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Table 1. Considerations and challenges for the identi!cation of disease causal mutations
Considerations Challenges Solutions

Mutation detection Platform selection Di!erent sequencing platforms have 
variable error rates

Increased sequencing coverage for platforms with high 
error rates

Sequencing target selection Exome sequencing may miss regulatory 
variants that are disease causal

Use whole genome sequencing when budget is not 
a concern, or when diseases other than well-studied 
classical Mendelian diseases are encountered

Variant generation Genotype calling algorithms di!er from 
each other and have speci"c limitations

Use multiple alignment and variant calling algorithms 
and look for concordant calls. Use local assembly to 
improve indel calls

Variant annotation Multiple gene models and multiple 
function prediction algorithms are 
available

Perform comprehensive set of annotations and make 
informed decisions; use probabilistic model for ranking 
genes/variants

Variant validation Predicted disease causal mutations may 
be false positives

Secondary validation by Sanger sequencing or capture-
based sequencing on speci"c genes/regions

Type of mutations Coding and splice variants Many prediction algorithms are 
available

Evaluate all prediction algorithms under di!erent 
settings. Develop consensus approaches for combining 
evidence from multiple algorithms

Untranslated region, synonymous 
and non-coding variants

Little information on known causal 
variants in databases such as HGMD

Improved bioinformatics predictions using multiple 
sources of information (ENCODE data, multispecies 
conservation, RNA structure, and so on)

Speci"c application 
areas

Somatic mutations in cancer Tissues selected for sequencing may 
not harbor large fractions of cells with 
causal mutations due to heterogeneity; 
variant calling is complicated by 
stromal contamination; current 
databases on allele frequencies do not 
apply to somatic mutations; current 
function prediction algorithms focus on 
loss-of-function mutations

Sample several tissue locations for sequencing; 
utilize algorithms speci"cally designed for tumor 
with consideration for heterogeneity; use somatic 
mutation databases such as COSMIC; develop function 
prediction algorithms speci"cally for gain-of-function 
mutations in cancer-related genes/pathways

Non-invasive fetal sequencing Variants from fetal and maternal 
genomes need to be teased apart; 
severe consequences when variants are 
incorrectly detected and predicted to 
be highly pathogenic

Much increased sequence depth and more 
sophisticated statistical approaches that best leverage 
prior information for inferring fetal alleles; far more 
stringent criteria to predict pathogenic variants

Inheritance pattern Inherited from a!ected parents Rare/private mutations may be neutral Evaluate extended pedigrees and ‘clans’ to assess the 
potential role of private variants

De novo mutations from 
una!ected parents

Every individual is expected to carry 
three de novo mutations, including 
about one amino acid altering 
mutation per newborn

Detailed functional analysis of the impacted genes

Biological validation Known disease causal genes Di#cult to conclude causality when 
a mutation is found in a well-known 
disease causal gene

Examine public databases such as locus-speci"c 
databases

Previously characterized genes 
not known to cause the disease 
of interest

Relate known molecular function to 
phenotype of interest

Evaluate loss of function by biochemical assays where 
available

Genes without known function Di#cult to design functional follow-up 
assays

Evaluate gene expression data. Use model organisms 
to recapitulate the phenotype of interest

Statistical validation Rare diseases Limited power to declare association Sequence candidate genes in unrelated patients to 
identify additional causal variants

Idiopathic diseases Lack of additional unrelated patients Comprehensive functional follow-up of the 
biospecimens from patients to prove causality

Mendelian diseases or traits Finding rare, unrelated individuals with 
same phenotype and same mutation 
to help prove causality

Networking of science through online databases 
can help "nd similarly a!ected people with same 
phenotype and mutation

Type of phenotypes Mendelian forms of complex 
diseases or traits

Several major-e!ect mutations may 
work together to cause disease

Statistical models of combined e!ects (additive and 
epistatic) of multiple variants within each individual

Complex diseases or traits Many variants may contribute to 
disease risk, each with small e!ect sizes

Refrain from making predictions unless prior evidence 
suggested that such predictive models are of practical 
utility (for example, receiver operating characteristic 
>0.8)

HGMD, Human Gene Mutation Database.
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variants is needed, beyond simple variant annotation. 
!ere are several important reasons to pursue this 
approach. Firstly, conventional protein functional predic-
tion algorithms only provide a binary prediction on 
whether a variant is deleterious or tolerated. However, a 
defect in protein function does not necessarily mean that 

a specific phenotype will be affected and investigators 
often have to search for clues on the specific disease 
classes (for example, cancer, immunological or cardio-
vascular traits) that the variant may influence. With this 
information in hand, biologists can design experiments 
to test the functionality of the variants in the context of 

Table 2. A list of open-access bioinformatics software tools or web servers that can perform batch annotation of genetic 
variants from whole-exome/genome sequencing data*
Tool URL Description Features Limitations

ANNOVAR [http://www.
openbioinformatics.org/
annovar/]

A software tool written in 
Perl to perform gene-based, 
region-based and !lter-based 
annotation

Rapid and up-to-date annotations 
for multiple species; thousands of 
annotation types are supported

Requires format conversion 
for VCF !les; command line 
interface cannot be accessed 
by many biologists

AnnTools [http://anntools.sourceforge.
net/]

A software tool written in 
Python to annotate SNVs, indels 
and CNVs

Fast information retrieval by 
MySQL database engine; output in 
VCF format for easy downstream 
processing

Only supports human genome 
build 37; does not annotate 
variant e"ect on coding 
sequence

Mu2a [http://code.google.com/p/
mu2a/]

A Java web application for 
variant annotation

Web interface for users with limited 
bioinformatics expertise; output in 
Excel and text formats

Does not allow annotation of 
indels or CNVs

SeattleSeq [http://snp.gs.washington.
edu/SeattleSeqAnnotation/]

A web server that provides 
annotation on known and 
novel SNPs

Multiple input formats are supported; 
users can customize annotation tasks

Limited annotation on indels 
or CNVs

Sequence Variant 
Analyzer

[http://www.svaproject.org/] A graphical Java software tool 
to annotate, visualize and 
organize variants

Intuitive graphical user interface; 
ability to prioritize candidate genes 
from multiple patients

Functionality is not very 
customizable; depends 
on ENSEMBL database for 
annotations

snpE" [http://snpe".sourceforge.
net]

A command-line software 
tool to calculate the e"ects of 
variants on known genes such 
as amino acid changes

Rapid annotation on multiple 
species and genome builds; supports 
multiple codon table

Only supports gene-based 
annotation

TREAT [http://ndc.mayo.edu/mayo/
research/biostat/stand-alone-
packages.cfm]

A command-line software 
tool with rich integration of 
publicly available and in-house 
developed annotations

An Amazon Cloud Image is available 
for users with limited bioinformatics 
infrastructure; o"ers a complete set 
of pipelines to process FASTQ !les 
and generates annotation outputs

Only supports ENSEMBL gene 
de!nition and with limited sets 
of annotations

VAAST [http://www.yandell-lab.org/
software/vaast.html]

A command-line software tool 
implementing a probabilistic 
disease-gene !nder to rank all 
genes

Prioritize candidate genes for 
Mendelian and complex diseases

Main focus is disease gene 
!nding with limited set of 
annotations

VARIANT [http://variant.bioinfo.cipf.es] A Java web application 
for variant annotation and 
visualization

Intuitive interface with integrated 
genome viewer

Highly speci!c requirement 
for internet browser; slow 
performance

VarSifter [http://research.nhgri.nih.
gov/software/VarSifter/]

A graphical Java program 
to display, sort, !lter and sift 
variation data

Nice graphical user interface; 
allows interaction with Integrative 
Genomics Viewer

Main focus is variant !ltering 
and visualization with limited 
functionality in variant 
annotation

VAT [http://vat.gersteinlab.org/] A web application to annotate 
a list of variants with respect 
to genes or user-speci!ed 
intervals

Application can also be deployed 
locally; can generate image for genes 
to visualize variant e"ects

Requires multiple other 
packages to work; only 
supports gene-based 
annotation by GENCODE

wANNOVAR [http://wannovar.usc.edu/] A web server to annotate user-
supplied list of whole genome 
or whole exome variants with 
a set of pre-de!ned annotation 
tasks

Easy-to-use interface for users with 
limited bioinformatics skills

Limited set of annotation types 
are available

*Tools that are only commercially available (such as CLC Bio, Omicia, Golden Helix, DNANexus and Ingenuity) or are designed for a speci!c type of variant (such as SIFT 
server and PolyPhen server) are not listed here. CNV, copy number variation; SNP, single nucleotide polymorphism; SNV, single nucleotide variation; VCF, variant call 
format.
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Some	
  DefiniCons	
  …	
  
•  The	
  words	
  “penetrance”	
  and	
  “expressivity”	
  are	
  
throwbacks	
  to	
  the	
  era	
  of	
  Drosophila	
  geneCcs,	
  defined	
  
classically	
  as:	
  

•  Penetrance:	
  whether	
  someone	
  has	
  ANY	
  symptoms	
  of	
  a	
  
disease,	
  i.e.	
  all	
  or	
  none,	
  0%	
  or	
  100%.	
  Nothing	
  in	
  between.	
  

