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Abstract

Genetically-encoded calcium indicators (GECIs) hold the promise of monitoring [Ca2+] in selected populations of neurons
and in specific cellular compartments. Relating GECI fluorescence to neuronal activity requires quantitative characterization.
We have characterized a promising new genetically-encoded calcium indicator—GCaMP2—in mammalian pyramidal
neurons. Fluorescence changes in response to single action potentials (17610% DF/F [mean6SD]) could be detected in
some, but not all, neurons. Trains of high-frequency action potentials yielded robust responses (302650% for trains of 40
action potentials at 83 Hz). Responses were similar in acute brain slices from in utero electroporated mice, indicating that
long-term expression did not interfere with GCaMP2 function. Membrane-targeted versions of GCaMP2 did not yield larger
signals than their non-targeted counterparts. We further targeted GCaMP2 to dendritic spines to monitor Ca2+

accumulations evoked by activation of synaptic NMDA receptors. We observed robust DF/F responses (range: 37%–264%)
to single spine uncaging stimuli that were correlated with NMDA receptor currents measured through a somatic patch
pipette. One major drawback of GCaMP2 was its low baseline fluorescence. Our results show that GCaMP2 is improved from
the previous versions of GCaMP and may be suited to detect bursts of high-frequency action potentials and synaptic
currents in vivo.
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Introduction

Understanding the function of neural networks will require the

ability to monitor action potentials and synaptic activity in

populations of identified neurons. In mammalian pyramidal

neurons, action potentials trigger a transient calcium influx though

voltage-gated calcium channels that can occur both at the soma

and in the dendrites following backpropagation of the action

potential [1–4]. Action potential (AP)-evoked calcium transients

have been used extensively to measure neuronal spiking activity in

vitro and in vivo [5–9]. In addition, NMDA receptor-dependent

calcium accumulation in dendritic spines has been used to monitor

the activity of individual synapses [10–16].

The vast majority of calcium imaging experiments have

employed synthetic calcium indicators, which permit measure-

ments of AP- and synaptically-evoked calcium transients. Howev-

er, genetically-encoded calcium indicators (GECIs) provide

advantages over synthetic indicators [17]. They allow: (1)

monitoring activity among genetically-defined subsets of cells, (2)

measuring calcium dynamics in specific subcellular compartments,

and (3) long-term calcium imaging in vivo.

GECIs are engineered based on either changes in the

florescence intensity of a single fluorophore, or changes in

fluorescence resonance energy transfer (FRET) efficiency. For

example, the GCaMP family of GECIs is composed of a single

circularly permuted GFP with calmodulin (CaM) and its binding

peptide myosin light-chain kinase M13 linked to its C- and N-

termini, respectively. Upon calcium binding, conformational

changes in the CaM/M13 complex cause a fluorescence change

in the circularly permuted GFP-based fluorophore [18]. FRET-

based GECIs are based on two designs. In the cameleon family

[19], a calcium-dependent increase in FRET between a CFP and

YFP FRET pair is coupled by the binding of calmodulin to the

M13 peptide. The troponin family of sensors utilizes the skeletal

muscle calcium sensor troponin C (TnC). Binding of calcium to

troponin causes a conformational change that increases FRET

between CFP and YFP [20]. Since endogenous TnC, unlike

calmodulin, is not expressed in neurons, TnC-based sensors may

show reduced interference with endogenous signal transduction

processes in neurons [21]. Recently developed GECIs have

provided improved brightness, dynamic range, speed, pH- and

Mg2+- sensitivity, thermal stability and folding efficiency [17,21–

25]. Several lines of mammalian GECI transgenic animals have

been engineered [23–26], but the small signal levels in these mice

[25–27] have so far not permitted widespread use for in vivo

physiology. Better results have been achieved in invertebrate

systems [28–30].

To understand the advantages and limitations of each GECI for

measuring neuronal activity a quantitative comparison of GECI

signals under identical experimental conditions is required. In pilot
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studies we screened through several members of the latest

generation of GECIs and identified GCaMP2 [24], the latest

member of the GCaMP family, as particularly promising. We

evaluated several versions of GCaMP2 (Figure 1), focusing on its

suitability for monitoring action potentials and NMDA-R

activation in single spines in mammalian pyramidal neurons. We

found that GCaMP2, compared to its predecessors, displayed

improved fluorescence change in response to action potential

trains and in addition showed robust responses to two-photon

glutamate uncaging stimuli in dendritic spines. However, our

studies also reveal significant limitations of GCaMP2 for

monitoring neural activity in vivo.

