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Ogden Syndrome, in honor of where the first family
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Moving Exome and WGS into a Clinical
Setting requires both Analytic and
Clinical Validity

* Analytical Validity: the test is accurate with

high sensitivity and specificity.

Clinical Validity: Given an accurate test result,
what impact and/or outcome does this have
on the individual person?



Optimizing Variant Calling in Exomes at
BGl in 2011

* Agilent v2 44 MB exome kit
* |llumina Hi-Seq for sequencing.
* Average coverage ~100-150x.

* Depth of sequencing of >80% of the target
region with >20 reads or more per base pair.

 Comparing various pipelines for alignment and
variant-calling.



2-3 rounds of sequencing at BGI to attain
goal of >80% of target region at >20 reads
per base pair

Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615  K24510-88962

Target region (bp) 46,401,121 46,401,121 46,401,121 46,257,379
Raw reads 138,779,950 161,898,170 156,985,870 104,423,704
Raw data yield (Mb) 12,490 14,571 14,129 9,398
Reads mapped to genome 110,160,277 135,603,094 135,087,576 83,942,646
Reads mapped to target region 68,042,793 84,379,239 80,347,146 61,207,116
Data mapped to target region (Mb) 5,337.69 6,647.18 6,280.01 4,614.47
Mean depth of target region 115.03 143.25 135.34 99.76
Coverage of target region (%) 0.9948 0.9947 0.9954 0.9828
Average read length (bp) 89.91 89.92 89.95 89.75
Fraction of target covered >=4X 98.17 98.38 98.47 94.25
Fraction of target covered >=10X 95.18 95.90 95.97 87.90
Fraction of target covered >=20X 90.12 91.62 91.75 80.70
Fraction of target covered >=30X 84.98 87.42 87.67 74.69
Capture specificity (%) 61.52 62.12 59.25 73.16
Fraction of unique mapped bases on or near target 65.59 65.98 63.69 85.46

Gender test result M M M F




Depth of Coverage in 15 exomes > 20
reads per bp in target region
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BGI appears to have followed the lead of the
other major genome sequencing centers
(Broad, WashU and Baylor) and embraced
“Deep Exomes” at this point.

= XE A, Fast, Accurate, Affordable
E{e])
Deap EXome gquencing Promotion

100X Coverage 200X Coverage:

5,164 9/ MR 52599 sampe




Pipelines Used on Same Set of Seq Data by Different
Analysts, using Hg19 Reference Genome

1) BWA - Sam format to Bam format - Picard to remove duplicates - GATK (version
1.5) with recommended parameters (GATK IndelRealigner, base quality scores
were re-calibrated by GATK Table Recalibration tool. Genotypes called by GATK
UnifiedGenotyper.

2) BWA - Sam format to Bam format-Picard to remove duplicates - SamTools version
0.1.18 to generate genotype calls -- The “mpileup” command in SamTools were
used for identify SNPs and indels.

3) SOAP-Align — SOAPsnp —and BWA-SOAPindel (adopts local assembly based on an
extended de Bruijn graph )

4) GNUMAP-SNP (probabilistic Pair-Hidden Markov which effectively accounts for
uncertainty in the read calls as well as read mapping in an unbiased fashion)

5) BWA - Sam format to Bam format - Picard to remove duplicates — SNVer



Total SNVs

A) GATK

SNP number
Novel rate(dbsnp135)
Ti/Tv ratio

SAMTools
799
49%
0.96
SNVer

1.16 ik 943

GNUMAP 1.92 36%

1.57

SOAPsnp

Mean # of total SNVs across 15 exomes, called by 5 pipelines. The percentage
in the center of the the Venn diagram(Parenthesis) is the percent of total SNVs
called by all five pipelines.



Novel SNVs

SNP number
Ti/Tv ratio

C)

SAMTools

341

GNUMAP 157

SOAPsnp

C) Mean # of novel SNVs (not present in dbSNP135) found by 5 pipelines across 15
exomes. The percentage in the center of the Venn diagram is the percent of novel
SNVs called by all five pipelines.



