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CLARITY Organizers 
Harvard Medical School 
 
Dear CLARITY committee, 
 
On behalf of the Omicia/University of Utah/InVitae, (OUI) team, we would like to 
describe our approach to this challenge, our workflow and reports. We have provided an 
executive summary and a detailed report for each family. The executive summary 
includes the findings and clinical recommendations. The detailed reports show the data 
for each test with supporting evidence and some technical interpretation. In this 
document we provide an overview of our team and our analysis strategy.  
 
Our team is composed of three groups: one academic and two commercial. The OUI team 
includes physicians, geneticists, bioinformaticians, computational biologists, and 
software engineers. Two systems have been at the core of our analyses: The Omicia 
OpalTM platform and the InVitae genetic test of known inherited conditions powered by 
LocusDev. Both tools have been central to our analyses, and we have generated clinical 
laboratory-like reports from both systems. The data provided by the organizers have been 
used as is assuming that the variants are all called correctly. As you can see in the Opal 
report, we have tried to assess the data quality, but only at a very high level, given that 
data generation and variant calling has been out of our control, so a detailed sensitivity 
and specificity analysis was not possible. 
 
Opal is a clinical decision support tool that assists in the clinical interpretation of 
genomes and empowers clinical diagnostics by allowing users to identify a very short list 
of candidate disease-genes and variants of relevance to the disease and phenotype of the 
patient. Opal accomplishes this by automatically embedding the contents of patient 
variant files in a rich analysis environment, providing links to additional genome 
annotations, clinical variants from well-established pathogenic variant databases such as 
OMIM and HGMD, and literature cross-references for candidate disease genes and 
variants, and other resources. Most of the interactive analysis and result inspection has 
been performed with Opal, which is a web application system. Data and analyses were 
securely stored, accessed, shared and discussed by the team during the analysis of the 
project, while each team member had a secure, user controlled access to the genome and 
the analyses results and was able to share their results online. 
 
In summary, our analysis strategy was four-pronged: 
 
Test 1. Genome-wide ab initio searches using VAAST. VAAST is a new-in-class, rapid 
probabilistic search tool for identifying damaged genes and their disease-causing variants 
in personal genome sequences, using population data and amino acid substitution 





Table 1. Considerations and challenges for the identi!cation of disease causal mutations
Considerations Challenges Solutions

Mutation detection Platform selection Di!erent sequencing platforms have 
variable error rates

Increased sequencing coverage for platforms with high 
error rates

Sequencing target selection Exome sequencing may miss regulatory 
variants that are disease causal

Use whole genome sequencing when budget is not 
a concern, or when diseases other than well-studied 
classical Mendelian diseases are encountered

Variant generation Genotype calling algorithms di!er from 
each other and have speci"c limitations

Use multiple alignment and variant calling algorithms 
and look for concordant calls. Use local assembly to 
improve indel calls

Variant annotation Multiple gene models and multiple 
function prediction algorithms are 
available

Perform comprehensive set of annotations and make 
informed decisions; use probabilistic model for ranking 
genes/variants

Variant validation Predicted disease causal mutations may 
be false positives

Secondary validation by Sanger sequencing or capture-
based sequencing on speci"c genes/regions

Type of mutations Coding and splice variants Many prediction algorithms are 
available

Evaluate all prediction algorithms under di!erent 
settings. Develop consensus approaches for combining 
evidence from multiple algorithms

Untranslated region, synonymous 
and non-coding variants

Little information on known causal 
variants in databases such as HGMD

Improved bioinformatics predictions using multiple 
sources of information (ENCODE data, multispecies 
conservation, RNA structure, and so on)

Speci"c application 
areas

Somatic mutations in cancer Tissues selected for sequencing may 
not harbor large fractions of cells with 
causal mutations due to heterogeneity; 
variant calling is complicated by 
stromal contamination; current 
databases on allele frequencies do not 
apply to somatic mutations; current 
function prediction algorithms focus on 
loss-of-function mutations

Sample several tissue locations for sequencing; 
utilize algorithms speci"cally designed for tumor 
with consideration for heterogeneity; use somatic 
mutation databases such as COSMIC; develop function 
prediction algorithms speci"cally for gain-of-function 
mutations in cancer-related genes/pathways

Non-invasive fetal sequencing Variants from fetal and maternal 
genomes need to be teased apart; 
severe consequences when variants are 
incorrectly detected and predicted to 
be highly pathogenic

Much increased sequence depth and more 
sophisticated statistical approaches that best leverage 
prior information for inferring fetal alleles; far more 
stringent criteria to predict pathogenic variants

Inheritance pattern Inherited from a!ected parents Rare/private mutations may be neutral Evaluate extended pedigrees and ‘clans’ to assess the 
potential role of private variants

De novo mutations from 
una!ected parents

Every individual is expected to carry 
three de novo mutations, including 
about one amino acid altering 
mutation per newborn

Detailed functional analysis of the impacted genes

Biological validation Known disease causal genes Di#cult to conclude causality when 
a mutation is found in a well-known 
disease causal gene

Examine public databases such as locus-speci"c 
databases

Previously characterized genes 
not known to cause the disease 
of interest

Relate known molecular function to 
phenotype of interest

Evaluate loss of function by biochemical assays where 
available

Genes without known function Di#cult to design functional follow-up 
assays

Evaluate gene expression data. Use model organisms 
to recapitulate the phenotype of interest

Statistical validation Rare diseases Limited power to declare association Sequence candidate genes in unrelated patients to 
identify additional causal variants

Idiopathic diseases Lack of additional unrelated patients Comprehensive functional follow-up of the 
biospecimens from patients to prove causality

Mendelian diseases or traits Finding rare, unrelated individuals with 
same phenotype and same mutation 
to help prove causality

Networking of science through online databases 
can help "nd similarly a!ected people with same 
phenotype and mutation

Type of phenotypes Mendelian forms of complex 
diseases or traits

Several major-e!ect mutations may 
work together to cause disease

Statistical models of combined e!ects (additive and 
epistatic) of multiple variants within each individual

Complex diseases or traits Many variants may contribute to 
disease risk, each with small e!ect sizes

Refrain from making predictions unless prior evidence 
suggested that such predictive models are of practical 
utility (for example, receiver operating characteristic 
>0.8)

HGMD, Human Gene Mutation Database.

Lyon and Wang Genome Medicine 2012, 4:58 
http://genomemedicine.com/content/4/7/58

Page 4 of 16





variants is needed, beyond simple variant annotation. 
!ere are several important reasons to pursue this 
approach. Firstly, conventional protein functional predic-
tion algorithms only provide a binary prediction on 
whether a variant is deleterious or tolerated. However, a 
defect in protein function does not necessarily mean that 

a specific phenotype will be affected and investigators 
often have to search for clues on the specific disease 
classes (for example, cancer, immunological or cardio-
vascular traits) that the variant may influence. With this 
information in hand, biologists can design experiments 
to test the functionality of the variants in the context of 

Table 2. A list of open-access bioinformatics software tools or web servers that can perform batch annotation of genetic 
variants from whole-exome/genome sequencing data*
Tool URL Description Features Limitations

ANNOVAR [http://www.
openbioinformatics.org/
annovar/]

A software tool written in 
Perl to perform gene-based, 
region-based and !lter-based 
annotation

Rapid and up-to-date annotations 
for multiple species; thousands of 
annotation types are supported

Requires format conversion 
for VCF !les; command line 
interface cannot be accessed 
by many biologists

AnnTools [http://anntools.sourceforge.
net/]

A software tool written in 
Python to annotate SNVs, indels 
and CNVs

Fast information retrieval by 
MySQL database engine; output in 
VCF format for easy downstream 
processing

Only supports human genome 
build 37; does not annotate 
variant e"ect on coding 
sequence

Mu2a [http://code.google.com/p/
mu2a/]

A Java web application for 
variant annotation

Web interface for users with limited 
bioinformatics expertise; output in 
Excel and text formats

Does not allow annotation of 
indels or CNVs

SeattleSeq [http://snp.gs.washington.
edu/SeattleSeqAnnotation/]

A web server that provides 
annotation on known and 
novel SNPs

Multiple input formats are supported; 
users can customize annotation tasks

Limited annotation on indels 
or CNVs

Sequence Variant 
Analyzer

[http://www.svaproject.org/] A graphical Java software tool 
to annotate, visualize and 
organize variants

Intuitive graphical user interface; 
ability to prioritize candidate genes 
from multiple patients

Functionality is not very 
customizable; depends 
on ENSEMBL database for 
annotations

snpE" [http://snpe".sourceforge.
net]

A command-line software 
tool to calculate the e"ects of 
variants on known genes such 
as amino acid changes

Rapid annotation on multiple 
species and genome builds; supports 
multiple codon table

Only supports gene-based 
annotation

TREAT [http://ndc.mayo.edu/mayo/
research/biostat/stand-alone-
packages.cfm]

A command-line software 
tool with rich integration of 
publicly available and in-house 
developed annotations

An Amazon Cloud Image is available 
for users with limited bioinformatics 
infrastructure; o"ers a complete set 
of pipelines to process FASTQ !les 
and generates annotation outputs

Only supports ENSEMBL gene 
de!nition and with limited sets 
of annotations

VAAST [http://www.yandell-lab.org/
software/vaast.html]

A command-line software tool 
implementing a probabilistic 
disease-gene !nder to rank all 
genes

Prioritize candidate genes for 
Mendelian and complex diseases

Main focus is disease gene 
!nding with limited set of 
annotations

VARIANT [http://variant.bioinfo.cipf.es] A Java web application 
for variant annotation and 
visualization

