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Table 1. Considerations and challenges for the identification of disease causal mutations

Considerations

Challenges

Solutions

Mutation detection Platform selection

Sequencing target selection

Variant generation

Variant annotation

Variant validation

Type of mutations Coding and splice variants

Untranslated region, synonymous
and non-coding variants

Specific application Somatic mutations in cancer

areas

Non-invasive fetal sequencing

Inheritance pattern Inherited from affected parents

De novo mutations from
unaffected parents

Biological validation Known disease causal genes

Previously characterized genes
not known to cause the disease
of interest

Genes without known function
Statistical validation Rare diseases

Idiopathic diseases

Mendelian diseases or traits

Type of phenotypes Mendelian forms of complex

diseases or traits
Complex diseases or traits

Different sequencing platforms have
variable error rates

Exome sequencing may miss regulatory
variants that are disease causal

Genotype calling algorithms differ from
each other and have specific limitations

Multiple gene models and multiple
function prediction algorithms are
available

Predicted disease causal mutations may
be false positives

Many prediction algorithms are
available

Little information on known causal
variants in databases such as HGMD

Tissues selected for sequencing may
not harbor large fractions of cells with
causal mutations due to heterogeneity;
variant calling is complicated by
stromal contamination; current
databases on allele frequencies do not
apply to somatic mutations; current
function prediction algorithms focus on
loss-of-function mutations

Variants from fetal and maternal
genomes need to be teased apart;
severe consequences when variants are
incorrectly detected and predicted to
be highly pathogenic

Rare/private mutations may be neutral

Every individual is expected to carry
three de novo mutations, including
about one amino acid altering
mutation per newborn

Difficult to conclude causality when
a mutation is found in a well-known
disease causal gene

Relate known molecular function to
phenotype of interest

Difficult to design functional follow-up
assays

Limited power to declare association
Lack of additional unrelated patients

Finding rare, unrelated individuals with
same phenotype and same mutation
to help prove causality

Several major-effect mutations may
work together to cause disease

Many variants may contribute to
disease risk, each with small effect sizes

Increased sequencing coverage for platforms with high
error rates

Use whole genome sequencing when budget is not
a concern, or when diseases other than well-studied
classical Mendelian diseases are encountered

Use multiple alignment and variant calling algorithms
and look for concordant calls. Use local assembly to
improve indel calls

Perform comprehensive set of annotations and make
informed decisions; use probabilistic model for ranking
genes/variants

Secondary validation by Sanger sequencing or capture-
based sequencing on specific genes/regions

Evaluate all prediction algorithms under different
settings. Develop consensus approaches for combining
evidence from multiple algorithms

Improved bioinformatics predictions using multiple
sources of information (ENCODE data, multispecies
conservation, RNA structure, and so on)

Sample several tissue locations for sequencing;

utilize algorithms specifically designed for tumor

with consideration for heterogeneity; use somatic
mutation databases such as COSMIC; develop function
prediction algorithms specifically for gain-of-function
mutations in cancer-related genes/pathways

Much increased sequence depth and more
sophisticated statistical approaches that best leverage
prior information for inferring fetal alleles; far more
stringent criteria to predict pathogenic variants

Evaluate extended pedigrees and clans’to assess the
potential role of private variants

Detailed functional analysis of the impacted genes

Examine public databases such as locus-specific
databases

Evaluate loss of function by biochemical assays where
available

Evaluate gene expression data. Use model organisms
to recapitulate the phenotype of interest

Sequence candidate genes in unrelated patients to
identify additional causal variants

Comprehensive functional follow-up of the
biospecimens from patients to prove causality

Networking of science through online databases
can help find similarly affected people with same
phenotype and mutation

Statistical models of combined effects (additive and
epistatic) of multiple variants within each individual

Refrain fromm making predictions unless prior evidence
suggested that such predictive models are of practical
utility (for example, receiver operating characteristic
>0.8)