INDELS

Indels- Overlap by Base
Position only

GATK SAMTools

264 +/- 42
1 100 +/— 209 S 301 +/-74
28.1% +-28% 7.7% +/-1.8%

1060 +/- 84
27.7% +/- 4.3%

278 +1-60 10 +-3
7.2% +-1.8% 0.3% +/-0.08%

SOAPindel

Indels- Overlap by Base
Position, Length and Composition

GATK SAMTools

38 i3
2475 +-258 "7 591 4/-68
46.6% +/-2.2%

11.1% +-0.9%

154 +/- 14
2.9% +/-0.3%

34 +-11 870 +-69
0.6% +-02% 16.5% +-21%

SOAPIindel

Total mean overlap, plus or minus one standard deviation, observed between three
indel calling pipelines: GATK, SOAP-indel, and SAMTools. a) Mean overlap when indel
position was the only necessary agreement criterion. b) Mean overlap when indel

position, base length and base composition were the necessary agreement criteria.



Another Pedigree —K8101

_ O

Age 54

Age 25 Age 24 Age 19
prodromal, likely bipolar

Collected 35 DNA samples from the extended family, due to very large excess of
major depression, bipolar, Tourette and OCD.



Case Presentation

€ Male, age 55 currently.

@ Psychotic break at age 20 with bipolar features.

€ Evolution into schizoaffective disorder over next 25 years.

@ Also with severe obsessive compulsive disorder and severe Tourette Syndrome

@ At least two very severe suicide attempts at age 22, including throwing self
under a truck one time and then driving head-on into another car (with death

of two passengers in other car, found not guilty by reason of insanity).

€ Extensive medication trials over many years, along with anterior capsulotomy
with very little effect for the OCD.

& Current meds:

Klonopin Lithium
Nicotinamide Seroquel
Lunesta Lamictal

Ativan Luvox



Complete Genomics chemistry - combinatorial
probe anchor ligation (cPAL)

D
Reading bases 1-5, e.g. position 5: Common Probes Reading bases 6-10, e.g. position 10:
(5th base set shown):
Probe Standard anchor 54321 Probe Degenerate anchor Standard anchor
] | ®NNNNANNNN l | l
ZNNNNCNNNNACTGCTGACGTACTG ‘ ZNNNNCNNNN ' #NNNNANNNNNNNNNACTGCTGACGTAC
,,,,,,,,,, GCTAATCTGGGATACTGACGACTGCATGACGC ®NNNNGNNNN veeeeenn. GCTAATCTGGGATACTGACGACTGCATGACGC
| t t #NNNNTNNNN : f f
Genomic sequence: .5432 1 DNB adaptor/anchor Genomic sequence: ..10987654321 DNB adaptor/anchor
binding site binding site
|« >400 bp genomic DNA fragment >
r1 r2 r3 r4 rs ré r7 r8 r9 r10 r11 r2

A i A - A I 4

— —— ——
e —— —4 —
Ad1 Ad2 Ad3 Ad6 Ad5 Ad4 Ad1
inserted inserted replaces inserted inserted

bulk of genomic
DNA



Accuracy of Complete Genomics Whole

Human Genome Sequencing Data
Analysis Pipeline v2.0

FALSE POSITIVES | EST FPs FALSE NEGATIVES | TOTAL DISCORDANCES CONCORDANCE

Discordant SNVs per called MB 1.56 x 10-6 4,450 1.67 x 10-6 3.23x10-6 99.9997% of bases

Table 2. Concordance of Technical Replicates.

OTHER PLATFORM PLATFORM- VALIDATION RATE EST FPs FPR
COMPLETE GENOMICS CALL SPECIFIC SNVs
Het or Hom SNV No SNV Reported 99K 17/18 = 94.4% 9,977 0.16%
No-call or Hom-Ref SNV Reported 345K 2/15=13.3% 299,115 8.2%

Table 3. False Positive Rate.