Intuitive interface with integrated 
genome viewer

Highly speci!c requirement 
for internet browser; slow 
performance

VarSifter [http://research.nhgri.nih.
gov/software/VarSifter/]

A graphical Java program 
to display, sort, !lter and sift 
variation data

Nice graphical user interface; 
allows interaction with Integrative 
Genomics Viewer

Main focus is variant !ltering 
and visualization with limited 
functionality in variant 
annotation

VAT [http://vat.gersteinlab.org/] A web application to annotate 
a list of variants with respect 
to genes or user-speci!ed 
intervals

Application can also be deployed 
locally; can generate image for genes 
to visualize variant e"ects

Requires multiple other 
packages to work; only 
supports gene-based 
annotation by GENCODE

wANNOVAR [http://wannovar.usc.edu/] A web server to annotate user-
supplied list of whole genome 
or whole exome variants with 
a set of pre-de!ned annotation 
tasks

Easy-to-use interface for users with 
limited bioinformatics skills

Limited set of annotation types 
are available

*Tools that are only commercially available (such as CLC Bio, Omicia, Golden Helix, DNANexus and Ingenuity) or are designed for a speci!c type of variant (such as SIFT 
server and PolyPhen server) are not listed here. CNV, copy number variation; SNP, single nucleotide polymorphism; SNV, single nucleotide variation; VCF, variant call 
format.
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How	  do	  we	  get	  to	  “whole”	  genome	  
sequencing	  for	  everyone?	  

•  Tool	  Building	  for	  Human	  GeneGcs	  

•  Can	  we	  reliably	  detect	  a	  comprehensive,	  and	  
accurate,	  set	  of	  variants	  using	  more	  than	  one	  
pipeline,	  or	  even	  more	  than	  one	  sequencing	  
plaQorm?	  

•  How	  much	  data	  is	  enough,	  and	  how	  reliable	  
and	  reproducible	  are	  variant	  calls?	  

	  



Moving	  Exome	  and	  WGS	  into	  a	  Clinical	  
SeUng	  requires	  both	  AnalyGc	  and	  

Clinical	  Validity	  

•  AnalyGcal	  Validity:	  the	  test	  is	  accurate	  with	  
high	  sensiGvity	  and	  specificity.	  

•  Clinical	  Validity:	  Given	  an	  accurate	  test	  result,	  
what	  impact	  and/or	  outcome	  does	  this	  have	  
on	  the	  individual	  person?	  



CLIA-‐cerGfied	  exomes	  and	  WGS	  

•  The	  CLIA-‐cerGfied	  pipelines	  aZempt	  to	  
minimize	  false	  posiGves	  with	  increased	  depth	  
of	  sequencing,	  although	  there	  can	  sGll	  be	  
many	  no-‐calls	  and	  other	  areas	  of	  uncertainty,	  
which	  should	  be	  reported	  as	  No-‐Call	  Regions.	  	  

•  This	  will	  minimize	  false	  posiGves	  and	  also	  tend	  
to	  prevent	  false	  negaGves.	  





Method

Accurate and comprehensive sequencing
of personal genomes
Subramanian S. Ajay,1 Stephen C.J. Parker,1 Hatice Ozel Abaan,1

Karin V. Fuentes Fajardo,2 and Elliott H. Margulies1,3,4

1Genome Informatics Section, Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health,
Bethesda, Maryland 20892, USA; 2Undiagnosed Diseases Program, Office of the Clinical Director, National Human Genome Research

Institute, National Institutes of Health, Bethesda, Maryland 20892, USA

As whole-genome sequencing becomes commoditized and we begin to sequence and analyze personal genomes for clinical
and diagnostic purposes, it is necessary to understand what constitutes a complete sequencing experiment for determining
genotypes and detecting single-nucleotide variants. Here, we show that the current recommendation of ~30@ coverage is
not adequate to produce genotype calls across a large fraction of the genome with acceptably low error rates. Our results
are based on analyses of a clinical sample sequenced on two related Illumina platforms, GAIIx and HiSeq 2000, to a very
high depth (126@). We used these data to establish genotype-calling filters that dramatically increase accuracy. We also
empirically determined how the callable portion of the genome varies as a function of the amount of sequence data used.
These results help provide a ‘‘sequencing guide’’ for future whole-genome sequencing decisions and metrics by which
coverage statistics should be reported.

[Supplemental material is available for this article.]

Whole-genome sequencing and analysis is becoming part of a
translational research toolkit (Lupski et al. 2010; Sobreira et al.
2010) to investigate small-scale changes such as single-nucleotide
variants (SNVs) and indels (Bentley et al. 2008; Wang et al. 2008;
Kim et al. 2009; McKernan et al. 2009; Fujimoto et al. 2010; Lee
et al. 2010; Pleasance et al. 2010) in addition to large-scale events
such as chromosomal rearrangements (Campbell et al. 2008;
Chen et al. 2008) and copy-number variation (Chiang et al. 2009;
Park et al. 2010). For both basic genome biology and clinical
diagnostics, the trade-offs of data quality and quantity will de-
termine what constitutes a ‘‘comprehensive and accurate’’ whole-
genome analysis, especially for detecting SNVs. As whole-genome
sequencing becomes commoditized, it will be important to deter-
mine quantitative metrics to assess and describe the comprehen-
siveness of an individual’s genome sequence. No such standards
currently exist.

For several reasons (sample handling, platform biases, run-
to-run variation, etc.), random generation of sequencing reads
does not always represent every region in the genome uniformly.
It is therefore necessary to understand what proportion of the
whole genome can be accurately ascertained, given a certain amount
and type of input data and a specified reference sequence. The
1000 Genomes Project (which aims to accurately assess genetic
variation within the human population) refers to this concept as
the ‘‘accessible’’ portion of the reference genome (1000 Genomes
Project Consortium 2010). While population-scale sequencing
focuses on low-coverage pooled data sets, here we focus on require-
ments for highly accurate SNV calls from an individual’s genome,

a question that is extremely important as whole-genome se-
quencing and analysis of individual genomes transitions from
primarily research-based projects to being used for clinical and
diagnostic applications. Additionally, we seek to understand the
relationship between the amount of sequence data generated and
the resulting proportion of the genome where confident geno-
types can be derived—we refer to this as the ‘‘callable’’ portion,
a term that is roughly equivalent to the 1000 Genomes Project’s
‘‘accessible’’ portion. Using these sequencing metrics and geno-
type-calling filters will help obviate the need for costly and time-
consuming validation efforts. Currently, no empirically derived
data sets exist for determining how much sequence data is needed
to enable accurate detection of SNVs.

To address this issue, we sequenced a blood sample from a
male individual with an undiagnosed clinical condition on two
related platforms—Illumina’s GAIIx and HiSeq 2000—to a total of
359 Gb (equivalent to ;1263 average sequenced depth). Here we
focus on the technical aspects of analyzing these data generated
as part of the expanded whole-genome sequencing efforts of the
National Institutes of Health (NIH) Undiagnosed Diseases Pro-
gram (UDP). We leveraged the ultra-deep coverage of this genome
to identify sources of incorrect genotype calls and developed ap-
proaches to mitigate these inaccuracies. We generated incremen-
tal data sets of the deep-sequenced genome to answer the fol-
lowing important questions: Given a specific amount of sequence
data, what fraction of the genome is callable? and how many
SNVs are detected? Ultimately, we seek to understand how much
sequence data is needed for adequate representation of the whole
genome for genotype calling and to develop standards by which
all whole-genome data sets can be evaluated with respect to
comprehensiveness.

Answers to these questions will help us make more informed
decisions for designing whole-genome sequencing experiments to
study genome biology and for clinical analyses, specifically in light
of accurately detecting variants that directly modify phenotypes
and cause disease.

3Present address: Illumina Cambridge Ltd., Chesterford Research Park,
Little Chesterford, Saffron Walden, Essex CB10 1XL, UK.
4Corresponding author.
E-mail emargulies@illumina.com.
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.123638.111.
Freely available online through the Genome Research Open Access option.
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homozygous reference criteria are considered not called. 
Genome-Genome-Genome comparisons are performed 
using CGATM Tools v1.512 calldiff, snpdiff, and testvariants 
methods, which take into account complex variants (for 
example, loci with a SNP on one allele and a substitution 
on another) and called versus no-called sites.

Call rate and coverage: Call rate and coverage data 
are averaged over all shipments from Q3 2011 to Q1 
2012. Call rate and coverage are both measured relative 
to the 2.85GB Build 37 reference genome (excluding 
random contigs). Exome call rates are from Q1 2012 and 
are relative to RefSeq 37.2 gene models. They are up 
from the 2011 exome call rates, which averaged 95%-
96%.

There are many ways to measure coverage. Complete 
Genomics uses the gross mapped coverage (single 
and paired, unique and non-unique) from the 
coverageRefScore and summary !les11. Attributes 
of recent Complete Genomics data in the literature 
(speci!cally papers where call rate and/or coverage were 
reported) are described in Table 1. Improvements to 
call rate over time are clear from these results and have 
continued since this analysis was performed.

Trio Analysis: Called VQHIGH and homozygous 
reference sites from the YRI family trio were processed 
with the CGA Tools 1.5 listvariants and testvariants 
commands, and additional analysis was performed 
to extract MIEs. All sites fully called in the trio were 
considered, including sites called either variant or 
reference in the child. Repetitive sequences were de!ned 
using the union of the RepeatMasker, SegDup, and 
Simple Repeats tracks from the UCSC genome browser 

(genome.ucsc.edu), which collectively cover about 
53.7% of the reference genome.

