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Genome Medicine

|dentifying disease mutations in genomic

medicine settings: current challenges and how to
accelerate progress
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Table 1. Considerations and challenges for the identification of disease causal mutations

Considerations

Challenges

Solutions

Mutation detection Platform selection

Sequencing target selection

Variant generation

Variant annotation

Variant validation

Type of mutations Coding and splice variants

Untranslated region, synonymous
and non-coding variants

Specific application Somatic mutations in cancer

areas

Non-invasive fetal sequencing

Inheritance pattern Inherited from affected parents

De novo mutations from
unaffected parents

Biological validation Known disease causal genes

Previously characterized genes
not known to cause the disease
of interest

Genes without known function
Statistical validation Rare diseases

Idiopathic diseases

Mendelian diseases or traits

Type of phenotypes Mendelian forms of complex

diseases or traits
Complex diseases or traits

Different sequencing platforms have
variable error rates

Exome sequencing may miss regulatory
variants that are disease causal

Genotype calling algorithms differ from
each other and have specific limitations

Multiple gene models and multiple
function prediction algorithms are
available

Predicted disease causal mutations may
be false positives

Many prediction algorithms are
available

Little information on known causal
variants in databases such as HGMD

Tissues selected for sequencing may
not harbor large fractions of cells with
causal mutations due to heterogeneity;
variant calling is complicated by
stromal contamination; current
databases on allele frequencies do not
apply to somatic mutations; current
function prediction algorithms focus on
loss-of-function mutations

Variants from fetal and maternal
genomes need to be teased apart;
severe consequences when variants are
incorrectly detected and predicted to
be highly pathogenic

Rare/private mutations may be neutral

Every individual is expected to carry
three de novo mutations, including
about one amino acid altering
mutation per newborn

Difficult to conclude causality when
a mutation is found in a well-known
disease causal gene

Relate known molecular function to
phenotype of interest

Difficult to design functional follow-up
assays

Limited power to declare association
Lack of additional unrelated patients

Finding rare, unrelated individuals with
same phenotype and same mutation
to help prove causality

Several major-effect mutations may
work together to cause disease

Many variants may contribute to
disease risk, each with small effect sizes

Increased sequencing coverage for platforms with high
error rates

Use whole genome sequencing when budget is not
a concern, or when diseases other than well-studied
classical Mendelian diseases are encountered

Use multiple alignment and variant calling algorithms
and look for concordant calls. Use local assembly to
improve indel calls

Perform comprehensive set of annotations and make
informed decisions; use probabilistic model for ranking
genes/variants

Secondary validation by Sanger sequencing or capture-
based sequencing on specific genes/regions

Evaluate all prediction algorithms under different
settings. Develop consensus approaches for combining
evidence from multiple algorithms

Improved bioinformatics predictions using multiple
sources of information (ENCODE data, multispecies
conservation, RNA structure, and so on)

Sample several tissue locations for sequencing;

utilize algorithms specifically designed for tumor

with consideration for heterogeneity; use somatic
mutation databases such as COSMIC; develop function
prediction algorithms specifically for gain-of-function
mutations in cancer-related genes/pathways

Much increased sequence depth and more
sophisticated statistical approaches that best leverage
prior information for inferring fetal alleles; far more
stringent criteria to predict pathogenic variants

Evaluate extended pedigrees and clans’to assess the
potential role of private variants

Detailed functional analysis of the impacted genes

Examine public databases such as locus-specific
databases

Evaluate loss of function by biochemical assays where
available

Evaluate gene expression data. Use model organisms
to recapitulate the phenotype of interest

Sequence candidate genes in unrelated patients to
identify additional causal variants

Comprehensive functional follow-up of the
biospecimens from patients to prove causality

Networking of science through online databases
can help find similarly affected people with same
phenotype and mutation

Statistical models of combined effects (additive and
epistatic) of multiple variants within each individual

Refrain fromm making predictions unless prior evidence
suggested that such predictive models are of practical
utility (for example, receiver operating characteristic
>0.8)

HGMD, Human Gene Mutation Database.



Table 2. A list of open-access bioinformatics software tools or web servers that can perform batch annotation of genetic
variants from whole-exome/genome sequencing data*

Tool URL Description Features Limitations
ANNOVAR [http://www. A software tool written in Rapid and up-to-date annotations Requires format conversion
openbioinformatics.org/ Perl to perform gene-based, for multiple species; thousands of for VCF files; command line
annovar/] region-based and filter-based annotation types are supported interface cannot be accessed
annotation by many biologists
AnnTools [http://anntools.sourceforge. A software tool written in Fast information retrieval by Only supports human genome
net/] Python to annotate SNVs, indels  MySQL database engine; output in build 37; does not annotate
and CNVs VCF format for easy downstream variant effect on coding
processing sequence
Mu2a [http://code.google.com/p/ A Java web application for Web interface for users with limited Does not allow annotation of
mu2a/] variant annotation bioinformatics expertise; output in indels or CNVs
Excel and text formats
SeattleSeq [http://snp.gs.washington. A web server that provides Multiple input formats are supported; Limited annotation on indels

Sequence Variant
Analyzer

snpEff

TREAT

VAAST

VARIANT

VarSifter

VAT

WANNOVAR

edu/SeattleSegAnnotation/]

[http://www.svaproject.org/]

[http://snpeff.sourceforge.
net]

[http://ndc.mayo.edu/mayo/
research/biostat/stand-alone-
packages.cfm]

[http//www.yandell-lab.org/
software/vaast.ntml]

