate the nodes of the lcp-interval tree. This
algorithm has some important features:

(1) The nodes of the lcp-interval tree are enumerated in
bottom-up order, i.e. a node, say α, is enumerated only
after all nodes in the subtree below α have been enumer-
ated.

(2) The children with the same parent node are enumer-
ated according to the lexicographic order of the strings
they represent.

(3) Whenever we process the children of a node, we have
access to the lcp-value of the parent node.

S

S

S

S S

S S

S S

S S

S S

S S

S

S

S
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S

S

S S S nsuf suf suf[ ] [ ] [ ], , ...0 1
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(4) The values in tables suf and lcp are accessed in sequen-
tial order from left to right.

Due to property (2), the k-mers occurring in (repre-
sented by the intervals) are enumerated in lexicographic

order. It now remains to show how to compute table δS, k

for a range of values k between user defined limits kmin and

kmax.

Suppose that all values incremented below are initialized
to zero.

• We process a singleton interval [i..i] as follows: Let d be
the lcp-value of the parent node of [i..i]. Then

[suf[i]..suf[i] + k - 1] is a k-mer occurring exactly once in

 if and only if the following holds:

1. d <k,

2. suf[i] + k ≤ n,

3. [suf[i]+d..suf[i] + k - 1] does not contain the symbol
N.

As a consequence, for all k, max{d + 1, kmin} ≤ k ≤ min{k'

- 1, kmax}, we increment δS, k[1] by one, where k' is the

minimum value greater than d such that either suf[i] + k'

= n or [suf[i] + k'] = N.

• We process an <-interval [i..j] different from [0..n] as fol-
lows: Let d be the lcp-value of the parent of [i..j]. Then

[suf[j]..suf[j] + k - 1] is a k-mer occurring j - i + 1 times

in , if and only if d <k ≤ <. As a consequence, for all k,

max{d + 1, kmin} ≤ k ≤ min{<, kmax}, we increment δS, k[j -

i + 1] by one.

Analysis of time and space requirement
The suffix array can be computed in linear time and space
(cf. [30]). The same holds for the lcp-table, see [31].

The algorithm to enumerate the lcp-intervals and single-
ton intervals, given the enhanced suffix array, runs in lin-
ear time, see [21] for details. Whenever one visits a node,

say α, one keeps track of all nodes on the path from the

root to α. These are maintained on a stack, using constant
time and space per node. In our specific application, we
store the lcp-value and the left interval boundary of each
node on the stack. Since one has access to the lcp-value of
the parent node (see property (3)), one can process each

lcp-interval in constant time. For the singleton intervals

we need to verify that [suf[i] + d..suf[i] + k - 1] does not
contain the symbol N. Rather than checking this condi-
tion character by character, we use information about
ranges of Ns, preprocessed from the input sequence. That
is, we store, in sorted order, the first position of each run

of consecutive Ns in . Then for each position i, 0 ≤ i ≤ n

- 1, [i] ≠ N, we can determine the smallest position i' >

i such that i' = n or [i'] = N using a binary search. Let q
be the number of these runs. Then this method takes on
the order of log2q time and requires extra space propor-

tional to q.

Due to property (4), the enhanced suffix array does not
need to be represented in main memory. At any time, we
only need to store two consecutive entries of table suf and
lcp. Hence the space requirement is dominated by the
stack needed for the bottom-up traversal of the (virtual)
lcp-interval tree. Our specific application only requires to
store nodes representing strings of length shorter than

kmax occurring more than once as substrings in . Hence

the stack size can be limited to kmax, which results in a

space requirement proportional to kmax.

Besides random access to the sequence, we also need ran-
dom access to a data structure for accumulating the occur-
rence counts. Let τ be the number of values i satisfying δS,

k[i] > 0 for some k ∈ [kmin, kmax]. Then this data structure
(e.g. hash table) requires space proportional to τ ≤ n.