Clustered MIE Analysis: The genome was segmented 
into non-overlapping windows containing 50kb of fully 
called genomic bases each, which were then sorted by 
the number of MIEs contained within each block. This 
list was then traversed until 30% of the total MIEs were 
encountered.

Technical Replicates: Two libraries independently 
constructed from NA19240 DNA were sequenced and 
analyzed. Sites called variant at VQHIGH in replicate 1 
and reference (RefScore>10) in replicate 2 were counted 
as discordant. A Bayesian statistical model was used to 
partition all discordances into putative FPs in replicate 
1 versus FNs in replicate 2 (see Reference 11, Score 
Calibration Documentation) (Table 2).

Calculation of the FP:FN tradeoff in direct 
comparisons of technical replicates: The CGA Tools 
1.5 calldiff command was used to compute the somatic 
score for each discordance between technical replicates. 
Sites called heterozygous or homozygous at a variant in 
replicate 1, and reference (for both alleles) in replicate 2, 
were counted as discordant. 

False Positive Rate: 2009 data were published in 
Reference 2. 2010 data were published in Reference 5, 
see Table 3.

Ti/Tv analysis: See References 7 and 8. Ti/Tv is 
reported for all genomes delivered from Q3 2011 to 
Q1 2012. The Ti/TV ratios in the 69 publicly available 
Complete Genomics genomes are in the same range. 

FALSE POSITIVES EST FPs FALSE NEGATIVES TOTAL DISCORDANCES CONCORDANCE

Discordant SNVs per called MB 1.56 x 10-6 4,450 1.67 x 10-6 3.23 x 10-6 99.9997% of bases

Table 2. Concordance of Technical Replicates.

COMPLETE GENOMICS CALL
OTHER PLATFORM PLATFORM-

SPECIFIC SNVs
VALIDATION RATE EST FPs FPR

Het or Hom SNV No SNV Reported 99K 17/18 = 94.4% 5,577 0.16%

No-call or Hom-Ref SNV Reported 345K 2/15 = 13.3% 299,115 8.2%

Table 3. False Positive Rate.

5

Accuracy of Complete Genomics Whole 
Human Genome Sequencing Data
Analysis Pipeline v2.0

High accuracy is critical to the effective use of whole genome sequencing (WGS) data 
by researchers and clinicians alike. Given the size of the human genome, even a small 
error rate can lead to a large total number of errors. Complete Genomics understands 
the importance of accuracy in WGS and we strive to deliver the most accurate data 
to our customers. We describe here some of the key factors to consider in measuring 
accuracy and provide an accuracy analysis for our Analysis Pipeline v2.0.

The accuracy of WGS data can be measured by a wide variety of methods, none of 
which is perfect, but many of which are informative for practical use. At the same time, 
accuracy estimates can be slanted to appear better or worse than they are; thus it is 
important that the detailed methods of their calculation be considered along with the 
results.

Techniques to improve variant detection accuracy include read and SNP !ltering 
or increasing call stringency1, but their use leads to a signi!cant and often poorly 
measured cost to sensitivity. Reports in the scienti!c literature show that Complete 
Genomics WGS, which avoids such coarse !ltering approaches, not only produces the 
lowest error rates but also does so at the highest call rates.

Complete Genomics’ approach to WGS is described below along with some 
suggestions on what to look for in measuring and comparing the accuracy of different 
sequencing approaches.

Results
Coverage and Call Rate: A key to Complete Genomics’ approach to WGS is deep 
sequencing. Complete Genomics has delivered more than 55x average gross coverage 
for all customer genomes shipped since the launch of its service. Complete Genomics 
applies an advanced bioinformatics pipeline using local de novo assembly to generate 
all small variant calls2,3, and using these methods currently achieves mean genome-
wide call rates of more than 97%, while call rates in coding regions currently average 
greater than 98%. These results are corroborated by recent reports of Complete 
Genomics’ data in the scienti!c literature (see Table 1 below).

WHITE PAPER
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Accurate whole-genome sequencing and
haplotyping from 10 to 20 human cells
Brock A. Peters1*, Bahram G. Kermani1*, Andrew B. Sparks1{, Oleg Alferov1, Peter Hong1, Andrei Alexeev1, Yuan Jiang1,
Fredrik Dahl1{, Y. Tom Tang1, Juergen Haas1, Kimberly Robasky2,3, Alexander Wait Zaranek2, Je-Hyuk Lee2,4,
Madeleine Price Ball2, Joseph E. Peterson1, Helena Perazich1, George Yeung1, Jia Liu1, Linsu Chen1, Michael I. Kennemer1,
Kaliprasad Pothuraju1, Karel Konvicka1, Mike Tsoupko-Sitnikov1, Krishna P. Pant1, Jessica C. Ebert1, Geoffrey B. Nilsen1,
Jonathan Baccash1, Aaron L. Halpern1, George M. Church2 & Radoje Drmanac1

Recent advances in whole-genome sequencing have brought the vision of personal genomics and genomic medicine
closer to reality. However, current methods lack clinical accuracy and the ability to describe the context (haplotypes) in
which genome variants co-occur in a cost-effective manner. Here we describe a low-cost DNA sequencing and
haplotyping process, long fragment read (LFR) technology, which is similar to sequencing long single DNA molecules
without cloning or separation of metaphase chromosomes. In this study, ten LFR libraries were made using only

100 picograms of human DNA per sample. Up to 97% of the heterozygous single nucleotide variants were assembled
into long haplotype contigs. Removal of false positive single nucleotide variants not phased by multiple LFR haplotypes
resulted in a final genome error rate of 1 in 10 megabases. Cost-effective and accurate genome sequencing and
haplotyping from 10–20 human cells, as demonstrated here, will enable comprehensive genetic studies and diverse
clinical applications.

The extraordinary advancements made in DNA sequencing tech-
nologies over the past few years have led to the elucidation of
,10,000 (refs 1–13) individual human genomes (303 or greater base
coverage) from different ethnicities and using different tech-
nologies2–13 and at a fraction of the cost10 of sequencing the original
human reference genome14,15. Although this is a monumental
achievement, the vast majority of these genomes have excluded a very
important element of human genetics. Individual human genomes are
diploid in nature, with half of the homologous chromosomes being
derived from each parent. The context in which variations occur on
each individual chromosome can have profound effects on the
expression and regulation of genes and other transcribed regions of
the genome16. Furthermore, determining whether two potentially
detrimental mutations occur within one or both alleles of a gene is
of paramount clinical importance.

Almost all recent human genome sequencing has been performed
on short read length (,200 base pairs (bp)), highly parallelized
systems starting with hundreds of nanograms of DNA. These tech-
nologies are excellent at generating large volumes of data quickly and
economically. Unfortunately, short reads, often paired with small
mate-gap sizes (500 bases–10 kilobases (kb)), eliminate most single
nucleotide polymorphism (SNP) phase information beyond a few
kilobases8. Population-based genotype data has been used to success-
fully assemble short-read data into long haplotype blocks3, but these
methods suffer from higher error rates and have difficulty phasing
rare variants17. Although using pedigree information18 or combining
it with population data provides further phasing power, no combina-
tion of these methods is able to resolve de novo mutations17.

At present, four personal genomes—J. Craig Venter19, a Gujarati
Indian (HapMap sample NA20847)11, and two Europeans (Max
Planck One13 and HapMap Sample NA12878 (ref. 20))—have been

sequenced and assembled as diploid. All have involved cloning long
DNA fragments in a process similar to that used for the construction
of the human reference genome14,15. Although these processes
generate long-phased contigs (N50 values (50% of the covered bases
are found within contigs longer than this number) of 350 kb19,
386 kb11 and 1 megabase (Mb)13, and full-chromosome haplotypes
in combination with parental genotypes20) they require a large
amount of initial DNA, extensive library processing, and are currently
too expensive11 to use in a routine clinical environment. Furthermore,
several reports have recently demonstrated whole chromosome
haplotyping through direct isolation of metaphase chromosomes21–24.
These methods have yet to be used for whole-genome sequencing and
require preparation and isolation of whole metaphase chromosomes,
which can be challenging for some clinical samples. Here we introduce
long fragment read (LFR) technology, a process that enables genome
sequencing and haplotyping at a clinically relevant cost, quality and
scale.

LFR technology
The LFR approach can generate long-range phased variants because it
is conceptually similar to single-molecule sequencing of fragments
10–1,000 kb25 in length. This is achieved by the stochastic separation
of corresponding long parental DNA fragments into physically
distinct pools followed by subsequent fragmentation to generate
shorter sequencing templates (Fig. 1). The same principles are used
in aliquoting fosmid clones11,13. As the fraction of the genome in
each pool decreases to less than a haploid genome, the statistical
likelihood of having a corresponding fragment from both parental
chromosomes in the same pool markedly diminishes25. For example,
0.1 genome equivalents (300 Mb) per well yields an approximately
10% chance that two fragments will overlap, and a 50% chance that

1Complete Genomics, Inc., 2071 Stierlin Court, Mountain View, California 94043, USA. 2Department of Genetics, Harvard Medical School, Cambridge, Massachusetts 02115, USA. 3Program in
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*These authors contributed equally to this work.

