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Neurons that sustain elevated firing in the absence of stimuli have been
found in many neural systems. In graded persistent activity, neurons can
sustain firing at many levels, suggesting a widely found type of network
dynamics in which networks can relax to any one of a continuum of sta-
tionary states. The reproduction of these findings in model networks of
nonlinear neurons has turned out to be nontrivial. A particularly insight-
ful model has been the “bump attractor,” in which a continuous attractor
emerges through an underlying symmetry in the network connectivity
matrix. This model, however, cannot account for data in which the per-
sistent firing of neurons is a monotonic—rather than a bell-shaped—
function of a stored variable. Here, we show that the symmetry used in
the bump attractor network can be employed to create a whole family of
continuous attractor networks, including those with monotonic tuning.
Our design is based on tuning the external inputs to networks that have
a connectivity matrix with Toeplitz symmetry. In particular, we provide a
complete analytical solution of a line attractor network with monotonic
tuning and show that for many other networks, the numerical tuning of
synaptic weights reduces to the computation of a single parameter.

1 Introduction

Animals are constantly confronted with the task of storing and manipu-
lating continuous variables, such as the spatial position of objects or body
parts. The short-term storage of such information is thought to be mediated
by persistently active neurons in various areas of the brain (Major & Tank,
2004; Wang, 2001). For instance, neurons in the oculomotor system fire in
proportion to an animal’s eye position (Aksay, Gemkrelidze, Seung, Baker,
& Tank, 2001), neurons in the head-direction system fire with respect to an
animal’s directional heading (Taube & Bassett, 2003), and neurons in the
hippocampus of rats fire with respect to the location of an animal (O’Keefe,
1979; Quirk, Muller, & Kubie, 1990). All of these firing rates persist in the
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absence of proprioreceptive or other sensory information, suggesting that
they store information about the respective analog variables. Further exam-
ples come from many cortical areas in which neural activities can represent
information about remembered sensory variables, such as the frequency
of a vibratory stimulus (Romo, Brody, Hernandez, & Lemus, 1999) or a
spatial location (Smyrnis, Taira, Ashe, & Georgopoulos, 1992; Nakamura,
1999).

In all of the cited examples, the firing rates of the neurons are continuous,
smoothly varying functions of the stored analog variable. These functions
(or tuning curves) seem to come in two distinct classes. In one class, the
firing rates are bell-shaped or bump-shaped functions of the stored variable.
Such tuning curves have been prominent for periodic angular variables
such as head direction (Taube & Bassett, 2003), but have also been found for
nonperiodic, nonangular variables such as the spatial position of an animal
(O’Keefe, 1979; Quirk et al., 1990). In the other class, the firing rates are
monotonic functions of the stored variable. Such tuning curves have been
observed in the oculomotor system (Seung, Lee, Reis, & Tank, 2000) and the
prefrontal cortex (Romo et al., 1999).

The ability to maintain firing rates at different constant levels, often re-
ferred to as graded persistent activity, suggests that the respective neural
systems are able to maintain a continuum of stationary states, each corre-
sponding to a particular pattern of firing rates and a particular memory
value. Such a continuum of stationary states is usually called a continuous
attractor or line attractor of the respective neural dynamical system.

Neural network models of line attractors, built to account for the experi-
mental data described above, are often based on control of precise feedback
in the recurrent connections between neurons. (But see Loewenstein &
Sompolinsky, 2003, and Fransen, Tahvildari, Egorov, Hasselmo, & Alonso,
2006, for single-cell models of persistent activity.) Designing such attrac-
tor networks using neurons with linear input-output functions is fairly
straightforward. However, when realistic nonlinear neurons are considered,
finding network connectivities that yield continuous attractors becomes a
nontrivial problem. A particularly elegant solution exists for the case of
bell-shaped tuning curves. In the so-called bump attractor, the attractor
property is derived from an underlying symmetry in the network connec-
tivity, a translational invariance in the ordering of synaptic weights (Amari,
1977; Ben-Yishai, Bar-Or, & Sompolinsky, 1995; Skaggs, Knierim, Kudrimoti,
& McNaughton, 1995; Zhang, 1996; Samsonovich & McNaughton, 1997;
Tsodyks, 1999; Compte, Brunel, Goldman-Rakic, & Wang, 2000). In con-
trast, an exact solution for the construction of realistic network models with
monotonic tuning curves has been evasive. Instead, researchers building
such network models have relied on computationally intensive numeri-
cal tuning to approximate a line attractor (Seung et al., 2000; Koulakov,
Raghavachari, Kepecs, & Lisman, 2002; Miller, Brody, Romo, & Wang, 2003;
Eliasmith, 2005).
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In this letter, we show that the construction of monotonic line attractors
can be based on the same symmetry principles used in the bump attractor. In
particular, we provide an exact and analytical solution of a monotonic line
attractor network built out of nonlinear neurons and show that this network
and the bump attractor network are instantiations of a whole family of line
attractor networks based on weight matrices with a Toeplitz symmetry.
By connecting the emergence of a continuous attractor with an underlying
symmetry in the network, we gain insights that are less easily obtained with
numerical approaches. We finally show how the monotonic line attractors
based on Toeplitz symmetry are related to the monotonic line attractors that
have been designed earlier (Seung, 1996; Koulakov et al., 2002; Miller et al.,
2003; Eliasmith, 2005).

2 Network Dynamics in The Mean Field Limit

In the experimental data described above, analog variables are represented
by the firing rates of neurons, and these firing rates stay approximately con-
stant over several seconds. We will therefore use firing-rate-based models
to approach the network design problem (Wilson & Cowan, 1973; Amari,
1977; Dayan & Abbott, 2001). We do note that in some experimental sys-
tems, persistent neural activity can be seen to be slowly but significantly
time varying (Brody, Hernandez, Zainos, & Romo, 2003; Rainer & Miller,
2002), and some network models have begun to incorporate this aspect
(Miller et al., 2003; Durstewitz, 2003; Singh & Eliasmith, 2006). However,
for simplicity we will focus here on the case of networks with non-time-
varying persistent activity. In other words, we are concerned with stationary
states—fixed points of the network dynamics.

We label each neuron by a position label x and define stot(x, t) to be the
total synaptic input to neuron x at time t. We further define r (x, t) to be the
firing rate of neuron x at time t. Its dependence on synaptic input is de-
scribed by a function h(·), determined by the biophysics of single neurons,
such that r (x, t) ≡ h

(
stot(x, t)

)
. The synaptic output of neuron x, defined as

the fraction of the maximal conductance of its postsynaptic targets, depends
on the neuron’s firing rate r and is given by a function g(·) that is deter-
mined by synaptic properties: s(x, t) ≡ g

(
r (x, t)

) ∈ [0, 1]. (see appendix A
for details). We label the composition of these two functions, which goes
from synaptic input to synaptic output, as f (·) ≡ g

(
h(·)).

Let w(x, x′) be the total strength of connections from neuron x′ to neu-
ron x. We assume that different inputs to a neuron combine additively.
For simplicity, we assume that the effect of different synapse types can be
incorporated in the weight matrix w(x, x′). In particular, we assume that
excitatory inputs correspond to positive weights and inhibitory inputs to
negative weights. Finally, let E(x) denote external synaptic inputs to neuron
x, coming from neurons or areas of the brain that are outside this network.
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We will assume that these external inputs are constant on the timescales
that interest us.

Under these assumptions, the standard mean field equation for continu-
ous neural networks is given by (Wilson & Cowan, 1973; Dayan & Abbott,
2001)

∂

∂t
s(x, t) = −s(x, t) + f

(∫ 1

−1
dx′w(x, x′)s(x′, t) + E(x)

)
. (2.1)

In the usual interpretation of equation 2.1, s(x) is the firing rate of neuron x.
In our interpretation, however, s will be the synaptic output of a neuron and
is related to the firing rate r through s = g(r ). With this interpretation, the
above formulation of the network dynamics is equivalent to the dynam-
ics of a conductance-based network of asynchronously spiking neurons
(Ermentrout, 1994; Seung et al., 2000; Shriki, Hansel, & Sompolinsky, 2003;
Renart, Brunel, & Wang, 2003).