•  Expressivity:	
  how	
  much	
  disease	
  (or	
  how	
  many	
  symptoms)	
  
someone	
  with	
  100%	
  penetrance	
  has.	
  

•  This	
  has	
  led	
  to	
  endless	
  confusion!	
  	
  
•  Some	
  just	
  use	
  the	
  word	
  “penetrance”	
  to	
  mean	
  the	
  
expressivity	
  of	
  disease,	
  i.e.	
  incomplete	
  penetrance,	
  and	
  I	
  
agree	
  with	
  combining	
  the	
  two	
  terms	
  into	
  ONE	
  word	
  with	
  
the	
  full	
  expression	
  from	
  0-­‐100%	
  of	
  phenotypic	
  spectrum.	
  



Defini7ons.	
  It	
  is	
  unknown	
  what	
  
porCon	
  of	
  “complex”	
  disease	
  will	
  be	
  

oligogenic	
  vs.	
  polygenic	
  

•  Oligogenic	
  –	
  mulCple	
  mutaCons	
  together	
  
contribuCng	
  to	
  aggregate	
  disease,	
  BUT	
  with	
  only	
  
1-­‐2	
  mutaCons	
  of	
  ~	
  >10%	
  penetrance	
  (or	
  “effect	
  
size)	
  in	
  EACH	
  person	
  in	
  that	
  clan.	
  

•  Polygenic	
  –	
  Dozens	
  to	
  hundreds	
  of	
  mutaCons	
  in	
  
different	
  genes	
  in	
  the	
  SAME	
  person,	
  together	
  
contribuCng	
  to	
  the	
  disease	
  in	
  the	
  SAME	
  person,	
  
hence	
  addi7ve	
  and/or	
  epista7c	
  contribuCon	
  with	
  
~0.01-­‐1%	
  penetrance	
  for	
  each	
  mutaCon.	
  



Results	
  from	
  Exome	
  and	
  WGS	
  requires	
  
both	
  AnalyCc	
  and	
  Clinical	
  Validity	
  

•  AnalyCcal	
  Validity:	
  the	
  test	
  is	
  accurate	
  with	
  
high	
  sensiCvity	
  and	
  specificity.	
  

•  Clinical	
  Validity:	
  Given	
  an	
  accurate	
  test	
  result,	
  
what	
  impact	
  and/or	
  outcome	
  does	
  this	
  have	
  
on	
  the	
  individual	
  person?	
  



Penetrance	
  Issues	
  

•  We	
  do	
  not	
  really	
  know	
  the	
  penetrance	
  of	
  	
  preiy	
  much	
  
ALL	
  mutaCons	
  in	
  humans,	
  as	
  we	
  have	
  not	
  
systemaCcally	
  sequenced	
  or	
  karyotyped	
  any	
  geneCc	
  
alteraCon	
  in	
  Thousands	
  to	
  Millions	
  of	
  randomly	
  
selected	
  people,	
  nor	
  categorized	
  into	
  ethnic	
  classes,	
  
i.e.	
  clans.	
  

•  There	
  is	
  a	
  MAJOR	
  clash	
  of	
  world-­‐views,	
  i.e.	
  does	
  
geneCcs	
  drive	
  outcome	
  predominately,	
  or	
  are	
  the	
  
results	
  modified	
  substanCally	
  by	
  environment?	
  i.e.	
  is	
  
there	
  really	
  such	
  a	
  thing	
  as	
  geneCc	
  determinism	
  for	
  
MANY	
  mutaCons?	
  



AnalyCcal	
  Validity	
  of	
  Exome	
  and	
  WGS?	
  
	
  
	
  
	
  
	
  

•  Minimal	
  Standard:	
  exomes	
  and	
  genomes	
  ought	
  to	
  be	
  
performed	
  in	
  a	
  CLIA-­‐cerCfied	
  environment	
  for	
  germline	
  
genomic	
  DNA	
  from	
  live	
  humans	
  .	
  

•  Easier	
  said	
  than	
  done	
  in	
  academia,	
  but	
  some	
  companies	
  offer	
  
this	
  now:	
  Illumina,	
  23andMe,	
  Ambry	
  GeneCcs,	
  and	
  some	
  
academic	
  places	
  do	
  offer	
  this	
  now:	
  UCLA,	
  Baylor,	
  Emory	
  and	
  
WashU	
  for	
  exomes.	
  

•  I	
  do	
  NOT	
  think	
  the	
  FDA	
  should	
  get	
  involved	
  to	
  regulate	
  this,	
  nor	
  
do	
  the	
  results	
  have	
  to	
  go	
  through	
  a	
  physician,	
  i.e.	
  DTC	
  is	
  fine	
  as	
  
long	
  as	
  CLIA-­‐cerCfied.	
  This	
  is	
  geneCc	
  INFORMATION,	
  not	
  
cyanide,	
  some	
  other	
  drug,	
  or	
  surgery.	
  



Autonomy	
  vs.	
  Privacy	
  vs.	
  Bureaucracy	
  

Privacy	
  

Autonomy	
  

Bureaucracy	
  

Vanderbilt	
  	
  	
  	
  	
  	
  CHOP	
  	
  	
  	
  	
  ClinSeq-­‐NIH	
  	
  	
  	
  	
  Gene	
  Partnership	
  	
  	
  	
  	
  Personal	
  Genome	
  Project	
  	
  	
  	
  Pa7entsLikeMe	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  23AndMe	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  Ancestry.com	
  

	
  



Clinical	
  Validity?	
  
	
  

This	
  is	
  SO	
  complex	
  that	
  the	
  only	
  solid	
  
way	
  forward	
  is	
  with	
  a	
  “networking	
  of	
  
science”	
  model,	
  i.e.	
  online	
  database	
  

with	
  genotype	
  and	
  phenotype	
  
longitudinally	
  tracked	
  for	
  thousands	
  of	
  

volunteer	
  families.	
  
Pa7entsLikeMe	
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The duplication architecture of the human genome predisposes our species to recurrent copy number
variation and disease. Emerging data suggest that this mechanism of mutation contributes to both
common and rare diseases. Two features regarding this form of mutation have emerged. First, common
structural polymorphisms create susceptible and protective chromosomal architectures. These structural
polymorphisms occur at varying frequencies in populations, leading to different susceptibility and ethnic
predilection. Second, a subset of rearrangements shows extreme variability in expressivity. We propose
that two types of genomic disorders may be distinguished: syndromic forms where the phenotypic features
are largely invariant and those where the same molecular lesion associates with a diverse set of diagnoses
including epilepsy, schizophrenia, autism, intellectual disability and congenital malformations. Copy number
variation analyses of patient genomes reveal that disease type and severity may be explained by the occur-
rence of additional rare events and their inheritance within families. We propose that the overall burden of
copy number variants creates differing sensitized backgrounds during development leading to different
thresholds and disease outcomes. We suggest that the accumulation of multiple high-penetrant alleles
of low frequency may serve as a more general model for complex genetic diseases, posing a significant
challenge for diagnostics and disease management.

INTRODUCTION

Genomic disorders were originally described as large deletions
and duplications that are highly penetrant, mostly de novo in
origin, and typically identified in affected individuals with intel-
lectual disability/multiple congenital malformations. Some
examples include Smith–Magenis syndrome (MIM: 182290),
DiGeorge/velocardiofacial syndrome (MIM: 188400, 192430)
and Williams–Beuren syndrome (MIM: 194050). These classi-
cal genomic disorders have been well characterized in the past
two decades with genotype–phenotype correlation studies
implicating causative genes, mouse models recapitulating the
human clinical features, and standardized management proto-
cols and support groups established.

