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CLARITY Organizers 
Harvard Medical School 
 
Dear CLARITY committee, 
 
On behalf of the Omicia/University of Utah/InVitae, (OUI) team, we would like to 
describe our approach to this challenge, our workflow and reports. We have provided an 
executive summary and a detailed report for each family. The executive summary 
includes the findings and clinical recommendations. The detailed reports show the data 
for each test with supporting evidence and some technical interpretation. In this 
document we provide an overview of our team and our analysis strategy.  
 
Our team is composed of three groups: one academic and two commercial. The OUI team 
includes physicians, geneticists, bioinformaticians, computational biologists, and 
software engineers. Two systems have been at the core of our analyses: The Omicia 
OpalTM platform and the InVitae genetic test of known inherited conditions powered by 
LocusDev. Both tools have been central to our analyses, and we have generated clinical 
laboratory-like reports from both systems. The data provided by the organizers have been 
used as is assuming that the variants are all called correctly. As you can see in the Opal 
report, we have tried to assess the data quality, but only at a very high level, given that 
data generation and variant calling has been out of our control, so a detailed sensitivity 
and specificity analysis was not possible. 
 
Opal is a clinical decision support tool that assists in the clinical interpretation of 
genomes and empowers clinical diagnostics by allowing users to identify a very short list 
of candidate disease-genes and variants of relevance to the disease and phenotype of the 
patient. Opal accomplishes this by automatically embedding the contents of patient 
variant files in a rich analysis environment, providing links to additional genome 
annotations, clinical variants from well-established pathogenic variant databases such as 
OMIM and HGMD, and literature cross-references for candidate disease genes and 
variants, and other resources. Most of the interactive analysis and result inspection has 
been performed with Opal, which is a web application system. Data and analyses were 
securely stored, accessed, shared and discussed by the team during the analysis of the 
project, while each team member had a secure, user controlled access to the genome and 
the analyses results and was able to share their results online. 
 
In summary, our analysis strategy was four-pronged: 
 
Test 1. Genome-wide ab initio searches using VAAST. VAAST is a new-in-class, rapid 
probabilistic search tool for identifying damaged genes and their disease-causing variants 
in personal genome sequences, using population data and amino acid substitution 







Ogden Syndrome, in honor of where the first family 
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Moving	
  Exome	
  and	
  WGS	
  into	
  a	
  Clinical	
  
Se`ng	
  requires	
  both	
  Analy)c	
  and	
  

Clinical	
  Validity	
  

•  Analy)cal	
  Validity:	
  the	
  test	
  is	
  accurate	
  with	
  
high	
  sensi)vity	
  and	
  specificity.	
  

•  Clinical	
  Validity:	
  Given	
  an	
  accurate	
  test	
  result,	
  
what	
  impact	
  and/or	
  outcome	
  does	
  this	
  have	
  
on	
  the	
  individual	
  person?	
  



Op)mizing	
  Variant	
  Calling	
  in	
  Exomes	
  at	
  
BGI	
  in	
  2011	
  

•  Agilent	
  v2	
  44	
  MB	
  exome	
  kit	
  
•  Illumina	
  Hi-­‐Seq	
  for	
  sequencing.	
  

•  Average	
  coverage	
  ~100-­‐150x.	
  
•  Depth	
  of	
  sequencing	
  of	
  >80%	
  of	
  the	
  target	
  
region	
  with	
  >20	
  reads	
  or	
  more	
  per	
  base	
  pair.	
  

•  Comparing	
  various	
  pipelines	
  for	
  alignment	
  and	
  
variant-­‐calling.	
  



2-­‐3	
  rounds	
  of	
  sequencing	
  at	
  BGI	
  to	
  a;ain	
  
goal	
  of	
  >80%	
  of	
  target	
  region	
  at	
  >20	
  reads	
  

per	
  base	
  pair	
  
Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615 K24510-88962 

Target region (bp) 46,401,121  46,401,121  46,401,121  46,257,379  

Raw reads 138,779,950  161,898,170  156,985,870  104,423,704  

Raw data yield (Mb) 12,490  14,571  14,129  9,398  

Reads mapped to genome 110,160,277  135,603,094  135,087,576  83,942,646  

Reads mapped to target region 68,042,793  84,379,239  80,347,146  61,207,116  

Data mapped to target region (Mb) 5,337.69  6,647.18  6,280.01  4,614.47  

Mean depth of target region 115.03 143.25 135.34 99.76 

Coverage of target region (%) 0.9948  0.9947  0.9954  0.9828  

Average read length (bp) 89.91  89.92  89.95  89.75  

Fraction of target covered >=4X 98.17  98.38  98.47  94.25  

Fraction of target covered >=10X 95.18  95.90  95.97  87.90  

Fraction of target covered >=20X 90.12  91.62  91.75  80.70  

Fraction of target covered >=30X 84.98  87.42  87.67  74.69  

Capture specificity (%) 61.52  62.12  59.25  73.16  

Fraction of unique mapped bases on or near target 65.59  65.98  63.69  85.46  

Gender test result M M M F 



Depth	
  of	
  Coverage	
  in	
  15	
  exomes	
  >	
  20	
  
reads	
  per	
  bp	
  in	
  target	
  region	
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BGI	
  appears	
  to	
  have	
  followed	
  the	
  lead	
  of	
  the	
  
other	
  major	
  genome	
  sequencing	
  centers	
  
(Broad,	
  WashU	
  and	
  Baylor)	
  and	
  embraced	
  

“Deep	
  Exomes”	
  at	
  this	
  point.	
  