Results

Responses of GCaMP-type GECIs to action potential
trains

We made whole–cell recordings from GCaMP-expressing

cultured hippocampal pyramidal neurons [31,32] and in acute

cortical brain slices at room temperature. Under baseline

conditions GCaMP fluorescence was very low. For example, it

was often difficult to image small dendritic branches and to detect

dendritic spines. Action potentials were evoked by short current

injections (3–5.5 nA, 2 ms). Our basic experiment comprised

measuring GECI responses to high-frequency (83 Hz) action

potential trains (Figure 2). Under our experimental conditions the

peak Ca2+ accumulations are approximately proportional to action

potential frequency [5,32,33]. We acquired linescans from the

proximal apical dendrite (within 50 mm of the soma) (Figure 2). In

cultured hippocampal neurons transfected with GCaMP2 and the

cytoplasmic red protein mCherry [34] single action potentials

caused clear fluorescence increases in some, but not all, neurons

(Figure 3A). The average response to single action potentials was

small (17610% [mean6SD] DF/F across n = 13 cells). A train of

40 actions potentials (APs) at 83 Hz gave a robust response of

302650% DF/F (n = 12 cells), close to GCaMP2’s dynamic range

measured in cuvettes [24].

GCaMP2 responses in layer 2/3 pyramidal cells in acute

cortical brain slices (postnatal day 14–21, see Materials and

Methods) were similar (1 AP response, 13617% DF/F, n = 8; 40

AP response, 248651% DF/F, n = 8) (Figure 3B) to the responses

measured in cultured neurons. The recorded cells had healthy

input resistances and resting potentials (see Materials and

Methods) and apparently normal morphology. Thus, even though

GCaMP2 was expressed at high concentrations for up to 4 weeks,

the similar DF/F responses suggest that endogenous calmodulin

did not interfere with the function of the calmodulin-based

GCaMP2. Furthermore, GCaMP2 did not appear to degrade the

health of the transfected neurons.

We next measured GCaMP2 responses near physiological

temperature (34.5–35.5u). Consistent with faster calcium extrusion

[35] and a narrower action potential, GCaMP2 responses were

smaller (1 AP response, 668% DF/F, n = 10; 40 AP response,

134648% DF/F, n = 10) (Figure 3C). GCaMP2 responses were

also much faster (Figure 3C; room temperature: rise T1/2:

95615 ms; decay T1/2: 4836127 ms, n = 13 cells; near-physio-

logical temperature: rise T1/2: 73615 ms; decay T1/2:

134639 ms, n = 10 cells; all measurements for the 10 AP

stimulus). The decay time of the GCaMP2 fluorescence transient

is ,2 fold slower than the decay time of [Ca2+] accumulations

[35]. These values are in general agreement with GCaMP2

response kinetics measured in cerebellar granule cells in vivo

following electrical stimulation [36].

We also tested GCaMP1.6 [37]; (see also [32]) and GCaMP1.6-

CaM(E140K) . The E140K mutation is located in a calcium

binding site and has been shown to increase the brightness of the

sensor and decrease the affinity of the sensor for calcium [37].

GCaMP1.6 (Figure 3D) gave much smaller response amplitudes

than GCaMP2 (1 AP, 464% DF/F, n = 5; 40 AP, 155628% DF/

F, n = 5) at room temperature. Single action potentials did not

Figure 1. Domain structures of the GCaMP-family of genetically encoded calcium indicators (GECIs) and fusion constructs. A,
Domain comparisons of GCaMP2 and GCaMP1.6; red labels indicate the differences. B, Constructs for subcellular targeting of the GECIs.
doi:10.1371/journal.pone.0001796.g001
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elicit clear responses above the noise. GCaMP1.6-CaM (E140K)

gave even smaller responses (Figure 3E; 40 AP at 83 Hz, 21613%

DF/F, n = 6).

To better relate GECI fluorescence to changes in [Ca2+], we

performed additional experiments in which we simultaneously

measured responses from the GECIs and from the medium-

affinity synthetic red calcium dye X-Rhod-5F, loaded through the

patch pipette (Figure 4D). GCaMP2 responses were slower than

X-Rhod-5F responses (GCaMP2: rise T1/2,100611 ms, decay T1/

2, 4586141 ms; X-Rhod-5F: rise T1/2, 2966 ms, decay T1/2,

254657 for X-Rhod-5F, n = 9 cells; all measurements for the 10

AP stimulus), consistent with GCaMP2 responses being slower

than the underlying calcium dynamics. GCaMP2 response kinetics

were similar to those measured in the absence of X-Rhod-5F (rise

T1/2: 95615 ms; decay T1/2: 4836127 ms, n = 13 cells; same

data as above).