[http://variant.bioinfo.cipf.es]

[http://research.nhgri.nih.
gov/software/VarSifter/]

[http://vat.gersteinlab.org/]

[http://wannovar.usc.edu/]

annotation on known and
novel SNPs

A graphical Java software tool
to annotate, visualize and
organize variants

A command-line software
tool to calculate the effects of
variants on known genes such
as amino acid changes

A command-line software

tool with rich integration of
publicly available and in-house
developed annotations

A command-line software tool
implementing a probabilistic
disease-gene finder to rank all
genes

A Java web application
for variant annotation and
visualization

A graphical Java program
to display, sort, filter and sift
variation data

A web application to annotate
a list of variants with respect
to genes or user-specified
intervals

A web server to annotate user-
supplied list of whole genome
or whole exome variants with
a set of pre-defined annotation
tasks

users can customize annotation tasks

Intuitive graphical user interface;
ability to prioritize candidate genes
fromm multiple patients

Rapid annotation on multiple
species and genome builds; supports
multiple codon table

An Amazon Cloud Image is available
for users with limited bioinformatics
infrastructure; offers a complete set
of pipelines to process FASTQ files
and generates annotation outputs

Prioritize candidate genes for
Mendelian and complex diseases

Intuitive interface with integrated
genome viewer

Nice graphical user interface;
allows interaction with Integrative
Genomics Viewer

Application can also be deployed
locally; can generate image for genes
to visualize variant effects

Easy-to-use interface for users with
limited bioinformatics skills

or CNVs

Functionality is not very
customizable; depends
on ENSEMBL database for
annotations

Only supports gene-based
annotation

Only supports ENSEMBL gene
definition and with limited sets
of annotations

Main focus is disease gene
finding with limited set of
annotations

Highly specific requirement
for internet browser; slow
performance

Main focus is variant filtering
and visualization with limited
functionality in variant
annotation

Requires multiple other
packages to work; only
supports gene-based
annotation by GENCODE

Limited set of annotation types
are available

*Tools that are only commmercially available (such as CLC Bio, Omicia, Golden Helix, DNANexus and Ingenuity) or are designed for a specific type of variant (such as SIFT
server and PolyPhen server) are not listed here. CNV, copy number variation; SNP, single nucleotide polymorphism; SNV, single nucleotide variation; VCF, variant call

format.



Some Definitions ...

The words “penetrance” and “expressivity” are
throwbacks to the era of Drosophila genetics, defined
classically as:

Penetrance: whether someone has ANY symptoms of a
disease, i.e. all or none, 0% or 100%. Nothing in between.

Expressivity: how much disease (or how many symptoms)
someone with 100% penetrance has.

This has led to endless confusion!

Some just use the word “penetrance” to mean the

expressivity of disease, i.e. incomplete penetrance, and |
agree with combining the two terms into ONE word with
the full expression from 0-100% of phenotypic spectrum.



Definitions. It is unknown what
portion of “complex” disease will be
oligogenic vs. polygenic

* Oligogenic — multiple mutations together
contributing to aggregate disease, BUT with only
1-2 mutations of ~ >10% penetrance (or “effect
size) in EACH person in that clan.

* Polygenic — Dozens to hundreds of mutations in
different genes in the SAME person, together
contributing to the disease in the SAME person,
hence additive and/or epistatic contribution with
~0.01-1% penetrance for each mutation.



Results from Exome and WGS requires
both Analytic and Clinical Validity

* Analytical Validity: the test is accurate with
high sensitivity and specificity.

* Clinical Validity: Given an accurate test result,
what impact and/or outcome does this have
on the individual person?



Penetrance Issues

* We do not really know the penetrance of pretty much
ALL mutations in humans, as we have not
systematically sequenced or karyotyped any genetic
alteration in Thousands to Millions of randomly
selected people, nor categorized into ethnic classes,
i.e. clans.

* There is a MAIJOR clash of world-views, i.e. does
genetics drive outcome predominately, or are the
results modified substantially by environment? i.e. is
there really such a thing as genetic determinism for
MANY mutations?



Analytical Validity of Exome and WGS?

 Minimal Standard: exomes and genomes ought to be
performed in a CLIA-certified environment for germline
genomic DNA from live humans.

e Easier said than done in academia, but some companies offer
this now: lllumina, 23andMe, Ambry Genetics, and some
academic places do offer this now: UCLA, Baylor, Emory and
WashU for exomes.

* | do NOT think the FDA should get involved to regulate this, nor

do the results have to go through a physician, i.e. DTC is fine as
long as CLIA-certified. This is genetic INFORMATION, not

cyanide, some other drug, or surgery.



Autonomy vs. Privacy vs. Bureaucracy

Vanderbilt CHOP ClinSeq-NIH Gene Partnership Personal Genome Project PatientsLikeMe
23AndMe
Ancestry.com




Clinical Validity?

This is SO complex that the only solid
way forward is with a “networking of
science” model, i.e. online database
with genotype and phenotype
longitudinally tracked for thousands of
volunteer families.
ancestry PatientsLikeMe

\
\



Genotype First, Phenotype Second
AND Longitudinally

Human Molecular Genetics, 2010, Vol. 19, Review Issue 2 R176—-R187
doi:10.1093/hmg/ddq366
Advance Access published on August 31, 2010

Phenotypic variability and genetic susceptibility
to genomic disorders

Santhosh Girirajan and Evan E. Eichler*

Department of Genome Sciences, Howard Hughes Medical Institute, University of Washington School of Medicine,
PO Box 355065, Foege S413C, 3720 15th Avenue NE, Seattle, WA 98195, USA

Genome-Wide Association Study of Multiplex
Schizophrenia Pedigrees

Am | Psychiatry Levinson et al.; AiA:1-11

“Rare CNVs were observed in regions with strong previously documented association
with schizophrenia, but with variable patterns of segregation. This should serve as a
reminder that we still know relatively little about the distribution of these CNVs in the
entire population (e.g., in individuals with no or only mild cognitive problems) or about
the reasons for the emergence of schizophrenia in only a minority of carriers, so great
caution is required in genetic counseling and prediagnosis.”