HGMD, Human Gene Mutation Database.
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Figure 1. Two approaches for prioritizing disease causal genes from whole-genome or exome sequencing data. (a) The probabilistic
scoring approach collects relevant information from multiple data sources, and compiles a statistical model that ranks all genes in the genome
by their likelihood of being disease causal. (b) The stepwise reduction approach removes variants that are unlikely to be disease causal based on
a series of filtering criteria, until a small set of candidate genes is found. The first approach may be more effective and rigorous, yet the second
approach may be easier for non-specialists to understand and interpret. GWAS, genome-wide association study; HGMD, Human Gene Mutation
Database; |, indel; LSDB, locus-specific database; NS, non-synonymous; OMIM, Online Mendelian Inheritance in Man; SS, splice acceptor or donor site.




Table 2. A list of open-access bioinformatics software tools or web servers that can perform batch annotation of genetic
variants from whole-exome/genome sequencing data*

Tool URL Description Features Limitations
ANNOVAR [http://www. A software tool written in Rapid and up-to-date annotations Requires format conversion
openbioinformatics.org/ Perl to perform gene-based, for multiple species; thousands of for VCF files; command line
annovar/] region-based and filter-based annotation types are supported interface cannot be accessed
annotation by many biologists
AnnTools [http://anntools.sourceforge. A software tool written in Fast information retrieval by Only supports human genome
net/] Python to annotate SNVs, indels  MySQL database engine; output in build 37; does not annotate
and CNVs VCF format for easy downstream variant effect on coding
processing sequence
Mu2a [http://code.google.com/p/ A Java web application for Web interface for users with limited Does not allow annotation of
mu2a/] variant annotation bioinformatics expertise; output in indels or CNVs
Excel and text formats
SeattleSeq [http://snp.gs.washington. A web server that provides Multiple input formats are supported; Limited annotation on indels

Sequence Variant
Analyzer

snpEff

TREAT

VAAST

VARIANT

VarSifter

VAT

WANNOVAR

edu/SeattleSegAnnotation/]

[http://www.svaproject.org/]

[http://snpeff.sourceforge.
net]

[http://ndc.mayo.edu/mayo/
research/biostat/stand-alone-
packages.cfm]

[http//www.yandell-lab.org/
software/vaast.ntml]

[http://variant.bioinfo.cipf.es]

[http://research.nhgri.nih.
gov/software/VarSifter/]

[http://vat.gersteinlab.org/]

[http://wannovar.usc.edu/]

annotation on known and
novel SNPs

A graphical Java software tool
to annotate, visualize and
organize variants

A command-line software
tool to calculate the effects of
variants on known genes such
as amino acid changes

A command-line software

tool with rich integration of
publicly available and in-house
developed annotations

A command-line software tool
implementing a probabilistic
disease-gene finder to rank all
genes

A Java web application
for variant annotation and
visualization

A graphical Java program
to display, sort, filter and sift
variation data

A web application to annotate
a list of variants with respect
to genes or user-specified
intervals

A web server to annotate user-
supplied list of whole genome
or whole exome variants with
a set of pre-defined annotation
tasks

users can customize annotation tasks

Intuitive graphical user interface;
ability to prioritize candidate genes
fromm multiple patients

Rapid annotation on multiple
species and genome builds; supports
multiple codon table

An Amazon Cloud Image is available
for users with limited bioinformatics
infrastructure; offers a complete set
of pipelines to process FASTQ files
and generates annotation outputs

Prioritize candidate genes for
Mendelian and complex diseases

Intuitive interface with integrated
genome viewer

Nice graphical user interface;
allows interaction with Integrative
Genomics Viewer

Application can also be deployed
locally; can generate image for genes
to visualize variant effects

Easy-to-use interface for users with
limited bioinformatics skills

or CNVs

Functionality is not very
customizable; depends
on ENSEMBL database for
annotations