1 9 0 | N A T U R E | V O L 4 8 7 | 1 2 J U L Y 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012

ARTICLE
doi:10.1038/nature11236

Accurate whole-genome sequencing and
haplotyping from 10 to 20 human cells
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Madeleine Price Ball2, Joseph E. Peterson1, Helena Perazich1, George Yeung1, Jia Liu1, Linsu Chen1, Michael I. Kennemer1,
Kaliprasad Pothuraju1, Karel Konvicka1, Mike Tsoupko-Sitnikov1, Krishna P. Pant1, Jessica C. Ebert1, Geoffrey B. Nilsen1,
Jonathan Baccash1, Aaron L. Halpern1, George M. Church2 & Radoje Drmanac1

Recent advances in whole-genome sequencing have brought the vision of personal genomics and genomic medicine
closer to reality. However, current methods lack clinical accuracy and the ability to describe the context (haplotypes) in
which genome variants co-occur in a cost-effective manner. Here we describe a low-cost DNA sequencing and
haplotyping process, long fragment read (LFR) technology, which is similar to sequencing long single DNA molecules
without cloning or separation of metaphase chromosomes. In this study, ten LFR libraries were made using only

100 picograms of human DNA per sample. Up to 97% of the heterozygous single nucleotide variants were assembled
into long haplotype contigs. Removal of false positive single nucleotide variants not phased by multiple LFR haplotypes
resulted in a final genome error rate of 1 in 10 megabases. Cost-effective and accurate genome sequencing and
haplotyping from 10–20 human cells, as demonstrated here, will enable comprehensive genetic studies and diverse
clinical applications.

The extraordinary advancements made in DNA sequencing tech-
nologies over the past few years have led to the elucidation of
,10,000 (refs 1–13) individual human genomes (303 or greater base
coverage) from different ethnicities and using different tech-
nologies2–13 and at a fraction of the cost10 of sequencing the original
human reference genome14,15. Although this is a monumental
achievement, the vast majority of these genomes have excluded a very
important element of human genetics. Individual human genomes are
diploid in nature, with half of the homologous chromosomes being
derived from each parent. The context in which variations occur on
each individual chromosome can have profound effects on the
expression and regulation of genes and other transcribed regions of
the genome16. Furthermore, determining whether two potentially
detrimental mutations occur within one or both alleles of a gene is
of paramount clinical importance.

Almost all recent human genome sequencing has been performed
on short read length (,200 base pairs (bp)), highly parallelized
systems starting with hundreds of nanograms of DNA. These tech-
nologies are excellent at generating large volumes of data quickly and
economically. Unfortunately, short reads, often paired with small
mate-gap sizes (500 bases–10 kilobases (kb)), eliminate most single
nucleotide polymorphism (SNP) phase information beyond a few
kilobases8. Population-based genotype data has been used to success-
fully assemble short-read data into long haplotype blocks3, but these
methods suffer from higher error rates and have difficulty phasing
rare variants17. Although using pedigree information18 or combining
it with population data provides further phasing power, no combina-
tion of these methods is able to resolve de novo mutations17.

At present, four personal genomes—J. Craig Venter19, a Gujarati
Indian (HapMap sample NA20847)11, and two Europeans (Max
Planck One13 and HapMap Sample NA12878 (ref. 20))—have been

sequenced and assembled as diploid. All have involved cloning long
DNA fragments in a process similar to that used for the construction
of the human reference genome14,15. Although these processes
generate long-phased contigs (N50 values (50% of the covered bases
are found within contigs longer than this number) of 350 kb19,
386 kb11 and 1 megabase (Mb)13, and full-chromosome haplotypes
in combination with parental genotypes20) they require a large
amount of initial DNA, extensive library processing, and are currently
too expensive11 to use in a routine clinical environment. Furthermore,
several reports have recently demonstrated whole chromosome
haplotyping through direct isolation of metaphase chromosomes21–24.
These methods have yet to be used for whole-genome sequencing and
require preparation and isolation of whole metaphase chromosomes,
which can be challenging for some clinical samples. Here we introduce
long fragment read (LFR) technology, a process that enables genome
sequencing and haplotyping at a clinically relevant cost, quality and
scale.

LFR technology
The LFR approach can generate long-range phased variants because it
is conceptually similar to single-molecule sequencing of fragments
10–1,000 kb25 in length. This is achieved by the stochastic separation
of corresponding long parental DNA fragments into physically
distinct pools followed by subsequent fragmentation to generate
shorter sequencing templates (Fig. 1). The same principles are used
in aliquoting fosmid clones11,13. As the fraction of the genome in
each pool decreases to less than a haploid genome, the statistical
likelihood of having a corresponding fragment from both parental
chromosomes in the same pool markedly diminishes25. For example,
0.1 genome equivalents (300 Mb) per well yields an approximately
10% chance that two fragments will overlap, and a 50% chance that
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“SubstanGal	  error	  rates	  (1	  single	  nucleoGde	  variants	  (SNV)	  in	  100–1,000	  called	  
kilobases)	  are	  a	  common	  aZribute	  of	  all	  current	  massively	  
parallelized	  sequencing	  technologies.	  These	  rates	  are	  probably	  too	  high	  for	  
diagnosGc	  use	  and	  complicate	  many	  studies	  searching	  for	  
new	  mutaGons.”	  
	  
Much	  Higher	  Accuracy	  with	  LFR	  data	  
“To	  test	  LFR	  reproducibility	  we	  compared	  haplotype	  data	  between	  the	  two	  
NA19240	  replicate	  libraries.	  In	  general,	  the	  libraries	  were	  very	  concordant,	  with	  
only	  64	  differences	  per	  library	  in	  2.2	  million	  heterozygous	  SNPs	  phased	  by	  both	  
libraries	  or	  1	  of	  this	  error	  type	  in	  44	  Mb.”	  
	  



•  ~$3000	  for	  30x	  “whole”	  genome	  as	  part	  of	  
Illumina	  Genome	  Network	  on	  a	  research	  basis	  
only,	  but	  ~$5,000	  for	  whole	  genome	  
performed	  in	  a	  CLIA	  lab	  at	  Illumina.	  



Exome	  Capture	  and	  Sequencing	  



OpGmizing	  Variant	  Calling	  in	  Exomes	  at	  
BGI	  in	  2011	  

•  Agilent	  v2	  44	  MB	  exome	  kit	  
•  Illumina	  Hi-‐Seq	  for	  sequencing.	  

•  Average	  coverage	  ~100-‐150x.	  
•  Depth	  of	  sequencing	  of	  >80%	  of	  the	  target	  
region	  with	  >20	  reads	  or	  more	  per	  base	  pair.	  

•  Comparing	  various	  pipelines	  for	  alignment	  and	  
variant-‐calling.	  



2-‐3	  rounds	  of	  sequencing	  at	  BGI	  to	  aRain	  
goal	  of	  >80%	  of	  target	  region	  at	  >20	  reads	  

per	  base	  pair	  
Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615 K24510-88962 

Target region (bp) 46,401,121  46,401,121  46,401,121  46,257,379  

Raw reads 138,779,950  161,898,170  156,985,870  104,423,704  

Raw data yield (Mb) 12,490  14,571  14,129  9,398  

Reads mapped to genome 110,160,277  135,603,094  135,087,576  83,942,646  

Reads mapped to target region 68,042,793  84,379,239  80,347,146  61,207,116  

Data mapped to target region (Mb) 5,337.69  6,647.18  6,280.01  4,614.47  

Mean depth of target region 115.03 143.25 135.34 99.76 

Coverage of target region (%) 0.9948  0.9947  0.9954  0.9828  

Average read length (bp) 89.91  89.92  89.95  89.75  

Fraction of target covered >=4X 98.17  98.38  98.47  94.25  

Fraction of target covered >=10X 95.18  95.90  95.97  87.90  

Fraction of target covered >=20X 90.12  91.62  91.75  80.70  

Fraction of target covered >=30X 84.98  87.42  87.67  74.69  

Capture specificity (%) 61.52  62.12  59.25  73.16  

Fraction of unique mapped bases on or near target 65.59  65.98  63.69  85.46  

Gender test result M M M F 



Depth	  of	  Coverage	  in	  15	  exomes	  >	  20	  
reads	  per	  bp	  in	  target	  region	  
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Deep	  Exome	  sequencing	  

Fig.1	  CorrelaGon	  between	  the	  percentage	  of	  target	  regions	  covered	  and	  the	  sequencing	  
depth	  in	  human	  exome	  sequencing.	  Take	  >=30X	  series	  (the	  purple	  line)	  for	  example:	  when	  
the	  sequencing	  depth	  is	  30X,	  only	  half	  of	  the	  target	  regions	  (51%)	  are	  covered	  at	  above	  30X.	  
While	  at	  the	  100X	  and	  200X	  sequencing	  depths,	  a	  much	  higher	  percentage	  (81%	  and	  90%,	  
respecGvely)	  of	  the	  target	  regions	  is	  covered	  at	  above	  30X.	  	  	  

Figure	  from	  BGI	  website:	  
hZp://bgiamericas.com/
news-‐events/why-‐deep-‐
exome-‐sequencing/	  



GWAS	  has	  staGsGcal	  rigor	  with	  a	  
threshold	  p	  value	  

•  Should	  exome	  sequencing	  also	  have	  a	  
threshold	  level	  of	  rigor,	  such	  as	  >80%	  of	  target	  
region	  with	  20	  reads	  or	  more	  per	  base	  pair?	  

•  This	  is	  accepted	  pracGce	  at	  major	  genome	  
sequencing	  centers	  (Baylor,	  WashU,	  Broad),	  
but	  apparently	  not	  everywhere	  else….	  
Shouldn’t	  this	  be	  required?	  