VAAST shows that probabilistic ranking
will be very useful going forward

e But, VAAST is currently dependent on the variant lists
provided to it, as there is still a heuristic threshold with

input of variant data, i.e. no probabilistic weighting of
SNV or indel “true positive likelihood”.

* Therefore, currently need to optimize variant-calling to
make sure variants provided are correct. Plus, VAAST
chokes if background genomes are full of false
positives.

* Thus, focused now on comprehensive comparison of
NGS variant-calling on deep exome sequencing data



CLIA-certified exomes and WGS

* The CLIA-certified pipelines attempt to
minimize false positives with increased depth
of sequencing, although there can still be
many no-calls and other areas of uncertainty,
which should be reported as No-Call Regions.

* This will minimize false positives and also tend
to prevent false negatives.



Exome Sequencing and Unrelated Findings
in the Context of Complex Disease Research:
Ethical and Clinical Implications

GHOLSON J. LYoN, TAo JIANG, RicHARD VAN Wik, WEI WANG, PAUL MARK BODILY,
JINCHUAN XING, LIFENG TIAN, REID J. RoBISON, MARK CLEMENT, LIN YANG, PENG
ZHANG, YING Liu, BARRY MOORE, JOSEPH T. GLESSNER, JOSEPHINE ELIA, FRED
REIMHERR, WOUTER W. VAN SOLINGE, MARK YANDELL, HAKON HAKONARSON, JUN
WANG, WILLIAM EVAN JOHNSON, ZHI WEI, AND KAl WANG

Discov Med. 2011 Jul;12(62):41-55.



Exome sequencing of one pedigree in
a research setting.

__pn@

92157 88962

ADHD
84615 84060 92183 92184
ADHD ADHD



Phenotyping is Critically Important in Neuropsychiatric Disorders!

Supplementary Table 1. ADHD measures during a clinical trial of methylphenidate
transdermal system.

92157 84060 84615
Baseline
WRAADDS 16 22 16
OoDD 1 11 7
CAARS 40 55 38
CGI-S 4 4 4
Active Medication
WRAADDS 0 4 3
OoDD 0 1 3
CAARS 10 0 13
CGlI-l 1 1 1
CGI-S 1 3 2
Placebo
WRAADDS 15 24 20
ODD 6 8 7
CAARS 33 51 42
CGl-I 4 4 N/A
CGI-S 4 5 N/A

WRAADDS: Total score on the Wender Reimherr Adult ADD Scale

ODD: Oppositional Defiant Disorder scaore on the WRAADDS ODD subscale
CAARS: Total score Connor’s Adult ADHD Rating Scale

CGlI-S: Clinical Global Impression, Severity score.



Exome sequencing of one pedigree in
a research setting.

92184




Exome method used ~January 2010
with BGI

€ Exome capture for the three males was carried out in January 2010
using the commercially available Agilent SureSelect Human All
Exon vl 38 MB in solution method as per the manufacturer
guidelines (Agilent).

€@ The DNA from the unaffected mother was obtained at a later date,
allowing us to use the newly released SureSelect Human All Exon v.
2 Kit, which targets approximately 44 Mb, covering 98.2% of the
CCDS database.

€ Paired end sequencing was performed using the lllumina Genome
Analyzer lIx platform with read lengths of 76 base pairs, providing
at least 20x average coverage at the targeted region. The
unaffected mother was sequenced with read lengths of 90 base
pairs due to technological advancements during the course of the
study, at an average coverage of 30x at the targeted region.



Supplementary Table 2. Summary of data production and evenness for samples.

Exon Capture 84615 84060 92157
Initial bases on target 37,806,033 37,806,033 37,806,033
*Initial bases near target 126,431,894 | 126,431,894 | 126,431,894
Initial bases on or near target 164,237,927 | 164,237,927 | 164,237,927
**Total effective reads 18,578,623 18,978,287 19,437,592
Total effective yield (Mb) 1,374.80 1,394.45 1,428.19
Average read length (bp) 74.00 73.48 73.48
Effective sequence on target(Mb) 831.55 807.17 890.49
Effective sequence near target(Mb) 259.93 290.95 240.09
Effective sequence on or near target(Mb) 1,091.48 1,098.12 1,130.57
Fraction of effective bases on target 60.50% 57.90% 62.4%
rarfgc:;on of effective bases on or near 79.40% 78.70% 79.2%
Average sequencing depth on target 22.00 21.35 23.55
Average sequencing depth near target 2.06 2.30 1.90
Mismatch rate in target region 0.28% 0.27% 0.28%
Mismatch rate in all effective sequence 0.29% 0.28% 0.30%
Base covered on target 35,919,196 36,523,196 36,676,340
Coverage of target region 95.00% 96.60% 97.0%
Base covered near target 44 578,612 50,837,058 44,482,108
Coverage of flanking region 35.30% 40.20% 35.2%
;(l;z;\(ctlon of target covered with at least 42 60% 41 .80% 46.3%
1F(|;a;(ction of target covered with at least 67 20% 68.90% 72 3%
Fraction of target covered with at least 4X | 84.90% 87.90% 89.4%
Fraction of flanking region covered with at o o o