Pipelines	
  Used	
  on	
  Same	
  Set	
  of	
  Seq	
  Data	
  by	
  Different	
  
Analysts,	
  using	
  Hg19	
  Reference	
  Genome	
  

1)  BWA	
  -­‐	
  Sam	
  format	
  to	
  Bam	
  format	
  -­‐	
  Picard	
  to	
  remove	
  duplicates	
  -­‐	
  GATK	
  (version	
  
1.5)	
  with	
  recommended	
  parameters	
  	
  (GATK	
  IndelRealigner,	
  base	
  quality	
  scores	
  
were	
  re-­‐calibrated	
  by	
  GATK	
  Table	
  Recalibra)on	
  tool.	
  Genotypes	
  called	
  by	
  GATK	
  
UnifiedGenotyper.	
  	
  

	
  
2)  BWA	
  -­‐	
  Sam	
  format	
  to	
  Bam	
  format-­‐Picard	
  to	
  remove	
  duplicates	
  -­‐	
  SamTools	
  version	
  

0.1.18	
  to	
  generate	
  genotype	
  calls	
  	
  -­‐-­‐	
  The	
  “mpileup”	
  command	
  in	
  SamTools	
  were	
  
used	
  for	
  iden)fy	
  SNPs	
  and	
  indels.	
  

	
  
3)  SOAP-­‐Align	
  –	
  SOAPsnp	
  –	
  and	
  BWA-­‐SOAPindel	
  (adopts	
  local	
  assembly	
  based	
  on	
  an	
  

extended	
  de	
  Bruijn	
  graph	
  )	
  
	
  
4)  GNUMAP-­‐SNP	
  (probabilis)c	
  Pair-­‐Hidden	
  Markov	
  which	
  effec)vely	
  accounts	
  for	
  

uncertainty	
  in	
  the	
  read	
  calls	
  as	
  well	
  as	
  read	
  mapping	
  in	
  an	
  unbiased	
  fashion)	
  
	
  
5)  BWA	
  -­‐	
  Sam	
  format	
  to	
  Bam	
  format	
  -­‐	
  Picard	
  to	
  remove	
  duplicates	
  –	
  SNVer	
  	
  



Total	
  SNVs�

Mean	
  #	
  of	
  total	
  SNVs	
  across	
  15	
  exomes,	
  called	
  by	
  5	
  pipelines.	
  The	
  percentage	
  
in	
  the	
  center	
  of	
  the	
  the	
  Venn	
  diagram(Parenthesis)	
  is	
  the	
  percent	
  of	
  total	
  SNVs	
  
called	
  by	
  all	
  five	
  pipelines.	
  	
  

A)	
  



•  C)	
  Mean	
  #	
  of	
  novel	
  SNVs	
  (not	
  present	
  in	
  dbSNP135)	
  found	
  by	
  5	
  pipelines	
  across	
  15	
  
exomes.	
  The	
  percentage	
  in	
  the	
  center	
  of	
  the	
  Venn	
  diagram	
  is	
  the	
  percent	
  of	
  novel	
  
SNVs	
  called	
  by	
  all	
  five	
  pipelines.	
  

C)	
  
Novel	
  SNVs	
  



Total	
  mean	
  overlap,	
  plus	
  or	
  minus	
  one	
  standard	
  deviaXon,	
  observed	
  between	
  three	
  
indel	
  calling	
  pipelines:	
  GATK,	
  SOAP-­‐indel,	
  and	
  SAMTools.	
  	
  a)	
  Mean	
  overlap	
  when	
  indel	
  
posi)on	
  was	
  the	
  only	
  necessary	
  agreement	
  criterion.	
  b)	
  Mean	
  overlap	
  when	
  indel	
  
posi)on,	
  base	
  length	
  and	
  base	
  composi)on	
  were	
  the	
  necessary	
  agreement	
  criteria.	
  	
  	
  

Indels-­‐	
  Overlap	
  by	
  Base	
  	
  
Posi)on	
  only	
  

Indels-­‐	
  Overlap	
  by	
  Base	
  	
  
Posi)on,	
  Length	
  and	
  Composi)on	
  

INDELS	
  



	
  
	
  
	
  

?	
   	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  Age	
  54	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Age	
  25	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Age	
  24	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Age	
  19	
  
	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  prodromal,	
  likely	
  bipolar	
  

Collected	
  35	
  DNA	
  samples	
  from	
  the	
  extended	
  family,	
  due	
  to	
  very	
  large	
  excess	
  of	
  
major	
  depression,	
  	
  bipolar,	
  Tourere	
  and	
  OCD.	
  

Another	
  Pedigree	
  –K8101	
  



Case	
  PresentaXon	
  

 Male,	
  age	
  55	
  currently.	
  
 Psycho)c	
  break	
  at	
  age	
  20	
  with	
  bipolar	
  features.	
  
 Evolu)on	
  into	
  schizoaffec)ve	
  disorder	
  over	
  next	
  25	
  years.	
  