3 Line Attractors Reconsidered

3.1 Definition. Stationary network states correspond to the case
∂ts(x, t) = 0 in equation 2.1 so that

s(x) = f
( ∫ 1

−1
dx′w(x, x′)s(x′) + E(x)

)
. (3.1)

Given a net input-output function f (·), defined by the biophysical proper-
ties of neurons, our design goal is to find weight matrices w(x, x′) and
external inputs E(x) that generate a continuum of solutions satisfying
equation 3.1. If we denote these solutions with a parameter m ∈ [m0, m1],
then

s(x, m) = f
( ∫ 1

−1
dx′w(x, x′)s(x′, m) + E(x)

)
. (3.2)

The value of m corresponds to the memory stored in the network. As a
function of m, the network states s(x, m) satisfying equation 3.2 trace out
a continuous line in the space of all network states. A one-dimensional
continuous attractor is therefore also called a line attractor.

Since f (·) is a nonlinear function, the design problem—that of finding
weight matrices w(x, x′) and external inputs E(x) that fulfill equation 3.2—
is nontrivial. In contrast, for linear input-output functions f (·), the class of
possible solutions, not treated here, is readily obtained (Dayan & Abbott,
2001). Finding weight matrices and external inputs so that equation 3.2
holds does not guarantee that the resulting continuum of stationary states
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is dynamically stable. However, we will treat the stability of these solutions
as a separate issue.

For a given neuron at position x = x0, the function s0(m) = s(x0, m) cor-
responds to the synaptic output of that neuron as a function of the memory
m. Accordingly, the firing rate

r0(m) = h
(∫ 1

−1
dx′w(x0, x′)s(x′, m) + E(x)

)
(3.3)

corresponds to the tuning curve of the neuron (i.e., its firing rate as a
function of m). Note that the tuning curves are defined via the function
r = h(stot), the mapping of synaptic inputs into the firing rate, and not the
input-output function s = f (stot) used in equations 3.1 and 3.2. The tuning
curves provide the link to experimental data since they can be measured in
electrophysiological experiments. An important constraint on line attractor
design is therefore to find solutions to equations 3.2 and 3.3 that reproduce
the distribution of tuning curves found in actual neural systems.

3.2 The Bump Attractor. The bump attractor is one of the first line attrac-
tor networks constructed with nonlinear elements (Amari, 1977; Ben-Yishai
et al., 1995; Skaggs et al., 1995; Zhang, 1996; Samsonovich & McNaughton,
1997; Tsodyks, 1999; Compte et al., 2000; see also Figure 1). It has been
thoroughly studied and yields some crucial insights into how a continuum
of stationary states can emerge through network interactions. We briefly
review the ideas that underlie the construction of the bump attractor here
in order to pave the way for our own developments explored further below.

In its simplest form, the bump attractor consists of an infinite one-
dimensional layer of neurons, x ∈ R, that receive a spatially homogeneous
external input E(x) = Ec and are excited by their immediate neighbors and
inhibited by neurons farther away. The weight matrix w(x, x′) is thus a
function of the difference x − x′ only (see Figure 1A),

w(x, x′) = k(x − x′),

and a typical weighting function or connectivity kernel k(y) has the shape
of a Mexican hat (see Figure 1B), for example,

k(y) = A
σ1

exp
(
− y2

2σ 2
1

)
− A

σ2
exp

(
− y2

2σ 2
2

)
,

where σ1 is smaller than σ2.
This network can maintain stable bumps of activity at any position x (see

Figure 1D). Intuitively, individual activity bumps are stable in the absence
of inputs because the short-range excitatory connections provide sufficient
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Figure 1: Bump attractor network. (A) The weight or connectivity matrix de-
pends on only the difference y = x − x′ between the positions x and x′ of two
neurons. (B) The connectivity kernel k(y) shows that nearby neurons excite each
other, and neurons farther away inhibit each other. (C) All neurons receive the
same constant external input. (D) The stationary activity profiles s(x, m) are bell
shaped, as a function of both x and m. The thick black curve shows the synap-
tic output of neuron x = 0 as a function of the memory m. (E) Tuning curves
for neurons at different positions x. The thick black curve corresponds to the
neuron at position x = 0.

excitatory feedback to maintain the neural activities within the bump. The
long-range inhibitory connections counterbalance the uncontrolled growth
of the activity bump. Since the network is infinitely large, this activity bump
can be generated at any position x due to the translational symmetry of the
network connectivity matrix.

For arbitrary input-output functions f (·), an analytical solution of the
stationary network states cannot be obtained. Nonetheless, self-maintained
activity bumps can exist in many networks, even if details of the connectiv-
ity kernel or the input-output function f (·) are changed or if the network is
bounded (e.g., ranges from positions x = −1 to x = 1). As a function of the
memories m, the tuning curves of individual neurons, equation 3.3, are bell
shaped (see Figure 1E).

In its most common formulation, the neurons in a bump attractor are
assumed to be organized on a ring, rather than a straight line, so that po-
sition x = −1 corresponds to position x = 1 (Ben-Yishai et al., 1995; Skaggs
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et al., 1995; Zhang, 1996). A possible weight matrix is given by (Ben-Yishai
et al., 1995)—the connectivity kernel k(y) = −J0 + J2 cos(y). Note that this
kernel has the additional property k(y + 1) = k(y − 1) for y = [−1, 1], which
enforces the network’s ring topology. Ring attractors have proven useful
to explain the tuning curves found in systems that store information about
angles, such as the head-direction system (Skaggs et al., 1995; Zhang, 1996;
Taube & Bassett, 2003).

4 Line Attractor Design I: Translationally Invariant Activity Patterns

In both the bump and ring attractor model, the continuum of stable fixed
points of the network is readily understood through the translational sym-
metry of the activity profile on the spatial axis. Similar geometric principles
are not known for line attractors with monotonic tuning; instead, their
construction has so far been based on numerical approximations of appro-
priate weight matrices (Seung, 1996; Seung et al., 2000; Miller et al., 2003;
Eliasmith, 2005). We will now show that the class of solutions with this
property—translational symmetry—can be significantly extended and, in
particular, includes monotonic line attractors.

To investigate the class of translationally invariant solutions to
equation 3.2, we set s(x, m), the family of fixed-point solutions parame-
terized by m, to

s(x, m) = q (x − m),

with x ∈ [−1, 1] and m ∈ [m0, m1], and observe that the following equation
must hold:

∂

∂x
q (x − m) = − ∂

∂m
q (x − m). (4.1)

Inserting equation 3.2 into equation 4.1, we obtain

f ′(stot(x, m))
∂

∂x

[ ∫ 1

−1
dx′w(x, x′)q (x′ − m) + E(x)

]

= − f ′(stot(x, m))
∂

∂m

[ ∫ 1

−1
dx′w(x, x′)q (x′ − m) + E(x)

]
.

This equation is trivially fulfilled for all areas in the (x, m)-plane in which
f ′(stot(x, m)) = 0, that is, areas where the synaptic outputs are either zero,
q (x − m) = 0 or saturated, q (x − m) = 1. When f ′(stot(x, m)) �= 0 (corre-
sponding to the area under the bump in Figure 1D), the synaptic inputs
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must obey the translation rules:

∂

∂x

[ ∫ 1

−1
dx′w(x, x′)q (x′ − m) + E(x)

]

= − ∂

∂m

[ ∫ 1

−1
dx′w(x, x′)q (x′ − m) + E(x)

]
.

Using equation 4.1, we can reformulate the right-hand side to obtain

∂

∂x

[ ∫ 1

−1
dx′w(x, x′)q (x′ − m) + E(x)

]
=

∫ 1

−1
dx′w(x, x′)

∂

∂x′ q (x′ − m).