Only supports gene-based
annotation

Only supports ENSEMBL gene
definition and with limited sets
of annotations

Main focus is disease gene
finding with limited set of
annotations

Highly specific requirement
for internet browser; slow
performance

Main focus is variant filtering
and visualization with limited
functionality in variant
annotation

Requires multiple other
packages to work; only
supports gene-based
annotation by GENCODE

Limited set of annotation types
are available

*Tools that are only commmercially available (such as CLC Bio, Omicia, Golden Helix, DNANexus and Ingenuity) or are designed for a specific type of variant (such as SIFT
server and PolyPhen server) are not listed here. CNV, copy number variation; SNP, single nucleotide polymorphism; SNV, single nucleotide variation; VCF, variant call

format.



How do we get to “whole” genome
sequencing for everyone?

* Tool Building for Human Genetics

* Can we reliably detect a comprehensive, and
accurate, set of variants using more than one

pipeline, or even more than one sequencing
platform?

* How much data is enough, and how reliable
and reproducible are variant calls?



Moving Exome and WGS into a Clinical
Setting requires both Analytic and
Clinical Validity

* Analytical Validity: the test is accurate with

high sensitivity and specificity.

Clinical Validity: Given an accurate test result,
what impact and/or outcome does this have
on the individual person?



CLIA-certified exomes and WGS

* The CLIA-certified pipelines attempt to
minimize false positives with increased depth
of sequencing, although there can still be
many no-calls and other areas of uncertainty,
which should be reported as No-Call Regions.

* This will minimize false positives and also tend
to prevent false negatives.
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Method

Accurate and comprehensive sequencing
of personal genomes

Subramanian S. Ajay,' Stephen C.J. Parker,’ Hatice Ozel Abaan,’
Karin V. Fuentes Fajardo,” and Elliott H. Margulies'-**

"Genome Informatics Section, Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health,
Bethesda, Maryland 20892, USA; 2 Undiagnosed Diseases Program, Office of the Clinical Director, National Human Genome Research
Institute, National Institutes of Health, Bethesda, Maryland 20892, USA

As whole-genome sequencing becomes commoditized and we begin to sequence and analyze personal genomes for clinical
and diagnostic purposes, it is necessary to understand what constitutes a complete sequencing experiment for determining
genotypes and detecting single-nucleotide variants. Here, we show that the current recommendation of ~30X coverage is
not adequate to produce genotype calls across a large fraction of the genome with acceptably low error rates. Our results
are based on analyses of a clinical sample sequenced on two related lllumina platforms, GAIl, and HiSeq 2000, to a very
high depth (126x). We used these data to establish genotype-calling filters that dramatically increase accuracy. We also
empirically determined how the callable portion of the genome varies as a function of the amount of sequence data used.
These results help provide a “sequencing guide” for future whole-genome sequencing decisions and metrics by which
coverage statistics should be reported.



Complete Genomics chemistry - combinatorial
probe anchor ligation (cPAL)

D
Reading bases 1-5, e.g. position 5: Common Probes Reading bases 6-10, e.g. position 10:
(5th base set shown):
Probe Standard anchor 54321 Probe Degenerate anchor Standard anchor
] | ®NNNNANNNN l | l
ZNNNNCNNNNACTGCTGACGTACTG ‘ ZNNNNCNNNN ' #NNNNANNNNNNNNNACTGCTGACGTAC
,,,,,,,,,, GCTAATCTGGGATACTGACGACTGCATGACGC ®NNNNGNNNN veeeeenn. GCTAATCTGGGATACTGACGACTGCATGACGC
| t t #NNNNTNNNN : f f
Genomic sequence: .5432 1 DNB adaptor/anchor Genomic sequence: ..10987654321 DNB adaptor/anchor
binding site binding site
|« >400 bp genomic DNA fragment >
r1 r2 r3 r4 rs ré r7 r8 r9 r10 r11 r2

A i A - A I 4

— —— ——
e —— —4 —
Ad1 Ad2 Ad3 Ad6 Ad5 Ad4 Ad1
inserted inserted replaces inserted inserted

bulk of genomic
DNA



Accuracy of Complete Genomics Whole

Human Genome Sequencing Data
Analysis Pipeline v2.0

FALSE POSITIVES | EST FPs FALSE NEGATIVES | TOTAL DISCORDANCES CONCORDANCE

Discordant SNVs per called MB 1.56 x 10-6 4,450 1.67 x 10-6 3.23x10-6 99.9997% of bases

Table 2. Concordance of Technical Replicates.