The overall space requirement of the algorithm is propor-
tional to n + kmax + q and the running time is proportional
to n log2q. While the running time does not depend on
kmax, the space requirement is linearly dependent on kmax.
Since kmax and q are both much smaller than n, they can be
neglected. As a result, we obtain an algorithm that is linear
in running time and space requirement. In contrast, the
hashing methods run in time proportional to n + 4k time
and space proportional to 4k for some fixed value of k.
That is, their running time and space requirement grows
exponentially with k. As a consequence, these methods
can only be applied for small values of k. These values are
fixed, in contrast to our method which allows the compu-
tation for a range of values of k.

Dividing and merging the datasets

The analysis above shows that the running time and space
requirement of our algorithm for computing k-mer counts
(for ranges of values of k) is dominated by the suffix array
construction. This is especially true for the space require-
ment. To get an idea of whether our method can be
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applied to large sequence sets, we have to consider the
space requirement of the suffix array constructions in
more detail. The most space efficient suffix array construc-
tion requires (nLlog2 nO)/8 bytes per input symbol plus 2n/

8 bytes for representing the sequence. Given a 32-bit com-
puter with 4 gigabytes (232 - 1 bytes) of main memory, n

has to satisfy the inequality (2n + nLlog2 nO)/8 ≤ 232 - 1. That

is, the sequence length is limited to 1 gigabyte. Since we
want to process considerably larger sequences, we devel-
oped a divide-and-conquer approach. This cuts the

sequence  into sufficiently small non-overlapping sec-
tions, such that for each section we can compute the cor-
responding enhanced suffix array on a 32-bit computer
(equipped with 4 gigabytes of main memory).

Processing each section by the algorithm described above
results in occurrence counts for each section. More pre-
cisely, for each section we enumerate pairs (occ, pos) where
pos is a position in the corresponding section and occ is the

number of occurrences of  [pos..pos + k - 1] in this sec-
tion. Thus each pair encodes a k-mer, and the pairs are
stored on a file in the order they are delivered by the algo-
rithm, namely in lexicographic order with respect to the k-
mer. This property allows to combine the appropriate val-
ues in a merging process, which works as follows: Suppose
we are given, say m, files storing the occurrence counts for

the m sections of . These files are merged in m - 1 pair-
wise merge-operations. The merging steps only require to

have the entire sequence  represented in main memory.
Since we restrict to DNA sequences and, by construction,

do not process any substrings of  containing the charac-
ter N, we can store each nucleotide in 2 bits, i.e. n/4 bytes
suffices for representing the sequence. That is, the merging
procedure allows to process sequences of length up to 16
gigabytes on a 32-bit computer.

Efficient computation of distribution ratios

In contrast to the occurrence ratios, the average frequency

λ(k, v, S) of a sequence v is determined relative to the k-

mer content of S. Since we want to compute λ(k, v, S) for
a fixed set S and many different sequences v, it makes
sense to preprocess S into a k-mer frequency index (S,
occmin, occmax) storing all k-mers occurring between occmin

and occmax times in S. Here occmin and occmax are user

defined positive numbers. Constraining the indexed k-
mers by user specified values occmin and occmax is relevant

in applications where we are interested in k-mers occur-

ring rarely (small value of occmax) or frequently (large

value of occmin). Given the index (S, occmin, occmax), we

want to solve the following tasks:

(1) For each possible sequence w of length k, determine if
it occurs in the index.

(2) For each k-mer occurring in the index, determine the
number of its occurrences in the index.

In the previous section we have shown how to compute
occurrence ratios by enumerating k-mers. Instead of deriv-

ing occurrence ratios by incrementing some table δS, k, the

same enumeration process can determine the k-mers w

satisfying the constraint occmin ≤ occ(w, S) ≤ occmax. If this

is satisfied, the k-mer is stored on a file. As the k-mers are
enumerated in lexicographic order, the index (S, occmin,

occmax) is simply a sequence of lexico-graphically ordered

k-mers stored on a file. Whenever this is needed it can be
mapped into main memory.

To implement (S, occmin, occmax), we directly store each

k-mer together with the occurrence count, if this is
required. As a k-mer is a string over an alphabet of size 4,
it can be stored in k log2 4 = 2k bits. This, of course restricts

the choice of k to small values. But since the optimal val-
ues for k are rather small (see Figure 1), this is not a restric-
tion in practice.