Using partial integration of the right-hand side and solving for ∂x E(x), we
obtain

∂

∂x
E(x) = w(x, 1)q (1 − m) − w(x,−1)q (−1 − m)

−
∫ 1

−1
dx′

(
∂w(x, x′)

∂x
+ ∂w(x, x′)

∂x′

)
q (x′ − m). (4.2)

Equation 4.2 will be the central basis of our developments. Although
it need hold only when f ′(s(x, m)) �= 0, for simplicity we will confine our-
selves here to solutions where equation 4.2 holds in the entire (x, m) plane.
Below we describe some further simplifying assumptions that allow us to
use equation 4.2 to design a wide variety of line attractors. Before we do so,
however, we illustrate the simplest possible monotonic line attractor that
we can design using equation 4.2.

5 A Basic Monotonic Line Attractor

Let us assume that the network has all-to-all excitatory connections
with equal weights, w(x, x′) = wE (see Figures 2A and 2B). According to
equation 4.2, and noting that the derivatives of w(x, x′) vanish, the external
inputs must fulfill the equation

∂

∂x
E(x) = wE (q (1 − m) − q (−1 − m)).

If we assume that the neuron at the left end, position x = −1, is inactive
for all memories m, so that s(−1) = q (−1 − m) = 0, and the neuron at the
right end, position x = 1, is saturated so that s(1) = q (1 − m) = 1, then the
external inputs must be (see Figure 2C)

E(x) = wE x + Ec . (5.1)



460 C. Machens and C. Brody

Figure 2: Monotonic line attractor network. (A) The network is all-to-all con-
nected with equal excitatory weights, w(x, x′) = wE . (B) Accordingly, the con-
nectivity kernel k(y) is constant. (C) Neurons receive external inputs that depend
linearly on their position x. (D) The stationary activity profiles s(x, m) are sig-
moidal functions of both x and m. The thick black curve shows the synaptic
output of neuron x = 0 as a function of the memory m. (E) Tuning curves for
neurons at different positions x. The thick black curve corresponds to the neu-
ron at position x = 0. Although the synaptic outputs in panel D saturate, the
firing rates of individual neurons do not.

Note that the external inputs must have this form if a translationally invari-
ant steady-state s(x, m) = q (x − m) is to exist. While a necessary condition,
this choice of E(x) guarantees neither that steady states exist nor that they
are nontrivial: as an extreme example, equation 5.1 can be trivially satis-
fied with wE = 0 and E(x) = Ec, but in that case, there is only a single
stable state, and that is the trivial solution with all neurons having the same
output, s(x) = f (Ec).

For large enough wE and a specific value of Ec, determined below, a
continuum of different stable states does exist and is shown in Figure 2D.
Notice that by design, neurons at the left end always have inputs below
threshold to produce an output s(−1) = 0, while neurons at the right end
always have their synaptic outputs saturated, s(1) = 1. Nonetheless, this
last fact does not imply that neuronal firing rates at x = 1 must always be
saturated, since g(·), the mapping of firing rate into synaptic output, may
have reached saturation, even while h(·), the mapping of synaptic input into
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Figure 3: Design of a simple monotonic line attractor. (A) Stationary activity
profile of the basic monotonic line attractor. (B) When we shift the network state
by �x to the left, the neuron at position x0 − �x will have the same synaptic
output that neuron x0 had in panel A. However, the recurrent inputs to the
neuron x0 − �x are not the same, since the shift of the network state causes an
overall increase in recurrent excitation (black area). (C) If the external inputs
to neuron x0 − �x exactly compensate for the gain in recurrent inputs, then
neuron x0 − �x in panel B will also be in steady state.

the firing rate, has not (compare Figures 2D and 2E and see also appendix
A and Figure 6).

How does this network achieve its stability for a continuum of states?
A particular stable state of the network is shown in Figure 3A. When the
memory m is decreased, the activity pattern s(x, m) is translated leftward,
and the number of neurons in the network with saturated output increases
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(see Figure 3B). Consequently, the total recurrent excitation received by any
neuron will also increase, leading to a gain in recurrent excitation that is
proportional to the shift �x as shown by the black area in Figure 3B. Now
consider the neuron at position x0 in Figure 3A. Let us denote this neuron’s
synaptic output as s0. As m decreases and the activity pattern is translated
toward the left, the value of x identifying the neuron with synaptic output s0

decreases (see Figure 3B). For lower values of x, the external excitation E(x)
is smaller (see Figure 3C). When the gain in recurrent excitation matches this
loss in external excitation, the forces on the neurons identified by s(x, m) =
s0 remain constant even when m changes. Equation 5.1 enforces this balance
so that translations of any steady state obeying the boundary conditions will
also be a steady state.

The intuition illustrated in Figure 3 aside, let us now determine the
conditions on wE and Ec that lead to nontrivial translationally invariant
solutions. Define the integrated activity in the network as

u ≡
∫ 1

−1
dx s(x),

so that the steady state, equation 3.1, can be written as

s(x) = f (wE u + wE x + Ec).

To be consistent with the boundary conditions, the output s(x) of the
left-most (x = −1) neuron must be zero, and the output of the right-most
neuron (x = 1) must be saturated at one. These conditions are reflected in
two inequalities. For the left border neuron, the total synaptic input must
be

stot(−1) = wE u − wE + Ec ≤ sth, (5.2)

where sth is the value of synaptic input below which there is zero output.
Note that this equation must hold for all points on the line attractor—that
is, for all memories m. These different points are distinguished through
different values of the integrated activity u. Equality holds in equation 5.2
for the activity profile with the largest integrated activity, u = uL . This is the
state on the line attractor for which the activity of the left border neuron,
s(−1), is still zero, yet the activities of its neighbors are not (compare in
Figure 2D, position x = −1, memory m = 0).

For the right border neuron (position x = 1), we obtain

stot(1) = wE u + wE + Ec ≥ ssat, (5.3)
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where ssat is the synaptic input above which the neuron is in saturation.
Equality holds for the steady state with the smallest integrated activity,
u = uR. Here, the right border neuron, s(1), is still in saturation, yet its
neighbors no longer are (compare in Figure 2D, position x = 1, memory
m = 1.25). Using the cases u = uL in equation 5.2 and u = uR in equation 5.3,
we can solve these equations for wE to obtain

wE = ssat − sth

2 + uR − uL

>
1
2

(ssat − sth), (5.4)

where the last inequality follows because uL > uR. Accordingly, only when
wE exceeds the right-hand side of equation 5.4 are we ensured that the
left and right border neurons fulfill the boundary conditions. When wE =
(ssat − sth)/2, then uR = uL , implying that there is only one stable point. If
wE is greater than (ssat − sth)/2, then uL − uR > 0, and there is a range of u
values that satisfies the boundary conditions. The maximum possible range,
with uL − uR = 2, occurs when wE = ∞. In a manner similar to the case of
the bump attractor, the line attractor solutions require a large enough wE

but are independent of the detailed form of f (·).
These considerations leave only the parameter Ec unconstrained. In

appendix B, we show that when wE satisfies equation 5.4 and if Ec has
the value

Ec = −wE + ssat −
∫ ssat

sth

ds ′ f (s ′), (5.5)

the network has a continuum of stationary states. Furthermore, in appendix
E, we show that these stationary states are stable, so that a line attractor
network is obtained.

6 Line Attractor Design II: Boundary Conditions

While a uniform connectivity matrix, w(x′, x) = wE , provides a particularly
treatable simplification of equation 4.2, it is not the only one. The main issue
to be addressed with respect to equation 4.2 is that E(x) depends on both
the weight matrix, w(x, x′), and the activity profiles, q (x − m). However, by
definition E(x) cannot depend on m, so in order for the equation to be valid,
the m-dependence on the right-hand side needs to drop out.