 Also	
  with	
  severe	
  obsessive	
  compulsive	
  disorder	
  and	
  severe	
  Tourere	
  Syndrome	
  
 At	
  least	
  two	
  very	
  severe	
  suicide	
  arempts	
  at	
  age	
  22,	
  including	
  throwing	
  self	
  

under	
  a	
  truck	
  one	
  )me	
  and	
  then	
  driving	
  head-­‐on	
  into	
  another	
  car	
  (with	
  death	
  
of	
  two	
  passengers	
  in	
  other	
  car,	
  found	
  not	
  guilty	
  by	
  reason	
  of	
  insanity).	
  

 Extensive	
  medica)on	
  trials	
  over	
  many	
  years,	
  along	
  with	
  anterior	
  capsulotomy	
  
with	
  very	
  lirle	
  effect	
  for	
  the	
  OCD.	
  

	
  

 Current	
  meds:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  Klonopin	
  	
  

	
  Nico)namide	
  
	
  Lunesta 	
   	
   	
   	
  	
  
	
  A)van	
  

	
  
	
  	
  

	
  	
  
	
  Lithium	
  
	
  Seroquel	
  
	
  Lamictal	
  
	
  Luvox	
  

	
  
	
  	
  



Complete	
  Genomics	
  chemistry	
  -­‐	
  combinatorial	
  
probe	
  anchor	
  liga)on	
  (cPAL)	
  



homozygous reference criteria are considered not called. 
Genome-Genome-Genome comparisons are performed 
using CGATM Tools v1.512 calldiff, snpdiff, and testvariants 
methods, which take into account complex variants (for 
example, loci with a SNP on one allele and a substitution 
on another) and called versus no-called sites.

Call rate and coverage: Call rate and coverage data 
are averaged over all shipments from Q3 2011 to Q1 
2012. Call rate and coverage are both measured relative 
to the 2.85GB Build 37 reference genome (excluding 
random contigs). Exome call rates are from Q1 2012 and 
are relative to RefSeq 37.2 gene models. They are up 
from the 2011 exome call rates, which averaged 95%-
96%.

There are many ways to measure coverage. Complete 
Genomics uses the gross mapped coverage (single 
and paired, unique and non-unique) from the 
coverageRefScore and summary !les11. Attributes 
of recent Complete Genomics data in the literature 
(speci!cally papers where call rate and/or coverage were 
reported) are described in Table 1. Improvements to 
call rate over time are clear from these results and have 
continued since this analysis was performed.

Trio Analysis: Called VQHIGH and homozygous 
reference sites from the YRI family trio were processed 
with the CGA Tools 1.5 listvariants and testvariants 
commands, and additional analysis was performed 
to extract MIEs. All sites fully called in the trio were 
considered, including sites called either variant or 
reference in the child. Repetitive sequences were de!ned 
using the union of the RepeatMasker, SegDup, and 
Simple Repeats tracks from the UCSC genome browser 

(genome.ucsc.edu), which collectively cover about 
53.7% of the reference genome.

Clustered MIE Analysis: The genome was segmented 
into non-overlapping windows containing 50kb of fully 
called genomic bases each, which were then sorted by 
the number of MIEs contained within each block. This 
list was then traversed until 30% of the total MIEs were 
encountered.

Technical Replicates: Two libraries independently 
constructed from NA19240 DNA were sequenced and 
analyzed. Sites called variant at VQHIGH in replicate 1 
and reference (RefScore>10) in replicate 2 were counted 
as discordant. A Bayesian statistical model was used to 
partition all discordances into putative FPs in replicate 
1 versus FNs in replicate 2 (see Reference 11, Score 
Calibration Documentation) (Table 2).

Calculation of the FP:FN tradeoff in direct 
comparisons of technical replicates: The CGA Tools 
1.5 calldiff command was used to compute the somatic 
score for each discordance between technical replicates. 
Sites called heterozygous or homozygous at a variant in 
replicate 1, and reference (for both alleles) in replicate 2, 
were counted as discordant. 

False Positive Rate: 2009 data were published in 
Reference 2. 2010 data were published in Reference 5, 
see Table 3.

Ti/Tv analysis: See References 7 and 8. Ti/Tv is 
reported for all genomes delivered from Q3 2011 to 
Q1 2012. The Ti/TV ratios in the 69 publicly available 
Complete Genomics genomes are in the same range. 

FALSE POSITIVES EST FPs FALSE NEGATIVES TOTAL DISCORDANCES CONCORDANCE

Discordant SNVs per called MB 1.56 x 10-6 4,450 1.67 x 10-6 3.23 x 10-6 99.9997% of bases

Table 2. Concordance of Technical Replicates.

COMPLETE GENOMICS CALL
OTHER PLATFORM PLATFORM-

SPECIFIC SNVs
VALIDATION RATE EST FPs FPR

Het or Hom SNV No SNV Reported 99K 17/18 = 94.4% 5,577 0.16%

No-call or Hom-Ref SNV Reported 345K 2/15 = 13.3% 299,115 8.2%

Table 3. False Positive Rate.

5

Accuracy of Complete Genomics Whole 
Human Genome Sequencing Data
Analysis Pipeline v2.0

High accuracy is critical to the effective use of whole genome sequencing (WGS) data 
by researchers and clinicians alike. Given the size of the human genome, even a small 
error rate can lead to a large total number of errors. Complete Genomics understands 
the importance of accuracy in WGS and we strive to deliver the most accurate data 
to our customers. We describe here some of the key factors to consider in measuring 
accuracy and provide an accuracy analysis for our Analysis Pipeline v2.0.