least 20X 1.90% 2.10% 1.6%
Fraction of flanking region covered with at 6.50% 7 20% 5.7%

least 10X

Fraction of flanking region covered with at 15.90% 18.10% 14.8%

least 4X




Supplementary Table 3. Exome sequencing for mother,
K24510-88962

Exome Capture Statistics K24510-88962
Target region (bp) 46,401,121
Raw reads 33,218,260
Raw data yield (Mb) 2,990.00
Reads mapped to genome 28,985,053
Reads mapped to target region 21,076,479
Data mapped to target region (Mb) 1,585.28
Mean depth of target region 34.16
Coverage of target region (%) 95.51
Average read length (bp) 89.57
Rate of nucleotide mismatch (%) 0.42
Fraction of target covered >=4X 86.58
FrMm covered >=10X% 75 02
Fraction of target covered >=20X 58.39
Fraction of target covered >=30X 4335
Capture specificity (%) 72.97
Reads mapped to flanking region 3,915,627
Mean depth of flanking region 9.29
Coverage of flanking region (%) 81.53
Fraction of flanking covered >=4X 54.69
Fraction of flanking covered >=10X 30.11
Fraction of flanking covered >=20X 13
Fraction of flanking covered >=30X 6.74
Fraction of unique mapped bases on or near

85.42
target
Duplication rate 7.30
Mean depth of chrX 47.98
Mean depth of chrY 5.36
GC rate 48.28
Gender test result F

Note:
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Suppl. Figure 2. Cumulative depth distribution in target regions for three samples. X-axis denotes sequencing
depth, and y-axis indicated the fraction of bases that achieves at or above a given sequencing depth. From the
figure above, we can see at least 67% of target region bases obtain at least 10x fold coverage in three exomes
and more than 85% of target region achieved at least 4x, which shows that the three exomes have similar
enrichment uniformity.



Bioinformatics Analysis for ADHD
pedigree

Table 1. Summary of SNVs for exome capture samples

ExomeCapture 84060 (child 1) | 84615 (child 2) | 92157 (father) | 88962
(mother)

Sequencing platform GA lI1X GAIIX GAIIX HiSeq 2000
[ Reads property 76bp PE 76bp PE 76bp PE 90bp PE

Number of SNVs 19825 19270 20430 22294

(Method 1: SOAP)

Ti/Tv ratio 2.8 2.7 2.9 2.8

Number of SNVs+indels 19655+947 18892+955 20100+916 21572+513

(Method 2: BWA+GATK)

Ti/Tv ratio 2.9 2.9 3.0 2.9

Number of SNVs 16063 16704 18253 23917

(Method 3: Shrimp2+SNVer)

Ti/Tv ratio 2.7 2.6 2.7 2.4

this method from the table.

“We have not yet analyzed the mother’'s exome with the 4™ method (GNUMAP), so we have omitted




Poor concordance: Intersection of variants. We show here the
variants identified by the three main pipelines as being present in
the three males with ADHD, but not present in the unaffected
mother.

SOAP GATK

(ST

SNVer 0




Shared variants: 13786 Fllte”ng StepS fOr ADHD

SNPs+ 123 indels

Gene-based annotation to identify non-
synonymous or frameshift variants

Validation by
/75 varian
ST Sanger
u Conserved variants from 44-species .
alignment sequencing
1694 variants

Remove variants in segmental
duplication regions
v HP 8

1551 variants

Remove variants found in 1000 Literature survey

v . . . (N L] -
G.enomes Project CEU population |dent|f|es 4 Cand|date
107 variants

i genes (ATP7B,

Remove variants found in 1000

vGenomes Project YRI population CSTFZT, METTLB,

105 variants ALDH1LT)

u Remove variants found in 1000
Genomes Project CHB+JPT

105 variants

Remove variants found in dbSNP 130 . . .
Dominant model filtering out variants

SIFT scoring 29 with MAF>0.2% in

41 variants  |=—= | candidate |—|  ~6300 exomes

variants



Supplementary Table 6. Validated variants for ADHD and their population frequency in 5,680 and ~600 deep-sequenced exomes

at BGI and Baylor, respectively.