We will make two constraining assumptions that let m drop out of the
right-hand side of equation 4.2. First, we will confine ourselves to solutions
where equation 4.2 is valid for the entire (x, m) plane. Second, we further
confine ourselves to weight matrices with Toeplitz symmetry, w(x, x′) =
k(x − x′). For these weight matrices, the integral on the right-hand side
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of equation 4.2 vanishes. Note that Toeplitz-type weight matrices are also
used in the bump and ring attractor; here, however, we do not require the
additional symmetry constraint, w(x, x′) = w(x′, x), that is used in those
models.

With these assumptions, we integrate equation 4.2 to obtain

E(x) = Ec + q (1 − m)
∫ x

−1
dx′k(x′ − 1) − q (−1 − m)

∫ x

−1
dx′k(x′ + 1). (6.1)

While the right-hand side of this equation still depends on m, this depen-
dence is now reduced to the activities of the border neurons—the neurons at
the positions x = −1 and x = 1. There are only two possibilities to eliminate
the remaining dependence on m and render a unique equation for E(x):

� Constant boundaries. If the activity of the border neurons remains
constant for all m, so that q (−1 − m) = const1 and q (1 − m) = const2,
then the m-dependence drops out trivially. The simplest conditions
are those for which the border neurons are either below threshold or in
saturation. The monotonic line attractor designed above (see section 5)
falls into this class, as does the bump attractor (see section 3). For the
latter, both border neurons are below threshold.

� Periodic boundaries. If the connectivity kernel fulfills the addi-
tional constraint k(x − 1) = k(x + 1) and if the boundaries are peri-
odic, q (−1 − m) = q (1 − m), then the m-dependence will drop out be-
cause the integrals in equation 6.1 cancel exactly. In this case, we have
E(x) = Ec . This choice of external inputs, together with the condition
k(x − 1) = k(x + 1), does indeed create a network with ring topology
since the neuron at position x = −1 and the neuron at position x = 1
become identical. (We note that Toeplitz matrices with this additional
property are also called circulant matrices; Horn & Johnson, 1985.)
The ring attractor discussed in section 3 falls into this class.

The choice of a weight matrix and a boundary condition therefore fully
determines the x-dependence of the external inputs E(x), up to an additive
constant. Nonetheless, several uncertainties remain in the line attractor
design since the above conditions are necessary but not sufficient. More
specifically, for an arbitrary Toeplitz weight matrix and a choice of the
boundary conditions, there is no guarantee that a value Ec exists such that
a network with external inputs tuned according to equation 6.1 will have a
nontrivial, stable activity profile consistent with the boundary conditions.

While we have not been able to specify all Toeplitz weight matrices that
allow the design of line attractors, we outline several conditions below
that allow constructing a large variety of line attractors (see also Figure 4).
We will not consider the periodic boundary conditions or the boundary
conditions q (1 − m) = q (−1 − m) = 0 since these correspond to the bump
attractor and have already been discussed in great detail in the literature.
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7 A Potpourri of Line Attractors Based on Toeplitz Symmetry

7.1 More Line Attractor Networks. A large set of line attractors can be
designed with the boundary conditions q (−1 − m) = 0 and q (1 − m) = 1.
All we need to do is follow the same principles as in section 5.

First, since not all connectivity kernels can support a line attractor with
these boundary conditions, we need to find a condition that tells us which
kernels do. As shown in appendix C, we can follow a similar line of thought
as in the derivation of equation 5.4. If k(y) fulfills the inequality

∫ 1

−1
dx min{k(1 − x), k(−1 − x)} ≥ ssat − sth, (7.1)

then a line attractor network can be obtained by tuning Ec . Note that we
retrieve equation 5.4 when k(y) = wE . A simple way to obtain kernels that
obey equation 7.1 is to make sure that excitation dominates the network
connectivities. As a direct consequence, we note that noise correlations of
simultaneously recorded neurons in such networks must be positive on
average. This is indeed the case for simultaneously recorded neurons in
the goldfish oculomotor system (Aksay, Baker, Seung, & Tank, 2003) or the
monkey prefrontal cortex (Machens, Romo, & Brody, 2005), if the slope of
the respective tuning curves has the same sign.

Second, we need to tune the constant Ec in equation 6.1. For arbi-
trary connectivity kernels that fulfill equation 7.1, this parameter has to
be tuned numerically. In contrast to previous monotonic line attractor de-
signs, numerical tuning has been reduced to the tuning of a single scalar
parameter. Fortunately, as we now describe, a simple procedure to achieve
this tuning can be devised. Let us assume that we know a steady-state
s0(x) on the line attractor. For the correct value of Ec , all time deriva-
tives, equation 2.1, will vanish if the network is in this steady state. If,
on the other hand, Ec is too large, then the time derivatives will be pos-
itive at any position x, and if Ec is too small, then the time derivatives
will be negative. Due to the monotonicity of f (·), the integral over the time
derivatives,

D(Ec, s0(·)) =
∫ 1

−1
dx

[
− s0(x) + f

( ∫ 1

−1
dx′k(x − x′)s0(x′) +E(x|Ec)

)]
(7.2)

is therefore also a monotonic function of Ec , and its root yields the correct
value for Ec . The notation E(x|Ec) reminds us that the external inputs E(x)
depend on Ec , as defined in equation 6.1. The correct value for Ec can
then be determined with simple root-finding methods (Press, Teukolsky,
Vetterling, & Flannery, 1992).
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The only remaining problem is that we do not know the precise form of
s0(x) until we know Ec . In practice, though, if s0(x) is sufficiently close to an
actual steady state, such as s0(x) = �(x), the root of equation 7.2 will still lie
in the neighborhood of the correct Ec . In this neighborhood, the dynamics
of the network are usually slow along the line that will give rise to the line
attractor and fast along all other directions. Consequently, if we simulate the
network differential, equation 2.1, starting with a state that is sufficiently
close to the actual line attractor, such as s0(x) = �(x), the shape of s0(x) will
rapidly approximate the shape of the steady-state activity profiles and only
slowly drift along the line attractor. By determining the root of equation 7.2
at every time step, we can adjust Ec during the simulation. While the
network dynamics falls into the line attractor, Ec will then converge onto
its correct value (see also appendix A).

Several examples designed with this recipe are shown in Figures 4A to
4F. Whereas most of these line attractors have monotonic tuning curves, it is
also possible to obtain nonmonotonic tuning curves, as shown in Figure 4F.

7.2 Positive and Negative Monotonic Tuning Curves I: Revisiting the
Bump Attractor. Neurons in the networks shown in Figures 4A to 4E
have tuning curves with positive monotonic slopes. In electrophysiolog-
ical recordings from the prefrontal cortex, however, one finds both neurons
with positive and neurons with negative monotonic tuning curves within
the same system (Romo et al., 1999; Machens et al., 2005). We will show next
that both types of tuning curves can be obtained by choosing a network with
boundary conditions q (−1 − m) = 1 and q (1 − m) = 1.

As previously, the general problem is to find weight matrices that match
this particular choice of saturated synaptic output boundary conditions.
Here, our approach is heuristic: we choose weight matrices such that the
tuning of the external inputs E(x), through equation 6.1, creates external
inputs at the boundaries, E(x = −1) and E(x = 1), that support the chosen
boundary conditions. In other words, to guarantee nontrivial steady states,
we seek a U-shaped function E(x) such that neurons close to the borders
receive large external inputs and neurons in the center (positions around
x = 0) receive small external inputs. According to equation 6.1, a simple
way to obtain this shape of the external inputs is to choose a Toeplitz
weight matrix such that the kernel k(y) is negative around its ends (y ≈ −2
and y ≈ 2) and positive in the center (y ≈ 0).