Let r be the number of indexed k-mers. Since the stored k-
mers are lexicographically ordered, for each possible k-
mer, task (1) and (2) can be solved by a binary search over
the index. Each step of the binary search requires to com-
pare 2k bits. As these are represented by integers of the

machine word size ω, a single comparison takes time pro-

portional to . There are at most log2 r comparisons to

determine if a k-mer occurs in the index. If it occurs, then
the occurrence count can be determined in constant time
by a single table lookup. Altogether, the search for a k-mer

takes time proportional to  log2 r. For example, on a

32-bit computer, it takes on the order of 2 log2 r steps to

perform the binary search when k = 20.

To put it together, our index differs in several aspects from
other indexing approaches employed in sequence analysis
(e.g. suffix trees [8], suffix arrays [32], or hash tables):
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• First, we do not store information about where the k-
mers occur in S. This fact leads to some simplifications for
the implementation of the index and allows faster query-
ing time. Moreover, it means that the size of the index is
not dependent on the size of S. It rather depends on the
choice of values occmin and occmax. For large sequence sets
and larger values of k, the number of different k-mers
becomes very large. When computing occurrence ratios,
this is not a problem, as only k-mer counts are accumu-
lated. However, when constructing the k-mer index, occmin
and occmax should be chosen carefully. If these values are
not restrictive enough, then there may be too many k-mers
to be indexed. That is, the input sequence representation
and the k-mer index may not fit into memory any more.

• Second, we directly store each k-mer as a bit string
together with the occurrence count in the index. That is,
the information about the indexed k-mer is not distrib-

uted over different memory locations, as in other indexing
approaches (which usually store pointers into the original
sequence). As a consequence, the querying times for our
index are extremely short.

The Tallymer software [33] provides programs for com-
puting occurrence ratios (tallymer-occratio), for generating
a k-mer index (tallymer-mkindex), and for searching a k-
mer index (tallymer-search). The software-distribution is
complemented by a program to construct enhanced suffix
arrays. The 32-bit version of this program can handle
sequences of size about 150 million bp per gigabytes of
main memory. For example, to handle the 0.45 × WGS
data set (total length 1,088,525,270 bp.) in this amount
of main memory, we have to split it into eight sections
each of approximately 136 million bp. The program tally-
mer-occratio provides flexible options to specify the range
of k-mer sizes considered and to tailor the values output.

K-mer uniqueness ratio for the 0.45 × maize WGS data set for varying values of kFigure 1
K-mer uniqueness ratio for the 0.45 × maize WGS data set for varying values ofk. The uniqueness ratio is the ratio 
of k-mers occurring exactly once relative to all k-mers in the set. k = 20 balances the information content with k-mer resolu-
tion, visible as a natural inflection point on the curve which may change with organism, sequencing technology, and coverage 
employed.
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For example, one can specify that values are output as
ratios instead of absolute counts. Comparison of k-mer
frequencies of two sequence sets is not directly supported
by the software, but can easily be done as follows: create
an index of the first sequence set and query it with the sec-
ond, and vice versa.

The program tallymer-search takes multiple fasta files as
input. It generates all k-mers not containing any N from
the given files, and matches them against the index in for-
ward and/or reverse direction. Currently only exact
matches are supported. An extension to degenerate
matches would require a combination of index traversal
and dynamic programming techniques, as, for example,
implemented in Vmatch [9] for the case that the index is
an enhanced suffix array.

Results and discussion
Selection of k-mer size for use in maize
Because our method allows us to compute k-mer frequen-
cies for large values of k, we have a wide latitude for selec-
tion of a k-mer size. Figure 1 plots the k-mer uniqueness
ratio for the 0.45 × WGS for k in the range 10 to 500. As k
approaches 500, the curve reaches unity. The information
content of the k-mer set increases at a very fast rate from k
= 10 to k = 20. Beyond this point, increasing k does not
significantly increase the number of unique k-mers, but
does decrease the overall resolution of the k-mer set. The
inflection point on this curve is likely to change for other
genomes and other sources of survey sequence, but for our
WGS reference, k = 20 is optimal.