# Position Reference Mutant Gene Type of Mutation Amino acid # variants % in BGI # variants in % in Baylor
Chrom. in HG19 allele allele change in BGI1 exomes ~600 Baylor exomes
exomes exomes
chrl7 66872692 A G ABCA8 Nonsynonymous CI1387R 0 0.0% 0 0.0%
chrll 68566802 G A CPTIA Nonsynonymous L193F 0 0.0% 0 0.0%
chr8 100994274 A G RGS22 Nonsynonymous 11084T 0 0.0% 0 0.0%
chr18 61654247 G T SERPINB8 Nonsynonymous G287V 0 0.0% 0 0.0%
chrl 207200877 - T Clorfl16 frameshift insertion 34 1.4% 0 0.0%
chr18 29101156 T G DSG2 Nonsynonymous V158G 1 0.0% 1 0.2%
chr3 125877290 G A ALDHI1L1 Nonsynonymous P107L 2 0.0% 0 0.0%
chr13 52542680 A G ATP7B Nonsynonymous V536A 1 0.0% 1 0.2%
chr10 53458646 A C CSTF2T Nonsynonymous C222G 4 0.1% 1 0.2%
chr14 21972019 G A METTL3 Nonsynonymous R36W 9 0.2% 1 0.2%
chrll 76954790 - A GDPD4 frameshift insertion 36 1.5% 6 1.0%
chr7 87160618 A T ABCBI1 Nonsynonymous S893T 815 14.3%' 9 1.5%
chrll 134128923 C G ACADS Nonsynonymous S171C 112 2.0% 20 3.3%
chr20 17956347 C T C200rf72 Nonsynonymous R178W 23 0.4% 8 1.3%
chr8 33318891 T C FUT10 Nonsynonymous Q27R 15 0.3% 3 0.5%
chrl3 20797025 A T GJB6 Nonsynonymous S199T 68 1.2% 4 0.7%
chrl6 71015329 G T HYDIN Nonsynonymous P1491H 77 1.4% dozens >5.0%
chr10 22019855 G A MLLT10 Nonsynonymous R713H 15 0.3% 6 1.0%
chrl7 10415269 A G MYH1 Nonsynonymous Y435H 99 1.7% 14 2.3%
chrl 145015877 G T PDE4DIP Nonsynonymous L1421 1256 22.1% hundreds >30.0%
chr2 98809432 T C VWA3B Nonsynonymous I513T 15 0.3% 16 2.7%
chr5 115202418 AAGA - AP3S1 frameshift deletion 185 7.8% 19 3.2%

1. The indels were only measured thus far in 2,360 exomes at BGI, whereas the SNPs were measured in 5,680 exomes.



Supplementary Table 6. Validated variants for ADHD and their population frequency in 5,680 and ~600 deep-sequenced exomes

at BGI and Baylor, respectively.

# Position Reference Mutant Gene Type of Mutation Amino acid # variants % in BGI # variants in % in Baylor
Chrom. in HG19 allele allele change in BGI1 exomes ~600 Baylor exomes
exomes exomes
chrl7 66872692 A G ABCAS Nonsynonymous CI1387R 0 0.0% 0 0.0%
chrll 68566802 G A CPTIA Nonsynonymous L193F 0 0.0% 0 0.0%
chr8 100994274 A G RGS22 Nonsynonymous 11084T 0 0.0% 0 0.0%
chrl8 61654247 G T SERPINB8 Nonsynonymous G287V 0 0.0% 0 0.0%
chrl 207200877 ; T Clortl16 | trameshift insertion 34 14% 0 0.0%
chrl8 29101156 T G DSG2 Nonsynonymous V158G 1 0.0% 1 0.2%
chr3 125877290 G A ALDHI1L1 Nonsynonymous P107L 2 0.0% 0 0.0%
chr13 52542680 A G ATP7B Nonsynonymous V536A 1 0.0% 1 0.2%
chr10 53458646 A C CSTF2T Nonsynonymous C222G 4 0.1% 1 0.2%
chr14 21972019 G A METTL3 Nonsynonymous R36W 9 0.2% 1 0.2%
chrll 76954790 - A GDPD4 frameshift insertion 36 1.5% 6 1.0%
chr7 87160618 A T ABCBI1 Nonsynonymous S893T 815 14.3%' 9 1.5%
chrll 134128923 C G ACADS Nonsynonymous S171C 112 2.0% 20 3.3%
chr20 17956347 C T C200rf72 Nonsynonymous R178W 23 0.4% 8 1.3%
chr8 33318891 T C FUT10 Nonsynonymous Q27R 15 0.3% 3 0.5%
chrl3 20797025 A T GJB6 Nonsynonymous S199T 68 1.2% 4 0.7%
chrl6 71015329 G T HYDIN Nonsynonymous P1491H 77 1.4% dozens >5.0%
chr10 22019855 G A MLLTI10 Nonsynonymous R713H 15 0.3% 6 1.0%
chrl7 10415269 A G MYH1 Nonsynonymous Y435H 99 1.7% 14 2.3%
chrl 145015877 G T PDE4DIP Nonsynonymous L1421 1256 22.1% hundreds >30.0%
chr2 98809432 T C VWA3B Nonsynonymous 1513T 15 0.3% 16 2.7%
chr5 115202418 AAGA - AP3S1 frameshift deletion 185 7.8% 19 3.2%

1. The indels were only measured thus far in 2,360 exomes at BGI, whereas the SNPs were measured in 5,680 exomes.




Optimizing Variant Calling in Exomes at
BGl in 2011

* Agilent v2 44 MB exome kit
* |llumina Hi-Seq for sequencing.
* Average coverage ~100-150x.

* Depth of sequencing of >80% of the target
region with >20 reads or more per base pair.

 Comparing various pipelines for alignment and
variant-calling.