GECIs targeted to subcellular locations
During action potential trains in pyramidal cells, the dominant

source of dendritic calcium ion influx is through voltage-gated

calcium channels in the plasma membrane [3], implying that peak

Ca2+ concentrations are higher close to the membrane. By

targeting GECIs to the plasma membrane, it may be possible to

increase GECI responses and thereby to improve their ability to

detect action potentials. We made and tested membrane-targeted

versions of GCaMP2 (hCD4-GCaMP2 and MARCKS-GCaMP2;

see Figure 1B). However, neither the hCD4-domain (Figure 4A, E)

nor the MARCKS-domain (Figure 4B) membrane-targeted

versions of GCaMP2 yielded an improvement in action-potential

detection compared to cytosolic GCaMP2. Similarly, a GCaMP2-

chicken b actin fusion protein, which targeted GCaMP2 to

dendritic spines [38](Figure 1B), also failed to yield improvements

in the GCaMP2 signal in response to action potentials (Figure 4C,

F).

To eliminate the possibility that our subcellularly targeted

GCaMP2 fusion proteins significantly perturbed the calcium

channel or calcium handling machinery of the cell we performed

additional experiments in which we simultaneously measured

responses from the GECIs and from X-Rhod-5F, loaded through

the patch pipette. X-Rhod-5F responses were similar in the three

cases, indicating that global calcium influx and handling were

unaffected by the presence of membrane-bound GECIs

(Figure 4D–F).

Quantifying GECI-based action potential detection
One promising area of application for GECIs is in all-optical

monitoring of action potentials. It is therefore important to

quantify the ability to infer action potentials from GECI

fluorescence. We quantified our ability to detect action potentials

under the highly-favorable conditions of brain slice recordings. A

template-matching algorithm was able to detect single action

potentials with nearly 100% certainty, provided the time of the

action potential was known. However, when we simulated the case

in which the time of the action potential was unknown, detection

rates, given reasonable false-positive rates, dropped dramatically.

For example, we determined the percentage of action potential

trains (for trains of 1, 2, 3, 4, 5, 10 and 40 action potentials at

83 Hz) that could be detected at a 5% false positive rate during

1 second of data acquisition (i.e., such that when a time series is

divided into subsequent intervals of 1 second length, 5% of these

intervals will contain a false positive event). With trains of four or

more action potentials, GCaMP2 at room temperature allowed us

to detect 100% of the action potential trains (Figure 5). However,

with a single action potential, GCaMP2 allowed detection of fewer

than half of the action potentials. At near-physiological temper-

atures, it took about 5 action potentials at 83 Hz to achieve 80%

detection rate with GCaMP2, and only the 40 action potential

train gave 100% detection (Figure 5). Previous versions of GCaMP

yielded lower levels of detection (GCaMP1.6, GCaMP1.6-

CAM(E140K); Figure 5), illustrating the improvement of

GCaMP2 over its predecessors.

Spine NMDAR-mediated [Ca2+] transients detected by
GCaMP2 targeted to the actin cytoskeleton

NMDA-receptor mediated calcium accumulations can be

imaged as a read-out of synaptic transmission [15,16,39]. We

asked how well GCaMP2 fluorescence could signal NMDAR-

mediated calcium transients in spines. We enriched GCaMP2 at

spines by fusion to actin (Figure 6A). We then tested the

Figure 2. Recording backpropagating action potential responses from GECIs in hippocampal pyramidal cells. A, Schematic showing
the linescan location at the base of the apical dendrite. B, Raw linescan images (top row) showing a dark period prior to shutter opening, followed by
a shutter-open fluorescence baseline and action-potential (bottom row) evoked responses (left, 3 action potentials at 83 Hz; right, 10 action
potentials at 83 Hz). Fluorescence time series (middle row) were obtained by averaging over the spatial extent of the dendrite (indicated by vertical
white lines).
doi:10.1371/journal.pone.0001796.g002
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performance of cytosolic GCaMP2 and GCaMP2-actin in

response to two-photon uncaging of MNI-glutamate next to

spines of pyramidal cells in hippocampal slice culture, in the

presence of NBQX (to block AMPA receptors) and under low

[Mg2+] conditions (see Materials and Methods). Cells were held in

voltage-clamp at 270 mV and a single uncaging pulse of 0.2 ms

was delivered after a short baseline imaging period (Figure 6C).