The accuracy of WGS data can be measured by a wide variety of methods, none of 
which is perfect, but many of which are informative for practical use. At the same time, 
accuracy estimates can be slanted to appear better or worse than they are; thus it is 
important that the detailed methods of their calculation be considered along with the 
results.

Techniques to improve variant detection accuracy include read and SNP !ltering 
or increasing call stringency1, but their use leads to a signi!cant and often poorly 
measured cost to sensitivity. Reports in the scienti!c literature show that Complete 
Genomics WGS, which avoids such coarse !ltering approaches, not only produces the 
lowest error rates but also does so at the highest call rates.

Complete Genomics’ approach to WGS is described below along with some 
suggestions on what to look for in measuring and comparing the accuracy of different 
sequencing approaches.

Results
Coverage and Call Rate: A key to Complete Genomics’ approach to WGS is deep 
sequencing. Complete Genomics has delivered more than 55x average gross coverage 
for all customer genomes shipped since the launch of its service. Complete Genomics 
applies an advanced bioinformatics pipeline using local de novo assembly to generate 
all small variant calls2,3, and using these methods currently achieves mean genome-
wide call rates of more than 97%, while call rates in coding regions currently average 
greater than 98%. These results are corroborated by recent reports of Complete 
Genomics’ data in the scienti!c literature (see Table 1 below).

WHITE PAPER



Taking	
  SNVs	
  concordant	
  in	
  5	
  Illumina	
  pipelines,	
  
and	
  comparing	
  to	
  SNVs	
  in	
  Complete	
  Genomics	
  

Data	
  from	
  same	
  sample	
  	
  



Taking	
  SNVs	
  concordant	
  in	
  5	
  Illumina	
  pipelines	
  
as	
  per	
  READ	
  DEPTH,	
  and	
  comparing	
  to	
  SNVs	
  in	
  
Complete	
  Genomics	
  Data	
  from	
  same	
  sample	
  



Taking	
  SNVs	
  found	
  by	
  ALL	
  5	
  Illumina	
  pipelines	
  
(Union),	
  and	
  comparing	
  to	
  SNVs	
  in	
  Complete	
  

Genomics	
  Data	
  from	
  same	
  sample	
  



Taking	
  the	
  UNION	
  of	
  all	
  SNVs	
  called	
  by	
  Illumina	
  
pipelines,	
  as	
  per	
  READ	
  DEPTH,	
  and	
  comparing	
  to	
  SNVs	
  

in	
  Complete	
  Genomics	
  Data	
  from	
  same	
  sample	
  



Comparing	
  the	
  UNION	
  versus	
  the	
  
CONCORDANCE	
  of	
  5	
  pipelines	
  to	
  the	
  Complete	
  

Genomics	
  Data	
  

Union	
  of	
  Illumina	
  variants	
   Concordant	
  Illumina	
  variants	
  



Read	
  Depth	
  of	
  Illumina	
  Reads	
  for	
  variants	
  
called	
  by	
  Complete	
  Genomics	
  but	
  NOT	
  by	
  

GATK	
  or	
  SOAP	
  pipelines	
  
Read depth of
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Read	
  Depth	
  of	
  Illumina	
  Reads	
  for	
  variants	
  
called	
  by	
  Complete	
  Genomics	
  but	
  NOT	
  by	
  
GNUMAP,	
  SNVer	
  or	
  SamTools	
  pipelines	
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Genomic Dark Matter: The reliability of short read
mapping illustrated by the Genome Mappability Score
Hayan Lee1,2∗and Michael C. Schatz 1,2

1Department of Computer Science, Stony Brook University, Stony Brook, NY
2Simons Center for Quantitive Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

ABSTRACT
Motivation: Genome resequencing and short read mapping are two
of the primary tools of genomics and are used for many important
applications. The current state-of-the-art in mapping uses the quality
values and mapping quality scores to evaluate the reliability of the
mapping. These attributes, however, are assigned to individual
reads and don’t directly measure the problematic repeats across
the genome. Here we present the Genome Mappability Score
(GMS) as a novel measure of the complexity of resequencing a
genome. The GMS is a weighted probability that any read could be
unambiguously mapped to a given position, and thus measures the
overall composition of the genome itself.
Results: We have developed the Genome Mappability Analyzer
(GMA) to compute the GMS of every position in a genome. It
leverages the parallelism of cloud computing to analyze large
genomes, and enabled us to identify the 5-14% of the human,
mouse, fly, and yeast genomes that are difficult to analyze with short
reads. We examined the accuracy of the widely used BWA/SAMtools
polymorphism discovery pipeline in the context of the GMS, and
found discovery errors are dominated by false negatives, especially in
regions with poor GMS. These errors are fundamental to the mapping
process and cannot be overcome by increasing coverage. As such,
the GMS should be considered in every resequencing project to
pinpoint the dark matter of the genome, including of known clinically
relevant variations in these regions.
Availability: The source code and profiles of several model
organisms are available at http://gma-bio.sourceforge.net
Contact: hlee@cs.stonybrook.edu

1 INTRODUCTION
1.1 Background
DNA sequencing technology has dramatically improved in the past
decade so that today an individual human genome can be sequenced
for less than $10,000 and in less then two weeks (Drmanac et al.,
2010), compared to years of effort and hundreds of millions
of dollars for the first sequenced human genome (Stein, 2010).
This dramatic improvement has lead to an exponential growth in
sequencing, including several large projects to sequence thousands
of human genomes and exomes, such as the 1000 Genomes Project