OTHER PLATFORM PLATFORM- VALIDATION RATE EST FPs FPR
COMPLETE GENOMICS CALL SPECIFIC SNVs
Het or Hom SNV No SNV Reported 99K 17/18 = 94.4% 9,977 0.16%
No-call or Hom-Ref SNV Reported 345K 2/15=13.3% 299,115 8.2%

Table 3. False Positive Rate.



Complete Genomics — LFR technology

Accurate whole-genome sequencing and
haplotyping from 10 to 20 human cells

Brock A. Peters'*, Bahram G. Kermani'*, Andrew B. Sparks'f, Oleg Alferov', Peter Hong', Andrei Alexeev', Yuan Jiang',
Fredrik Dahl't, Y. Tom Tang', Juergen Haas', Kimberly Robasky*?, Alexander Wait Zaranek?, Je-Hyuk Lee**,

Madeleine Price Ball?, Joseph E. Peterson', Helena Perazich!, George Yeung', Jia Liu', Linsu Chen', Michael I. Kennemer!,
Kaliprasad Pothuraju’, Karel Konvicka', Mike Tsoupko-Sitnikov', Krishna P. Pant’, Jessica C. Ebert', Geoffrey B. Nilsen',
Jonathan Baccash', Aaron L. Halpern', George M. Church? & Radoje Drmanac’

NATURE | VOL 487 | 12 JULY 2012

“Substantial error rates (1 single nucleotide variants (SNV) in 100-1,000 called
kilobases) are a common attribute of all current massively

parallelized sequencing technologies. These rates are probably too high for
diagnostic use and complicate many studies searching for

new mutations.”

Much Higher Accuracy with LFR data

“To test LFR reproducibility we compared haplotype data between the two
NA19240 replicate libraries. In general, the libraries were very concordant, with
only 64 differences per library in 2.2 million heterozygous SNPs phased by both
libraries or 1 of this error type in 44 Mb.”




e ~S3000 for 30x “whole” genome as part of
lllumina Genome Network on a research basis
only, but ~$5,000 for whole genome
performed in a CLIA lab at lllumina.
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Optimizing Variant Calling in Exomes at
BGl in 2011

* Agilent v2 44 MB exome kit
* |llumina Hi-Seq for sequencing.
* Average coverage ~100-150x.

* Depth of sequencing of >80% of the target
region with >20 reads or more per base pair.

 Comparing various pipelines for alignment and
variant-calling.



2-3 rounds of sequencing at BGI to attain
goal of >80% of target region at >20 reads
per base pair

Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615  K24510-88962

Target region (bp) 46,401,121 46,401,121 46,401,121 46,257,379
Raw reads 138,779,950 161,898,170 156,985,870 104,423,704
Raw data yield (Mb) 12,490 14,571 14,129 9,398
Reads mapped to genome 110,160,277 135,603,094 135,087,576 83,942,646
Reads mapped to target region 68,042,793 84,379,239 80,347,146 61,207,116
Data mapped to target region (Mb) 5,337.69 6,647.18 6,280.01 4,614.47
Mean depth of target region 115.03 143.25 135.34 99.76
Coverage of target region (%) 0.9948 0.9947 0.9954 0.9828
Average read length (bp) 89.91 89.92 89.95 89.75
Fraction of target covered >=4X 98.17 98.38 98.47 94.25
Fraction of target covered >=10X 95.18 95.90 95.97 87.90
Fraction of target covered >=20X 90.12 91.62 91.75 80.70
Fraction of target covered >=30X 84.98 87.42 87.67 74.69
Capture specificity (%) 61.52 62.12 59.25 73.16
Fraction of unique mapped bases on or near target 65.59 65.98 63.69 85.46