Both GCaMP2 and GCaMP2-actin produced robust DF/F

responses in response to NMDA receptor currents of ,4–15 pA

(GCaMP2 range: 37%–250% DF/F; GCaMP2-actin range:

Figure 3. Action-potential evoked responses in GCaMP-based GECIs. A, Amplitudes of GCaMP2 responses for individual hippocampal
pyramidal cells (thin lines, left) in response to trains of action potentials given at 83 Hz, and the mean across cells (thick gray line). Dashed lines show
perforated-patch recordings. Inset shows same data for 1–10 action potentials on a linear x-axis. Example single-trial responses (right) from four cells
to 1, 5, 10 and 40 action potentials at 83 Hz (indicated by horizontal black lines). B, Responses of individual cortical layer 2/3 pyramidal cells (thin
lines) and the group mean (thick gray line) expressing GCaMP2 after in utero electroporation (see Materials and Methods). C, GCaMP2 responses from
hippocampal pyramidal cells at 34.5–35.5uC. D,E, Responses of previous versions of GCaMP family GECIs. B–E, Same conventions as in A.
doi:10.1371/journal.pone.0001796.g003
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39%–264% DF/F), with larger DF/F values corresponding to

increased NMDAR current (Figure 6E). However, GCaMP2 and

GCaMP2-actin were both quite dim and it was therefore

sometimes difficult to locate spines (Figure 6B). Further, because

GCaMP2-actin is targeted to the actin cytoskeleton and is not

rapidly replaced by freely-diffusible cytosolic GECI, we found

photobleaching to be a greater problem with GCaMP2-actin than

with plain GCaMP2. In general, photobleaching is likely to

Figure 4. Action-potential evoked responses in GECIs targeted to subcellular locations. A, Amplitudes of the response to action potential
trains at 83 Hz for the membrane-targeted GECI hCD4-GCaMP2 (left), for individual cells (thin black lines) and for the group mean (thick gray line).
Insets show same data for 1–10 action potentials on a linear x-axis. Example traces (right) show single-trial responses to trains of action potentials at
83 Hz (indicated by horizontal black lines). B, Responses from the membrane-targeted construct MARCKS-GCaMP2. C, Actin-potential evoked
responses from the GCaMP2-actin fusion. Conventions as in A. D–F, Action-potential responses measured simultaneously with GECIs (green curves,
traces) and with the synthetic dye X-Rhod-5F (500 mM; red curves, traces). Cells were loaded with X-Rhod-5F for $20 min prior to data collection.
Example traces show single-trial responses measured simultaneously from the green and red channels. Cells shown in D–F are different from those in
Figure 3A and in panels A–C.
doi:10.1371/journal.pone.0001796.g004
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present a greater problem with targeted GECIs than with their

non-targeted counterparts, due to slowed fluorescence recovery

after photobleaching.

GECI brightness
An important property to consider in evaluating a GECI is its

basal level of brightness. A GECI’s signal-to-noise ratio, SNR

,N1/2 DF/F, increases in proportion to the square root of the

number (N) of photons collected and to the DF/F signal change.

Maximizing the number of photons collected from the specimen is

thus critical. What factors affect GECI brightness in a living

neuron? The number of collected photons, N , a c r, is

proportional to GECI concentration (c) and to the photon rate (r),

and to instrumentation properties (a). GECI concentration, c = kf/

kd, is determined by the rate of functional protein formation (kf)

and the rate constant of protein destruction (kd). At any moment in

time the photon rate is proportional to quantum yield and

decreases with the rate of quantum bleaching. Therefore, GECI

brightness is affected both by properties of the cellular environ-

ment and by properties intrinsic to the GECI molecule. Here we

made a rough relative measurement of brightness that confounds

these different factors but that allows a gross comparisons across

GECIs. We illuminated GECI-expressing pyramidal cells in

hippocampal slice culture with 7 mW at the objective back

aperture, and recorded the fluorescence intensity over a linescan

image taken at the base of the apical dendrite (Figure 7; note that

different filter sets were used for the FRET-based and the GFP-

based GECIs; see Materials and Methods). GCaMP2 was about

30-fold dimmer than EGFP on average (it was for this reason that

we co-transfected GCaMP2-related constructs with mCherry to

easily identify transfected cells). The FRET-based TN-XL was the

brightest GECI tested.