∗to whom correspondence should be addressed

Consortium (2010) or International Cancer Genome Consortium
(2010). Other projects, such as ENCODE Project Consortium
(2004) and modENCODE Consortium (2010) are extensively using
resequencing and read mapping to discover novel genes and binding
sites.
The output of current DNA sequencing instruments consists of

billions of short, 25− 200 base pairs (bp) sequences of DNA called
reads, with an overall per base error rate around 1%-2% (Bentley
et al., 2008). In the case of whole genome resequencing, these
short reads will originate from random locations in the genome,
but nevertheless, entire genomes can be accurately studied by
oversampling the genome, and then aligning or ”mapping” each
read to the reference genome to computationally identify where it
originated. Once the entire collection of reads has been mapped,
variations in the sample can be identified by the pileup of reads that
significantly disagree from the reference genome (Fig. 1).
The leading short read mapping algorithms, including BWA (Li

and Durbin, 2009), Bowtie (Langmead et al., 2009), and SOAP (Li
et al., 2009b), all try to identify the best mapping position for each
read that minimizes the number of differences between the read and
the genome, i.e., the edit distance of the nucleotide strings, possibly
weighted by base quality value. This is made practical through
sophisticated indexing schemes, such as the Burrows-Wheeler
transform (Burrows and Wheeler, 1994), so that many billions of
reads can be efficiently mapped allowing for both sequencing errors
and true variations. The primary complication of short read mapping
is that a read may map equally well or nearly equally well to
multiple positions because of repetitive sequences in the genome.
Notably, nearly 50% of the human genome consists of repetitive
elements, including certain repeats that occur thousands of times
throughout (International Human Genome Sequencing Consortium,
2001).
For resequencing projects, the fraction of repetitive content

depends on read length and allowed error rate. At one extreme, all
single base reads would be repetitive, while chromosome length
reads would not be repetitive at all. Similarly, increasing the
allowed error rate increases the fraction of the genome that is
repetitive. The short read mapping algorithms use edit distance and
other read characteristics to compute a mapping quality score for
each mapped read (Li et al., 2008). The mapping quality score
estimates the probability that the assigned location is the correct
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Genomic Dark Matter: The reliability of short read
mapping illustrated by the Genome Mappability Score
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ABSTRACT
Motivation: Genome resequencing and short read mapping are two
of the primary tools of genomics and are used for many important
applications. The current state-of-the-art in mapping uses the quality
values and mapping quality scores to evaluate the reliability of the
mapping. These attributes, however, are assigned to individual
reads and don’t directly measure the problematic repeats across
the genome. Here we present the Genome Mappability Score
(GMS) as a novel measure of the complexity of resequencing a
genome. The GMS is a weighted probability that any read could be
unambiguously mapped to a given position, and thus measures the
overall composition of the genome itself.
Results: We have developed the Genome Mappability Analyzer
(GMA) to compute the GMS of every position in a genome. It
leverages the parallelism of cloud computing to analyze large
genomes, and enabled us to identify the 5-14% of the human,
mouse, fly, and yeast genomes that are difficult to analyze with short
reads. We examined the accuracy of the widely used BWA/SAMtools
polymorphism discovery pipeline in the context of the GMS, and
found discovery errors are dominated by false negatives, especially in
regions with poor GMS. These errors are fundamental to the mapping
process and cannot be overcome by increasing coverage. As such,
the GMS should be considered in every resequencing project to
pinpoint the dark matter of the genome, including of known clinically
relevant variations in these regions.
Availability: The source code and profiles of several model
organisms are available at http://gma-bio.sourceforge.net
Contact: hlee@cs.stonybrook.edu

1 INTRODUCTION
1.1 Background
DNA sequencing technology has dramatically improved in the past
decade so that today an individual human genome can be sequenced
for less than $10,000 and in less then two weeks (Drmanac et al.,
2010), compared to years of effort and hundreds of millions
of dollars for the first sequenced human genome (Stein, 2010).
This dramatic improvement has lead to an exponential growth in
sequencing, including several large projects to sequence thousands
of human genomes and exomes, such as the 1000 Genomes Project

∗to whom correspondence should be addressed

Consortium (2010) or International Cancer Genome Consortium
(2010). Other projects, such as ENCODE Project Consortium
(2004) and modENCODE Consortium (2010) are extensively using
resequencing and read mapping to discover novel genes and binding
sites.
The output of current DNA sequencing instruments consists of

billions of short, 25− 200 base pairs (bp) sequences of DNA called
reads, with an overall per base error rate around 1%-2% (Bentley
et al., 2008). In the case of whole genome resequencing, these
short reads will originate from random locations in the genome,
but nevertheless, entire genomes can be accurately studied by
oversampling the genome, and then aligning or ”mapping” each
read to the reference genome to computationally identify where it
originated. Once the entire collection of reads has been mapped,
variations in the sample can be identified by the pileup of reads that
significantly disagree from the reference genome (Fig. 1).
The leading short read mapping algorithms, including BWA (Li