Application of higher definition molecular techniques,
including single-nucleotide polymorphism microarrays or
array comparative genomic hybridization (CGH), has allowed
genotyping of larger disease cohorts and controls. Two major
principles have emerged from these more recent studies: (i)
common copy number polymorphism predisposes certain

chromosomes to recurrent deletions and duplications and
(ii) association of the same recurrent genomic lesion with
apparently very diverse phenotypes. The latter has begun to
illuminate common neurodevelopmental pathways and
helps to explain the comorbidity of diverse neurological
manifestations within the same families. The distinction
between variability of expressivity and reduced penetrance
depending on the diagnosis has become an important consider-
ation for these rare mutational events. We will explore the
mechanisms, models and implications underlying these two
different aspects.

GENOMIC SUSCEPTIBILITY TO RECURRENT
DELETIONS AND DUPLICATIONS

Seminal work on Charcot–Marie–Tooth disease (1,2) and
hereditary neuropathy with liability to pressure palsies
(HNPP) (3) directly implicated low-copy repeats or segmental
duplications as substrates for unequal crossover or non-allelic
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Objective: The authors used a genome-
wide association study (GWAS) of multiply
affected families to investigate the associ-
ation of schizophrenia to common single-
nucleotide polymorphisms (SNPs) and rare
copy number variants (CNVs).

Method: The family sample included
2,461 individuals from 631 pedigrees (581

in the primary European-ancestry analyses).
Association was tested for single SNPs and
genetic pathways. Polygenic scores based
on family study results were used to predict
case-control status in the Schizophrenia
Psychiatric GWAS Consortium (PGC) data
set, and consistency of direction of effect
with the family study was determined for
top SNPs in the PGC GWAS analysis. Within-
family segregation was examined for
schizophrenia-associated rare CNVs.

Results: No genome-wide significant asso-
ciationswereobserved for single SNPs or for
pathways. PGC case and control subjects
had significantly different genome-wide
polygenic scores (computed by weighting
their genotypes by log-odds ratios from the
family study) (best p=10217, explaining
0.4% of the variance). Family study and
PGC analyses had consistent directions for
37 of the 58 independent best PGC SNPs
(p=0.024). The overall frequency of CNVs
in regions with reported associations
with schizophrenia (chromosomes 1q21.1,
15q13.3, 16p11.2, and 22q11.2 and the
neurexin-1 gene [NRXN1]) was similar to
previous case-control studies. NRXN1
deletions and 16p11.2 duplications (both
of which were transmitted from parents)
and 22q11.2 deletions (de novo in four
cases) did not segregate with schizophre-
nia in families.

Conclusions: Many common SNPs are
likely to contribute to schizophrenia risk,
with substantial overlap in genetic risk
factors between multiply affected families
and cases in large case-control studies. Our
findings are consistentwith a role for specific
CNVs in disease pathogenesis, but the partial
segregationof someCNVswith schizophrenia
suggests that researchers should exercise
caution in using them for predictive genetic
testing until their effects in diverse popula-
tions have been fully studied.

Am J Psychiatry Levinson et al.; AiA:1–11

We report here on the first genome-wide associ-
ation study (GWAS) in families with multiple members
with schizophrenia. Significant associations of single-
nucleotide polymorphisms (SNPs) can suggest new

disease susceptibility mechanisms. For schizophrenia,
large GWAS analyses of common SNPs have found
associations in the major histocompatibility complex
(MHC, chromosome 6) (1–3) and several specific genes
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Method: The family sample included
2,461 individuals from 631 pedigrees (581

in the primary European-ancestry analyses).
Association was tested for single SNPs and
genetic pathways. Polygenic scores based
on family study results were used to predict
case-control status in the Schizophrenia
Psychiatric GWAS Consortium (PGC) data
set, and consistency of direction of effect
with the family study was determined for
top SNPs in the PGC GWAS analysis. Within-
family segregation was examined for
schizophrenia-associated rare CNVs.

Results: No genome-wide significant asso-
ciationswereobserved for single SNPs or for
pathways. PGC case and control subjects
had significantly different genome-wide
polygenic scores (computed by weighting
their genotypes by log-odds ratios from the
family study) (best p=10217, explaining
0.4% of the variance). Family study and
PGC analyses had consistent directions for
37 of the 58 independent best PGC SNPs
(p=0.024). The overall frequency of CNVs
in regions with reported associations
with schizophrenia (chromosomes 1q21.1,
15q13.3, 16p11.2, and 22q11.2 and the
neurexin-1 gene [NRXN1]) was similar to
previous case-control studies. NRXN1
deletions and 16p11.2 duplications (both
of which were transmitted from parents)
and 22q11.2 deletions (de novo in four
cases) did not segregate with schizophre-
nia in families.

Conclusions: Many common SNPs are
likely to contribute to schizophrenia risk,
with substantial overlap in genetic risk
factors between multiply affected families
and cases in large case-control studies. Our
findings are consistentwith a role for specific
CNVs in disease pathogenesis, but the partial
segregationof someCNVswith schizophrenia
suggests that researchers should exercise
caution in using them for predictive genetic
testing until their effects in diverse popula-
tions have been fully studied.

Am J Psychiatry Levinson et al.; AiA:1–11

We report here on the first genome-wide associ-
ation study (GWAS) in families with multiple members
with schizophrenia. Significant associations of single-
nucleotide polymorphisms (SNPs) can suggest new

disease susceptibility mechanisms. For schizophrenia,
large GWAS analyses of common SNPs have found
associations in the major histocompatibility complex
(MHC, chromosome 6) (1–3) and several specific genes
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“Rare	
  CNVs	
  were	
  observed	
  in	
  regions	
  with	
  strong	
  previously	
  documented	
  associaCon	
  
with	
  schizophrenia,	
  but	
  with	
  variable	
  paierns	
  of	
  segregaCon.	
  This	
  should	
  serve	
  as	
  a	
  
reminder	
  that	
  we	
  sCll	
  know	
  relaCvely	
  liile	
  about	
  the	
  distribuCon	
  of	
  these	
  CNVs	
  in	
  the	
  
enCre	
  populaCon	
  (e.g.,	
  in	
  individuals	
  with	
  no	
  or	
  only	
  mild	
  cogniCve	
  problems)	
  or	
  about	
  
the	
  reasons	
  for	
  the	
  emergence	
  of	
  schizophrenia	
  in	
  only	
  a	
  minority	
  of	
  carriers,	
  so	
  great	
  
cauCon	
  is	
  required	
  in	
  geneCc	
  counseling	
  and	
  prediagnosis.”	
  	
  
	
  



VAAST	
  shows	
  that	
  probabilisCc	
  ranking	
  
will	
  be	
  very	
  useful	
  going	
  forward	
  

•  But,	
  VAAST	
  is	
  currently	
  dependent	
  on	
  the	
  variant	
  lists	
  
provided	
  to	
  it,	
  as	
  there	
  is	
  sCll	
  a	
  heurisCc	
  threshold	
  with	
  
input	
  of	
  variant	
  data,	
  i.e.	
  no	
  probabilisCc	
  weighCng	
  of	
  
SNV	
  or	
  indel	
  “true	
  posiCve	
  likelihood”.	
  

•  Therefore,	
  currently	
  need	
  to	
  opCmize	
  variant-­‐calling	
  to	
  
make	
  sure	
  variants	
  provided	
  are	
  correct.	
  Plus,	
  VAAST	
  
chokes	
  if	
  background	
  genomes	
  are	
  full	
  of	
  false	
  
posiCves.	
  

•  Thus,	
  focused	
  now	
  on	
  comprehensive	
  comparison	
  of	
  
NGS	
  variant-­‐calling	
  on	
  deep	
  exome	
  sequencing	
  data	
  



CLIA-­‐cerCfied	
  exomes	
  and	
  WGS	
  

•  The	
  CLIA-­‐cerCfied	
  pipelines	
  aiempt	
  to	
  
minimize	
  false	
  posiCves	
  with	
  increased	
  depth	
  
of	
  sequencing,	
  although	
  there	
  can	
  sCll	
  be	
  
many	
  no-­‐calls	
  and	
  other	
  areas	
  of	
  uncertainty,	
  
which	
  should	
  be	
  reported	
  as	
  No-­‐Call	
  Regions.	
  	
  

•  This	
  will	
  minimize	
  false	
  posiCves	
  and	
  also	
  tend	
  
to	
  prevent	
  false	
  negaCves.	
  



Discov	
  Med.	
  2011	
  Jul;12(62):41-­‐55.	
  



Exome	
  sequencing	
  of	
  one	
  pedigree	
  in	
  
a	
  research	
  seong.	
  

Figure 1. The pedigree structure is shown, with corresponding ID 
numbers. The three subjects in the pedigree affected with ADHD are 
shaded. Only 84060 has the idiopathic hemolytic anemia. The mother, 
father and two sons were sequenced. The two sisters in the family 
declined to participate in the study, thus their phenotype status is 
unknown and marked as “?”. 
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Supplementary Table 1. ADHD measures during a clinical trial of methylphenidate 
transdermal system. 