An example of such a line attractor is shown in Figure 4I. Note that the
weight matrix of this network is identical to the one for the bump attractor
network in Figure 4H. Nonetheless, simply by changing the external inputs,
without changing the internal recurrent connectivity at all, it is possible to
transform a bump attractor into a line attractor with monotonic tuning
curves. Individual neurons are tuned to the memory m with both positive
and negative monotonic slopes.
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Figure 4: Tuning curves obtained from line attractor networks with different
kernels k(y) or different boundary conditions. The thick black lines correspond
to the tuning curve of the neuron at position x = 0. The insets show the con-
nectivity kernels k(y) and the external inputs E(x). (A) Line attractor with
k(x − x′) = wE and boundary conditions s(−1) = 1 and s(1) = 0. This is the basic
monotonic line attractor (see section 5) with inverted boundary conditions and
tuning curves. (B) Line attractor with a symmetric connectivity kernel and short-
range excitatory connections. The boundary conditions are again s(−1) = 1 and
s(1) = 0. (C) Line attractor with the same boundary conditions but an asym-
metric kernel. (D–F) Line attractors with the same boundary conditions but
randomized connectivity kernels. Note that in all of these kernels, excitatory
connections dominate. Panel F shows that nonmonotonic tuning curves are
possible as well. (G) Ring attractor (see section 3). (H) Variant of the bump at-
tractor with short-range excitation and global inhibition. Boundary conditions
are s(−1) = 0 and s(1) = 0. (I) By changing the external inputs to the network in
H (boundary conditions are now s(−1) = 1 and s(1) = 1), we can obtain a net-
work with both positive and negative monotonic tuning curves. Here neurons
in the center (black line; position x = 0) are not active.
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We remark on this line attractor simply to demonstrate the range of
possibilities obtainable by tuning the external inputs. However, we have not
investigated this family of line attractors in greater detail. In the example
in Figure 4G, the parameter Ec was tuned by trial and error; the exact
parameter values for this network are given in appendix A.

7.3 Positive and Negative Monotonic Tuning Curves II: Coupling Line
Attractor Networks. The definition of m is purely conventional. By simply
redefining it, that is, by setting m 
→ −m, or, equivalently, setting x 
→ −x,
the networks in Figures 4A to 4E will have tuning curves with negative
slopes. In principle, one could therefore obtain opposite tuning curves by
constructing two independent networks. However, two independent net-
works could lead to conflicting representations of the analog memory m,
which is, after all, one-dimensional. To solve this problem, we need to ask
how to couple these networks so that both represent the same m. These con-
siderations will provide a different solution to the problem of constructing
networks with both positive and negative monotonic tuning curves. Since
the question of coupling line attractor networks is interesting in its own
right, we discuss it next.

Imagine that we have two networks with Toeplitz weight matrices
w11(x, x′) = k11(x − x′) and w21(x, x′) = k22(x − x′). To couple these net-
works, we choose Toeplitz coupling matrices, so that the connections from
the first to the second network are given by w12(x, x′) = k12(x − x′) and the
reverse connections by w21(x, x′) = k21(x − x′). The steady-state equations
for the two layers are simply rewritten from equation 3.2,

si (x) = f


 2∑

j=1

∫ 1

−1
dx′ki j (x − x′)s j (x′) + Ei (x)


 ,

where si (x) is the activity at position x in the ith layer with i ∈ {1, 2}. A
derivation similar to the one in sections 4 and 6 shows that the external
inputs are again determined by the weight matrix and the boundary
conditions,

Ei (x) = Ei,c +
2∑

j=1

[
q j (1 − m)

∫ x

−1
dx′ki j (x′ − 1)

− q j (−1 − m)
∫ x

−1
dx′ki j (x′ + 1)

]
.

As discussed before, the boundary conditions need to be self-consistent
with the Toeplitz weight matrices. Due to the increase in possibilities, there
are far more free parameters in this problem than before, which makes a
self-consistent design more complicated.
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Figure 5: Coupling of two line attractor networks. (A) Connectivity matrix of
the coupled network. Within each layer, connections are excitatory with equal
weights; between layers, they are inhibitory with equal weights. (B, C) Neurons
in the two layers receive external inputs that increase (layer 1) or decrease
(layer 2) as a function of their position. (D) Activity profiles s1(x, m) and s2(x, m)
in the two layers. Note the opposite tuning with respect to both x and m. The
thick black curve shows the synaptic output of neurons at position x = 0 as a
function of the memory m. (E) Tuning curves for neurons at different positions
x. The thick black curves correspond to the neurons at position x = 0.

A simple case is given by building on the example of section 5. Let
us take two of these networks, so that k11(x − x′) = k22(x − x′) = wE , and
couple them with constant, mutually identical connections, k12(x − x′) =
k21(x − x′) = wI . While these connections could be either excitatory or in-
hibitory, the index I insinuates that we will eventually assume that they are
inhibitory (see also Figure 5A).
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We will assume that the first layer has negative monotonic tuning curves
(achieved by setting s1(−1) = q1(−1 − m) = 0 and s1(1) = q1(1 − m) = 1)
and the second layer positive monotonic tuning curves (achieved by set-
ting s1(−1) = q1(−1 − m) = 1 and s1(1) = q1(1 − m) = 0). The external in-
puts therefore become (compare equation 5.1)

E1(x) = (wE − wI )x + Ec

E2(x) = −(wE − wI )x + Ec,

leading to the steady-state equations

s1(x) = f (wE u1 + wI u2 + (wE − wI )x + Ec) (7.3)

s2(x) = f (wE u2 + wI u1 − (wE − wI )x + Ec)

with u1 = ∫
dx′s1(x′) and u2 = ∫

dx′s2(x′). With similar methods as in the
one-layer case, we can derive the parameter regime for which this network
yields a line attractor. An outline of the derivations is given in appendix D.
For the parameters of the weight matrix, we find that

wE − wI ≥ 1
2

(ssat − sth). (7.4)

Note that if wI is inhibitory, its value is negative and can therefore be chosen
arbitrarily. Furthermore, we find that Ec can take a whole range of values:

Ec ≥ − 2wI

wE − wI
ssat + wI − wE − wE + wI

wE − wI

[∫ ssat

sth

ds ′ f (s ′) − ssat

]
(7.5)

Ec ≤ − 2wI

wE − wI
sth − 3wI − wE − wE + wI

wE − wI

[∫ ssat

sth

ds ′ f (s ′) − ssat

]
. (7.6)

The distribution of tuning curves is shown in Figure 5E. Note that the
overall network activity U = u1 + u2 is constant. The memorized variable
is determined by m = −u1 = U − u2.

We note two additional aspects about the coupled network. First, since
the overall network activity is constant, the external, x-dependent inputs
could also be supplied through the network itself, that is, made internal
by appropriate changes of the weight matrix. If w(z, z′) denotes the weight
matrix of the complete network (see Figure 5A), then we can write w′(z, z′) =
w(z, z′) + c(z) and E ′(z) = E(z) − Uc(z) for an arbitrary function c(z) and the
network with w′(x, x′) and E ′(x) will have a line attractor as well.1

1Quite generally, if there exists a function h(x, x′) with
∫

dx′h(x, x′)s(x′, m) = c(x) for
all indices m on the line attractor, then this indicates an invariance of the weight matrix and
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Second, we note that by concatenating the two layers such that position
x = 1 in layer one corresponds to position x = −1 in layer two, we obtain a
single layered network with a single shiftable activity profile. This illustrates
that the existence of (single) shiftable activity profiles is not restricted to pure
Toeplitz-type weight matrices. The restriction to these weight matrices was
a simplification introduced for the derivation of equation 6.1.

8 From Continuous to Discrete Networks

All of our derivations so far have been done for a continuous layer of neu-
rons. While this has the benefit of simplifying the analysis, in both reality
and simulations, only a finite number of neurons will be available. In these
discrete networks, we can still fine-tune the external inputs, and the exact,
discrete analog to equation 6.1 is provided in appendix A. The finite net-
works then exhibit a discrete series of fixed points rather than a continuous
line, since the activity profile can be shifted only one neuron at a time. The
construction of line attractor networks based on translational symmetry is
therefore not restricted to large-scale networks whose dynamics are well de-
scribed by the neural field equations (see equation 2.1) but can be employed
in smaller networks as well. For instance, all the networks in Figure 4 were
simulated with N = 51 units.