and Durbin, 2009), Bowtie (Langmead et al., 2009), and SOAP (Li
et al., 2009b), all try to identify the best mapping position for each
read that minimizes the number of differences between the read and
the genome, i.e., the edit distance of the nucleotide strings, possibly
weighted by base quality value. This is made practical through
sophisticated indexing schemes, such as the Burrows-Wheeler
transform (Burrows and Wheeler, 1994), so that many billions of
reads can be efficiently mapped allowing for both sequencing errors
and true variations. The primary complication of short read mapping
is that a read may map equally well or nearly equally well to
multiple positions because of repetitive sequences in the genome.
Notably, nearly 50% of the human genome consists of repetitive
elements, including certain repeats that occur thousands of times
throughout (International Human Genome Sequencing Consortium,
2001).
For resequencing projects, the fraction of repetitive content

depends on read length and allowed error rate. At one extreme, all
single base reads would be repetitive, while chromosome length
reads would not be repetitive at all. Similarly, increasing the
allowed error rate increases the fraction of the genome that is
repetitive. The short read mapping algorithms use edit distance and
other read characteristics to compute a mapping quality score for
each mapped read (Li et al., 2008). The mapping quality score
estimates the probability that the assigned location is the correct
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•  Genome	
  Mappability	
  Score	
  (GMS)	
  -­‐-­‐	
  measure	
  of	
  the	
  complexity	
  of	
  resequencing	
  a	
  
genome	
  =	
  a	
  weighted	
  probability	
  that	
  any	
  read	
  could	
  be	
  unambiguously	
  mapped	
  to	
  a	
  
given	
  posi)on,	
  and	
  thus	
  measures	
  the	
  overall	
  composi)on	
  of	
  the	
  genome	
  itself.	
  

•  The	
  detec)on	
  failure	
  errors	
  are	
  dominated	
  by	
  false	
  nega)ves,	
  which	
  means	
  the	
  SNP	
  
calling	
  program	
  fails	
  to	
  find	
  such	
  varia)ons.	
  In	
  par)cular,	
  among	
  all	
  5022	
  false	
  
nega)ves,	
  3505	
  (70%)	
  are	
  located	
  in	
  low	
  GMS	
  region,	
  and	
  only	
  1517	
  (30%)	
  are	
  in	
  high	
  
GMS	
  region.	
  Considering	
  only	
  13-­‐14%	
  of	
  human	
  genome	
  is	
  low	
  GMS	
  region,	
  
varia)ons	
  in	
  low	
  GMS	
  regions	
  are	
  clearly	
  and	
  substan)ally	
  overrepresented.	
  It	
  is	
  not	
  
surprising	
  that	
  errors	
  are	
  dominated	
  by	
  false	
  nega)ves,	
  as	
  the	
  SNP-­‐calling	
  algorithm	
  
will	
  use	
  the	
  mapping	
  quality	
  score	
  to	
  filter	
  out	
  low	
  confidence	
  mapping.	
  What	
  is	
  
surprising	
  is	
  the	
  extent	
  of	
  false	
  nega)ves	
  and	
  the	
  concentra)on	
  of	
  false	
  nega)ves	
  
almost	
  en)rely	
  within	
  low	
  GMS	
  regions.	
  	
  

	
  

•  The	
  GMS	
  should	
  be	
  considered	
  in	
  every	
  resequencing	
  project	
  to	
  pinpoint	
  the	
  dark	
  
marer	
  of	
  the	
  genome,	
  including	
  of	
  known	
  clinically	
  relevant	
  varia)ons	
  in	
  these	
  
regions.	
  



Genomic	
  Dark	
  Marer,	
  cont….	
  
•  That	
  means	
  that	
  unlike	
  typical	
  false	
  nega)ves,	
  increasing	
  coverage	
  

will	
  not	
  help	
  iden)fy	
  muta)ons	
  in	
  low	
  GMS	
  regions,	
  even	
  with	
  0%	
  
sequencing	
  error.	
  	
  

•  Instead	
  this	
  is	
  because	
  the	
  SNP-­‐calling	
  algorithms	
  use	
  the	
  mapping	
  
quality	
  scores	
  to	
  filter	
  out	
  unreliable	
  mapping	
  assignments,	
  and	
  low	
  
GMS	
  regions	
  have	
  low	
  mapping	
  quality	
  score	
  (by	
  defini)on).	
  Thus	
  
even	
  though	
  many	
  reads	
  may	
  sample	
  these	
  varia)ons,	
  the	
  mapping	
  
algorithms	
  cannot	
  ever	
  reliably	
  map	
  to	
  them.	
  	
  

•  Since	
  about	
  14%	
  of	
  the	
  genome	
  has	
  low	
  GMS	
  value	
  with	
  typical	
  
sequencing	
  parameters,	
  it	
  is	
  expected	
  that	
  about	
  14%	
  of	
  all	
  
varia)ons	
  of	
  all	
  resequencing	
  studies	
  will	
  not	
  be	
  detected.	
  	
  

•  To	
  demonstrate	
  this	
  effect,	
  we	
  characterised	
  the	
  SNP	
  variants	
  
iden)fied	
  by	
  the	
  1000	
  genomes	
  pilot	
  project,	
  and	
  found	
  that	
  
99.99%	
  of	
  the	
  SNPs	
  reported	
  were	
  in	
  high	
  GMS	
  regions	
  of	
  the	
  
genome,	
  and	
  in	
  fact	
  99.95%	
  had	
  GMS	
  over	
  90.	
  	