    92157 84060 84615 

Baseline    
 WRAADDS 16 22 16 
 ODD 1 11 7 
 CAARS 40 55 38 
 CGI-S 4 4 4 
Active Medication    
 WRAADDS 0 4 3 
 ODD 0 1 3 
 CAARS 10 0 13 
 CGI-I 1 1 1 
 CGI-S 1 3 2 
Placebo     
 WRAADDS 15 24 20 
 ODD 6 8 7 
 CAARS 33 51 42 
 CGI-I 4 4 N/A 
 CGI-S 4 5 N/A 

 
 
WRAADDS: Total score on the Wender Reimherr Adult ADD Scale  
ODD: Oppositional Defiant Disorder scaore on the WRAADDS ODD subscale 
CAARS: Total score Connor’s Adult ADHD Rating Scale 
CGI-S: Clinical Global Impression, Severity score.  
!

Phenotyping	
  is	
  Cri7cally	
  Important	
  in	
  Neuropsychiatric	
  Disorders!	
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Exome	
  method	
  used	
  ~January	
  2010	
  
with	
  BGI	
  

  Exome	
  capture	
  for	
  the	
  three	
  males	
  was	
  carried	
  out	
  in	
  January	
  2010	
  
using	
  the	
  commercially	
  available	
  Agilent	
  SureSelect	
  Human	
  All	
  
Exon	
  v1	
  38	
  MB	
  in	
  soluCon	
  method	
  as	
  per	
  the	
  manufacturer	
  
guidelines	
  (Agilent).	
  	
  

  The	
  DNA	
  from	
  the	
  unaffected	
  mother	
  was	
  obtained	
  at	
  a	
  later	
  date,	
  
allowing	
  us	
  to	
  use	
  the	
  newly	
  released	
  SureSelect	
  Human	
  All	
  Exon	
  v.
2	
  Kit,	
  which	
  targets	
  approximately	
  44	
  Mb,	
  covering	
  98.2%	
  of	
  the	
  
CCDS	
  database.	
  	
  

  Paired	
  end	
  sequencing	
  was	
  performed	
  using	
  the	
  Illumina	
  Genome	
  
Analyzer	
  IIx	
  plasorm	
  with	
  read	
  lengths	
  of	
  76	
  base	
  pairs,	
  providing	
  
at	
  least	
  20x	
  average	
  coverage	
  at	
  the	
  targeted	
  region.	
  The	
  
unaffected	
  mother	
  was	
  sequenced	
  with	
  read	
  lengths	
  of	
  90	
  base	
  
pairs	
  due	
  to	
  technological	
  advancements	
  during	
  the	
  course	
  of	
  the	
  
study,	
  at	
  an	
  average	
  coverage	
  of	
  30x	
  at	
  the	
  targeted	
  region.	
  	
  

	
  
	
  



 

 

Supplementary Table 2. Summary of data production and evenness for samples. 
 

Exon Capture 84615 84060 92157 
Initial bases on target 37,806,033 37,806,033 37,806,033 
*Initial bases near target 126,431,894 126,431,894 126,431,894 
Initial bases on or near target 164,237,927 164,237,927 164,237,927 
**Total effective reads 18,578,623 18,978,287 19,437,592 
Total effective yield (Mb) 1,374.80 1,394.45 1,428.19 
Average read length (bp) 74.00 73.48 73.48 
Effective sequence on target(Mb) 831.55 807.17 890.49 
Effective sequence near target(Mb) 259.93 290.95 240.09 
Effective sequence on or near target(Mb) 1,091.48 1,098.12 1,130.57 
Fraction of effective bases on target 60.50% 57.90% 62.4% 
Fraction of effective bases on or near 
target 79.40% 78.70% 79.2% 

Average sequencing depth on target 22.00  21.35  23.55 
Average sequencing depth near target 2.06 2.30 1.90 
Mismatch rate in target region 0.28% 0.27% 0.28% 
Mismatch rate in all effective sequence 0.29% 0.28% 0.30% 
Base covered on target 35,919,196 36,523,196 36,676,340 
Coverage of target region 95.00% 96.60% 97.0% 
Base covered near target 44,578,612 50,837,058 44,482,108 
Coverage of flanking region 35.30% 40.20% 35.2% 
Fraction of target covered with at least 
20X    42.60% 41.80% 46.3% 

Fraction of target covered with at least 
10X    67.20% 68.90% 72.3% 

Fraction of target covered with at least 4X    84.90% 87.90% 89.4% 
Fraction of flanking region covered with at 
least 20X   1.90% 2.10% 1.6% 

Fraction of flanking region covered with at 
least 10X   6.50% 7.20% 5.7% 

Fraction of flanking region covered with at 
least 4X    15.90% 18.10% 14.8% 

 
* The region near target refers to flanking region within 500bp of target regions. 
** Total effective reads is the same meaning as the unique mapped reads. Here the effective reads consist of 
two parts: i) the reads have only one best hit in the alignment. These reads comes from the unique region of 
genome ii) the reads have multiple best hits on the genome (the number of hits between 1 and 20), and they 
were randomly aligned onto the target regions. These reads mainly come from low complex genomic region, 
such as repetitive sequences, and account for about 2% of total effective reads. 
*** Target regions used here refer to capture target regions that the designed probes actually covered. The 
aggregate length of target is about 37.8Mb. 
 

 
 

 
 
 



 

 
 
Supplementary Table 3. Exome sequencing for mother,  
K24510-88962 

Exome Capture Statistics         K24510-88962 

Target region (bp) 46,401,121  
Raw reads 33,218,260  
Raw data yield (Mb) 2,990.00  
Reads mapped to genome 28,985,053  
Reads mapped to target region 21,076,479  
Data mapped to target region (Mb) 1,585.28  
Mean depth of target region 34.16 
Coverage of target region (%) 95.51  
Average read length (bp) 89.57  
Rate of nucleotide mismatch (%) 0.42  
Fraction of target covered >=4X 86.58  
Fraction of target covered >=10X 75.02  
Fraction of target covered >=20X 58.39  
Fraction of target covered >=30X 43.35  
Capture specificity (%) 72.97  
Reads mapped to flanking region 3,915,627  
Mean depth of flanking region 9.29  
Coverage of flanking region (%) 81.53  
Fraction of flanking  covered >=4X 54.69  
Fraction of flanking  covered >=10X 30.11  
Fraction of flanking  covered >=20X 13  
Fraction of flanking  covered >=30X 6.74  
Fraction of unique mapped bases on or near 
target 85.42  

Duplication rate 7.30  
Mean depth of chrX 47.98  
Mean depth of chrY 5.36  
GC rate 48.28  
Gender test result                                F 
Note: 

(1)    Target regions here refer to the regions that are actually covered by the designed probes. 

(2)    Reads mapped to target regions are reads that within or overlap with target region. 
(3)    Capture specificity is defined as the percentage of uniquely mapped reads aligning to target 
region. 

(4)    Flanking region refers to regions +/-200 bp on both sides of each target region. 

(5)   Duplication is defined as pairs of reads that have duplicated start sites for both reads. 
Duplication rate is the fraction of duplicated reads in raw data. 

 

 

 

 



 

 
 

 
 

 
Suppl. Figure 2. Cumulative depth distribution in target regions for three samples. X-axis denotes sequencing 
depth, and y-axis indicated the fraction of bases that achieves at or above a given sequencing depth. From the 
figure above, we can see at least 67% of target region bases obtain at least 10x fold coverage in three exomes 
and more than 85% of target region achieved at least 4x, which shows that the three exomes have similar 
enrichment uniformity. 
 



BioinformaCcs	
  Analysis	
  for	
  ADHD	
  
pedigree	
  



Poor concordance: Intersection of variants. We show here the 
variants identified by the three main pipelines as being present in 

the three males with ADHD, but not present in the unaffected 
mother.   