Gender test result M M M F




Depth of Coverage in 15 exomes > 20
reads per bp in target region
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Deep Exome sequencing

100%

90%
5 m y ~ T Figure from BGI website:
g 80% — ’ —a— >=10X . .
v J o http://bgiamericas.com/
9
g 70% Y. o news-events/why-deep-
5 — >-40 exome-sequencing/
8 60% >=50X
o -
c >=60X
S 50%
S >=70X
- 40% >=80X

30%
30X 50X 80X 100X 120X 150X 200X

Fig.1 Correlation between the percentage of target regions covered and the sequencing
depth in human exome sequencing. Take >=30X series (the purple line) for example: when
the sequencing depth is 30X, only half of the target regions (51%) are covered at above 30X.
While at the 100X and 200X sequencing depths, a much higher percentage (81% and 90%,
respectively) of the target regions is covered at above 30X.



GWAS has statistical rigor with a
threshold p value

* Should exome sequencing also have a

threshold level of rigor, such as >80% of target
region with 20 reads or more per base pair?

This is accepted practice at major genome

sequencing centers (Baylor, WashU, Broad),
but apparently not everywhere else....
Shouldn’t this be required?



5 Pipelines Used on Same Set of Seq Data by Different
Analysts, using Hg19 Reference Genome

Pipeline name

Alignment method

Variant calling module

Description of variant calling algorithm

SOAP

SOAPaligner/BWA

SOAPsnp/SOAPindel

SOAP uses a method based on Bayes’ theorem to
call consensus genotype by carefully considering
the data quality, alignment, and recurring
experimental errors [22].

GATK

BWA

GATK

GATK employs a general Bayesian framework to
distinguish and call variants. Error correction
models are guided by expected characteristics of
human variation to further refine variant calls [19].

SNVer

BWA

SNVer

SNVer uses a more general frequentist framework
and formulates variant calling as a hypothesis
testing problem [25].

GNUMAP

GNUMAP

GNUMAP

GNUMAP incorporates the base uncertainty of the
reads into mapping analysis using a Probabilistic
Needleman-Wunsch algorithm [24].

SAMTools

BWA

mpileup

SAMTools [20] calls variants by generating a
consensus sequence using the MAQ model
framework which uses a general Baysean
framework for picking the base which maximizes
the posterior probability with the highest phred
quality score.




GATK

GNUMAP

Known SAMTools

GATK

GNUMAP
SOAPsnp

SAMTools

All

SOAPsnp

Number of SNV's
Percent of total
TiTv Ratio

Novel

GATK

GNUMAP
SOAPsnp

SAMTools



INDELS

Indels- Overlap by Base
Position only

GATK SAMTools

264 +/-42
1 100 +/— 209 6.8% +/-1.1% 301 oy
28.1% +-28% 7.7% +-1.8%

1060 +/- 84
27.7% +/- 4.3%

278 +/—- 60 10 +/-3
7.2% +-1.8% 0.3% +/-0.08%

SOAPiIndel

Indels- Overlap by Base
Position, Length and Composition

GATK SAMTools

38 +-3
2475 +-258 "7 591 4/_68
46.6% +-2.2%

11.1% +-0.9%

154 +/- 14
2.9% +1-0.3%

34 -1 870 +-69
0.6% +-02% 16.5% +-21%

SOAPindel

Total mean overlap, plus or minus one standard deviation, observed between three
indel calling pipelines: GATK, SOAP-indel, and SAMTools. a) Mean overlap when indel
position was the only necessary agreement criterion. b) Mean overlap when indel

position, base length and base composition were the necessary agreement criteria.



* How reliable are variants that are uniquely
called by individual pipelines?

* Are some pipelines better at detecting rare, or
novel variants than others?