Discussion

In neurons, transient changes in intracellular calcium accom-

pany action potentials and are often used as a reporter of neuronal

activity. Synthetic calcium dyes have been used both in vitro and in

vivo [6,7,40,41] in mammalian neurons to measure the calcium

dynamics underlying neural activity, and have greatly improved

our understanding of nervous system function. However, synthetic

dyes suffer from several practical limitations, including: 1) they are

difficult to load into populations of neurons in vivo; 2) they cannot

readily be targeted to specific cell types or subcellular locations;

and 3) they do not readily permit long-term chronic imaging in

vivo. All these limitations can be potentially addressed by

genetically-encoded calcium indicators (GECIs).

In this report we have quantitatively characterized the action

potential responses of GCaMP-based GECIs under nearly ideal

imaging conditions in the brain slice, and with the high expression

levels possible with gene gun transfection and/or in utero

electroporation. We also quantified the ability of GCaMP2 to

allow detection of action potentials, under our particular

expression and imaging conditions. At near-physiological temper-

atures, about 5 action potentials at 83 Hz were required to achieve

an 80% detection rate (for a false positive rate of 5%) with

GCaMP2. GCaMP2 did not allow consistent detection of single

action potentials, even at room temperature where calcium

extrusion kinetics are slower. It is therefore unlikely that GCaMP2

will allow faithful monitoring, at single action potential resolution,

of a population of individual pyramidal neurons at mammalian

physiological temperatures. At the moment, GCaMP2 may be

suited to a preparation where neurons fire bursts of APs.

Cellular and subcellular targeting of GECIs holds great promise

as a means to read out localized calcium signals. Many efforts have

been made to target previously available GECIs to different

subcellular locations, including to the plasma membrane

[20,25,42–45]. None of the prior membrane-targeting studies,

however, had the temporal resolution to monitor non-equilibrium

differences between membrane-bound and cytosolic GECI signals,

nor did any investigate GECI signaling of calcium influx mediated

by action potential/voltage-gated calcium channel activity. To

explore the effect of subcellular targeting of GECIs, we targeted

GCaMP2 to various subcellular locations, including to the plasma

membrane and to dendritic spines. Surprisingly, we found no

improvement in signal change for all three different membrane-

targeted GECIs.

Since the dominant source of action potential-induced dendritic

Ca2+ influx is through voltage-gated calcium channels in the

plasma membrane [3], it may be possible for GECIs targeted to

the plasma membrane to sense higher peak [Ca2+]. In principle,

therefore, by targeting GECIs to locations at or near the plasma

membrane, it may be possible to achieve greater DF/F signals

than with diffusible GECIs. Why, then, did membrane targeting

Figure 5. Accuracy of action potential detection. Results of simulations (see Materials and Methods) giving percentage of action potential
trains (for the indicated numbers of action potentials at 83 Hz) that can be detected at a 5% false positive rate for 1 second of data (i.e., such that
when a time series is divided up into subsequent intervals of 1 second length, 5% of these intervals will contain a false positive). Thin dotted lines
show results for individual cells and the thick black line gives the group mean.
doi:10.1371/journal.pone.0001796.g005
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not yield an improvement? One hypothesis is that these

calmodulin-based sensors could interact with endogenous calmod-

ulin [20,25,26], interfering with their function through unwanted

binding reactions. It is also possible that the membrane-targeted

GECIs did not show improvements due to effects of the targeting

sequence(s) on folding and stability of the GECI, even though we

used three different membrane targeting sequences. It is also

possible that the slow kinetics of the GECI fluorescence response

(,100 ms) reflects calcium binding kinetics that are too slow to

capture the [Ca2+] transient close to the membrane before

dissipation by diffusion. Another possibility is that sensor proteins

or their fluorophores are not stable in the local environment near

the plasma membrane. Finally, fluorescent proteins targeted to the

plasma membrane with different lipid anchors can show clustering

into membrane microdomains [46] and it is not clear how our

Figure 6. GCaMP2 and GCaMP2-actin uncaging responses in
spines. A, Apical dendrite of a CA1 pyramidal cell (left) expressing
EGFP-actin (green) and mCherry (red), showing an enrichment of EGFP-
actin at spines (predominantly green) compared to dendrite (predom-
inantly red). A GCaMP2-actin fusion (right) shows a similar spine
enrichment in the apical dendrite of a different CA1 cell. B, Example
images showing spine and dendrite fluorescence for GCaMP2 (left) and
GCaMP2-actin (right). Each image shows the baseline frame prior to
uncaging. Images are median filtered in a 363 pixel neighborhood. C,
Traces show uncaging-evoked DF/F fluorescence signals for ROIs