Validation of the 20-mer frequency index for the WGS set
The use of k-mer frequencies is premised on the availabil-
ity of an unbiased sequence set reflecting the overall
repeat character of the genome in question. To test
whether the 0.45 × WGS meets this criterion, we com-
puted the corresponding 20-mer frequency index, i.e. S is
the 0.45 × WGS set and k = 20. It contains 456,445,768
different 20-mers. There are 1,041,350,089 positions at
which a 20-mer occurs. We screened seven publicly avail-
able maize sequence sets (see Table 1), against S. That is,
we evaluated Ωk, M for M ∈ {BAC, BES, RepI, RepII, EST,
AZM4 HC, AZM4 MF}.

The public maize sequence sets fall into three classes: (A)
maize whole genome sequences, (B) maize repeats, and
(c) maize gene enrichment sequences. The seven sequence
sets are known to have differing degrees of repetitiveness
and should therefore provide a means to verify our
method. For example, we expect gene enriched sequence
to be less repetitive than RepII sequences (DNA trans-
posons), and RepII sequences to be less repetitive than
RepI sequences (TEs).

The results of this analysis are shown in Figure 2. Panel A
confirms that the two maize whole genome sequence sets
have similar frequency distributions, providing an overall,

unbiased repeat profile for the maize genome. The λ-dis-
tribution ratios of RepI, RepII, and BAC sequence is
shown in Panel B. RepI repeats exhibit high average fre-
quency, many of which exceed 100 copies in the 0.45 ×
WGS set, while the RepII repeats, enriched in low-copy

elements, are far less repetitive. Notably, the λ-distribu-
tion ratios for both repeat classes are bimodal. The more
repetitive peak for RepI corresponds to an enrichment of
Ty3/gypsy repeat elements, while the less repetitive

reflects enrichment in Ty1/copia (see Table 2, (  =

1.9·10-57)). Though the λ-distribution for RepII also
appears to be bimodal, we were unable to find signifi-
cantly different repeat populations among the DNA trans-
poson derivatives and superfamilies.

The three sequence sets delivered by gene enrichment
methods shown in Figure 2C peak around an average fre-
quency of 0 in the WGS set. The relative uniqueness of
these reads justifies the attribute 'gene-enriched', but their
apparent efficacy varies significantly. The High-C0t
method succeeds in concentrating unique sequence with-
out much leakage of the highly repetitive content evident
to some extent in the ESTs, and to a far greater extent in
the methyl-filtered library. This difference observed
between the High-C0t and methyl-filtered libraries was
previously observed in [34].

Genome annotation using k-mer frequencies
We used a previously published set of 100 maize BAC
sequences that had been chosen at random to be repre-
sentative of the whole genome [35]. A position, say i, in a
BAC was masked if the logarithm of the absolute fre-
quency of the 20-mer starting at position i achieves some
threshold. Figure 3A shows that, summing over all BACs,
50% of nucleotides were masked at an absolute frequency
threshold of 1.3 or greater, corresponding to at least 20
occurrences in the WGS index. Coverage of individual
BACs at this threshold ranged from 20.5% to 78.3%.
Reducing the threshold resulted in greater coverage. At the
lowest threshold of 0.3 (i.e. 2 or more copies), total cov-
erage reached 70.1% (range for individual clones, 41.0–
90.8%).

We compared these results to masking based on the
curated MIPS REcat repeat library. This library includes
repeats from many sources including annotated TEs from
the BACs used in this analysis. Thus application of this
library can be regarded as a 'gold-standard' for detection
of TEs within these BACs. Indeed, masking using the MIPS