Pipeline name Alignment method  Variant calling module  Description of variant calling algorithm 

SOAP SOAPaligner/BWA SOAPsnp/SOAPindel 

SOAP uses a method based on Bayes’ theorem to 
call consensus genotype by carefully considering 
the data quality, alignment, and recurring 
experimental errors [22]. 

GATK BWA GATK 

GATK employs a general Bayesian framework to 
distinguish and call variants.  Error correction 
models are guided by expected characteristics of 
human variation to further refine variant calls [19].  

SNVer BWA SNVer 
SNVer uses a more general frequentist framework 
and formulates variant calling as a hypothesis 
testing problem [25]. 

GNUMAP GNUMAP GNUMAP 
GNUMAP incorporates the base uncertainty of the 
reads into mapping analysis using a Probabilistic 
Needleman-Wunsch algorithm [24]. 

SAMTools BWA mpileup 

SAMTools [20] calls variants by generating a 
consensus sequence using the MAQ model 
framework which uses a general Baysean 
framework for picking the base which maximizes 
the posterior probability with the highest phred 
quality score. 

5	  Pipelines	  Used	  on	  Same	  Set	  of	  Seq	  Data	  by	  Different	  
Analysts,	  using	  Hg19	  Reference	  Genome	  



Known	   Novel	  

All	  



Total	  mean	  overlap,	  plus	  or	  minus	  one	  standard	  devia.on,	  observed	  between	  three	  
indel	  calling	  pipelines:	  GATK,	  SOAP-‐indel,	  and	  SAMTools.	  	  a)	  Mean	  overlap	  when	  indel	  
posiGon	  was	  the	  only	  necessary	  agreement	  criterion.	  b)	  Mean	  overlap	  when	  indel	  
posiGon,	  base	  length	  and	  base	  composiGon	  were	  the	  necessary	  agreement	  criteria.	  	  	  

Indels-‐	  Overlap	  by	  Base	  	  
PosiGon	  only	  

Indels-‐	  Overlap	  by	  Base	  	  
PosiGon,	  Length	  and	  ComposiGon	  

INDELS	  



•  How	  reliable	  are	  variants	  that	  are	  uniquely	  
called	  by	  individual	  pipelines?	  

•  Are	  some	  pipelines	  beZer	  at	  detecGng	  rare,	  or	  
novel	  variants	  than	  others?	  



Cross	  validaGon	  using	  orthogonal	  
sequencing	  technology	  
	  (Complete	  Genomics)	  



Illumina	  SNVs	  
CG	  SNVs	  

Illumina	  indels	  

CG	  Indels	  

1698	  4364	  
2613	  

What	  is	  the	  “True”	  Personal	  Genome?	  

35653	   19407	  17322	  

2666	  

18331	   2085	  

915	  
50.5%	   32.2%	   17.3%	  

48.6%	   45.9%	   5.5%	  



Known	   Novel	  

All	  



Known	   Novel	  
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Higher	  ValidaGon	  of	  SNVs	  with	  the	  
BWA-‐GATK	  pipeline	  

•  Reveals	  higher	  validaGon	  rate	  of	  unique-‐to-‐
pipeline	  variants,	  as	  well	  as	  uniquely	  
discovered	  novel	  variants,	  for	  the	  variants	  
called	  by	  BWA-‐GATK,	  in	  comparison	  to	  the	  
other	  4	  pipelines	  (including	  SOAP).	  



Much	  Higher	  ValidaGon	  of	  the	  Concordantly	  
Called	  Variants	  (by	  the	  CG	  data)	  



ValidaGng	  Indels	  with	  Complete	  
Genomics	  Data	  for	  the	  3	  pipelines	  



Tools	  sensiGvity	  for	  longer	  indels	  

•  Standard	  read	  mapping	  and	  scanning	  algorithms,	  
such	  as	  BWA,	  GATK,	  and	  SAMTools,	  are	  suitable	  
for	  detecGng	  mutaGons	  only	  for	  a	  few	  
nucleoGdes.	  
	  

–  The	  sensiGvity	  drops	  significantly	  for	  indels	  larger	  than	  
10bp	  

–  Large	  inserGons	  (>	  read	  length),	  are	  hard	  to	  detect.	  

– As	  a	  result,	  variants	  >	  15	  bp	  have	  rarely	  been	  reported	  
in	  exome	  studies	  

Gavin	  R.	  Oliver,	  F1000	  Research,	  2012	  



Yandell	  M,	  Huff	  C,	  Hu	  H,	  Singleton	  M,	  Moore	  B,	  Xing	  J,	  Jorde	  LB,	  Reese	  MG.	  A	  
probabilisGc	  disease-‐gene	  finder	  for	  personal	  genomes.	  Genome	  Res.	  2011	  Sep;21(9):
1529-‐42.	  



VAAST	  
•  A	  probabilisGc	  	  disease-‐gene	  finder	  for	  personal	  genomes	  	  
	  

•  Rapidly	  search	  personal	  genome	  sequences	  for	  damaged	  
genes	  by	  idenGfying	  significant	  differences	  in	  variant	  
frequencies	  in	  cases	  vs.	  controls	  

	  

•  Integrates	  both	  allele	  &	  AAS	  frequencies	  into	  a	  single	  
probabilisGc	  framework	  

	  

•  	  Can	  score	  both	  coding	  and	  non-‐coding	  variants	  
	  

•  	  Leverage	  phase	  and	  pedigree	  data	  
	  

•  Can	  be	  used	  to	  hunt	  for	  both	  rare	  and	  common	  disease	  genes	  	  
	  	  	  	  	  and	  their	  causaGve	  alleles	  
	  

•  Determines	  the	  staGsGcal	  significance	  of	  candidate	  genes	  



VAAST	  integrates	  AAS	  &	  Variant	  frequencies	  
in	  a	  single	  probabilisGc	  framework	  	  

 
•   non-coding variants scored using allele frequency differences 

•  ni : frequency of variant type among all variants observed in 
Background and Target genomes 
 

•  ai: frequency of variant type among disease causing mutations in 
OMIM 

•  This approach means that every variant can be scored, non-synonymous,   
  synonymous, coding, and non-coding. Phylogenetic conservation not     
  required. 



	  
	  
	  

	  
	  
	  
	  

	  
	  
	  
	  
	  
	  
	  
	  

	  
	  
	  
	  

	  
	  
	  

	  
	  
	  
	  
	  
	  
	  
	  

	  
	  
	  
	  
	  
	  
	  
	  

	  
	  
	  

	  
	  
	  

	  
	  
	  

Likely	  X-‐linked	  or	  Autosomal	  Recessive,	  with	  X-‐linked	  being	  supported	  by	  extreme	  X-‐
skewing	  in	  the	  mother	  	  

New	  Syndrome	  with	  Dysmorphology,	  Mental	  	  
RetardaGon,	  “AuGsm”,	  “ADHD”	  



1.5	  years	  old	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  3.5	  years	  old 	   	   	   	  7	  years	  old 	   	  	  

3	  years	  old	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  5	  years	  old 	   	   	   	  	  	  9	  years	  old 	  	  



Workup	  Ongoing	  for	  past	  10	  years	  
•  Numerous	  geneGc	  tests	  negaGve,	  including	  negaGve	  for	  
Fragile	  X	  and	  many	  candidate	  genes.	  

•  No	  obvious	  pathogenic	  CNVs	  –	  microarrays	  normal.	  

•  Sequenced	  whole	  genomes	  of	  Mother,	  Father	  and	  Two	  
Boys,	  using	  Complete	  Genomics,	  obtained	  data	  in	  June	  
of	  this	  year,	  i.e.	  version	  2.0	  CG	  pipeline.	  



22,174	  

272	  

56	  

7	  

6	  

5	  

3	  



SIFT	  classificaGon	  

Variant	  classificaGon	  

VAAST	  score	  

Chromosome	   PosiGon	   Reference	   Coding?	   SIFT	  Score	   Score	  <=	  0.05	   Ref/Alt	  Alleles	  

X	   47307978	   G	   YES	   0.649999976	   0	   G/T	  

X	   63444792	   C	   YES	   0	   1	   C/A	  

X	   70621541	   T	   YES	   0.009999999776	   1	   T/C	  

Variant	   Reference	   Alternate	   ClassificaGon	   Gene	  1	   Transcript	  1	   Exon	  1	   HGVS	  Coding	  1	   HGVS	  Protein	  1	  

X:47307978-‐SNV	   G	   T	   Nonsyn	  SNV	   ZNF41	   NM_007130	   5	  c.1191C>A	   p.Asp397Glu	  

X:63444792-‐SNV	   C	   A	   Nonsyn	  SNV	   ASB12	   NM_130388	   2	  c.739G>T	   p.Gly247Cys	  

X:70621541-‐SNV	   T	   C	   Nonsyn	  SNV	   TAF1	   NM_004606	   25	  c.4010T>C	   p.Ile1337Thr	  

RANK	   Gene	   p-‐value	   p-‐value-‐ci	   Score	   Variants	  

1	   ASB12	   1.56E-‐11	   1.55557809307134e-‐11,0.000290464582480396	   38.63056297	   chrX:63444792;38.63;C-‐>A;G-‐>C;0,3	  
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Mutations in the ZNF41 Gene Are Associated with Cognitive Deficits:
Identification of a New Candidate for X-Linked Mental Retardation
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Nonsyndromic X-linked mental retardation (MRX) is defined by an X-linked inheritance pattern of low IQ, problems
with adaptive behavior, and the absence of additional specific clinical features. The 13 MRX genes identified
to date account for less than one-fifth of all MRX, suggesting that numerous gene defects cause the disorder in
other families. In a female patient with severe nonsyndromic mental retardation and a de novo balanced translocation
t(X;7)(p11.3;q11.21), we have cloned the DNA fragment that contains the X-chromosomal and the autosomal break-
point. In silico sequence analysis provided no indication of a causative role for the chromosome 7 breakpoint in
mental retardation (MR), whereas, on the X chromosome, a zinc-finger gene, ZNF41, was found to be disrupted.
Expression studies indicated that ZNF41 transcripts are absent in the patient cell line, suggesting that the mental
disorder in this patient results from loss of functional ZNF41. Moreover, screening of a panel of patients with
MRX led to the identification of two other ZNF41 mutations that were not found in healthy control individuals.
A proline-to-leucine amino acid exchange is present in affected members of one family with MRX. A second family
carries an intronic splice-site mutation that results in loss of specific ZNF41 splice variants. Wild-type ZNF41
contains a highly conserved transcriptional repressor domain that is linked to mechanisms of chromatin remodeling,
a process that is defective in various other forms of MR. Our results suggest that ZNF41 is critical for cognitive
development; further studies aim to elucidate the specific mechanisms by which ZNF41 alterations lead to MR.