covering the spine (gray) and dendrite (black) for GCaMP2 (left) and
GCaMP2-actin (right). Uncaging occurs at the start of the third frame.
Traces correspond to the spines/dendrites shown in B. D, Traces
showing NMDA-receptor currents in response to glutamate uncaging at
the spines shown in B. Each trace shows an average of 6 trials. E, DF/F
fluorescence change in spines versus peak NMDA-receptor current
versus for GCaMP2 (gray circles) and GCaMP2-actin (black circles). Lines
indicate measurements taken from the same spine at different
uncaging powers.
doi:10.1371/journal.pone.0001796.g006

Figure 7. Brightness of the GECIs compared. GECIs were
expressed (34–48 hours) in pyramidal cells and brightness was
measured as the mean fluorescence intensity collected in linescan
mode across the base of the apical dendrite. Each plot symbol shows a
single cell, except for the FRET probes in which symbols connected by a
dashed line indicate cyan and yellow channel measurements from the
same cell. Illumination was 7 mW at the objective back aperture (see
Materials and Methods for details).
doi:10.1371/journal.pone.0001796.g007

Targeted Calcium Indicators
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membrane-targeted GECIs were arranged with respect to the

calcium channels. It remains an open question to what degree

action potential detection can be improved by subcellular targeting

of the GECIs.

Prior efforts to express GECIs in transgenic mice have yielded

mixed results. Some transgenic mouse lines were found to have

only very small GECI DF/F signals [20,47] compared to in vitro

measurements of the GECIs’ dynamic ranges, consistent with

earlier studies in invertebrates. This lead to speculations [26] that

relatively high levels of GECI expression could overwhelm

interference from endogenous calmodulin. In addition, it is

possible that long-term expression of GECI calcium buffers could

affect cell physiology or trigger silencing of GECI gene expression.

However, we found robust GCaMP2 responses in juvenile mice

that had been electroporated in utero at embryonic day 16.

GCaMP2 was driven by the CAG promoter, which is known to

give expression early in development [48]. Thus, expression of

GCaMP2 in layer 2/3 pyramids for up to weeks during

development did not prevent it from functioning properly and

did not obviously interfere with the health of the expressing

neurons. This result is consistent with studies finding calcium

responses after long-term expression of camgaroo-2 and inverse

pericam under the aCaMKII promoter [26], with a study showing

functional GCaMP2 expression in cerebellum of transgenic mice

under the Kv3.1 potassium channel promoter [23] and with a

study showing long-term expression of functional GCaMP2 in

cardiac myocytes [24].

Areas for improvement of GECIs include baseline brightness,

dynamic range, and accelerating the response kinetics to Ca2+ to

best match expected patterns of action potential activity. To

further improve GCaMP2, it will be helpful to obtain the high-

resolution structures of calcium-bound and calcium-unbound

states, as well as to develop rapid screening and testing systems

designed to assay responses to action potential-like stimuli. In

particular, it will be valuable to have a screening system that allows

measurement of an effective benchmark for quantifying action-

potential responses (an ‘‘AP50’’), as it is difficult to predict action

potential responses from equilibrium measurements.

Materials and Methods

Molecular biology
The original GCaMP2 expression construct was obtained from

M. Kotlikoff, and generated by J. Nakai[24]; TN-XL from O.

Griesbeck (MPI, Germany)[21]; Yellow Cameleon Y3.60 from A.

Miyawaki (RIKEN, Japan) [25]. All of the above constructs were

driven by the CMV promoter in mammalian expression vectors.

GCaMP2 was subcloned into the pCAGGS vector with the CAG

promoter (CMV-enhancer, b-actin promoter, and regulatory

element from the woodchuck hepatitis virus (WPRE) [48]).

Subcellularly targeted constructs were driven by the CAG

promoter. Three membrane-targeted versions of GCaMP2 were

generated: (1) the first 41 amino acids of human MARCKS

domain mutant (Met1-Val41) [49], which is myristoylated at Gly2

and double palmitoylated at Cys3Cys4, fused to the N-terminus of

GCaMP2 (linker sequence AAAT); (2) a short MARCKS domain

(Met1-Lys7) fused to the N-terminus of GCaMP2 (linker sequence

AAAT); (3) the human hCD4 transmembrane protein (Met1-

Arg421) fused to the N-terminus of GCaMP2 (linker sequence

AAAT). To target GCaMP2 postsynaptically, chick actin was

fused to the C-terminus of GCaMP2 [50] (linker sequence GGR).