pc 2
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λ-distribution ratios for different classes of maize sequencesFigure 2
λ-distribution ratios for different classes of maize sequences. The X-axis shows the λ -values between λmin and λmin. 
The Y-axis shows the values for Ωk, M, where M is one of the first seven sequence sets from Table 1. Three sequence classes 
are shown: (A) Whole Genome Sequences, (B) Repeat Sequences, and (C) Gene Enrichment Sequences. The BAC profile is 
provided as a reference in all three panels. In (B) the two peaks in the bimodal distribution of the RepI curve are marked by the 
numbers 1 and 2, see also Table 2.
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REcat library, resulted in a total repeat coverage of 80.8%
(range 36.8–100.0% on individual clones). This exceeds
the masking rate of 67% originally reported for this set
[35], suggesting that the MIPS REcat library has been
updated with new repeat sequences after its publication in
2005. Figure 3B shows the extent of overlap between
masked positions using these two methods. Overlap of
positions masked by our method with curated TEs in
REcat exceeded 93% at lowest absolute frequency thresh-
old and reached a maximum of 99.85% over the most
repetitive regions (threshold ≥ 4.00). Overlap was 98.51%
at an absolute frequency threshold of 1.3. These results
indicate that the MIPS REcat library is on the whole inclu-
sive of moderately and highly repetitive regions in these
BACs.

In contrast, 81% of the MIPS REcat-masked positions are
also masked by our method. This was achieved at the
absolute frequency threshold of 0.3 (Figure 3B). At the
absolute frequency threshold of 1.3, only 61.2% of posi-
tions masked by MIPS REcat were also masked by our
method.

We next compared the two repeat detection methods for
their ability to discriminate TEs at the level of predicted
genes. The set of 100 BACs were annotated using
FGENESH and resulting predictions were classified as pre-
sumptive genes or as TEs using a similarity-based search
(see Section "Methods"). Of the 2504 predicted genes,
359 (14%) were screened out as showing no evidence of
homology to NCBI GenPept peptides. Of the remainder,
1842 (86%) were classified as TE while the remaining 303
(14%) were classified as presumptive genes. For these lat-
ter two classes the percent of coding sequence masked was
calculated based on either RepeatMasker data or on con-
stituent 20-mer frequencies at various thresholds. For
each method of masking, receiver operating characteristic
(ROC) curves were used to define a threshold of masking

that best discriminated TEs from presumptive genes. Area
under the curve (AUC), sensitivity, and specificity were
used to compare efficacies [29].

Because percent masking using k-mers depends on which
absolute frequency threshold is used, we first optimized
the threshold by comparing all ROC curves for absolute
frequency thresholds between 0 and 4.0 at 0.1 increments.
The threshold of 0.8 gave the maximum area under the
curve (AUC), with a value of 0.961 (95% CI 0.952 to
0.969, p-value = 0.0001). For masking using REcat the
AUC was only slightly higher, 0.962 (95% CI 0.953 to
0.969, p-value = 0.0001). Comparison of these two ROC
curves, shown in Figure 4, revealed that this difference in
AUC was not significant (p-value = 0.967).

Table 3 compares the sensitivity and specificity of the two
methods for detecting TE-encoded genes. With a sensitiv-
ity of greater than 96%, REcat masking was better able to
detect TE genes than our method. This was expected since
the TEs within these BAC sequences had been previously
annotated and are constituents of the REcat database.

ROC plots showing sensitivity and specificity of TE detection among 2145 FGENESH models (1824 TE and 303 presumed genes) based on the percent of coding sequence masked using two methodsFigure 4
ROC plots showing sensitivity and specificity of TE 
detection among 2145 FGENESH models (1824 TE 
and 303 presumed genes) based on the percent of 
coding sequence masked using two methods. In one 
method BAC sequences were masked using an absolute fre-
quency threshold of 0.8. In the other, masking was per-
formed using RepeatMasker with the MIPS REcat library. 
ROC plot comparison of the maximum area under the curve 
resulting from the two plots showed that they are not signifi-
cantly different (see main text for details).
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Table 2: Two repeat populations in the RepI sequence set. 
Repeat elements of the RepI set are found in different relative 
proportions depending on the repeat level tested (corresponding 
to peaks 1 and 2 in Figure 2B).