9 Discussion

The investigation of neural networks that give rise to persistent activity has
a long history (Wang, 2001; Major & Tank, 2004). Here, we have focused on
graded persistent activity, which is thought to be the neural substrate of the
short-term memory of analog values. The design of networks that exhibit
graded persistent activity is relatively straightforward if the neuron’s input-
output functions are linear or threshold linear (Morishita & Yajima, 1972;
Cannon, Robinson, & Shamma, 1983; Seung, 1996); however, the construc-
tion of such networks has proven more complicated for nonlinear, realistic
input-output functions and has often relied on numerical tuning (Droulez
& Berthoz, 1991; Zipser, Brandt, Littlewort, & Fuster, 1993; Seung, 1996;
Seung et al., 2000; Eliasmith, 2005).

The bump attractor has been a prominent exception and has shown that
the emergence of a line attractor can be tied back to an underlying symmetry
in the network connectivity (Amari, 1977; Ben-Yishai et al., 1995; Skaggs
et al., 1995). In this work, we have shown that this symmetry principle can
be used to design a plethora of line attractor networks if one allows external
inputs that are inhomogeneous. While symmetry may not be a necessity for

external inputs, and we can set w′(x, x′) = w(x, x′) + αh(x, x′) and E ′(x) = E(x) − αc(x)
for any number α without changing the stationary states of the network.
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the existence of continuous attractors—after all, numerical approximations
of continuous attractor networks usually do not make that assumption—it
provides additional insights and allows some analytical treatment of the
respective networks.

Perhaps most important, the geometric understanding of symmetry-
based line attractors put forth here may provide a useful conceptual basis
for solving a major outstanding problem: What plasticity rules does biology
use in constructing line attractors? To date, models of line attractors have
not addressed how they might be constructed in biology. Line attractors pro-
duced through numerical tuning (Seung et al., 2000; Eliasmith, 2005; Singh &
Eliasmith, 2006, for example) typically have a complex network connectiv-
ity that does not easily lend itself to devising biologically plausible plasticity
rules with which they could be constructed. We speculate and hope that
the far simpler underlying structure of the translational symmetry-based
line attractors may facilitate such a development and generalize from the
artificial models constructed here to biological line attractors.

In our framework, we assume a Toeplitz-symmetric weight matrix and
then tune the external inputs so that (possible) stationary states of the net-
work can be translated along the network’s spatial axis. The continuous
attractor therefore emerges due to the shift symmetry that the tuned ex-
ternal inputs create.2 A crucial ingredient in creating this symmetry for
(monotonic) line attractors is the saturation of synaptic outputs (see also
Seung et al., 2000).

A prominent feature of all of our networks is that the tuning curves of dif-
ferent neurons are shifted along the axis representing the memorized vari-
able, the m-axis. These shifts are often only partially visible (see Figure 4),
as should be expected given the finite and bounded nature of both the
memory m and the network itself. Many tuning curves found in neural sys-
tems, including the ones that are monotonic, show this kind of shifting and
are therefore at least consistent with the idea of continuous attractors built
on translational invariance. It should be mentioned, however, that tuning
curves in real systems are usually a lot more heterogeneous than the ones
we find in our simplified models. For instance, the slopes of monotonic
tuning curves vary in both the oculomotor system of the goldfish (Seung
et al., 2000) and the prefrontal cortex (Brody et al., 2003). While such hetero-
geneity could in principle be built into our line attractor networks (see also
appendix E), it would simply be an add-on without any explanatory value.
For simplicity, we have therefore neglected this issue. (For models that are
explicitly based on such heterogeneity, see Eliasmith, 2005.)

For analytical simplicity, we have derived our results within the mean
field framework and assumed that all synapses are identical except for their

2Indeed, this principle applies to both stable and unstable fixed points of the dynamics.
When inverting the spatial axis in one of the layers of the coupled network (see Figure 5),
one can obtain a continuous line of unstable fixed points as well (simulations not shown).
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(positive or negative) weight. When we distinguish explicitly between dif-
ferent synapse types, such as excitatory and inhibitory synapses, we can still
design a continuum of stationary states by fine-tuning the external inputs to
these networks along the lines of equation 6.1. However, there exist circum-
stances in which the different time constants of excitation and inhibition
can lead to dynamical instabilities (Wang, 1999; Pinto & Ermentrout, 2001),
rendering the stationary points unstable. While assuming slow excitatory
dynamics, for example, through NMDA channels, alleviates this problem
(Wang, 1999), future work will have to determine the precise conditions
under which the continuous attractor networks presented here are stable.

Last, but not least, all of our networks require that synaptic weights and
external inputs are precisely tuned to the right parameters. This is a generic
problem that all line attractor networks face, whether they are produced
through symmetry principles or through numerical tuning, and it is an issue
that this work is not meant to address. We want to add, though, that all of the
networks here can be made robust against small changes in their parameters
if we assume that individual neurons are hysteretic as originally proposed
by Koulakov et al. (2002). Indeed, a spiking neuron implementation of a
robust version of the coupled line attractor network (see Figure 5) has been
described in Machens et al. (2005).

Appendix A: Simulations

In this section, we briefly describe the details necessary to replicate the
simulations. In particular, we provide all the parameters for the networks
shown in Figure 4.

A.1 Input-Output Function. The construction of the synaptic input-
output function s = f (stot) from the mapping of firing rates into synap-
tic outputs, s = g(r ), and the mapping of synaptic inputs to firing rates,
r = h(stot), is shown in Figure 6. For the construction of line attractor net-
works along the lines presented here, the detailed shape of the input-output
function s = f (stot) does not matter, as long as it is monotonic and as long
as f (stot) = 0 if stot ≤ sth and f (stot) = 1 if stot ≥ ssat (compare Figure 6C).

In our network models, we assumed that synapses will saturate for
sufficiently high presynaptic firing rates. One prominent form of synaptic
saturation is given through synaptic depression. If the probability of vesicle
release recovers with τ , then the postsynaptic conductance g will follow the
equation (Dayan & Abbott, 2001),

g = gmax
r

1 + (1 − fD)τr

where gmax is the maximum conductance input and fD controls the strength
of depression. Note that the precise biophysical mechanism for saturation



474 C. Machens and C. Brody

Figure 6: A neuron’s input-output function. (A) The synaptic output of a neuron
as a function of its firing rate. The synaptic output is proportional to the con-
ductance input to the postsynaptic neuron. In this example, it saturates through
synaptic depression. (B) Firing rate of a neuron as a function of its total synaptic
input. (C) Combining A and B allows plotting a neuron’s synaptic output as a
function of its input; we call this function the neuron’s synaptic input-output
(i/o) function.

does not matter in our framework. Previous work has shown that NMDA
synapses yield a more robust implementation of synaptic saturation in
biophysically realistic networks (Wang, 1999).

Based on the above equation, we formulate the relation between the
presynaptic firing rate r and the synaptic output s. Choosing fD = 0.5 and
τ = 1 sec, we assume that the synaptic output of a neuron obeys the relation

s = g(r ) =



0 if r ≤ 0 Hz
A r

1+r/2 if 0 < r < 50 Hz
1 if r > 50 Hz,

where A = 13/25 is chosen to make this function continuous. The piece-
wise definition of the function serves to ensure that the above-saturation
regime is exactly, and not just approximately, constant.

For simplicity, we assume a threshold-linear dependency of the firing
rate on the synaptic input,

r = h(stot) =
{

0 if stot ≤ 0
50stot if stot > 0.

For the simulations in Figure 4, stot varies approximately between 0 and 2,
leading to firing rates r that range from 0 to 100 Hz.