2-3 rounds of sequencing at BGI to attain
goal of >80% of target region at >20 reads
per base pair

Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615  K24510-88962

Target region (bp) 46,401,121 46,401,121 46,401,121 46,257,379
Raw reads 138,779,950 161,898,170 156,985,870 104,423,704
Raw data yield (Mb) 12,490 14,571 14,129 9,398
Reads mapped to genome 110,160,277 135,603,094 135,087,576 83,942,646
Reads mapped to target region 68,042,793 84,379,239 80,347,146 61,207,116
Data mapped to target region (Mb) 5,337.69 6,647.18 6,280.01 4,614.47
Mean depth of target region 115.03 143.25 135.34 99.76
Coverage of target region (%) 0.9948 0.9947 0.9954 0.9828
Average read length (bp) 89.91 89.92 89.95 89.75
Fraction of target covered >=4X 98.17 98.38 98.47 94.25
Fraction of target covered >=10X 95.18 95.90 95.97 87.90
Fraction of target covered >=20X 90.12 91.62 91.75 80.70
Fraction of target covered >=30X 84.98 87.42 87.67 74.69
Capture specificity (%) 61.52 62.12 59.25 73.16
Fraction of unique mapped bases on or near target 65.59 65.98 63.69 85.46

Gender test result M M M F




Depth of Coverage in 15 exomes > 20
reads per bp in target region
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Deep Exome sequencing

100%

90%
5 m y ~ T Figure from BGI website:
g 80% — ’ —a— >=10X . .
v J o http://bgiamericas.com/
9
g 70% Y. o news-events/why-deep-
5 — >-40 exome-sequencing/
8 60% >=50X
o -
c >=60X
S 50%
S >=70X
- 40% >=80X

30%
30X 50X 80X 100X 120X 150X 200X

Fig.1 Correlation between the percentage of target regions covered and the sequencing
depth in human exome sequencing. Take >=30X series (the purple line) for example: when
the sequencing depth is 30X, only half of the target regions (51%) are covered at above 30X.
While at the 100X and 200X sequencing depths, a much higher percentage (81% and 90%,
respectively) of the target regions is covered at above 30X.



GWAS has statistical rigor with a
threshold p value

* Should exome sequencing also have a

threshold level of rigor, such as >80% of target
region with 20 reads or more per base pair?

This is accepted practice at major genome

sequencing centers (Baylor, WashU, Broad),
but apparently not everywhere else....
Shouldn’t this be required?



“Methods” should really mean
something

Papers should include detailed methods,
allowing reproduction of analyses.

Or, better yet, “papers” should be simply
analyses published online, connected to
datasets, updateable in Wiki fashion..

Data should be made available as well, with
standardized analyses in place.

At least there is now some movement toward
“open science”.



In a prior project on a new, rare disorder, that we
named Ogden Syndrome, the X-chromosome
Exon Capture and Coverage was high depth with
Average Base Coverage of 214x ...

Table 2. Coverage Statistics in Family 1. Based on GNUMAP
AN Percent Exon
. RefSeq Unique Exon Unique | Average Base VAAST
Region . Coverage .
Transcripts | Exons Coverage >10X Genes | Coverage Candidate
21X - SNVs
1
X-chromosome 1,959 7,486 97.8 95.6 913 214.6 (NAA10)
chrX:
100544 34-
40666673 262 1,259 98.1 95.9 134 213.5 0
chrX:
138927365- 1
153331900 263 860 97.1 94.9 132 177.1 (NAA10)
* On chromosome X, there are 8,222 unique RefSeq exons. Of these 2xons, 736 were eycluded from the SureSelect X-Chiomosome Capture
Kit because they were designated as pseudoautosomal or repetitive s2quences (UCSC gznome browjer).

Using VAAST to Identify an X-Linked Disorder Resulting in Lethality in Male Infants Due to N-Terminal

Acetyltransferase Deficiency. Am J Hum Genet. 2011 Jul 15;89(1):28-43. Epub 2011 Jun 23.




Replication is so critically important:
“To show that 'A' is true, you don't do
'B'. You do 'A" again.”

Ed Yong, Nature 485, 298-300 (17 May 2012)

* Gave Ogden Syndrome data to Omicia, Golden
Helix and Synapse for replication and data
upload.

* Replicated already by Omicia and Golden Helix.

* Anyone can download data from Synapse Portal
— just email me to gain access to the data.



2-3 rounds of sequencing at BGI to attain
goal of >80% of target region at >20 reads
per base pair

Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615  K24510-88962

Target region (bp) 46,401,121 46,401,121 46,401,121 46,257,379
Raw reads 138,779,950 161,898,170 156,985,870 104,423,704
Raw data yield (Mb) 12,490 14,571 14,129 9,398
Reads mapped to genome 110,160,277 135,603,094 135,087,576 83,942,646
Reads mapped to target region 68,042,793 84,379,239 80,347,146 61,207,116
Data mapped to target region (Mb) 5,337.69 6,647.18 6,280.01 4,614.47
Mean depth of target region 115.03 143.25 135.34 99.76
Coverage of target region (%) 0.9948 0.9947 0.9954 0.9828
Average read length (bp) 89.91 89.92 89.95 89.75
Fraction of target covered >=4X 98.17 98.38 98.47 94.25
Fraction of target covered >=10X 95.18 95.90 95.97 87.90
Fraction of target covered >=20X 90.12 91.62 91.75 80.70
Fraction of target covered >=30X 84.98 87.42 87.67 74.69
Capture specificity (%) 61.52 62.12 59.25 73.16
Fraction of unique mapped bases on or near target 65.59 65.98 63.69 85.46

Gender test result M M M F




Pipeline Used on Same Set of Seq Data
by Different Analysts

1) BWA-Sam format to Bam format-Picard to remove duplicates- GATK (version
1.5) with recommended parameters (GATK IndelRealigner, base quality scores
were re-calibrated by GATK Table Recalibration tool. Genotypes called by GATK
UnifiedGenotyper.

2) BWA-Sam format to Bam format-Picard to remove duplicates- SamTools
version 0.1.18 to generate genotype calls -- The “mpileup” command in
SamTools were used for identify SNPs and indels.