Cross validation using orthogonal
sequencing technology
(Complete Genomics)



HHlumina SNVs What is the “True” Personal Genome?

CG SNVs

17322 2085
45.9% 559
[llumina indels
CG Indels
1698 915

32.2% 17.3%




GATK

GNUMAP

Known SAMTools

GATK

GNUMAP
SOAPsnp

SAMTools

All

SOAPsnp

Number of SNV's
Percent of total
TiTv Ratio

Novel

GATK

GNUMAP
SOAPsnp

SAMTools
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Higher Validation of SNVs with the
BWA-GATK pipeline

e Reveals higher validation rate of unique-to-
pipeline variants, as well as uniquely
discovered novel variants, for the variants
called by BWA-GATK, in comparison to the
other 4 pipelines (including SOAP).



Much Higher Validation of the Concordantly
Called Variants (by the CG data)

o
e B
B GATK
o _ B GNUMAP
o O SAMTools
) SNVer
2 - O SOAPsnp
o _
~

Percent of lllumina SNVs
validated by CG data
40 50
1 1

]
Unigue to Novel, unique to
Concordant SNVs pipeline SNVs pipeline SNVs




Validating Indels with Complete
Genomics Data for the 3 pipelines

100
J

GATK SAMTools W GATK

0D SAMTools
O SOAPindel

90
|

278 g -

1114 Ll 305

Percent of lllumina indels
validated by CG data
50
1

876
22.4% 8 -

SOAPindel

Unique to Novel, unique to
Concordant indels pipeline indels pipeline indels



Tools sensitivity for longer indels

e Standard read mapping and scanning algorithmes,
such as BWA, GATK, and SAMTools, are suitable

for detecting mutations only for a few
nucleotides.

— The sensitivity drops significantly for indels larger than
10bp

— Large insertions (> read length), are hard to detect.

— As a result, variants > 15 bp have rarely been reported
in exome studies
Gavin R. Oliver, F1000 Research, 2012



Variant Annotation, Analysis and
Search Tool

Yandell M, Huff C, Hu H, Singleton M, Moore B, Xing J, Jorde LB, Reese MG. A
probabilistic disease-gene finder for personal genomes. Genome Res. 2011 Sep;21(9):

1529-42.
ARTICLE

Using VAAST to Identify an X-Linked Disorder
Resulting in Lethality in Male Infants
Due to N-Terminal Acetyltransferase Deficiency

Alan F. Rope,! Kai Wang,2.1° Rune Evjenth,3 Jinchuan Xing,4 Jennifer J. Johnston,5 Jeffrey J. Swensen,é.7
W. Evan Johnson,8 Barry Moore,4 Chad D. Huff,4 Lynne M. Bird,® John C. Carey,!

John M. Opitz,1.461011 Cathy A. Stevens,'? Tao Jiang,!'3!4 Christa Schank,® Heidi Deborah Fain,!s
Reid Robison,!5 Brian Dalley,¢ Steven Chin,® Sarah T. South,!.7 Theodore ]J. Pysher,® Lynn B. Jorde,*
Hakon Hakonarson,? Johan R. Lillehaug,3 Leslie G. Biesecker,> Mark Yandell,# Thomas Arnesen,3.17

and Gholson J. Lyon!s.18,20,*



VAAST

A probabilistic disease-gene finder for personal genomes

Rapidly search personal genome sequences for damaged
genes by identifying significant differences in variant
frequencies in cases vs. controls

Integrates both allele & AAS frequencies into a single
probabilistic framework

Can score both coding and non-coding variants
Leverage phase and pedigree data

Can be used to hunt for both rare and common disease genes
and their causative alleles

Determines the statistical significance of candidate genes



VAAST integrates AAS & Variant frequencies
in a single probabilistic framework

- non-coding variants scored using allele frequency differences

* n; : frequency of variant type among all variants observed in
Background and Target genomes

- a;: frequency of variant type among disease causing mutations in
OMIM

 This approach means that every variant can be scored, non-synonymous,
synonymous, coding, and non-coding. Phylogenetic conservation not
required.