peak 1 peak 2
class total percentage total percentage

unclassified 66 11.0 1 0.3

LINE 8 1.3 0 0

Ty1/copia 142 23.6 292 75.5

Ty3/gypsy 386 64.1 94 24.3

∑ 602 ∑ 100.0 ∑ 387 ∑ 100.0
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Comparison of masking using either k-mer frequencies or alignment-based repeat maskingFigure 3
Comparison of masking using either k-mer frequencies or alignment-based repeat masking. (A) Percent of nucle-
otides masked in 100 BAC sequences (total length 14.3 Mb) as a function of absolute frequency threshold (logarithmic scale). 
Values are given for the sum of all sequences, and for the most and least repetitive BACs within the set. (B) Overlap between 
regions masked using the k-mer frequency based method and those masked using RepeatMasker (MIPS REcat library).
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Nevertheless our method was able to detect greater than
92% of TE genes. This demonstrates that a substantial pro-
portion of TE genes, approaching that based on annota-
tion, can be detected using k-mer frequencies as found
within a low coverage whole genome shotgun sequence.
Furthermore, the two methods showed a similar false-
positive rate, each having specificity near 92%.

While both RepeatMasker and our method masked the
majority of RepI retroelements, some low copy TEs
escaped masking under our method based on average fre-
quencies. As shown in our analysis of the 100 pilot BACs,
low-copy DNA transposons, may be annotated as such by
curated repeat databases, but missed by the counting
approach used here. In the context of directed sequence
finishing, low-copy repeats are often as in need of charac-

terization as protein coding genes. Leaving them
unmasked in maize is actually in the best interests of the
project. But the average frequency threshold must be cho-
sen carefully: more permissive thresholds will lead to fin-
ishing TE-like elements, and more strict thresholds may
mask high-copy gene families. To use this method opti-
mally, a balance must be struck with respect to the
genome in question, and the thresholds need to be
adjusted according to the annotation requirements.

The validated WGS index can be used to annotate any por-
tion of the genome with respect to its component k-mer
frequencies. In another set of experiments, we analyzed a
453 kb portion of maize chromosome 8 (assembled in-
house as described in Section "Sequence data sets") and
display a portion of its annotation from position 67,000

Visualization of k-mer frequencies in a 453 kbp assembly of four BAC sequences derived from maize chromosome 8Figure 5
Visualization of k-mer frequencies in a 453 kbp assembly of four BAC sequences derived from maize chromo-
some 8. A 100 kbp segment (range 70,001–170,000 nt) is shown. In the first two tracks transposable elements are shown in 
red while genes are shown in blue (exon/intron structure not shown). The third track, global k-mer frequency (GKF), shows 
for each position of the mentioned region (X-axis) the average frequencies λ(k, v, S) (Y-axis) of the k-mer v beginning at this 
position. Here S is the 0.45 × WGS set mentioned above. The fourth track, local k-mer frequency (LKF), shows λ(k, v, R), 
where R is the larger 453 kbp region under scrutiny. RepeatMasker results using the MIPS REcat repeat libraries are given 
alongside sequence masked using absolute frequency thresholds of 1, 2, and 3. Three genes (boxed) related to a selenium bind-
ing protein apparently arose by tandem duplication and have high LKF compared to other non-TE genes in the assembly.

TE’s

Genes

GKF

LKF

RepeatMasked

GKF slices

Table 3: Discrimination of maize TE-encoded genes based on percent of coding sequence masked using either RepeatMasker (MIPS 
REcat library) or constituent 20-mer frequencies (WGS index with a threshold log repeat level of 0.8). 

method criterion sensitivity 95% CI specificity 95% CI

REcat > 41.56 96.69 95.8–97.5 92.41 88.8–95.1
k-mer frequency > 17.00 92.62 91.3–93.8 92.08 88.4–94.9

Ab initio gene prediction was carried out on 100 non-masked BAC sequences using FGENESH, and resulting models were classified as TE (1842) or 
as presumed genes (303) based on a BLASTP similarity search. ROC analysis was used to determine the optimum criterion (threshold percent of 
coding sequence masked) that would maximize detection of TEs while minimizing false positives (i.e. maximum sensitivity + specificity).
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to 165,000 in Figure 5. The first two tracks show the loca-
tions of FGENESH ab initio gene predictions classified as
either putative protein-coding genes (blue) or transposa-
ble elements (red). The Global k-mer Frequency (GKF)
track visualizes the absolute frequency across the region.
Frequencies in this histogram were generated by querying
each overlapping 20-mer in a 5' to 3' direction against the
WGS index. Note that some regions contain k-mers occur-
ring on the order of 1000 times in the maize WGS set. In
the GKF track, TE-like genes often correspond to regions
of high absolute frequency, while genes similar to known
proteins reside in regions of smaller absolute frequencies.