	
  
	
  



Filtering	
  Steps	
  for	
  ADHD	
  Shared variants: 13786 
SNPs+ 123 indels 

Gene-­‐based	
  annotaCon	
  to	
  idenCfy	
  non-­‐
synonymous	
  or	
  frameshiu	
  variants	
  

 3775 variants 
Conserved	
  variants	
  from	
  44-­‐species	
  
alignment	
  

 1694 variants 
Remove	
  variants	
  in	
  segmental	
  
duplicaCon	
  regions	
  

 1551 variants 
Remove	
  variants	
  found	
  in	
  1000	
  
Genomes	
  Project	
  CEU	
  populaCon	
  

 107 variants 
Remove	
  variants	
  found	
  in	
  1000	
  
Genomes	
  Project	
  YRI	
  populaCon	
  

 105 variants 
Remove	
  variants	
  found	
  in	
  1000	
  
Genomes	
  Project	
  CHB+JPT	
  
populaCon	
  105 variants 

Remove	
  variants	
  found	
  in	
  dbSNP	
  130	
  
Dominant	
  model	
  

 41 variants 

Literature survey 
identifies 4 candidate 

genes (ATP7B, 
CSTF2T, METTL3, 

ALDH1L1) 

29 
candidate 
variants 

SIFT	
  scoring	
  

Validation by 
Sanger 

sequencing 

filtering out variants 
with MAF>0.2% in 

~6300 exomes 



 
 
 
Supplementary Table 6. Validated variants for ADHD and their population frequency in 5,680 and ~600 deep-sequenced exomes  
at BGI and Baylor, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. The indels were only measured thus far in 2,360 exomes at BGI, whereas the SNPs were measured in 5,680 exomes. 

# 
Chrom. 

Position 
in HG19 

Reference 
allele 

Mutant 
allele 

Gene 
 

Type of Mutation 
 

Amino acid 
change 

# variants 
in BGI 

exomes1 

% in BGI 
exomes 

# variants in 
~600 Baylor 

exomes 

% in Baylor 
exomes 

chr17 66872692 
 

A G ABCA8 Nonsynonymous C1387R 0 0.0% 0 0.0% 

chr11 68566802 
 

G A CPT1A Nonsynonymous L193F 0 0.0% 0 0.0% 

chr8 100994274 
 

A G RGS22 Nonsynonymous I1084T 0 0.0% 0 0.0% 

chr18 61654247 
 

G T SERPINB8 Nonsynonymous G287V 0 0.0% 0 0.0% 

chr1 207200877 
 

- T C1orf116 frameshift insertion  34 1.4% 0 0.0% 

chr18 29101156 
 

T G DSG2 Nonsynonymous V158G 1 0.0% 1 0.2% 

chr3 125877290 
 

G A ALDH1L1 Nonsynonymous P107L 2 0.0% 0 0.0% 

chr13 52542680 
 

A G ATP7B Nonsynonymous V536A 1 0.0% 1 0.2% 

chr10 53458646 
 

A C CSTF2T Nonsynonymous C222G 4 0.1% 1 0.2% 

chr14 21972019 
 

G A METTL3 Nonsynonymous R36W 9 0.2% 1 0.2% 

chr11 76954790 
 

- A GDPD4 frameshift insertion  36 1.5% 6 1.0% 

chr7 87160618 
 

A T ABCB1 Nonsynonymous S893T 815 14.3%1 9 1.5% 

chr11 134128923 
 

C G ACAD8 Nonsynonymous S171C 112 2.0% 20 3.3% 

chr20 17956347 
 

C T C20orf72 Nonsynonymous R178W 23 0.4% 8 1.3% 

chr8 33318891 
 

T C FUT10 Nonsynonymous Q27R 15 0.3% 3 0.5% 

chr13 20797025 
 

A T GJB6 Nonsynonymous S199T 68 1.2% 4 0.7% 

chr16 71015329 
 

G T HYDIN Nonsynonymous P1491H 77 1.4% dozens >5.0% 

chr10 22019855 
 

G A MLLT10 Nonsynonymous R713H 15 0.3% 6 1.0% 

chr17 10415269 
 

A G MYH1 Nonsynonymous Y435H 99 1.7% 14 2.3% 

chr1 145015877 
 

G T PDE4DIP Nonsynonymous L142I 1256 22.1% hundreds >30.0% 

chr2 98809432 
 

T C VWA3B Nonsynonymous I513T 15 0.3% 16 2.7% 

chr5 115202418 AAGA - AP3S1 frameshift deletion  185 7.8% 19 3.2% 
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OpCmizing	
  Variant	
  Calling	
  in	
  Exomes	
  at	
  
BGI	
  in	
  2011	
  

•  Agilent	
  v2	
  44	
  MB	
  exome	
  kit	
  
•  Illumina	
  Hi-­‐Seq	
  for	
  sequencing.	
  

•  Average	
  coverage	
  ~100-­‐150x.	
  
•  Depth	
  of	
  sequencing	
  of	
  >80%	
  of	
  the	
  target	
  
region	
  with	
  >20	
  reads	
  or	
  more	
  per	
  base	
  pair.	
  

•  Comparing	
  various	
  pipelines	
  for	
  alignment	
  and	
  
variant-­‐calling.	
  



2-­‐3	
  rounds	
  of	
  sequencing	
  at	
  BGI	
  to	
  aVain	
  
goal	
  of	
  >80%	
  of	
  target	
  region	
  at	
  >20	
  reads	
  

per	
  base	
  pair	
  
Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615 K24510-88962 

Target region (bp) 46,401,121  46,401,121  46,401,121  46,257,379  

Raw reads 138,779,950  161,898,170  156,985,870  104,423,704  

Raw data yield (Mb) 12,490  14,571  14,129  9,398  

Reads mapped to genome 110,160,277  135,603,094  135,087,576  83,942,646  

Reads mapped to target region 68,042,793  84,379,239  80,347,146  61,207,116  

Data mapped to target region (Mb) 5,337.69  6,647.18  6,280.01  4,614.47  

Mean depth of target region 115.03 143.25 135.34 99.76 

Coverage of target region (%) 0.9948  0.9947  0.9954  0.9828  

Average read length (bp) 89.91  89.92  89.95  89.75  

Fraction of target covered >=4X 98.17  98.38  98.47  94.25  

Fraction of target covered >=10X 95.18  95.90  95.97  87.90  

Fraction of target covered >=20X 90.12  91.62  91.75  80.70  

Fraction of target covered >=30X 84.98  87.42  87.67  74.69  

Capture specificity (%) 61.52  62.12  59.25  73.16  

Fraction of unique mapped bases on or near target 65.59  65.98  63.69  85.46  

Gender test result M M M F 



Depth	
  of	
  Coverage	
  in	
  15	
  exomes	
  >	
  20	
  
reads	
  per	
  bp	
  in	
  target	
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Deep	
  Exome	
  sequencing	
  

Fig.1	
  CorrelaCon	
  between	
  the	
  percentage	
  of	
  target	
  regions	
  covered	
  and	
  the	
  sequencing	
  
depth	
  in	
  human	
  exome	
  sequencing.	
  Take	
  >=30X	
  series	
  (the	
  purple	
  line)	
  for	
  example:	
  when	
  
the	
  sequencing	
  depth	
  is	
  30X,	
  only	
  half	
  of	
  the	
  target	
  regions	
  (51%)	
  are	
  covered	
  at	
  above	
  30X.	
  
While	
  at	
  the	
  100X	
  and	
  200X	
  sequencing	
  depths,	
  a	
  much	
  higher	
  percentage	
  (81%	
  and	
  90%,	
  
respecCvely)	
  of	
  the	
  target	
  regions	
  is	
  covered	
  at	
  above	
  30X.	
  	
  	
  

Figure	
  from	
  BGI	
  website:	
  
hip://bgiamericas.com/
news-­‐events/why-­‐deep-­‐
exome-­‐sequencing/	
  



GWAS	
  has	
  staCsCcal	
  rigor	
  with	
  a	
  
threshold	
  p	
  value	
  

•  Should	
  exome	
  sequencing	
  also	
  have	
  a	
  
threshold	
  level	
  of	
  rigor,	
  such	
  as	
  >80%	
  of	
  target	
  
region	
  with	
  20	
  reads	
  or	
  more	
  per	
  base	
  pair?	
  

•  This	
  is	
  accepted	
  pracCce	
  at	
  major	
  genome	
  
sequencing	
  centers	
  (Baylor,	
  WashU,	
  Broad),	
  
but	
  apparently	
  not	
  everywhere	
  else….	
  
Shouldn’t	
  this	
  be	
  required?	
  



“Methods”	
  should	
  really	
  mean	
  
something	
  

•  Papers	
  should	
  include	
  detailed	
  methods,	
  
allowing	
  reproducCon	
  of	
  analyses.	
  

•  Or,	
  beier	
  yet,	
  “papers”	
  should	
  be	
  simply	
  
analyses	
  published	
  online,	
  connected	
  to	
  
datasets,	
  updateable	
  in	
  Wiki	
  fashion..	
  

•  Data	
  should	
  be	
  made	
  available	
  as	
  well,	
  with	
  
standardized	
  analyses	
  in	
  place.	
  