Introduction

Developmental delay, also referred to as “mental retar-
dation” (MR), affects an estimated 2%–3% of the popu-
lation (Chelly and Mandel 2001). Although the etiology
of MR is complex and poorly understood, recent inves-
tigations have highlighted the importance of genetic fac-
tors in cognitive development. In particular, studies of the
X chromosome have confirmed that there are numerous
specific monogenic forms of MR. Of significant historical
importance is the recognition of fragile X syndrome
(FRAXA) and the identification of the FMR1 gene (MIM
309550). FRAXA is caused by a CGG repeat expansion
in the FMR1 5′ UTR, which is then abnormally methyl-
ated. Accounting for 2%–2.5% of the established X-
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linked forms of MR (XLMR), this syndrome is the most
common cause of XLMR known at present (for review,
see Jin and Warren [2003]). XLMR is now divided into
two subgroups: syndromic XLMR (MRXS), which in-
cludes FRAXA and other MR-associated disorders that
can be defined by a set of specific clinical features, and
MRX, which includes all X-linked forms of MR for which
the only consistent clinical feature is MR. To date, 30
genes responsible for MRXS and 13 genes responsible for
MRX have been cloned (Frints et al. 2002; Hahn et al.
2002; Vervoort et al. 2002). The recent discovery that
mutations in ARX (MIM 300382)—the human homo-
logue of the Drosophila gene Aristaless—are responsible
for syndromic MRX with infantile spasms, Partington
syndrome (MIM 309510), and MRX (Bienvenu et al.
2002; Stromme et al. 2002) clearly illustrates that mu-
tations in a single disease gene may result in a relatively
broad spectrum of clinical features. This phenomenon has
been observed for an increasing number of genes impli-
cated in both MRXS and MRX, including MECP2 (MIM
300005) (Amir et al. 1999; Couvert et al. 2001; Yntema
et al. 2002), AGTR2 (MIM 300034) (Vervoort et al.
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The	  mutaGon	  in	  ZNF41	  may	  NOT	  be	  necessary,	  and	  it	  is	  certainly	  
NOT	  sufficient	  to	  cause	  the	  phenotype.	  



So,	  of	  course	  we	  need	  baseline	  whole	  
genome	  sequencing	  on	  everyone	  to	  at	  
least	  understand	  the	  DNA	  geneGc	  

background	  in	  each	  pedigree	  or	  clan.	  
	  

Ancestry	  MaZers!	  



Some	  are	  calling	  for	  technical	  replicates	  of	  
exomes	  for	  higher	  accuracy.	  	  
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ABSTRACT

With the availability of next-generation sequencing
(NGS) technology, it is expected that sequence
variants may be called on a genomic scale. Here,
we demonstrate that a deeper understanding of
the distribution of the variant call frequencies at het-
erozygous loci in NGS data sets is a prerequisite for
sensitive variant detection. We model the crucial
steps in an NGS protocol as a stochastic branching
process and derive a mathematical framework
for the expected distribution of alleles at heterozy-
gous loci before measurement that is sequencing.
We confirm our theoretical results by analyzing
technical replicates of human exome data and
demonstrate that the variance of allele frequencies
at heterozygous loci is higher than expected by
a simple binomial distribution. Due to this high
variance, mutation callers relying on binomial
distributed priors are less sensitive for hetero-
zygous variants that deviate strongly from the
expected mean frequency. Our results also
indicate that error rates can be reduced to a
greater degree by technical replicates than by
increasing sequencing depth.

INTRODUCTION

Second-generation DNA sequencing has revolutionized
many biomedical areas. It especially accelerated the dis-
covery of disease genes in medical genetics (1,2) and is
now about to enter diagnostics (3). In order to translate

this technology into a reliable tool for molecular diag-
nostics for human genetics and other fields, it will be
necessary to further reduce error rates of sequence
variant detection. Understanding the process of how the
high-throughput sequencing data arise is crucial for the
development of sensitive genotype calling algorithms. It
is well known in the field that especially the error rates
in detecting heterozygous mutations in diploid genomes
are still considerably higher than the comparable error
rates of homozygous variants—even at high levels of
sequence coverage (4,5).

It is currently widely assumed that the frequencies of
calls at heterozygous sites in NGS data are binomially
distributed, an assumption that has been incorporated
into many variant calling programs for NGS data (6–8).
We were motivated to question this assumption by obser-
vations of more extreme probability distributions in
whole-exome sequencing (WES) data sets, as we will dem-
onstrate in this article. We therefore analyzed the key steps
in NGS data generation from a stochastic point of view
and identified the amplification of sequence fragments
during library preparation before measurement as
crucial for the distribution of allele frequencies at hetero-
zygous genomic loci.

We reasoned that the generation of fragments can be
described as a Bienaymé–Galton–Watson branching
process with discrete time steps, which is a model that
has been widely used by physicists and mathematicians
in population genetics (9–11). In this work, we provide a
detailed description of the fragment amplification process.
We then show that our model accurately reflects allele
frequencies in real WES data sets. One prediction of our
model is that technical replication is more effective in
reducing error rates than merely sequencing more reads
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 “In	  a	  usual	  exome,	  one	  expects	  between	  10	  000	  and	  15	  000	  heterozygous	  variants.	  	  Our	  
results	  indicate	  that	  one	  will	  miss	  around	  a	  hundred	  heterozygous	  variants	  by	  sequencing	  an	  
exome	  only	  once	  simply	  due	  to	  the	  stochasGc	  fluctuaGon	  of	  the	  allele	  frequencies	  a~er	  
amplificaGon….	  AddiGonally	  for	  a	  sequencing	  depth	  above	  30x,	  the	  false	  negaGve	  rate	  does	  
not	  decrease	  further.	  Thus,	  once	  a	  sufficient	  sequencing	  depth	  has	  been	  reached,	  only	  
technical	  replicaGon	  is	  able	  to	  further	  reduce	  the	  total	  error	  rates	  substanGally.”	  	  
	  
	  
	  



Some	  argue	  that	  exon	  capture	  should	  
complement	  WGS	  sequencing….	  
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Whole exome sequencing by high-throughput sequencing 
of target-enriched genomic DNA (exome-seq) has become 
common in basic and translational research as a means of 
interrogating the interpretable part of the human genome at 
relatively low cost. We present a comparison of three major 
commercial exome sequencing platforms from Agilent, Illumina 
and Nimblegen applied to the same human blood sample.  
Our results suggest that the Nimblegen platform, which is  
the only one to use high-density overlapping baits, covers fewer 
genomic regions than the other platforms but requires the least 
amount of sequencing to sensitively detect small variants. 
Agilent and Illumina are able to detect a greater total number 
of variants with additional sequencing. Illumina captures 
untranslated regions, which are not targeted by the Nimblegen 
and Agilent platforms. We also compare exome sequencing 
and whole genome sequencing (WGS) of the same sample, 
demonstrating that exome sequencing can detect additional 
small variants missed by WGS.

It is now possible to analyze the genomic DNA of individuals using 
whole genome sequencing and exome sequencing1–3, and these strate-
gies have become popular for basic4,5 and translational6–11 research. 
Exome sequencing involves the capture of RNA coding regions by 
hybridizing genomic DNA to oligonucleotide probes (baits) that col-
lectively cover the human exome regions. These enriched genomic 
regions are then sequenced using high-throughput DNA sequencing 
technology12. Although WGS is more comprehensive, exome sequenc-
ing has become more common because it captures the highly inter-
pretable coding region of the genome and is more affordable, thereby 
allowing large numbers of samples to be analyzed. Exome sequencing 
has been used for analyses of disease loci that segregate in families13,14, 
large disease cohorts (National Heart, Lung, and Blood Institute) and 
validation in WGS studies (such as The 1000 Genomes Project15).

There are currently three major exome enrichment platforms: 
Agilent’s SureSelect Human All Exon 50Mb, Roche/Nimblegen’s 
SeqCap EZ Exome Library v2.0 and Illumina’s TruSeq Exome 
Enrichment. Each platform uses biotinylated oligonucleotide baits 

complementary to the exome targets to hybridize sequencing libraries 
prepared from fragmented genomic DNA. These bound libraries are 
enriched for targeted regions by pull-down with magnetic streptavi-
din beads and then sequenced. The technologies differ in their target 
choice, bait lengths, bait density and molecule used for capture (DNA 
for Nimblegen and Illumina, and RNA for Agilent). The perform-
ance of each technology was systematically analyzed and compared, 
thereby revealing how design differences and experimental param-
eters (e.g., sequencing depth) affect variant discovery.