MCherry [34], which we used to co-transfect with GECIs, is in a

pRK5 vector and a pCAGGS vector, for cultured hippocampal

slices and in utero electroporation, respectively.

Gene transfection and slice preparation
Hippocampal cultured slices were prepared from P7 rats as

described [31]. Slices were transfected using gold particle-

mediated biolistic gene transfer (Helios Gene Gun, BioRad) at

4–8 days in vitro. The amount of DNA used in each bullet

preparation was between 1–20 mg per full length of tubing. All

GECIs except FRET-based GECIs were co-transfected with

mCherry to aid identification of GECI-expressing cells. Imaging

experiments were performed 36–48 hours after the transfection.

For the acute slice experiments shown in Figure 3B, GCaMP2 and

mCherry DNA was introduced into mice by in utero electropora-

tion as described [48]. Acute slices were prepared from positively

transfected mice at P14-21. After isofluorane anesthesia and

decapitation, acute coronal slices were cut in chilled solution

containing (in mM) 110 choline chloride, 25 NaHCO3, 25 D-

glucose, 11.6 sodium ascorbate, 3.1 sodium pyruvate, 2.5 KCl,

1.25 NaH2PO4, 0.5 CaCl2, and 7 MgCl2, saturated with 95% O2/

5% CO2. Slices were then transferred to artificial cerebrospinal

fluid (ACSF) containing (in mM) 127 NaCl, 2.5 KCl, 1.25

NaH2PO4, 25 D-glucose, 25 NaHCO3, 2 CaCl2, and 1 MgCl2
saturated with 95% O2/5% CO2, and were incubated at 34

degrees for ,15 min before being cooled to room temperature. All

experiments were conducted according to protocols approved by

the Institutional Animal Care and Use Committee of Cold Spring

Harbor Laboratory.

Electrophysiology
We made recordings from both CA1 and CA3 cells in

hippocampal slice culture, and cortical layer 2/3 pyramidal cells

in acute brain slices. For measuring action-potential evoked GECI

responses, we recorded from 62 CA1 pyramidal cells, 12 CA3

pyramidal cells, and 8 layer 2/3 cortical pyramidal cells (in utero

electroporated, for GCaMP2 only) The brightness measurements

reported in Figure 7 included another 45 CA1 pyramidal cells and

3 CA3 pyramidal cells.

Patch pipettes were pulled from borosilicate glass (standard wall

with filament) and were 3–6 MV when filled with (in mM) 128 K-

methylsulfate, 10 HEPES, 10 Na-phosphocreatine, 4 MgCl2, 4

Na2ATP, 0.4 Na2GTP, 3 ascorbic acid (pH 7.2, 293 mOsm). In

experiments reported in Figure 4D–F, 500 mM X-Rhod-5F was

added to the pipette solution. In some experiments reported in

Figure 6, 30 mM Alexa-594 was added to the pipette solution for

spine visualization. In perforated-patch experiments reported in

Figure 3A, pipettes were tip-filled with patch solution containing

#0.5 mg/mL amphotericin B (1% DMSO; Sigma). Liquid

junction potentials were not corrected. Cells were accepted if

they had resting potentials #250 mV and input resistances of at

least 100 MV for CA1 and layer 2/3 cells. CA3 cells had input

resistances of 117657 MV (mean6SD).

For recordings slices were transferred to an immersion-type

recording chamber (after $1 hr incubation for acute slices) and

perfused with ACSF comprising (in mM) 127 NaCl, 2.5 KCl, 1.25

NaH2PO4, 25 D-glucose, 25 NaHCO3, 4 CaCl2, and 4 MgCl2
saturated with 95% O2/5% CO2. For experiments with action-

potential stimuli, the ACSF included 10 mM (R)-CPP (Tocris) and

10 mM NBQX (Sigma) to block glutamate receptors. For the

uncaging experiments shown in Figure 6, the ACSF calcium and

magnesium concentrations were changed to 2 mM and 0.1 mM,

respectively, (R)-CPP was omitted, and tetrodotoxin (1 mM,

Calbiochem), D-serine (10 mM, Sigma), and MNI-glutamate

(2.5 mM, Tocris) were added to the bath.