•  At	
  least	
  there	
  is	
  now	
  some	
  movement	
  toward	
  
“open	
  science”.	
  



In	
  a	
  prior	
  project	
  on	
  a	
  new,	
  rare	
  disorder,	
  that	
  we	
  
named	
  Ogden	
  Syndrome,	
  the	
  X-­‐chromosome	
  

Exon	
  Capture	
  and	
  Coverage	
  was	
  high	
  depth	
  with	
  
Average	
  Base	
  Coverage	
  of	
  214x	
  …	
  !

Table 2. Coverage Statistics in Family 1. Based on GNUMAP 

Region RefSeq 
Transcripts 

 
Unique 
Exons 
 

Percent 
Exon 
Coverage 
≥1X 

Percent Exon 
Coverage 
≥10X 

Unique 
Genes 

Average Base 
Coverage 

 
VAAST 
Candidate 
SNVs 

 X-chromosome 1,959 7,486  97.8 95.6 913 214.6 
1 

(NAA10) 
chrX: 

10054434- 
40666673 262 1,259  98.1 95.9 134 213.5 

 
 

0 
chrX: 

138927365- 
153331900 263 860  97.1 94.9 132 177.1 

 
1 

(NAA10) 
* On chromosome X, there are 8,222 unique RefSeq exons. Of these exons, 736 were excluded from the SureSelect X-Chromosome Capture 
Kit because they were designated as pseudoautosomal or repetitive sequences (UCSC genome browser). 

Using	
  VAAST	
  to	
  IdenCfy	
  an	
  X-­‐Linked	
  Disorder	
  ResulCng	
  in	
  Lethality	
  in	
  Male	
  Infants	
  Due	
  to	
  N-­‐Terminal	
  
Acetyltransferase	
  Deficiency.	
  	
  Am	
  J	
  Hum	
  Genet.	
  2011	
  Jul	
  15;89(1):28-­‐43.	
  Epub	
  2011	
  Jun	
  23.	
  	
  



ReplicaCon	
  is	
  so	
  criCcally	
  important:	
  
“To	
  show	
  that	
  'A'	
  is	
  true,	
  you	
  don't	
  do	
  

'B'.	
  You	
  do	
  'A'	
  again.”	
  

•  Gave	
  Ogden	
  Syndrome	
  data	
  to	
  Omicia,	
  Golden	
  
Helix	
  and	
  Synapse	
  for	
  replicaCon	
  and	
  data	
  
upload.	
  

•  Replicated	
  already	
  by	
  Omicia	
  and	
  Golden	
  Helix.	
  

•  Anyone	
  can	
  download	
  data	
  from	
  Synapse	
  Portal	
  
–	
  just	
  email	
  me	
  to	
  gain	
  access	
  to	
  the	
  data.	
  

Ed	
  Yong,	
  Nature	
  485,	
  298–300	
  (17	
  May	
  2012)	
  



2-­‐3	
  rounds	
  of	
  sequencing	
  at	
  BGI	
  to	
  aVain	
  
goal	
  of	
  >80%	
  of	
  target	
  region	
  at	
  >20	
  reads	
  

per	
  base	
  pair	
  
Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615 K24510-88962 

Target region (bp) 46,401,121  46,401,121  46,401,121  46,257,379  

Raw reads 138,779,950  161,898,170  156,985,870  104,423,704  

Raw data yield (Mb) 12,490  14,571  14,129  9,398  

Reads mapped to genome 110,160,277  135,603,094  135,087,576  83,942,646  

Reads mapped to target region 68,042,793  84,379,239  80,347,146  61,207,116  

Data mapped to target region (Mb) 5,337.69  6,647.18  6,280.01  4,614.47  

Mean depth of target region 115.03 143.25 135.34 99.76 

Coverage of target region (%) 0.9948  0.9947  0.9954  0.9828  

Average read length (bp) 89.91  89.92  89.95  89.75  

Fraction of target covered >=4X 98.17  98.38  98.47  94.25  

Fraction of target covered >=10X 95.18  95.90  95.97  87.90  

Fraction of target covered >=20X 90.12  91.62  91.75  80.70  

Fraction of target covered >=30X 84.98  87.42  87.67  74.69  

Capture specificity (%) 61.52  62.12  59.25  73.16  

Fraction of unique mapped bases on or near target 65.59  65.98  63.69  85.46  

Gender test result M M M F 



Pipeline	
  Used	
  on	
  Same	
  Set	
  of	
  Seq	
  Data	
  
by	
  Different	
  Analysts	
  	
  

1)  BWA-­‐Sam	
  format	
  to	
  Bam	
  format-­‐Picard	
  to	
  remove	
  duplicates-­‐	
  GATK	
  (version	
  
1.5)	
  with	
  recommended	
  parameters	
  	
  (GATK	
  IndelRealigner,	
  base	
  quality	
  scores	
  
were	
  re-­‐calibrated	
  by	
  GATK	
  Table	
  RecalibraCon	
  tool.	
  Genotypes	
  called	
  by	
  GATK	
  
UnifiedGenotyper.	
  	
  

	
  
2)  BWA-­‐Sam	
  format	
  to	
  Bam	
  format-­‐Picard	
  to	
  remove	
  duplicates-­‐	
  SamTools	
  

version	
  0.1.18	
  to	
  generate	
  genotype	
  calls	
  	
  -­‐-­‐	
  The	
  “mpileup”	
  command	
  in	
  
SamTools	
  were	
  used	
  for	
  idenCfy	
  SNPs	
  and	
  indels.	
  

	
  
3)  SOAP-­‐Align	
  –	
  SOAPsnp	
  –	
  then	
  BWA-­‐SOAPindel	
  (adopts	
  local	
  assembly	
  based	
  

on	
  an	
  extended	
  de	
  Bruijn	
  graph	
  )	
  
	
  
4)  GNUMAP-­‐SNP	
  (probabilisCc	
  Pair-­‐Hidden	
  Markov	
  which	
  effecCvely	
  accounts	
  

for	
  uncertainty	
  in	
  the	
  read	
  calls	
  as	
  well	
  as	
  read	
  mapping	
  in	
  an	
  unbiased	
  
fashion)	
  

	
  
5)  BWA-­‐Sam	
  format	
  to	
  Bam	
  format-­‐Picard	
  to	
  remove	
  duplicates-­‐	
  SNVer	
  	
  



Total	
  SNVs�

Mean	
  #	
  of	
  total	
  SNVs	
  across	
  15	
  exomes,	
  called	
  by	
  5	
  pipelines.	
  The	
  percentage	
  
in	
  the	
  center	
  of	
  the	
  the	
  Venn	
  diagram(Parenthesis)	
  is	
  the	
  percent	
  of	
  total	
  SNVs	
  
called	
  by	
  all	
  five	
  pipelines.	
  	
  

A)	
  





B)	
  Mean	
  #	
  of	
  known	
  SNVs	
  (present	
  in	
  dbSNP135)	
  found	
  by	
  5	
  pipelines	
  across	
  
15	
  exomes.	
  The	
  percentage	
  in	
  the	
  center	
  of	
  the	
  the	
  Venn	
  diagram	
  is	
  the	
  
percent	
  of	
  known	
  SNVs	
  called	
  by	
  all	
  five	
  pipelines.	
  	
  

B)	
  

Known	
  SNVs	
  



•  C)	
  Mean	
  #	
  of	
  novel	
  SNVs	
  (not	
  present	
  in	
  dbSNP135)	
  found	
  by	
  5	
  pipelines	
  across	
  15	
  
exomes.	
  The	
  percentage	
  in	
  the	
  center	
  of	
  the	
  Venn	
  diagram	
  is	
  the	
  percent	
  of	
  novel	
  
SNVs	
  called	
  by	
  all	
  five	
  pipelines.	
  

C)	
  
Novel	
  SNVs	
  



Total	
  mean	
  overlap,	
  plus	
  or	
  minus	
  one	
  standard	
  devia7on,	
  observed	
  between	
  three	
  
indel	
  calling	
  pipelines:	
  GATK,	
  SOAP-­‐indel,	
  and	
  SAMTools.	
  	
  a)	
  Mean	
  overlap	
  when	
  indel	
  
posiCon	
  was	
  the	
  only	
  necessary	
  agreement	
  criterion.	
  b)	
  Mean	
  overlap	
  when	
  indel	
  
posiCon,	
  base	
  length	
  and	
  base	
  composiCon	
  were	
  the	
  necessary	
  agreement	
  criteria.	
  	