RESULTS
Platform design differences
There are substantial differences in the density of oligonucleotide 
baits between the three platforms (Fig. 1a). Nimblegen contains over-
lapping baits that cover the bases it targets multiple times, making it 
the highest density platform of the three. Agilent baits reside immedi-
ately adjacent to one another across the target exon intervals. Illumina 
relies on paired-end reads to extend outside the bait sequences and 
fill in the gaps.

The exome enrichment platforms also have different target regions. 
The exome consists of all the exons of a genome that are transcribed 
into mature RNA. Numerous databases of mRNA coding sequences 
exist (including RefSeq16, UCSC KnownGenes17 and Ensembl18). 
They contain different numbers of noncoding RNA genes, and the 
start and end positions of some transcripts differ between them. 
Each commercial platform targets particular exomic segments based 
on combinations of the available databases. We compared the exact 
regions of the genome covered by each platform (based on individual 
design documents obtained from the company websites or through 
correspondence) (Fig. 1b). A large number of bases (29.45 Mb) are 
targeted by all three platforms. The Nimblegen and Agilent platforms 
share more with each other (38,830,789 bp) than either does with the 
Illumina platform (30,304,987 bp and 33,299,208 bp, respectively) and 
each platform possesses 4.4–28 Mb of unique target regions.

We first examined coverage of major RNA databases—RefSeq 
(coding and untranslated region (UTR)), Ensembl (total and cod-
ing sequence (CDS)) and the microRNA (miRNA) database  
miRBase19 (Supplementary Table 1). Coverage of mRNA coding 
exons in both RefSeq (Fig. 1c) and Ensembl (Fig. 1d) was strikingly 
similar between all platforms. The shared bases in mRNA coding exons 
account for nearly all of the 29.45 Mb common to the three platforms. 
Nonetheless, each platform does target specific regions. The major-
ity of the Illumina-specific 27.73 Mb targets UTR regions (Fig. 1e). 
Nimblegen covers a greater portion of miRNAs, and Agilent better 
covers Ensembl genes.
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“It	  may	  be	  argued	  that	  the	  importance	  of	  targeted	  sequencing	  is	  transient	  and	  
will	  diminish	  as	  WGS	  becomes	  less	  expensive.	  However,	  we	  found	  that	  exome	  
sequencing	  can	  idenGfy	  variants	  that	  are	  not	  evident	  in	  WGS	  because	  of	  greater	  
base	  coverage	  a~er	  enrichment.	  Even	  at	  equivalent	  coverage	  levels,	  specific	  
regions	  had	  higher	  read	  depth	  in	  exome	  sequencing	  resulGng	  in	  greater	  
sensiGvity	  in	  those	  regions.	  Target	  capture	  by	  exome	  sequencing	  unambiguously	  
idenGfied	  some	  of	  these	  difficult	  regions	  through	  preferenGal	  selecGon	  and	  
observaGon	  at	  higher	  local	  read	  depth.	  “	  



And,	  others	  are	  calling	  for	  potenGally	  
biological	  replicates	  with	  WGS	  
sequencing	  on	  two	  plaQorms	  
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Whole-genome sequencing is becoming commonplace, but 
the accuracy and completeness of variant calling by the most 
widely used platforms from Illumina and Complete Genomics 
have not been reported. Here we sequenced the genome  
of an individual with both technologies to a high average 
coverage of ~76×, and compared their performance with 
respect to sequence coverage and calling of single-nucleotide 
variants (SNVs), insertions and deletions (indels). Although 
88.1% of the ~3.7 million unique SNVs were concordant 
between platforms, there were tens of thousands of platform-
specific calls located in genes and other genomic regions.  
In contrast, 26.5% of indels were concordant between 
platforms. Target enrichment validated 92.7% of the 
concordant SNVs, whereas validation by genotyping array 
revealed a sensitivity of 99.3%. The validation experiments 
also suggested that >60% of the platform-specific variants 
were indeed present in the genome. Our results have important 
implications for understanding the accuracy and completeness 
of the genome sequencing platforms.

The ability to sequence entire human genomes has the potential to 
provide enormous insights into human diversity and genetic disease, 
and is likely to transform medicine1,2. Several platforms for whole-
genome sequencing have emerged3–7. Each uses relatively short reads 
(up to 450 bp) and through high-coverage DNA sequencing, vari-
ants are called relative to a reference genome. The platforms of two 
companies, Illumina and Complete Genomics (CG), have become 
particularly commonplace, and >90% of the complete human 
genome sequences reported thus far have been sequenced using these  
platforms5,8–11. Each of these platforms uses different technologies, 
and despite their increasingly common use, a detailed compari-
son of their performance has not been reported previously. Such a 

 comparison is crucial for understanding accuracy and completeness 
of variant calling by each platform so that robust conclusions can be 
drawn from their genome sequencing data.

RESULTS
Sequence data generation
To examine the performance of Illumina and CG whole-genome 
sequencing technologies, we used each platform to sequence two 
sources of DNA, peripheral blood mononuclear cells (PBMCs) and 
saliva, from a single individual to high coverage. An Illumina HiSeq 
2000 was used to generate 101-bp paired-end reads, and CG gener-
ated 35-bp paired-end reads. The average sequence coverage for each  
sample was ~76× (Table 1), which resulted in a total coverage equiva-
lent to 300 haploid human genomes.

We aligned reads from both platforms to the human reference  
genome (NCBI build 37/HG19)12 and called SNVs. For Illumina, a 
total of 4,539,328,340 sequence reads, comprising 1,499,021,500 reads  
(151.4 Gb) from PBMCs and 3,040,306,840 reads (307.1 Gb) from 
saliva, were mapped to the reference genome using the Burrows-
Wheeler Aligner13. About 88% mapped successfully. Duplicate reads 
were removed using the Picard software tool, resulting in 3,588,531,824 
(79%, 362 Gb) mapped, nonduplicate reads (Table 1). Targeted realign-
ment and base recalibration was performed using the Genome Analysis 
ToolKit (GATK)14. We used GATK to detect a total of 3,640,123 SNVs 
(3,570,658 from PBMCs and 3,528,194 from saliva) with a quality  
filter as defined by the 1000 Genomes Project11. CG generated a gross 
mapping yield of 233.2 Gb for the PBMC sample and 218.6 Gb for the 
saliva sample for a total of 451.8 Gb of sequence (Table 1). We analyzed 
these data using the CG Analysis pipeline to identify 3,394,601 SNVs 
(3,277,339 from PBMCs and 3,286,645 from saliva). A detailed com-
parison of PBMCs versus saliva differences has revealed that few of the 
tissue-specific calls could be validated by independent methods, and 
these results will be published elsewhere.

To examine the completeness of sequencing, we analyzed the 
depth and breadth of genomic coverage by each platform with the 
PBMC genome sequences. Both platforms covered the majority of  
the genome, and >95% of the genome was covered by 17 or more reads 
(Fig. 1a). The Illumina curve drops to zero coverage at much lower 
read depth than the CG curve because there are substantially fewer 
reads in the Illumina data set. We also noticed that CG generally is less 
uniform in coverage (Fig. 1b). This suggests that to achieve a certain 
level of coverage for most of the genome, CG requires more overall 
sequencing than Illumina.
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“both	  methods	  clearly	  call	  variants	  missed	  by	  the	  other	  technology.	  Many	  of	  these	  lie	  
in	  exons	  and	  thus	  can	  affect	  coding	  potenGal.	  In	  fact,	  1,676	  genes	  have	  plaQorm-‐
specific	  SNVs	  in	  exons	  …	  We	  demonstrated	  that	  the	  best	  approach	  for	  comprehensive	  
variant	  detecGon	  is	  to	  sequence	  genomes	  with	  both	  plaQorms	  if	  budget	  permits.	  We	  
assessed	  the	  cost	  effecGveness	  of	  sequencing	  on	  both	  plaQorms	  and	  found	  that	  on	  
average	  it	  costs	  about	  four	  cents	  per	  addiGonal	  variant	  (Online	  Methods).	  
AlternaGvely,	  supplemenGng	  with	  exome	  sequencing	  can	  assess	  the	  most	  
interpretable	  part	  of	  the	  genome	  at	  higher	  depth	  of	  coverage	  and	  accuracy	  and	  fill	  in	  
the	  gaps	  in	  the	  detecGon	  of	  coding	  variants.”	  	  
	  