New Syndrome with Dysmorphology, Mental
Retardation, “Autism”, “ADHD”

O
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Likely X-linked or Autosomal Recessive, with X-linked being supported by extreme X-
skewing in the mother






Workup Ongoing for past 10 years

* Numerous genetic tests negative, including negative for
Fragile X and many candidate genes.

* No obvious pathogenic CNVs — microarrays normal.

* Sequenced whole genomes of Mother, Father and Two
Boys, using Complete Genomics, obtained data in June

of this year, i.e. version 2.0 CG pipeline.




22,174

272

56

Located within a coding region

Located on the X chromosome




Variant

Reference Alternate

X:47307978-SNV G

X:63444792-SNV  C

X:70621541-SNV T

Chromosome
X

X

X

RANK Gene
1 ASB12
2 TAF1

3 ZNF41

Position

47307978
63444792
70621541

p-value
1.56E-11
1.56E-11

1.56E-11

Variant classification

Classification

Transcript 1

Exon1 HGVS Coding 1

HGVS Protein 1

1.55557809307134e-11,0.000290464582480396
1.55557809307134e-11,0.000290464582480396

1.55557809307134e-11,0.000290464582480396

T Nonsyn SNV NM_007130

A Nonsyn SNV NM_130388

C Nonsyn SNV NM_004606

SIFT classification

Reference Coding? SIFT Score

G YES 0.649999976

C YES 0

T YES 0.009999999776
VAAST score

p-value-ci Score

38.63056297

34.51696816

32.83011803

5¢.1191C>A p.Asp397Glu

2¢.739G>T p.Gly247Cys
25¢.4010T>C p.lle1337Thr

Score <= 0.05 Ref/Alt Alleles

0 G/T

1 C/A

1 T/C

Variants

chrX:63444792;38.63;C->A;G->C;0,3
chrX:70621541;34.52;T->C;|->T;0,3

chrX:47307978;32.83;G->T;D->E;0,3



Mutations in the ZNF41 Gene Are Associated with Cognitive Deficits:
Identification of a New Candidate for X-Linked Mental Retardation

Sarah A. Shoichet," Kirsten Hoffmann,' Corinna Menzel," Udo Trautmann,” Bettina Moser,'
Maria Hoeltzenbein,' Bernard Echenne,’> Michael Partington,” Hans van Bokhoven,’

Claude Moraine,’ Jean-Pierre Fryns,” Jamel Chelly,® Hans-Dieter Rott,> Hans-Hilger Ropers,'
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Sanger validation: ASB12 and ZNF41 mutations
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The mutation in ZNF41 may NOT be necessary, and it is certainly
NOT sufficient to cause the phenotype.



So, of course we need baseline whole
genome sequencing on everyone to at
least understand the DNA genetic
background in each pedigree or clan.

Ancestry Matters!



Some are calling for technical replicates of
exomes for higher accuracy.
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The allele distribution in next-generation sequencing
data sets is accurately described as the result of a
stochastic branching process
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“In a usual exome, one expects between 10 000 and 15 000 heterozygous variants. Our
results indicate that one will miss around a hundred heterozygous variants by sequencing an
exome only once simply due to the stochastic fluctuation of the allele frequencies after
amplification.... Additionally for a sequencing depth above 30x, the false negative rate does
not decrease further. Thus, once a sufficient sequencing depth has been reached, only
technical replication is able to further reduce the total error rates substantially.”



Some argue that exon capture should
complement WGS sequencing....