  	
  

Indels-­‐	
  Overlap	
  by	
  Base	
  	
  
PosiCon	
  only	
  

Indels-­‐	
  Overlap	
  by	
  Base	
  	
  
PosiCon,	
  Length	
  and	
  ComposiCon	
  

INDELS	
  





OpCmizing	
  the	
  Variant	
  Calling	
  Pipeline	
  
Using	
  Family	
  RelaConships	
  

We	
  looked	
  for	
  SNVs	
  that	
  were	
  detected	
  in	
  children	
  but	
  
not	
  in	
  parents	
  using	
  3	
  different	
  strategies:	
  
	
  	
  
1.	
  We	
  used	
  all	
  of	
  the	
  SNVs	
  that	
  were	
  detected	
  by	
  all	
  5	
  
pipelines	
  for	
  both	
  parents	
  and	
  children	
  
2.	
  We	
  used	
  all	
  of	
  the	
  detected	
  SNVs	
  for	
  parents,	
  but	
  only	
  
the	
  concordant	
  SNVs	
  between	
  the	
  5	
  different	
  pipelines	
  
for	
  children.	
  
3.	
  We	
  used	
  SNVs	
  concordant	
  between	
  the	
  5	
  different	
  
pipelines	
  for	
  children	
  and	
  parents.	
  
	
  	
  



OpCmizing	
  pipeline	
  based	
  on	
  literature	
  value	
  of	
  ~1	
  
true	
  de	
  novo	
  protein-­‐altering	
  mutaCon	
  per	
  exome	
  

The	
  result	
  is	
  that	
  using	
  all	
  of	
  the	
  detected	
  SNVs	
  for	
  both	
  parents	
  and	
  children	
  should	
  
minimize	
  the	
  false	
  negaCve	
  rate	
  but	
  similarly	
  show	
  a	
  relaCvely	
  high	
  false	
  posiCve	
  rate.	
  	
  
Using	
  all	
  of	
  the	
  SNVs	
  detected	
  for	
  parents	
  but	
  only	
  the	
  SNVs	
  concordant	
  among	
  the	
  five	
  
pipelines	
  shows	
  mutaCon	
  rates	
  similar	
  to	
  those	
  reported	
  by	
  the	
  literature	
  and	
  is	
  expected	
  
to	
  have	
  moderate	
  false	
  posiCve	
  rates	
  and	
  moderate	
  false	
  negaCve	
  rates.	
  	
  Using	
  only	
  the	
  
SNVs	
  concordant	
  among	
  the	
  5	
  different	
  pipelines	
  for	
  both	
  parents	
  and	
  children	
  should	
  
minimize	
  the	
  false	
  posiCve	
  rate	
  but	
  similarly	
  show	
  a	
  relaCvely	
  high	
  false	
  negaCve	
  rate.	
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“Parents”	
  



Analysis	
  based	
  on	
  various	
  pipelines	
  

•  “Parents”	
  in	
  this	
  case	
  means	
  the	
  mother,	
  father	
  
AND	
  grandmother.	
  

•  Taking	
  the	
  Union	
  of	
  SNVs	
  from	
  all	
  5	
  pipelines	
  
from	
  “Parents”,	
  and	
  subtract	
  that	
  from	
  the	
  Union	
  
of	
  all	
  SNVs	
  in	
  each	
  child.	
  

•  Or	
  Subtract	
  the	
  Union	
  of	
  these	
  “Parents”	
  from	
  
the	
  SNVs	
  in	
  the	
  child	
  concordant	
  between	
  5	
  
pipelines.	
  

•  Or,	
  subtract	
  the	
  concordant	
  variants	
  from	
  5	
  
pipelines	
  in	
  “Parents”	
  from	
  the	
  concordant	
  
variants	
  for	
  5	
  pipelines	
  in	
  each	
  child.	
  

	
  



All#SNVs,#both#for#
parents#and#children,#
were#considered

All#parental#SNVs#that#were#detected#
were#considered.##Only#SNVs#concordant#
between#the#5#pipelines#were#considered#

for#children#

SNVs#concordant#between#5#
pipelines#for#children#and#

parents

Number#of##SNVs#found#in#child#A#
but#not#in#parents

1057 2 637

Number#of##SNVs#found#in#child#B#
but#not#in#parents

1084 1 672

Number#of##SNVs#found#in#child#C#
but#not#in#parents

2363 20 1703

Number#of##SNVs#found#in#child#D#
but#not#in#parents

1518 5 876

Number#of#nonsyn#SNVs#in#child#A#
but#not#in#parents

411 1 150

Number#of#nonsyn#SNVs#in#child#B#
but#not#in#parents

396 0 135

Number#of#nonsyn#SNVs#in#child#C#
but#not#in#parents

911 6 459

Number#of#nonsyn#SNVs#in#child#D#
but#not#in#parents

619 3 225

Number#of#shared#nonsyn#SNVs#in#
the#children,#but#not#in#parents

8 0 9





Preliminary	
  Conclusions	
  

•  Sequencing	
  a	
  grandparent	
  seems	
  to	
  help	
  
eliminate	
  errors	
  derived	
  from	
  the	
  current	
  depth	
  of	
  
sequencing	
  coverage	
  in	
  the	
  mother	
  and	
  father.	
  	
  

•  An	
  alternaCve	
  might	
  be	
  just	
  deeper	
  depth	
  of	
  
sequencing	
  in	
  the	
  parents,	
  although	
  sCll	
  
invesCgaCng	
  errors	
  that	
  might	
  be	
  overcome	
  by	
  
sequencing	
  a	
  grandparent.	
  

•  Need	
  to	
  decide	
  on	
  whether	
  to	
  proceed	
  with	
  the	
  
concordance	
  of	
  2	
  or	
  more	
  pipelines,	
  like	
  SOAP	
  +	
  
GATK,	
  or	
  just	
  accept	
  (with	
  everybody	
  else	
  it	
  
seems!)	
  that	
  GATK	
  is	
  somehow	
  the	
  “de	
  facto	
  
standard”.	
  



For	
  now,	
  more	
  effort	
  should	
  be	
  placed	
  
on	
  the	
  following:	
  

•  ImplemenCng	
  Standards	
  for	
  a	
  “clinical-­‐grade”	
  exome,	
  
and	
  promoCng	
  the	
  “networking	
  of	
  science”	
  model.	
  

•  Focusing	
  on	
  rare,	
  highly	
  penetrant	
  mutaCons	
  running	
  
in	
  families,	
  with	
  cascade	
  carrier	
  tesCng	
  of	
  even	
  more	
  
relaCves	
  as	
  needed.	
  

•  The	
  genomic	
  background	
  is	
  much	
  more	
  constant	
  in	
  
families.	
  

•  The	
  environmental	
  background	
  is	
  someCmes	
  more	
  
constant	
  in	
  families.	
  

•  This	
  allows	
  one	
  to	
  figure	
  out	
  penetrance	
  of	
  rare	
  
variants	
  in	
  these	
  families,	
  along	
  with	
  other	
  issues,	
  
such	
  as	
  somaCc	
  mosaicism.	
  



Please	
  Read	
  and	
  Email	
  me	
  with	
  Any	
  Ques7ons	
  or	
  Comments!	
  
Email:	
  GholsonJLyon@gmail.com	
  



Figure 4.	


	



Figure 4. NAT activity of recombinant hNaa10p WT or p.Ser37Pro 
towards synthetic N-terminal peptides. A) and B) Purified MBP-hNaa10p 
WT or p.Ser37Pro were mixed with the indicated oligopeptide substrates (200 
µM for SESSS and 250 µM for DDDIA) and saturated levels of acetyl-CoA 
(400 µM). Aliquots were collected at indicated time points and the acetylation 
reactions were quantified using reverse phase HPLC peptide separation. 
Error bars indicate the standard deviation based on three independent 
experiments. The five first amino acids in the peptides are indicated, for 
further details see materials and methods. Time dependent acetylation 
reactions were performed to determine initial velocity conditions when 
comparing the WT and Ser37Pro NAT-activities towards different 
oligopeptides. C) Purified MBP-hNaa10p WT or p.Ser37Pro were mixed with 
the indicated oligopeptide substrates (200 µM for SESSS and AVFAD, and 
250 µM for DDDIA and EEEIA) and saturated levels of acetyl-CoA (400 µM) 
and incubated for 15 minutes (DDDIA and EEEIA) or 20 minutes (SESSS and 
AVFAD), at 37°C in acetylation buffer. The acetylation activity was determined 
as above. Error bars indicate the standard deviation based on three 
independent experiments. Black bars indicate the acetylation capacity of the 
MBP-hNaa10p wild type (WT), while white bars indicate the acetylation 
capacity of the MBP-hNaa10p mutant p.Ser37Pro. The five first amino acids 
in the peptides are indicated. 
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Genomic Dark Matter: The reliability of short read
mapping illustrated by the Genome Mappability Score
Hayan Lee1,2∗and Michael C. Schatz 1,2