3) SOAP-Align — SOAPsnp — then BWA-SOAPindel (adopts local assembly based
on an extended de Bruijn graph )

4) GNUMAP-SNP (probabilistic Pair-Hidden Markov which effectively accounts
for uncertainty in the read calls as well as read mapping in an unbiased
fashion)

5) BWA-Sam format to Bam format-Picard to remove duplicates- SNVer



Total SNVs

A) GATK

SNP number
Novel rate(dbsnp135)
Ti/Tv ratio

SAMTools
799
49%
0.96
SNVer

1.16 ik 943

GNUMAP 1.92 36%

1.57

SOAPsnp

Mean # of total SNVs across 15 exomes, called by 5 pipelines. The percentage
in the center of the the Venn diagram(Parenthesis) is the percent of total SNVs
called by all five pipelines.



GATK SAMTools

596 +/-278
2108 +/— 1530 1.7% +-08% 1440 +~ 174

5.90/0 +—3.7% 40 1 0/0 +/-0.5%

26060 +/- 1063

T4.5% +/1-3.9%
1222 +/-384

3.5% +-1.1%

2429 1255
6.9% +/-0.7%

SOAPsnp



Known SNVs

GATK
B) :

SNP number
Ti/Tv ratio

SAMTools »

SNVer

GNUMAP

SOAPsnp
B) Mean # of known SNVs (present in dbSNP135) found by 5 pipelines across
15 exomes. The percentage in the center of the the Venn diagram is the
percent of known SNVs called by all five pipelines.



Novel SNVs

SNP number
Ti/Tv ratio

C)

SAMTools

341

GNUMAP 157

SOAPsnp

C) Mean # of novel SNVs (not present in dbSNP135) found by 5 pipelines across 15
exomes. The percentage in the center of the Venn diagram is the percent of novel
SNVs called by all five pipelines.



INDELS

Indels- Overlap by Base
Position only

GATK SAMTools

264 +/— 42
6.8% +/-1.1%
1100 +-209 ° 301 +/74
28.1% +-28% 7.7% +-1.8%

1060 +/- 84
27.7% +- 4.3%

278 +-60 10 +-3
7.2% +-1.8% 0.3% +/-0.08%

SOAPindel

Indels- Overlap by Base
Position, Length and Composition

GATK SAMTools

38 s
o/ L/ 2%
2475 1258 077002 501 +/-68

11.1% +-0.9%

46.6% +-2.2%

154 - 14
2.9% +/-0.3%

34 +-11 870 +-69
0.6% +-02% 16.5% +-21%

SOAPindel

Total mean overlap, plus or minus one standard deviation, observed between three
indel calling pipelines: GATK, SOAP-indel, and SAMTools. a) Mean overlap when indel
position was the only necessary agreement criterion. b) Mean overlap when indel

position, base length and base composition were the necessary agreement criteria.



GATK SAMTools

2702 +1-269 1324+-107 1649 +/-120

1060 +- 84

1338 +-73 1071 +-260

6557 +/-529

SOAPindel

GATK SAMTools

2702+-260 192.-5 1649+/-120

154 +-14

188 +-12 1024 130

6557 +1-529
SOAPindel



Optimizing the Variant Calling Pipeline
Using Family Relationships

We looked for SNVs that were detected in children but
not in parents using 3 different strategies:

1. We used all of the SNVs that were detected by all 5
pipelines for both parents and children

2. We used all of the detected SNVs for parents, but only
the concordant SNVs between the 5 different pipelines
for children.

3. We used SNVs concordant between the 5 different
pipelines for children and parents.



Optimizing pipeline based on literature value of ~1
true de novo protein-altering mutation per exome

All SNVs, both for parents and
children, were considered

All parental SNVs that were detected were
considered. Only SNVs concordant between

SNVs concordant between
5 pipelines for children and

the 5 pipelines were considered for children parents
Number of SNVs found in
child A but not in parents 1308 186 1795
Number of SNVs found in
child B but not in parents 1332 161 1762
Number of nonsyn SNVs in
child A but not in parents 381 52 420
Number of nonsyn SNVs in
child B but not in parents 392 42 394
Number of shared nonsyn
SNVs in the children, but not 08 14 171

in parents

The result is that using all of the detected SNVs for both parents and children should
minimize the false negative rate but similarly show a relatively high false positive rate.
Using all of the SNVs detected for parents but only the SNVs concordant among the five
pipelines shows mutation rates similar to those reported by the literature and is expected
to have moderate false positive rates and moderate false negative rates. Using only the
SNVs concordant among the 5 different pipelines for both parents and children should
minimize the false positive rate but similarly show a relatively high false negative rate.




TDT- 09 -1018

K26679
-07 91583
Age 79, TS- definite,
YGTSS 47
OCD? ADHD?
?7?
-01 88458 -02 88459
Age 51 Age 49
NO TICS Possible Motor Tic, but no diagnosis
Mild OCD w YBOCS 14 YGTSS 6
Possible ADHD OCD w/ YBOCS 25
-03 88460 -06 89588 0589587 -04 88461
TS No Tics No tics No tics yet
ADHD, definite OCD-mild OCD-mild Subclinical OCD
Age 24 ADHD ADHD-severe A\ge 14
YGTSS 47 Age 22 Age 19 YBOCS 12