If the scope of the experiment is narrowed, however, and
the k-mer frequencies are computed with respect to the

region itself, independent of the WGS index, a signifi-
cantly different picture emerges. The Local k-mer Fre-
quency (LKF) track represents a self-analysis: the
frequencies of overlapping 20-mers in the query are deter-
mined relative to the 453 kb region alone. Even in a local
context many TEs are present at high copy number (the
LKF track also shows values on a logarithmic scale). But
the LKF highlights local features in a way GKF cannot. This
region contains four locally duplicated genes related to
Selenium-binding proteins. Figure 5 shows that these
genes have a higher LKF than surrounding genes that are
present at single copy. Such peaks are not evident in the
GKF track indicating that these genes have low overall
copy number within the genome. This analysis could be

Occurrence ratios in comparative genomicsFigure 6
Occurrence ratios in comparative genomics. Maize, sorghum and rice whole genome shotgun reads were randomly 
selected to generate 0.45 × coverage with respect to each genome's size. The total number of 20-mers in each logarithmic fre-
quency class (A) are contrasted to the number of different 20-mers in each frequency class (B). Maize is the most repetitive of 
the three grasses analyzed here, but a corresponding increase in genome complexity is not observed.
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employed to identify local expansions of paralogous
genes commonly found in plant genomes [36].

Comparative genomics

Beyond employing k-mer frequencies to annotate
sequence with copy-number information, we have found
that the frequency information contained therein are
themselves biologically informative, illuminating cross
species differences in repetitive content. For example, Fig-
ure 6 compares whole genome shotgun sets acquired from
three distinct sequencing projects: rice [37], sorghum
[38], and the 0.45 × maize set (JGI) employed throughout
this analysis. Using randomly selected reads to simulate
0.45 × coverage in each species given their predicted
genome sizes [39-41], we computed (multiple) occur-

rence ratios, i.e. percentage values 100· (1, 10) and

100· (11, 100) (Figure 6A) and 100·ρS, k(1, 10),

100·ρS, k(11, 100), 100·ρS, k(101, 1000), 100·ρS, k(1001,

10000), 100·ρS, k(10001, ∞) (Figure 6B), where k = 20

and S is the respective sequence set. Recall that the occur-

rence ratio ρS, k(q, q') is the ratio of k-mers occurring

between q and q' times in S. The multiple occurrence ratio

(q, q') is similarly defined, but takes the number of

occurrences of a k-mer into account. See section "Meth-
ods" for details.

For example, in the case of maize, there are 1,041,350,089
positions at which a 20 mer occurs. There are 456,445,768
different 20-mers of which 378,556,535 are found only
once, while the most highly represented sequences exists
47,933 times.

The multiple occurrence ratios represented in Figure 6A
show that maize contains the most repetitive sequence,
followed by sorghum, and rice. Nearly 25% of maize 20-
mers occur more than 100 times while only 14% of sor-
ghum and 13% of rice 20-mers exhibit this frequency.
This finding was expected. When only considering the
number of different 20-mers in Figure 6B, we find that a
mere 1% of all 20-mers occurs more than 10 times, i.e.

rS k,
∗

rS k,
∗

rS k,
∗

The k-mer uniqueness ratio for some assembled plant genomes as a function of kFigure 7
The k-mer uniqueness ratio for some assembled plant genomes as a function of k. The uniqueness ratio is the ratio 
of k-mers occurring exactly once relative to all k-mers in the set. It is computed for every k between 10 and 500. Extrapolating 
beyond the tested k-mer interval, it appears as though poplar, rice, and grape approach unity at a much slower rate than arabi-
dopsis.
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accounts for the repetitive fractions. This is a remarkable
equivalence in complexity across the three organisms.
Low complexity is consistent with relatively recent prolif-
eration of a small number of originating TE's resulting in
limited divergence of k-mers. Maize demonstrates the
most substantial growth in repetitive content, a finding
attributable to its known TE expansion [3-5]. Thus, the k-
mer frequency method provides a novel way of quantify-
ing this important evolutionary event.