For experiments without X-Rhod-5F, data collection began

typically within 2–3 minutes of break-in. To prevent wash-out

of GECI fluorescence, most experiments were terminated within
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20–25 minutes of break-in. In experiments measuring both GECI

and X-Rhod-5F responses, data collection began after a dye-

loading period of 20–23 minutes and continued until #43 min

after break-in. Action potentials were triggered by current

injections (3–5.5 nA, 2 ms) through the patch pipette. Trials were

repeated at 0.1 Hz. Unless indicated otherwise, experiments were

performed at room temperature (21–24u).

Imaging and uncaging
We imaged on a custom-built two-photon microscope using

ScanImage software [51] and an Olympus 606, 0.9 NA

LUMPlanFI/IR objective. For imaging and glutamate uncaging

we used two Ti:sapphire lasers (Mira, Coherent, Santa Clara, CA;

and MaiTai, Spectra Physics, Mountain View, CA). For imaging

we tuned one laser to 910 nm, 960 nm or 810 nm (as indicated).

For glutamate uncaging we used a wavelength of 720 nm.

Fluorescence was collected in two channels in both epi- and

transfluorescence mode [52] using four photomultiplier tubes

(Hamamatsu, Hamamatsu City, Japan). For GCaMP2-based

GECIs and EGFP, we separated fluorescence into ‘‘green’’ and

‘‘red’’ channels with 565 nm dichroics and BG22 (green channel)

and HQ620/90 (red channel) emission filters. For the FRET-

based GECIs (Figure 7) we separated fluorescence with 505 nm

dichroics and HQ480/80 (‘‘cyan’’ channel) and HQ535/50

(‘‘yellow’’ channel) emission filters. For most experiments, images

were acquired by scanning in linescan mode (500 Hz) across a

location at the base of the apical dendrite (Figure 2A). Fluores-

cence time series were then obtained by averaging across the

spatial extent of the dendrite along the line (Figure 2B). For

glutamate uncaging experiments shown in Figure 6, images were

acquired in framescan mode (2566256, 2 ms/line). The uncaging

stimulus was 720 nm illumination for 0.2 ms at 100–135 mW.

We report time series as DF/F = [(F-FD)-(F0-FD)]/(F0-FD), where

F is the raw fluorescence signal, FD is the mean PMT ‘‘dark

signal’’ recorded with the laser shutter closed, and F0 is the mean

fluorescence signal in a baseline period prior to the action potential

stimuli.

The response amplitude on a given trial was measured as the

mean of a 30 ms window of the DF/F time series, which was

centered on the peak of the smoothed (50-ms moving average)

mean response for that cell and stimulus condition. Rise T1/2 was

measured as the time between the onset of current injection and

the half-maximal response. Decay T1/2 was measured as the time

between the peak response and the decay back to half-maximum

response. For display, example traces were filtered with a Savitzky-

Golay filter of order 2 and span 30 ms. All analysis was performed

with MATLAB (Mathworks, Natick, MA).

For the brightness measurements reported in Figure 7, each cell

was first patched to confirm that it met our resting potential and

input resistance criteria. The pipette was pulled off from the cell in

,1 min after break-in, and the brightness was then measured.

Illumination was 7 mW at the objective back aperture, at 810 nm

for the FRET probes and at 910 nm for EGFP and the GCaMP2

probes. Filter sets were the same as those described earlier.

Action potential detection
We quantified our ability to detect the presence of action

potential responses for each of several GECIs, using a template

matching method. The mean response for each cell at each action

potential stimulus (i.e., 1, 2, 3, 4, 5, 10 and 40 action potentials at

83 Hz) was used as a template. For each sweep, we computed the

cross-covariance sequence of the sweep with the corresponding

template (using the first 1.6 s of each). We then recorded the peak

of the cross-covariance sequence over an interval of 1 s (lags of

298 ms to +900 ms). We compared these cross-covariance peaks

to those obtained by cross-correlation of the template with mock

baseline data. Mock baseline data for each cell were obtained by

concatenating short segments of actual baseline fluorescence data

from the period prior to action potentials. The order of the

baseline segments was randomly permuted in order to make 1000

sets of baseline data. We took the peak of the cross-covariance

sequence for each mock baseline sweep and histogrammed all

1000. For each cell and stimulus, we defined a criterion cross-

covariance peak value to be the 95th percentile of the mock

baseline cross-covariance peaks. Detection accuracy was then

defined as the percentage of real sweeps with cross-covariance

peaks exceeding the criterion. Each real sweep, mock baseline

sweep, and the template were smoothed with a 10-ms moving

average.
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