The input-output function is then given by s = f (stot) = g(h(stot)), as
shown in Figure 6.
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A.2 Discrete Networks. While our derivations have been done for
continuous mean field networks, the simulations in all of the figures
were performed with relatively small discrete networks (network size
N = 50, . . . , 500 neurons). When rewriting the main equations for finite
networks, a few subtleties need to be taken into account.

For a network with N neurons, we replace the continuous position x by
a discrete index i = 1, . . . , N and rewrite equation 3.1:

si = f


 N∑

j=1

wi j s j + Ei


 .

The derivation in section 4 can be performed for a discrete network as well,
resulting in the following analog to equation 6.1,

Ei = Ec + s1

i∑
j=2

w j−1,N − sN

i∑
j=2

w j,1,

where it is implicitly understood that the weight matrix wi j has a Toeplitz
structure such that wi j = ki− j . Note the index shift in j between the second
and third sums. Also note that the definition of Ec here is different from the
one in equation 6.1 since the indices i are not symmetric around zero. (The
position x is symmetric around zero.)

To calculate the value of Ec for the networks in Figures 4A to 4F, we
simulate the following set of (differential) equations:

ṡi = −si + f


 N∑

j=1

wi j s j + Ei




0 =
N∑

i=1


 f


 N∑

j=1

wi j sl + E j (Ec)


 − si


 ,

with the initial conditions si = 0 for i < N/2 and si = 1 otherwise. The
second equation is an implicit equation for Ec that can be solved at ev-
ery time step using standard numerical root-finding methods (Press et al.,
1992). While the first equation will evolve onto a continuous attractor,
the solution of the second equation will converge onto the correct value
of Ec .

The values of Ec in the networks in Figures 4G to 4I were estimated with
a simple trial-and-error procedure and are given below.
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Table 1: Design of Continuous Attractor Networks.

4 wi j s1 sN Ec

Figure 4A 1/25 1 0 −1.924
Figure 4B 3/25 exp(−|i − j |/12) 1 0 −1.308
Figure 4C 3/50�(i − j) exp(−|i − j |/30)

+ 3/50�(−(i − j)) exp(−|i − j |/8) 1 0 −0.4
Figure 4G 1/25 + 2/25 cos(2π (i − j)/N) 0 0 −1 ∈ [−1.13,−0.7]
Figure 4H −7/50 + 1/5 exp(−(i − j)2/160) 0 0 0.3 ∈ [−0.19, 4.5]
Figure 4I −7/50 + 1/5 exp(−(i − j)2/160) 1 1 3 ∈ [1.5, 5.13]

A.3 Parameters for Line Attractors in Figure 4. For the line attractors
in Figure 4, we used networks with N = 51 neurons. The parameters of the
weight matrices wi j and the constant external inputs Ec are given in Table 1.
The intervals in the last column indicate that the respective continuous
attractor systems exist for several values of Ec .

Appendix B: Basic Monotonic Line Attractor: Derivation of E c

To determine the correct value of Ec for the basic monotonic line attractor,
we note that the dynamics of the network will always reduce to a single
dimension, since the weight matrix has rank one. This statement is proved
in appendix E. The relevant variable for the basic monotonic line attractor
is the integrated network activity u. Using equation E.2, we obtain:

u =
∫ 1

−1
dx f (wE u + wE x + Ec)

= 1
wE

[F (wE u + wE + Ec) − F (wE u − wE + Ec)], (B.1)

where F (·) is the antiderivative of f (·). Without loss of generality, we can
choose F (·) such that F (sth) = 0. This function is then piece-wise defined as

F (stot) =




0 if stot ≤ sth∫ stot

sth

ds ′ f (s ′) if sth < stot ≤ ssat

F (ssat) + stot − ssat if stot > ssat.

(B.2)

We note that the right term on the right-hand side of equation B.1 will vanish
because of equation 5.2. Furthermore, the input to F (·) in the left term on
the right-hand side of equation B.1 will always be larger than ssat, which
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follows from equation 5.3. Using the definition of F (·) in equation B.2, we
therefore obtain for equation B.1,

u = 1
wE

[F (ssat) + wE u + wE + Ec − ssat],

which will have a continuum of solutions for u iff

Ec = −wE + ssat − F (ssat),

which proves equation 5.5.

Appendix C: Line Attractors with One Saturated Boundary:
Existence Proof and Constraints

C.1 Constraints on Connectivity Kernel. Given the boundary condi-
tions s(−1) = 0 and s(1) = 1 and the appropriately tuned external inputs
E(x), equation 6.1, we can formulate inequalities, similar to equations 5.2
and 5.3, that need to be fulfilled for the left-most and right-most border
neurons:

∫ 1

−1
dx k(−1 − x)s(x) + Ec ≥ sth (C.1)

∫ 1

−1
dx k(1 − x)s(x) +

∫ 1

−1
dx k(x − 1) + Ec ≤ ssat. (C.2)

Solving these inequalities for Ec and combining them leads to a single
inequality:

∫ 1

−1
dx [k(1 − x) − k(−1 − x)]s(x) +

∫ 1

−1
dx k(x − 1) ≥ ssat − sth. (C.3)

Since we do not know the stationary network states s(x) for arbitrary kernels
k(y), we can only approximate the left-hand side. If we assume that s(x)
takes a form that leads to the smallest possible value of the left integral,
then this approximation will be conservative. Let us define the set of all
x for which the term in the square brackets is negative: � = {x|k(1 − x) <

k(−1 − x), x ∈ [−1, 1]}. To minimize the left integral with respect to s(x), we
assume that s(x) = 1, whenever x ∈ � and s(x) = 0 otherwise. Accordingly,

∫
�

dx [k(1 − x) − k(−1 − x)] +
∫ 1

−1
dx k(x − 1) ≥ ssat − sth.



478 C. Machens and C. Brody

Simplifying, we obtain

∫
�

dx k(1 − x) +
∫

[−1,1]\�
dx k(−1 − x) ≥ ssat − sth,

which is identical to equation 7.1. Note that this is a sufficient but not
necessary condition on the kernels k(y). In other words, there may be kernels
that do not fulfill this inequality yet still allow the construction of a line
attractor with the required boundary conditions.

C.2 Existence of Stationary States. To show that a line attractor exists
for kernels that fulfill equation 7.1, we need to prove that—for at least one
value Ec—the network has a stable stationary state that obeys the boundary
conditions. Due to the tuning of the external inputs in equation 6.1, we know
that if one such stationary state exists, it can be shifted within a certain range,
and a continuum of stationary states must exist as well.

Given that a line attractor exists, we observe that the equality sign in
equation C.1 will hold for the left-most state on the line attractor, which we
denote as sL (x). This suggests that the correct choice for Ec is

Ec = sth −
∫ 1

−1
dx k(−1 − x)sL (x). (C.4)

While this choice of Ec is motivated by the left-most state on the putative
line attractor, we will next assume that sL (x) could be any activity profile.
In turn, we can investigate the properties of states sL (x) that are solutions to
the steady-state equation, equation 3.1. Given equations 6.1 and C.4, these
must fulfill

sL (x) = f
( ∫ 1

−1
dx′[k(x − x′) − k(−1 − x′)]sL (x′) + sth +

∫ x

−1
dx′ k(x′ − 1)

)
.

Certainly this equation will have at least one solution for sL (x). While we
cannot specify this solution exactly, we can investigate its properties at the
boundaries x = −1 and x = 1. Plugging in the value x = −1, we notice that
sL (−1) = 0, so that the solution fulfills the left boundary condition. Plug-
ging in x = 1, we notice from equation C.3 that the synaptic inputs are in
saturation, so that sL (1) = 1. Accordingly, the choice of Ec in equation C.4
guarantees the existence of a stationary state that fulfills the required bound-
ary conditions.