Taking SNVs concordant in 5 lllumina pipelines,
and comparing to SNVs in Complete Genomics
Data from same sample

CGQG data



Number of called variants

Taking SNVs concordant in 5 lllumina pipelines
as per READ DEPTH, and comparing to SNVs in
Complete Genomics Data from same sample
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Taking SNVs found by ALL 5 lllumina pipelines
(Union), and comparing to SNVs in Complete
Genomics Data from same sample




Number of called variants
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Taking the UNION of all SNVs called by lllumina
pipelines, as per READ DEPTH, and comparing to SNVs
in Complete Genomics Data from same sample
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Comparing the UNION versus the
CONCORDANCE of 5 pipelines to the Complete
Genomics Data

. CQG data

Union of lllumina variants Concordant lllumina variants




Read Depth of lllumina Reads for variants
called by Complete Genomics but NOT by
GATK or SOAP pipelines

Read depth of Read depth of
SNVs called by CG SNVs called by CG
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called by Complete Genomics but NOT by
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Genomic Dark Matter: The reliability of short read
mapping illustrated by the Genome Mappability Score

Hayan Lee!?*and Michael C. Schatz 2

!Department of Computer Science, Stony Brook University, Stony Brook, NY
2Simons Center for Quantitive Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

Bioinformatics Advance Access published June 4, 2012

Genome Mappability Score (GMS) -- measure of the complexity of resequencing a
genome = a weighted probability that any read could be unambiguously mapped to a
given position, and thus measures the overall composition of the genome itself.

The detection failure errors are dominated by false negatives, which means the SNP
calling program fails to find such variations. In particular, among all 5022 false
negatives, 3505 (70%) are located in low GMS region, and only 1517 (30%) are in high
GMS region. Considering only 13-14% of human genome is low GMS region,
variations in low GMS regions are clearly and substantially overrepresented. It is not
surprising that errors are dominated by false negatives, as the SNP-calling algorithm
will use the mapping quality score to filter out low confidence mapping. What is
surprising is the extent of false negatives and the concentration of false negatives
almost entirely within low GMS regions.

The GMS should be considered in every resequencing project to pinpoint the dark
matter of the genome, including of known clinically relevant variations in these
regions.



Genomic Dark Matter, cont....

That means that unlike typical false negatives, increasing coverage
will not help identify mutations in low GMS regions, even with 0%
sequencing error.

Instead this is because the SNP-calling algorithms use the mapping
quality scores to filter out unreliable mapping assignments, and low
GMS regions have low mapping quality score (by definition). Thus
even though many reads may sample these variations, the mapping
algorithms cannot ever reliably map to them.

Since about 14% of the genome has low GMS value with typical
sequencing parameters, it is expected that about 14% of all
variations of all resequencing studies will not be detected.

To demonstrate this effect, we characterised the SNP variants
identified by the 1000 genomes pilot project, and found that

99.99% of the SNPs reported were in high GMS regions of the
genome, and in fact 99.95% had GMS over 90.



To conclude, results from Exome and WGS
requires both Analytic and Clinical Validity

* Analytical Validity: the test is accurate with
high sensitivity and specificity.

* Clinical Validity: Given an accurate test result,
what impact and/or outcome does this have
on the individual person.
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Extra Slides Not Covered in Talk



Optimizing the Variant Calling Pipeline
Using Family Relationships

We looked for SNVs that were detected in children but
not in parents using 3 different strategies:

1. We used all of the SNVs that were detected by all 5
pipelines for both parents and children

2. We used all of the detected SNVs for parents, but only
the concordant SNVs between the 5 different pipelines
for children.