  



To	
  conclude,	
  results	
  from	
  Exome	
  and	
  WGS	
  
requires	
  both	
  AnalyXc	
  and	
  Clinical	
  Validity	
  

•  Analy)cal	
  Validity:	
  the	
  test	
  is	
  accurate	
  with	
  
high	
  sensi)vity	
  and	
  specificity.	
  

•  Clinical	
  Validity:	
  Given	
  an	
  accurate	
  test	
  result,	
  
what	
  impact	
  and/or	
  outcome	
  does	
  this	
  have	
  
on	
  the	
  individual	
  person.	
  



Figure 4.	


	



Figure 4. NAT activity of recombinant hNaa10p WT or p.Ser37Pro 
towards synthetic N-terminal peptides. A) and B) Purified MBP-hNaa10p 
WT or p.Ser37Pro were mixed with the indicated oligopeptide substrates (200 
µM for SESSS and 250 µM for DDDIA) and saturated levels of acetyl-CoA 
(400 µM). Aliquots were collected at indicated time points and the acetylation 
reactions were quantified using reverse phase HPLC peptide separation. 
Error bars indicate the standard deviation based on three independent 
experiments. The five first amino acids in the peptides are indicated, for 
further details see materials and methods. Time dependent acetylation 
reactions were performed to determine initial velocity conditions when 
comparing the WT and Ser37Pro NAT-activities towards different 
oligopeptides. C) Purified MBP-hNaa10p WT or p.Ser37Pro were mixed with 
the indicated oligopeptide substrates (200 µM for SESSS and AVFAD, and 
250 µM for DDDIA and EEEIA) and saturated levels of acetyl-CoA (400 µM) 
and incubated for 15 minutes (DDDIA and EEEIA) or 20 minutes (SESSS and 
AVFAD), at 37°C in acetylation buffer. The acetylation activity was determined 
as above. Error bars indicate the standard deviation based on three 
independent experiments. Black bars indicate the acetylation capacity of the 
MBP-hNaa10p wild type (WT), while white bars indicate the acetylation 
capacity of the MBP-hNaa10p mutant p.Ser37Pro. The five first amino acids 
in the peptides are indicated. 
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Extra	
  Slides	
  Not	
  Covered	
  in	
  Talk	
  



Op)mizing	
  the	
  Variant	
  Calling	
  Pipeline	
  
Using	
  Family	
  Rela)onships	
  

We	
  looked	
  for	
  SNVs	
  that	
  were	
  detected	
  in	
  children	
  but	
  
not	
  in	
  parents	
  using	
  3	
  different	
  strategies:	
  
	
  	
  
1.	
  We	
  used	
  all	
  of	
  the	
  SNVs	
  that	
  were	
  detected	
  by	
  all	
  5	
  
pipelines	
  for	
  both	
  parents	
  and	
  children	
  
2.	
  We	
  used	
  all	
  of	
  the	
  detected	
  SNVs	
  for	
  parents,	
  but	
  only	
  
the	
  concordant	
  SNVs	
  between	
  the	
  5	
  different	
  pipelines	
  
for	
  children.	
  
3.	
  We	
  used	
  SNVs	
  concordant	
  between	
  the	
  5	
  different	
  
pipelines	
  for	
  children	
  and	
  parents.	
  
	
  	
  



Op)mizing	
  pipeline	
  based	
  on	
  literature	
  value	
  of	
  ~1	
  
true	
  de	
  novo	
  protein-­‐altering	
  muta)on	
  per	
  exome	
  

The	
  result	
  is	
  that	
  using	
  all	
  of	
  the	
  detected	
  SNVs	
  for	
  both	
  parents	
  and	
  children	
  should	
  
minimize	
  the	
  false	
  nega)ve	
  rate	
  but	
  similarly	
  show	
  a	
  rela)vely	
  high	
  false	
  posi)ve	
  rate.	
  	
  
Using	
  all	
  of	
  the	
  SNVs	
  detected	
  for	
  parents	
  but	
  only	
  the	
  SNVs	
  concordant	
  among	
  the	
  five	
  
pipelines	
  shows	
  muta)on	
  rates	
  similar	
  to	
  those	
  reported	
  by	
  the	
  literature	
  and	
  is	
  expected	
  
to	
  have	
  moderate	
  false	
  posi)ve	
  rates	
  and	
  moderate	
  false	
  nega)ve	
  rates.	
  	
  Using	
  only	
  the	
  
SNVs	
  concordant	
  among	
  the	
  5	
  different	
  pipelines	
  for	
  both	
  parents	
  and	
  children	
  should	
  
minimize	
  the	
  false	
  posi)ve	
  rate	
  but	
  similarly	
  show	
  a	
  rela)vely	
  high	
  false	
  nega)ve	
  rate.	
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“Parents”	
  



Analysis	
  based	
  on	
  various	
  pipelines	
  

•  “Parents”	
  in	
  this	
  case	
  means	
  the	
  mother,	
  father	
  
AND	
  grandmother.	
  

•  Taking	
  the	
  Union	
  of	
  SNVs	
  from	
  all	
  5	
  pipelines	
  
from	
  “Parents”,	
  and	
  subtract	
  that	
  from	
  the	
  Union	
  
of	
  all	
  SNVs	
  in	
  each	
  child.	
  

•  Or	
  Subtract	
  the	
  Union	
  of	
  these	
  “Parents”	
  from	
  
the	
  SNVs	
  in	
  the	
  child	
  concordant	
  between	
  5	
  
pipelines.	
  