To determine the stability of these stationary states is difficult as long as
their precise form is not known. Practical experience suggests, though, that
they are always stable, thus giving rise to a line attractor.
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Appendix D: Derivation of Parameter Regime for Mutual Inhibition
Network

For the mutual inhibition network, the sum of the integrated activities of
the first and second layer is a constant (compare Figure 5),

U = u1 + u2 = const,

so that the equation for u1 suffices to describe the system. Similar to the
one-layer case, discussed in appendix B, we obtain an equation for u1 by
integrating the stationary network, equation 7.3, to obtain

u1 = 1
wE − wI

[F ((wE − wI )(u1 + 1) + wI U + Ec)

− F ((wE − wI )(u1 − 1) + wI U + Ec)], (D.1)

where F (·) is the antiderivative of f (·) as given in equation B.2. Looking at
the boundaries in the first layer, we find that for any state u1, the following
conditions must hold:

stot,1(−1) = (wE − wI )(u1 − 1) + wI U + Ec ≤ sth (D.2)

stot,1(1) = (wE − wI )(u1 + 1) + wI U + Ec ≥ ssat, (D.3)

and similar conditions hold for the opposite layer. Subtracting equation D.2
from equation D.3 yields the condition on the weights wE − wI given
in equation 7.4. The two inequalities also show that the first term in
equation D.1 will always be in saturation, and the second term will always
be below threshold. Using equation B.2, we obtain

u1 = u1 + 1
wE − wI

[F (ssat) − ssat + wI U + (wE − wI ) + Ec],

which will be valid if the second term vanishes. This results in the following
equation for the summed activity U:

U = − 1
wI

(F (ssat) − ssat + wE − wI + Ec). (D.4)

Following the arguments for the one-layered case (see section 5), there
are two possibilities for a left-most state. Either the activity profiles run into
the threshold condition in the first layer, in which case,

stot,1(−1) = (wE − wI )(uL − 1) + wI U + Ec = sth

stot,2(−1) = (wE − wI )(uR + 1) + wI U + Ec ≥ ssat, (D.5)
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or the left-most state runs into saturation condition in the second layer, in
which case,

stot,1(−1) = (wE − wI )(uL − 1) + wI U + Ec ≤ sth

stot,2(−1) = (wE − wI )(uR + 1) + wI U + Ec = ssat. (D.6)

Similar conditions hold for the right-most state.
We can use these conditions to obtain a lower bound on Ec . If we take

equation D.2 for u = uR and add it to equation D.5, then

(wE + wI )U − 2(wE − wI ) + 2Ec ≤ 2sth,

which can be solved for Ec , using equation D.4, and results in equation 7.5.
An upper bound on Ec can be obtained in a similar way by taking

equation D.3 for u = uL and adding it to equation D.6 to yield

(wE + wI )U + 2(wE − wI ) + 2Ec ≥ 2ssat,

from which follows equation 7.6.

Appendix E: Monotonic Line Attractors

E.1 Numerical Tuning of the Weight Matrix. The construction of mono-
tonic line attractors in the literature has usually been based on numerical
tuning of the weight matrix (Seung, 1996; Eliasmith, 2005). Here we review
the construction of these line attractors and show their relation to the basic
monotonic line attractor from section 5.

Let us assume that the weight matrix of the network has rank one, that
is, that it can be written as the outer product of two vectors,

w(x, x′) = a (x)b(x′).

In this case, all trajectories of the network will flow onto a single dimension.
To see that, let us define the variable

u(t) =
∫ 1

−1
dx b(x)s(x, t). (E.1)

With this definition, the dynamics of the network follow from equation 2.1:

∂

∂t
s(x, t) = −s(x, t) + f (a (x)u(t) + E(x)).
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In other words, the firing rates s(x, t) of all the neurons are driven by a
single time-varying variable u(t), and the dynamics of this network can be
investigated by looking at the dynamics of this single variable. The time
derivative of equation E.1 yields

du(t)
dt

= −u(t) +
∫ 1

−1
dx b(x) f (a (x)u(t) + E(x))

with steady state

u =
∫ 1

−1
dx b(x) f (ua (x) + E(x)). (E.2)

The choice of a rank-one weight matrix therefore reduces the task of de-
signing a line attractor to finding a set of parameters a (x), b(x), and E(x)
for which this equation holds. Note that for given (smooth) a (x) and E(x),
this equation is known as an inhomogeneous Fredholm integral equation of
the first kind with the kernel K (m, x) = f (ma (x) + E(x)) and the unknown
function b(x) (Byron & Fuller, 1969; Press et al., 1992).

The equation can be solved numerically for b(x) if the kernel K (m, x) is
invertible (Press et al., 1992). In previous studies, a (x) and E(x) have usually
been chosen randomly, ensuring invertibility of the above equation, so that
b(x) could be determined numerically. Note that this approach does not
require saturating synapses; in fact, the function f (·) could in principle take
almost any form.

E.2 Relation to Basic Monotonic Line Attractor and Heterogeneity.
The basic monotonic line attractor from section 5 is an analytical solution to
equation E.2 and can therefore be regarded as a special case of the rank-one
line attractors. However, the analogy to the numerically tuned networks can
be taken one step further when considering large networks with heteroge-
neous neurons. In essence, if the network is large enough, any heterogeneity
will average out, so that all rank-one line attractors become equivalent to
the basic monotonic line attractor.

Let us assume that every neuron has a different input-output function
s = fx(stot), marked by its position x. We still assume that the synaptic
output eventually saturates; however, we now allow saturation at values
different from one. In particular, we are interested in the parameterization

s = fx(stot) = η(x) g(ξ (x)stot). (E.3)

We assume that the parameters η(x) and ξ (x) of this input-output func-
tion are randomly drawn at each position x from appropriate probability
distributions. Without loss of generality, we assume that both distributions



482 C. Machens and C. Brody

are centered around one. We denote the average input-output function
as f̄ (·).

We can now construct a basic monotonic line attractor network with
weight matrix w(x, x′) = wE and input-output function f̄ (·) as described in
section 5. For this network, the synaptic inputs in the continuous attractor
state are given by

stot(x) =
∫

dx′wE s(x′) + E(x)

=
∫

dx′wE f̄ (stot(x′)) + E(x).

Since the synaptic input stot(x′) is statistically independent from the ran-
domly drawn input-output functions fx′ (·), the integral remains the same if
we replace the average input-output function by the heterogeneous input-
output function,

stot(x) =
∫

dx′wE fx′ (stot(x′)) + E(x).

Accordingly, the total synaptic input stot(x) to each neuron in a heteroge-
neous network with input-output functions s = fx(stot) is the same as in
the basic monotonic line attractor network. Since the above equations are
steady-state equations for the synaptic inputs, both the heterogeneous and
homogeneous networks must be in a fixed point. Hence, a network with het-
erogeneous neurons designed along the lines above also has a line attractor.

The resulting heterogeneous network is formally equivalent to a net-
work of homogeneous neurons with a weight matrix w(x, x′) = wEη(x)ξ (x′),
which can be seen by plugging equation E.3 into equation 3.1.3 The reason,
of course, is that in large-scale networks, this random heterogeneity is sim-
ply smoothed out, creating a dynamics that is equivalent to the dynamics
of the basic monotonic line attractor network. Hence, any network with a
rank-one matrix built along these lines can be regarded as equivalent to the
basic monotonic line attractor.

For discrete networks, the heterogeneity will not be averaged out exactly
since we sum only over a finite number of neurons. In this case, there is no
guarantee to obtain N fixed points, and the dynamics of the homogeneous
network are only an approximation to those of the heterogeneous network.
The resulting mismatches will then lead to drifts of the memory states

3A similar argument can be made for arbitrary Toeplitz-type networks. Accordingly,
line attractors can potentially be built for any weight matrix that can be written as
w(x, x′) = η(x)k(x − x′)ξ (x′) if η(x) and ξ (x′) are random numbers and k(x − x′) is suf-
ficiently smooth.
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between stable fixed points, as has been noted before (Seung, 1996). In
summary, the numerical tuning of monotonic line attractor networks allows
a large variety of networks, some of which are mathematically identical to
the basic monotonic line attractor network in section 5.
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