Performance comparison of exome DNA sequencing
technologies

Michael J Clark!#, Rui Chen!*, Hugo Y K Lam!, Konrad ] Karczewski!, Rong Chen?, Ghia Euskirchen!?, Atul ] Butte? & Michael Snyder'>?
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“It may be argued that the importance of targeted sequencing is transient and
will diminish as WGS becomes less expensive. However, we found that exome
sequencing can identify variants that are not evident in WGS because of greater
base coverage after enrichment. Even at equivalent coverage levels, specific
regions had higher read depth in exome sequencing resulting in greater
sensitivity in those regions. Target capture by exome sequencing unambiguously
identified some of these difficult regions through preferential selection and
observation at higher local read depth. “



And, others are calling for potentially
biological replicates with WGS
sequencing on two platforms

Performance comparison of whole-genome seqguencing
platforms

Hugo Y K Lam!8, Michael J Clark!, Rui Chen', Rong Chen?8, Georges Natsoulis>, Maeve O’Huallachain!,
Frederick E Dewey?, Lukas Habegger’, Euan A Ashley?, Mark B Gerstein®~, Atul ] Butte?, Hanlee P Ji’ & Michael Snyder!

“both methods clearly call variants missed by the other technology. Many of these lie
in exons and thus can affect coding potential. In fact, 1,676 genes have platform-
specific SNVs in exons ... We demonstrated that the best approach for comprehensive
variant detection is to sequence genomes with both platforms if budget permits. We
assessed the cost effectiveness of sequencing on both platforms and found that on
average it costs about four cents per additional variant (Online Methods).
Alternatively, supplementing with exome sequencing can assess the most
interpretable part of the genome at higher depth of coverage and accuracy and fill in
the gaps in the detection of coding variants.”



“Genomic Dark Matter”

Short read mapping is a widely used for
identifying mutations in the genome

* Not every base of the genome can
mapped equally well, because repeats may

Species (build) size paired/single whole (%) transcription (%)

o o yeast (sc2) 12 Mbp paired 94 85 95.04

obscure where the reads originated sngle 9425 94.62

fly (dm3) 130 Mbp paired 90.52 96.14

single 89.70 95.94

mouse (mm9) 2.7 Gbp paired 89.39 96.03

single 87.47 94.75

o] . . human (hgl9) 3.0 Gbp paired 89.02 97.40

Introduced a new probabilistic metric - the ingle 8779

Genome Mappability Score - that quantifies
how reliably reads can be mapped to every
position in the genome

* We have little power to measure 11-13% 2 05
of the human genome, including of known
clinically relevant variations

* Errors in variation discovery are dominated =~ =" -
by false negatives in low GMS regions T conm

High GMS

Genomic Dark Matter:The reliability of short read mapping illustrated by the GMS.
Lee, H., Schatz, M.C. (2012) Bioinformatics. 10.1093/bioinformatics/bts330



Genomic Dark Matter: The reliability of short read

mapping illustrated by the Genome Mappability Score
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Genome Mappability Score (GMS) -- measure of the complexity of resequencing a
genome = a weighted probability that any read could be unambiguously mapped to a
given position, and thus measures the overall composition of the genome itself.

That means that unlike typical false negatives, increasing coverage will not help
identify mutations in low GMS regions, even with 0% sequencing error.

Instead this is because the SNP-calling algorithms use the mapping quality scores to
filter out unreliable mapping assignments, and low GMS regions have low mapping
quality score (by definition). Thus even though many reads may sample these
variations, the mapping algorithms cannot ever reliably map to them.

Since about 14% of the genome has low GMS value with typical sequencing
parameters, it is expected that about 14% of all variations of all resequencing studies
will not be detected.

To demonstrate this effect, we characterised the SNP variants identified by the 1000
genomes pilot project, and found that 99.99% of the SNPs reported were in high GMS
regions of the genome, and in fact 99.95% had GMS over 90.



Summary

Next Gen Sequencing Technology constantly
improving, with longer read lengths and higher

accuracy of base calling.

Variant-calling for SNVs, indels and CNVs is also
constantly improving.

Downstream filtering and probabilistic ranking
algorithms depend on a highly accurate and
comprehensive list of variant calls.

Ancestry, i.e. genetic background, matters! So, we
need to collect large families and move to whole
genome sequencing as much as possible.
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