1Department of Computer Science, Stony Brook University, Stony Brook, NY
2Simons Center for Quantitive Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

ABSTRACT
Motivation: Genome resequencing and short read mapping are two
of the primary tools of genomics and are used for many important
applications. The current state-of-the-art in mapping uses the quality
values and mapping quality scores to evaluate the reliability of the
mapping. These attributes, however, are assigned to individual
reads and don’t directly measure the problematic repeats across
the genome. Here we present the Genome Mappability Score
(GMS) as a novel measure of the complexity of resequencing a
genome. The GMS is a weighted probability that any read could be
unambiguously mapped to a given position, and thus measures the
overall composition of the genome itself.
Results: We have developed the Genome Mappability Analyzer
(GMA) to compute the GMS of every position in a genome. It
leverages the parallelism of cloud computing to analyze large
genomes, and enabled us to identify the 5-14% of the human,
mouse, fly, and yeast genomes that are difficult to analyze with short
reads. We examined the accuracy of the widely used BWA/SAMtools
polymorphism discovery pipeline in the context of the GMS, and
found discovery errors are dominated by false negatives, especially in
regions with poor GMS. These errors are fundamental to the mapping
process and cannot be overcome by increasing coverage. As such,
the GMS should be considered in every resequencing project to
pinpoint the dark matter of the genome, including of known clinically
relevant variations in these regions.
Availability: The source code and profiles of several model
organisms are available at http://gma-bio.sourceforge.net
Contact: hlee@cs.stonybrook.edu

1 INTRODUCTION
1.1 Background
DNA sequencing technology has dramatically improved in the past
decade so that today an individual human genome can be sequenced
for less than $10,000 and in less then two weeks (Drmanac et al.,
2010), compared to years of effort and hundreds of millions
of dollars for the first sequenced human genome (Stein, 2010).
This dramatic improvement has lead to an exponential growth in
sequencing, including several large projects to sequence thousands
of human genomes and exomes, such as the 1000 Genomes Project
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Consortium (2010) or International Cancer Genome Consortium
(2010). Other projects, such as ENCODE Project Consortium
(2004) and modENCODE Consortium (2010) are extensively using
resequencing and read mapping to discover novel genes and binding
sites.
The output of current DNA sequencing instruments consists of

billions of short, 25− 200 base pairs (bp) sequences of DNA called
reads, with an overall per base error rate around 1%-2% (Bentley
et al., 2008). In the case of whole genome resequencing, these
short reads will originate from random locations in the genome,
but nevertheless, entire genomes can be accurately studied by
oversampling the genome, and then aligning or ”mapping” each
read to the reference genome to computationally identify where it
originated. Once the entire collection of reads has been mapped,
variations in the sample can be identified by the pileup of reads that
significantly disagree from the reference genome (Fig. 1).
The leading short read mapping algorithms, including BWA (Li

and Durbin, 2009), Bowtie (Langmead et al., 2009), and SOAP (Li
et al., 2009b), all try to identify the best mapping position for each
read that minimizes the number of differences between the read and
the genome, i.e., the edit distance of the nucleotide strings, possibly
weighted by base quality value. This is made practical through
sophisticated indexing schemes, such as the Burrows-Wheeler
transform (Burrows and Wheeler, 1994), so that many billions of
reads can be efficiently mapped allowing for both sequencing errors
and true variations. The primary complication of short read mapping
is that a read may map equally well or nearly equally well to
multiple positions because of repetitive sequences in the genome.
Notably, nearly 50% of the human genome consists of repetitive
elements, including certain repeats that occur thousands of times
throughout (International Human Genome Sequencing Consortium,
2001).
For resequencing projects, the fraction of repetitive content

depends on read length and allowed error rate. At one extreme, all
single base reads would be repetitive, while chromosome length
reads would not be repetitive at all. Similarly, increasing the
allowed error rate increases the fraction of the genome that is
repetitive. The short read mapping algorithms use edit distance and
other read characteristics to compute a mapping quality score for
each mapped read (Li et al., 2008). The mapping quality score
estimates the probability that the assigned location is the correct
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•  Genome	
  Mappability	
  Score	
  (GMS)	
  -­‐-­‐	
  measure	
  of	
  the	
  complexity	
  of	
  resequencing	
  a	
  
genome	
  =	
  a	
  weighted	
  probability	
  that	
  any	
  read	
  could	
  be	
  unambiguously	
  mapped	
  to	
  a	
  
given	
  posiCon,	
  and	
  thus	
  measures	
  the	
  overall	
  composiCon	
  of	
  the	
  genome	
  itself.	
  

•  The	
  detecCon	
  failure	
  errors	
  are	
  dominated	
  by	
  false	
  negaCves,	
  which	
  means	
  the	
  SNP	
  
calling	
  program	
  fails	
  to	
  find	
  such	
  variaCons.	
  In	
  parCcular,	
  among	
  all	
  5022	
  false	
  
negaCves,	
  3505	
  (70%)	
  are	
  located	
  in	
  low	
  GMS	
  region,	
  and	
  only	
  1517	
  (30%)	
  are	
  in	
  high	
  
GMS	
  region.	
  Considering	
  only	
  13-­‐14%	
  of	
  human	
  genome	
  is	
  low	
  GMS	
  region,	
  
variaCons	
  in	
  low	
  GMS	
  regions	
  are	
  clearly	
  and	
  substanCally	
  overrepresented.	
  It	
  is	
  not	
  
surprising	
  that	
  errors	
  are	
  dominated	
  by	
  false	
  negaCves,	
  as	
  the	
  SNP-­‐calling	
  algorithm	
  
will	
  use	
  the	
  mapping	
  quality	
  score	
  to	
  filter	
  out	
  low	
  confidence	
  mapping.	
  What	
  is	
  
surprising	
  is	
  the	
  extent	
  of	
  false	
  negaCves	
  and	
  the	
  concentraCon	
  of	
  false	
  negaCves	
  
almost	
  enCrely	
  within	
  low	
  GMS	
  regions.	
  	
  

	
  

•  The	
  GMS	
  should	
  be	
  considered	
  in	
  every	
  resequencing	
  project	
  to	
  pinpoint	
  the	
  dark	
  
maier	
  of	
  the	
  genome,	
  including	
  of	
  known	
  clinically	
  relevant	
  variaCons	
  in	
  these	
  
regions.	
  



Genomic	
  Dark	
  Maier,	
  cont….	
  
•  That	
  means	
  that	
  unlike	
  typical	
  false	
  negaCves,	
  increasing	
  coverage	
  

will	
  not	
  help	
  idenCfy	
  mutaCons	
  in	
  low	
  GMS	
  regions,	
  even	
  with	
  0%	
  
sequencing	
  error.	
  	
  

•  Instead	
  this	
  is	
  because	
  the	
  SNP-­‐calling	
  algorithms	
  use	
  the	
  mapping	
  
quality	
  scores	
  to	
  filter	
  out	
  unreliable	
  mapping	
  assignments,	
  and	
  low	
  
GMS	
  regions	
  have	
  low	
  mapping	
  quality	
  score	
  (by	
  definiCon).	
  Thus	
  
even	
  though	
  many	
  reads	
  may	
  sample	
  these	
  variaCons,	
  the	
  mapping	
  
algorithms	
  cannot	
  ever	
  reliably	
  map	
  to	
  them.	
  	
  

•  Since	
  about	
  14%	
  of	
  the	
  genome	
  has	
  low	
  GMS	
  value	
  with	
  typical	
  
sequencing	
  parameters,	
  it	
  is	
  expected	
  that	
  about	
  14%	
  of	
  all	
  
variaCons	
  of	
  all	
  resequencing	
  studies	
  will	
  not	
  be	
  detected.	
  	
  

•  To	
  demonstrate	
  this	
  effect,	
  we	
  characterised	
  the	
  SNP	
  variants	
  
idenCfied	
  by	
  the	
  1000	
  genomes	
  pilot	
  project,	
  and	
  found	
  that	
  
99.99%	
  of	
  the	
  SNPs	
  reported	
  were	
  in	
  high	
  GMS	
  regions	
  of	
  the	
  
genome,	
  and	
  in	
  fact	
  99.95%	
  had	
  GMS	
  over	
  90.	
  	
  