“Genomic Dark Matter” 

Genomic Dark Matter: The reliability of short read mapping illustrated by the GMS. 
Lee, H., Schatz, M.C. (2012) Bioinformatics. 10.1093/bioinformatics/bts330 

Short	  read	  mapping	  is	  a	  widely	  used	  for	  
idenGfying	  mutaGons	  in	  the	  genome	  
•  Not	  every	  base	  of	  the	  genome	  can	  

mapped	  equally	  well,	  because	  repeats	  may	  
obscure	  where	  the	  reads	  originated	  
	  

Introduced	  a	  new	  probabilisGc	  metric	  -‐	  the	  
Genome	  Mappability	  Score	  -‐	  that	  quanGfies	  
how	  reliably	  reads	  can	  be	  mapped	  to	  every	  
posiGon	  in	  the	  genome	  
•  We	  have	  liZle	  power	  to	  measure	  11-‐13%	  

of	  the	  human	  genome,	  including	  of	  known	  
clinically	  relevant	  variaGons	  

•  Errors	  in	  variaGon	  discovery	  are	  dominated	  
by	  false	  negaGves	  in	  low	  GMS	  regions	  

High GMS 

Lo GMS 



Genomic Dark Matter: The reliability of short read
mapping illustrated by the Genome Mappability Score
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ABSTRACT
Motivation: Genome resequencing and short read mapping are two
of the primary tools of genomics and are used for many important
applications. The current state-of-the-art in mapping uses the quality
values and mapping quality scores to evaluate the reliability of the
mapping. These attributes, however, are assigned to individual
reads and don’t directly measure the problematic repeats across
the genome. Here we present the Genome Mappability Score
(GMS) as a novel measure of the complexity of resequencing a
genome. The GMS is a weighted probability that any read could be
unambiguously mapped to a given position, and thus measures the
overall composition of the genome itself.
Results: We have developed the Genome Mappability Analyzer
(GMA) to compute the GMS of every position in a genome. It
leverages the parallelism of cloud computing to analyze large
genomes, and enabled us to identify the 5-14% of the human,
mouse, fly, and yeast genomes that are difficult to analyze with short
reads. We examined the accuracy of the widely used BWA/SAMtools
polymorphism discovery pipeline in the context of the GMS, and
found discovery errors are dominated by false negatives, especially in
regions with poor GMS. These errors are fundamental to the mapping
process and cannot be overcome by increasing coverage. As such,
the GMS should be considered in every resequencing project to
pinpoint the dark matter of the genome, including of known clinically
relevant variations in these regions.
Availability: The source code and profiles of several model
organisms are available at http://gma-bio.sourceforge.net
Contact: hlee@cs.stonybrook.edu

1 INTRODUCTION
1.1 Background
DNA sequencing technology has dramatically improved in the past
decade so that today an individual human genome can be sequenced
for less than $10,000 and in less then two weeks (Drmanac et al.,
2010), compared to years of effort and hundreds of millions
of dollars for the first sequenced human genome (Stein, 2010).
This dramatic improvement has lead to an exponential growth in
sequencing, including several large projects to sequence thousands
of human genomes and exomes, such as the 1000 Genomes Project

∗to whom correspondence should be addressed

Consortium (2010) or International Cancer Genome Consortium
(2010). Other projects, such as ENCODE Project Consortium
(2004) and modENCODE Consortium (2010) are extensively using
resequencing and read mapping to discover novel genes and binding
sites.
The output of current DNA sequencing instruments consists of

billions of short, 25− 200 base pairs (bp) sequences of DNA called
reads, with an overall per base error rate around 1%-2% (Bentley
et al., 2008). In the case of whole genome resequencing, these
short reads will originate from random locations in the genome,
but nevertheless, entire genomes can be accurately studied by
oversampling the genome, and then aligning or ”mapping” each
read to the reference genome to computationally identify where it
originated. Once the entire collection of reads has been mapped,
variations in the sample can be identified by the pileup of reads that
significantly disagree from the reference genome (Fig. 1).
The leading short read mapping algorithms, including BWA (Li

and Durbin, 2009), Bowtie (Langmead et al., 2009), and SOAP (Li
et al., 2009b), all try to identify the best mapping position for each
read that minimizes the number of differences between the read and
the genome, i.e., the edit distance of the nucleotide strings, possibly
weighted by base quality value. This is made practical through
sophisticated indexing schemes, such as the Burrows-Wheeler
transform (Burrows and Wheeler, 1994), so that many billions of
reads can be efficiently mapped allowing for both sequencing errors
and true variations. The primary complication of short read mapping
is that a read may map equally well or nearly equally well to
multiple positions because of repetitive sequences in the genome.
Notably, nearly 50% of the human genome consists of repetitive
elements, including certain repeats that occur thousands of times
throughout (International Human Genome Sequencing Consortium,
2001).
For resequencing projects, the fraction of repetitive content

depends on read length and allowed error rate. At one extreme, all
single base reads would be repetitive, while chromosome length
reads would not be repetitive at all. Similarly, increasing the
allowed error rate increases the fraction of the genome that is
repetitive. The short read mapping algorithms use edit distance and
other read characteristics to compute a mapping quality score for
each mapped read (Li et al., 2008). The mapping quality score
estimates the probability that the assigned location is the correct

1
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billions of short, 25− 200 base pairs (bp) sequences of DNA called
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et al., 2008). In the case of whole genome resequencing, these
short reads will originate from random locations in the genome,
but nevertheless, entire genomes can be accurately studied by
oversampling the genome, and then aligning or ”mapping” each
read to the reference genome to computationally identify where it
originated. Once the entire collection of reads has been mapped,
variations in the sample can be identified by the pileup of reads that
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The leading short read mapping algorithms, including BWA (Li
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et al., 2009b), all try to identify the best mapping position for each
read that minimizes the number of differences between the read and
the genome, i.e., the edit distance of the nucleotide strings, possibly
weighted by base quality value. This is made practical through
sophisticated indexing schemes, such as the Burrows-Wheeler
transform (Burrows and Wheeler, 1994), so that many billions of
reads can be efficiently mapped allowing for both sequencing errors
and true variations. The primary complication of short read mapping
is that a read may map equally well or nearly equally well to
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elements, including certain repeats that occur thousands of times
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•  Genome	  Mappability	  Score	  (GMS)	  -‐-‐	  measure	  of	  the	  complexity	  of	  resequencing	  a	  
genome	  =	  a	  weighted	  probability	  that	  any	  read	  could	  be	  unambiguously	  mapped	  to	  a	  
given	  posiGon,	  and	  thus	  measures	  the	  overall	  composiGon	  of	  the	  genome	  itself.	  

•  That	  means	  that	  unlike	  typical	  false	  negaGves,	  increasing	  coverage	  will	  not	  help	  
idenGfy	  mutaGons	  in	  low	  GMS	  regions,	  even	  with	  0%	  sequencing	  error.	  	  

•  Instead	  this	  is	  because	  the	  SNP-‐calling	  algorithms	  use	  the	  mapping	  quality	  scores	  to	  
filter	  out	  unreliable	  mapping	  assignments,	  and	  low	  GMS	  regions	  have	  low	  mapping	  
quality	  score	  (by	  definiGon).	  Thus	  even	  though	  many	  reads	  may	  sample	  these	  
variaGons,	  the	  mapping	  algorithms	  cannot	  ever	  reliably	  map	  to	  them.	  	  

•  Since	  about	  14%	  of	  the	  genome	  has	  low	  GMS	  value	  with	  typical	  sequencing	  
parameters,	  it	  is	  expected	  that	  about	  14%	  of	  all	  variaGons	  of	  all	  resequencing	  studies	  
will	  not	  be	  detected.	  	  

•  To	  demonstrate	  this	  effect,	  we	  characterised	  the	  SNP	  variants	  idenGfied	  by	  the	  1000	  
genomes	  pilot	  project,	  and	  found	  that	  99.99%	  of	  the	  SNPs	  reported	  were	  in	  high	  GMS	  
regions	  of	  the	  genome,	  and	  in	  fact	  99.95%	  had	  GMS	  over	  90.	  	  

	  



Summary	  
•  Next	  Gen	  Sequencing	  Technology	  constantly	  
improving,	  with	  longer	  read	  lengths	  and	  higher	  
accuracy	  of	  base	  calling.	  

•  Variant-‐calling	  for	  SNVs,	  indels	  and	  CNVs	  is	  also	  
constantly	  improving.	  

•  Downstream	  filtering	  and	  probabilisGc	  ranking	  
algorithms	  depend	  on	  a	  highly	  accurate	  and	  
comprehensive	  list	  of	  variant	  calls.	  

•  Ancestry,	  i.e.	  geneGc	  background,	  maZers!	  So,	  we	  
need	  to	  collect	  large	  families	  and	  move	  to	  whole	  
genome	  sequencing	  as	  much	  as	  possible.	  



Figure 4.	

	


Figure 4. NAT activity of recombinant hNaa10p WT or p.Ser37Pro 
towards synthetic N-terminal peptides. A) and B) Purified MBP-hNaa10p 
WT or p.Ser37Pro were mixed with the indicated oligopeptide substrates (200 
µM for SESSS and 250 µM for DDDIA) and saturated levels of acetyl-CoA 
(400 µM). Aliquots were collected at indicated time points and the acetylation 
reactions were quantified using reverse phase HPLC peptide separation. 
Error bars indicate the standard deviation based on three independent 
experiments. The five first amino acids in the peptides are indicated, for 
further details see materials and methods. Time dependent acetylation 
reactions were performed to determine initial velocity conditions when 
comparing the WT and Ser37Pro NAT-activities towards different 
oligopeptides. C) Purified MBP-hNaa10p WT or p.Ser37Pro were mixed with 
the indicated oligopeptide substrates (200 µM for SESSS and AVFAD, and 
250 µM for DDDIA and EEEIA) and saturated levels of acetyl-CoA (400 µM) 
and incubated for 15 minutes (DDDIA and EEEIA) or 20 minutes (SESSS and 
AVFAD), at 37°C in acetylation buffer. The acetylation activity was determined 
as above. Error bars indicate the standard deviation based on three 
independent experiments. Black bars indicate the acetylation capacity of the 
MBP-hNaa10p wild type (WT), while white bars indicate the acetylation 
capacity of the MBP-hNaa10p mutant p.Ser37Pro. The five first amino acids 
in the peptides are indicated. 
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