•  Or,	
  subtract	
  the	
  concordant	
  variants	
  from	
  5	
  
pipelines	
  in	
  “Parents”	
  from	
  the	
  concordant	
  
variants	
  for	
  5	
  pipelines	
  in	
  each	
  child.	
  

	
  



All#SNVs,#both#for#
parents#and#children,#
were#considered

All#parental#SNVs#that#were#detected#
were#considered.##Only#SNVs#concordant#
between#the#5#pipelines#were#considered#

for#children#

SNVs#concordant#between#5#
pipelines#for#children#and#

parents

Number#of##SNVs#found#in#child#A#
but#not#in#parents

1057 2 637

Number#of##SNVs#found#in#child#B#
but#not#in#parents

1084 1 672

Number#of##SNVs#found#in#child#C#
but#not#in#parents

2363 20 1703

Number#of##SNVs#found#in#child#D#
but#not#in#parents

1518 5 876

Number#of#nonsyn#SNVs#in#child#A#
but#not#in#parents

411 1 150

Number#of#nonsyn#SNVs#in#child#B#
but#not#in#parents

396 0 135

Number#of#nonsyn#SNVs#in#child#C#
but#not#in#parents

911 6 459

Number#of#nonsyn#SNVs#in#child#D#
but#not#in#parents

619 3 225

Number#of#shared#nonsyn#SNVs#in#
the#children,#but#not#in#parents

8 0 9





Preliminary	
  Conclusions	
  

•  Sequencing	
  a	
  grandparent	
  seems	
  to	
  help	
  
eliminate	
  errors	
  derived	
  from	
  the	
  current	
  depth	
  of	
  
sequencing	
  coverage	
  in	
  the	
  mother	
  and	
  father.	
  	
  

•  An	
  alterna)ve	
  might	
  be	
  just	
  deeper	
  depth	
  of	
  
sequencing	
  in	
  the	
  parents,	
  although	
  s)ll	
  
inves)ga)ng	
  errors	
  that	
  might	
  be	
  overcome	
  by	
  
sequencing	
  a	
  grandparent.	
  

•  Need	
  to	
  decide	
  on	
  whether	
  to	
  proceed	
  with	
  the	
  
concordance	
  of	
  2	
  or	
  more	
  pipelines,	
  like	
  SOAP	
  +	
  
GATK,	
  or	
  just	
  accept	
  (with	
  everybody	
  else	
  it	
  
seems!)	
  that	
  GATK	
  is	
  somehow	
  the	
  “de	
  facto	
  
standard”.	
  



VAAST	
  shows	
  that	
  probabilis)c	
  ranking	
  
will	
  be	
  very	
  useful	
  going	
  forward	
  

•  But,	
  VAAST	
  is	
  currently	
  dependent	
  on	
  the	
  variant	
  lists	
  
provided	
  to	
  it,	
  as	
  there	
  is	
  s)ll	
  a	
  heuris)c	
  threshold	
  with	
  
input	
  of	
  variant	
  data,	
  i.e.	
  no	
  probabilis)c	
  weigh)ng	
  of	
  
SNV	
  or	
  indel	
  “true	
  posi)ve	
  likelihood”.	
  

•  Therefore,	
  currently	
  need	
  to	
  op)mize	
  variant-­‐calling	
  to	
  
make	
  sure	
  variants	
  provided	
  are	
  correct.	
  Plus,	
  VAAST	
  
chokes	
  if	
  background	
  genomes	
  are	
  full	
  of	
  false	
  
posi)ves.	
  

•  Thus,	
  focused	
  now	
  on	
  comprehensive	
  comparison	
  of	
  
NGS	
  variant-­‐calling	
  on	
  deep	
  exome	
  sequencing	
  data	
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  the	
  mother	
  and	
  father.	
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  to	
  proceed	
  with	
  the	
  
concordance	
  of	
  2	
  or	
  more	
  pipelines,	
  like	
  SOAP	
  +	
  
GATK,	
  or	
  just	
  accept	
  (with	
  everybody	
  else	
  it	
  
seems!)	
  that	
  GATK	
  is	
  somehow	
  the	
  “de	
  facto	
  
standard”.	
  



For	
  now,	
  more	
  effort	
  should	
  be	
  placed	
  
on	
  the	
  following:	
  

•  Implemen)ng	
  Standards	
  for	
  a	
  “clinical-­‐grade”	
  exome,	
  
and	
  promo)ng	
  the	
  “networking	
  of	
  science”	
  model.	
  

•  Focusing	
  on	
  rare,	
  highly	
  penetrant	
  muta)ons	
  running	
  
in	
  families,	
  with	
  cascade	
  carrier	
  tes)ng	
  of	
  even	
  more	
  
rela)ves	
  as	
  needed.	
  

•  The	
  genomic	
  background	
  is	
  much	
  more	
  constant	
  in	
  
families.	
  

•  The	
  environmental	
  background	
  is	
  some)mes	
  more	
  
constant	
  in	
  families.	
  

•  This	
  allows	
  one	
  to	
  figure	
  out	
  penetrance	
  of	
  rare	
  
variants	
  in	
  these	
  families,	
  along	
  with	
  other	
  issues,	
  
such	
  as	
  soma)c	
  mosaicism.	
  