3. We used SNVs concordant between the 5 different
pipelines for children and parents.



Optimizing pipeline based on literature value of ~1
true de novo protein-altering mutation per exome

All SNVs, both for parents and
children, were considered

All parental SNVs that were detected were
considered. Only SNVs concordant between

SNVs concordant between
5 pipelines for children and

the 5 pipelines were considered for children parents
Number of SNVs found in
child A but not in parents 1308 186 1795
Number of SNVs found in
child B but not in parents 1332 161 1762
Number of nonsyn SNVs in
child A but not in parents 381 52 420
Number of nonsyn SNVs in
child B but not in parents 392 42 394
Number of shared nonsyn
SNVs in the children, but not 08 14 171

in parents

The result is that using all of the detected SNVs for both parents and children should
minimize the false negative rate but similarly show a relatively high false positive rate.
Using all of the SNVs detected for parents but only the SNVs concordant among the five
pipelines shows mutation rates similar to those reported by the literature and is expected
to have moderate false positive rates and moderate false negative rates. Using only the
SNVs concordant among the 5 different pipelines for both parents and children should
minimize the false positive rate but similarly show a relatively high false negative rate.
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Analysis based on various pipelines

“Parents” in this case means the mother, father
AND grandmother.

Taking the Union of SNVs from all 5 pipelines
from “Parents”, and subtract that from the Union
of all SNVs in each child.

Or Subtract the Union of these “Parents” from
the SNVs in the child concordant between 5
pipelines.

Or, subtract the concordant variants from 5

pipelines in “Parents” from the concordant
variants for 5 pipelines in each child.



All SNVs, both for
parents and children,

All parental SNVs that were detected
were considered. Only SNVs concordant
between the 5 pipelines were considered

SNVs concordant between 5
pipelines for children and

were considered for children parents

Number of SNVs found in child A 1057 2 637
but not in parents

Number of SNVs found in child B 1084 1 672
but not in parents

Number of SNVs found in child C 2363 20 1703
but not in parents

Number of SNVs found in child D 1518 5 876
but not in parents

Number of nonsyn SNVs in child A 411 1 150
but not in parents

Number of nonsyn SNVs in child B 396 0 135
but not in parents

Number of nonsyn SNVs in child C 911 6 459
but not in parents

Number of nonsyn SNVs in child D 619 3 225
but not in parents

Number of shared nonsyn SNVs in 8 0 9

the children, but not in parents
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Preliminary Conclusions

* Sequencing a grandparent seems to help
eliminate errors derived from the current depth of
sequencing coverage in the mother and father.

* An alternative might be just deeper depth of
sequencing in the parents, although still
investigating errors that might be overcome by
sequencing a grandparent.

* Need to decide on whether to proceed with the
concordance of 2 or more pipelines, like SOAP +
GATK, or just accept (with everybody else it
seems!) that GATK is somehow the “de facto
standard”.




VAAST shows that probabilistic ranking
will be very useful going forward

e But, VAAST is currently dependent on the variant lists
provided to it, as there is still a heuristic threshold with

input of variant data, i.e. no probabilistic weighting of
SNV or indel “true positive likelihood”.

* Therefore, currently need to optimize variant-calling to
make sure variants provided are correct. Plus, VAAST
chokes if background genomes are full of false
positives.

* Thus, focused now on comprehensive comparison of
NGS variant-calling on deep exome sequencing data



Preliminary Conclusions

* Sequencing a grandparent seems to help
eliminate errors derived from the current depth of
sequencing coverage in the mother and father.

* An alternative might be just deeper depth of
sequencing in the parents, although still
investigating errors that might be overcome by
sequencing a grandparent.

* Need to decide on whether to proceed with the
concordance of 2 or more pipelines, like SOAP +
GATK, or just accept (with everybody else it
seems!) that GATK is somehow the “de facto
standard”.




For now, more effort should be placed
on the following:

Implementing Standards for a “clinical-grade” exome,
and promoting the “networking of science” model.

Focusing on rare, highly penetrant mutations running
in families, with cascade carrier testing of even more
relatives as needed.

The genomic background is much more constant in
families.

The environmental background is sometimes more
constant in families.

This allows one to figure out penetrance of rare
variants in these families, along with other issues,
such as somatic mosaicism.