Read lengths in whole genome shotgun sequencing
projects limit this sort of analysis. Since Sanger reads aver-
age around 700 base pairs in length, most repetitive ele-
ments will be truncated at the 5' and 3' ends, making
experiments with k-mer sizes greater than 50 base pairs
impractical. However, genome assemblies obviously do

not suffer from these read length restrictions. Currently,
there are very few plant assemblies. Though a number of
projects are underway, only four genomes have been pub-
lished: arabidopsis [42], rice [37,40], poplar [43], and
grapevine [44]. In Figure 7 we plot the k-mer uniqueness
ratio for these genomes, as a function of k. We tested k-
mer sizes from k = 10 to k = 500. With k approaching 500,
the uniqueness ratio converges to 1. More repetitive
genomes such as rice and poplar converge at a much
slower rate than arabidopsis.

We performed a number of experiments demonstrating
that k-mer frequencies cannot be used to annotate repeats
across species (data not shown) owing to divergent TE
families. But within a species, our method seems to work
across cultivars regardless of which subtype is considered.

K-mer frequencies across orthologous regions of three maize cultivarsFigure 8
K-mer frequencies across orthologous regions of three maize cultivars. The B73-based WGS index was used to 
annotate the Bronze-1 locus and surrounding regions in cultivars B73, McC and Mo17 (Genbank accession numbers AF448416, 
AF391808, and AY664416, respectively). Orthologous genes present in all three cultivars are connected with red lines. The 
Bronze-1 locus is shown with an asterisk. Helitrons HelA and HelB in McC, were previously described by [45]. Ty1/copia ret-
rotransposons are shown in red while those of the Ty3/gypsy class are shown in yellow, as classified using MIPS REcat masking. 
Though the transposition histories vary across the three cultivars, the frequency index can successfully be used to annotate the 
repeat regions in McC and Mo17.
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For maize, our standard 0.45 × WGS sequence set is
derived from B73, the cultivar currently being sequenced.
Figure 8 shows that using this index, one can successfully
mask the TEs of two sister cultivars, McC and Mo17, in the
well-characterized Bronze-1 locus [45]. While the transpo-
sition histories of the three cultivars differ markedly, the
k-mers in these TEs have undergone little divergence.

Conclusion
We have described a method based on k-mer frequencies
allowing for annotating large repetitive plant genomes. As
we have demonstrated, our method is useful as an alterna-
tive or supplementary form of repeat annotation in novel
genomes. The novelty of genomes being sequenced is pre-
cisely the reason why this approach has value. By defini-
tion, new genomes lack comprehensive repeat libraries,
and the construction of de novo libraries is often ham-
pered by the paucity of sequence available at a project's
outset. In the absence of such libraries, survey sequences
in the form of Sanger WGS, 454 [46], Solexa [47], or
SOLID [48] reads can be used to create cheap, abbreviated
k-mer frequency indices for use across multiple subtypes.

In designing the k-mer frequency approach to be com-
pletely independent of any manual annotation, we apply
a binary decision framework: given a numerical threshold,
sequence is designated as either repeat or non-repeat.
Though binary designations are sufficient for sequence
masking, we believe that the k-mer frequencies (and
measures we derive from it) are best used in combination
with other methods designed for careful repeat annota-
tion as demonstrated in the accompanying publication
[49].

To apply our methods to large sequence sets, we have
developed fast and memory efficient algorithms to com-
pute occurrence ratios, to index k-mers, and to retrieve
their occurrence counts from the index. The algorithms
are implemented in the Tallymer software. A distribution
of the software and the Perl-scripts post processing the
output is available from the Tallymer website [33].
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