YBOCS 6 YBOCS 18 YBOCS 14



TDT- 09 -1018

K26679
-07 91583
Age 79, TS- definite,
YGTSS 47
OCD? ADHD?
27
-01 88458 -02 88459
Age 51 Age 49
NO TICS Possible Motor Tic, but no diagnosis
Mild OCD w YBOCS 14 YGTSS 6
Possible ADHD OCD w/ YBOCS 25
-(3 88460 -06 89588 0589587 -04 88461
TS No Tics No tics No tics ygt
ADHD, definite OCD-mild OCD-mild Subcligical OCD
Age24 ADHD ADHD-severe 98¢
YGTSS 47 Age 22 Age 19 YROCS 12

YBOCH6 YBOCS 18 YBOCS 14



TDT- 09 -1018

K26679

-07 91583
—] Age 79, TS- definite,
YGTSS 47
??
-01 88458 -02 88459
nge 51 Age 49
NOWICS Possible Motor TicgOut no diagnosis
Mild OCD w YBOES 14 YGTSS 6
Possible ADHD OCDAB0CS 25
-03 88460 -06 89588 0589587 -04 88461
TS No Tics No tics No tics yet
ADHD, definite OCD-mild OCD-mild Subclinical OCD
Age 24 ADHD ADHD-severe A\ge 14
YGTSS 47 Age 22 Age 19 YBOCS 12

YBOCS 6 YBOCS 18 YBOCS 14



Analysis based on various pipelines

“Parents” in this case means the mother, father
AND grandmother.

Taking the Union of SNVs from all 5 pipelines
from “Parents”, and subtract that from the Union
of all SNVs in each child.

Or Subtract the Union of these “Parents” from
the SNVs in the child concordant between 5
pipelines.

Or, subtract the concordant variants from 5

pipelines in “Parents” from the concordant
variants for 5 pipelines in each child.



All SNVs, both for
parents and children,

All parental SNVs that were detected
were considered. Only SNVs concordant
between the 5 pipelines were considered

SNVs concordant between 5
pipelines for children and

were considered for children parents

Number of SNVs found in child A 1057 2 637
but not in parents

Number of SNVs found in child B 1084 1 672
but not in parents

Number of SNVs found in child C 2363 20 1703
but not in parents

Number of SNVs found in child D 1518 5 876
but not in parents

Number of nonsyn SNVs in child A 411 1 150
but not in parents

Number of nonsyn SNVs in child B 396 0 135
but not in parents

Number of nonsyn SNVs in child C 911 6 459
but not in parents

Number of nonsyn SNVs in child D 619 3 225
but not in parents

Number of shared nonsyn SNVs in 8 0 9

the children, but not in parents
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parents
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Preliminary Conclusions

* Sequencing a grandparent seems to help
eliminate errors derived from the current depth of
sequencing coverage in the mother and father.

* An alternative might be just deeper depth of
sequencing in the parents, although still
investigating errors that might be overcome by
sequencing a grandparent.

* Need to decide on whether to proceed with the
concordance of 2 or more pipelines, like SOAP +
GATK, or just accept (with everybody else it
seems!) that GATK is somehow the “de facto
standard”.




For now, more effort should be placed
on the following:

Implementing Standards for a “clinical-grade” exome,
and promoting the “networking of science” model.

Focusing on rare, highly penetrant mutations running
in families, with cascade carrier testing of even more
relatives as needed.

The genomic background is much more constant in
families.

The environmental background is sometimes more
constant in families.

This allows one to figure out penetrance of rare
variants in these families, along with other issues,
such as somatic mosaicism.



Please Read and Email me with Any Questions or Comments!
Email: GholsonJLyon@gmail.com

YOn an Y4 G Genome Medvane 2012 38
hpdlgenomemedidine comiconten/4/7/58 4

Genome Medicine

Identifying disease mutations in genomic

medicine settings: current challenges and how to
accelerate progress
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Genomic Dark Matter: The reliability of short read
mapping illustrated by the Genome Mappability Score

Hayan Lee!?*and Michael C. Schatz 2

!Department of Computer Science, Stony Brook University, Stony Brook, NY
2Simons Center for Quantitive Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

Bioinformatics Advance Access published June 4, 2012

Genome Mappability Score (GMS) -- measure of the complexity of resequencing a
genome = a weighted probability that any read could be unambiguously mapped to a
given position, and thus measures the overall composition of the genome itself.

The detection failure errors are dominated by false negatives, which means the SNP
calling program fails to find such variations. In particular, among all 5022 false
negatives, 3505 (70%) are located in low GMS region, and only 1517 (30%) are in high
GMS region. Considering only 13-14% of human genome is low GMS region,
variations in low GMS regions are clearly and substantially overrepresented. It is not
surprising that errors are dominated by false negatives, as the SNP-calling algorithm
will use the mapping quality score to filter out low confidence mapping. What is
surprising is the extent of false negatives and the concentration of false negatives
almost entirely within low GMS regions.

The GMS should be considered in every resequencing project to pinpoint the dark
matter of the genome, including of known clinically relevant variations in these
regions.



Genomic Dark Matter, cont....

That means that unlike typical false negatives, increasing coverage
will not help identify mutations in low GMS regions, even with 0%
sequencing error.

Instead this is because the SNP-calling algorithms use the mapping
quality scores to filter out unreliable mapping assignments, and low
GMS regions have low mapping quality score (by definition). Thus
even though many reads may sample these variations, the mapping
algorithms cannot ever reliably map to them.

Since about 14% of the genome has low GMS value with typical
sequencing parameters, it is expected that about 14% of all
variations of all resequencing studies will not be detected.

To demonstrate this effect, we characterised the SNP variants
identified by the 1000 genomes pilot project, and found that

99.99% of the SNPs reported were in high GMS regions of the
genome, and in fact 99.95% had GMS over 90.



