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Abstract
We developed a computational framework to robustly identify RNA editing sites using
transcriptome and genome deep-sequencing data from the same individual. As compared with
previous methods, our approach identified a large number of RNA editing sites with high
specificity in both Alu and non-Alu regions. We also found that the editing of non-Alu sites
appears to be dependent on nearby edited Alu sites, possibly through the locally formed double-
stranded RNA structure.

RNA editing, the post-transcriptional alteration of genome-encoded information by chemical
modification of individual RNA bases, provides a powerful way to diversify the
transcriptome. In humans, there are two known types of editing, both catalyzed by
deaminases. Cytosine-to-uracil editing, which is catalyzed by APOBEC1, appears to be rare
and specific to small intestine enterocytes1. The other, much more common type of editing
is the adenosine-to-inosine (A-to-I) editing catalyzed by the adenosine deaminases acting on
RNA (ADARs)2. ADARs bind double-stranded RNA (dsRNA) and deaminate adenosine
bases to inosine, which is recognized as guanosine by the cellular machinery. A-to-I RNA
editing is pervasive in Alu repeats because of the dsRNA structure formed by widespread
Alu inverted pairs in many genes3.

Identifying human RNA editing events outside of the widely edited Alu repeats has been
challenging4. The advent of next-generation sequencing led to our success in identifying
hundreds of human A-to-I RNA editing sites in non-Alu regions5. With sequencing data
becoming more readily available, a number of groups have recently developed
computational approaches and used them to identify numerous RNA editing sites of all 12
possible mismatch types by comparing genomic DNA and RNA sequencing (RNA-seq) data
from the same individuals6-9. However, further analyses suggest that many of the identified
sites are likely false positives derived mainly from improper analysis of the sequencing data,
particularly in non-Alu regions10-13. A major challenge of using short reads from next-
generation sequencing is the discrimination of sequencing and mapping errors from true
RNA editing events, which we sought to overcome with a robust computational pipeline. In
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contrast to the previous approaches, our method demonstrates no evidence to support the
existence of noncanonical RNA editing.

We developed a framework to robustly identify RNA editing sites by meticulous analyses of
genomic DNA and RNA sequences obtained from a single individual (Fig. 1a, Online
Methods). The characteristic features that distinguish our approach are (i) the choice of the
short read mapper BWA14, which gave high specificity and speed, to map RNA-seq reads to
the reference genome and across splicing junctions (Supplementary Note 1, Supplementary
Fig. 1); (ii) the careful tuning of parameters to call RNA editing candidate positions (Fig. 1b,
Supplementary Note 2) and (iii) the incorporation of several filters to remove false positives,
particularly in non-Alu regions where RNA editing appears to be much less frequent and
thus far more challenging to accurately identify (Fig. 1a, Supplementary Fig. 2). These
filters were designed to remove false discoveries caused by errors introduced during
construction and sequencing of RNA-seq libraries, incorrect mapping of short reads, and
single-nucleotide polymorphisms (SNPs) in the genome (Supplementary Note 3).

We applied our method to the lymphoblastoid cell line GM12878, whose genome and RNA
have been deeply sequenced (Online Methods and Supplementary Table 1). We identified a
total of 147,029 editing sites in Alu repeat regions, 140,825 (95.8%) of which were of the A-
to-G type, indicative of A-to-I editing (Fig. 1c, Table 1, Supplementary Tables 2,
Supplementary Data 1). In non-Alu regions, we distinguished sites that are located in other
repetitive regions (mostly long and short interspersed elements and long terminal repeats)
and in nonrepetitive regions. For these two categories, we identified a total of 2,385 and
1,451 mismatches between RNA and DNA sequences, including 2,324 (97.4%) and 1,257
(86.6%) A-to-G sites in repetitive and nonrepetitive regions, respectively (Fig. 1c, Table 1,
Supplementary Fig. 3, Supplementary Data 1). To our knowledge, this is the first systematic
examination of repetitive non-Alu editing sites in humans, although hundreds of such sites
were previously found in mice15. The A-to-G sites that we found in non-Alu regions were
associated with two known features of A-to-I RNA editing: double-stranded RNA (dsRNA)
structure and the ADAR-binding sequence motif5 (Supplementary Note 4, Supplementary
Fig. 4). Furthermore, we successfully validated 11 out of 12 selected A-to-G sites (with
>10% editing frequency) in nonrepetitive regions using PCR and Sanger sequencing (Online
Methods, Supplementary Tables 3 and 4).

Although unbiased toward identifying A-to-G sites, our pipeline detected a high A-to-G
fraction in Alu and non-Alu regions (Table 1). Because A-to-I editing is prevalent in Alu
repeats, our method and others7-9 tend to yield results highly enriched for A-to-G
mismatches in the Alu regions, although we identified significantly more sites. The
advantage of our method over others6-9 is even more striking in nonrepetitive regions, in
which identification of editing sites is more challenging; we detected 86.6% of sites as A-to-
G mismatches, whereas all other methods returned fractions below 47% (Table 1). We
suspect that the 13.4% non-A-to-G sites in our analysis are unlikely to be genuine. We were
unable to validate any of a random selection of these sites (with >15% editing frequency)
using PCR and Sanger sequencing (n = 7; Supplementary Fig. 5). These are likely to be false
positives derived from sequencing and mapping errors as well as undetected SNPs in the
genome.

To evaluate the performance of our method on other data sets and to carry out a fair
comparison with other methods, we applied our framework to the same data recently used
by Peng and colleagues9 to detect RNA editing sites (Supplementary Table 1, Online
Methods). Peng et al.9 identified over 22,688 RNA editing sites, of which ~93% are A-to-G
changes, from the lymphoblastoid cell line of a Han Chinese individual (YH). This high A-
to-G fraction is dominated by repetitive sites, whereas the fraction was only 46.3% in
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nonrepetitive regions, in sharp contrast to the 86.6% we achieved in GM12878 (Table 1). In
repetitive regions (both Alu and non-Alu), our method identified 20 times more A-to-G sites
with a comparably high A-to-G fraction. In nonrepetitive regions, our method identified four
times more A-to-G sites with significantly higher A-to-G fraction (from 46.3% to 77.6%)
(Table 1, Supplementary Data 2). Of note, the A-to-G fraction is slightly lower in the YH
data than the counterpart in GM12878, probably for two reasons. First, GM12878 RNA-seq
data is strand specific, whereas a subset of YH RNA-seq data is not strand specific. For
non–strand-specific RNA-seq data, we used existing gene annotations to infer the editing
type. This can erroneously call A-to-G as T-to-C as a result of incorrect or missing
annotations of RNA. Second, the removal of genomic variants that are present in the dbSNP
database is less effective for an individual of Asian descent due to the heavily biased
composition of dbSNP16. Our analysis strongly suggests that effective removal of known
SNPs is an important step in reducing the number of false positives even when the
sequenced genome from the same individual is available (Supplementary Note 3). In
addition, it is evident that the higher RNA-seq coverage in YH (Supplementary Table 1)
allows us to detect many more editing sites (see below).

The deeply sequenced transcriptome of GM12878 allowed us to investigate the power of
RNA editing detection in relation to RNA-seq depth. We called variants on randomly
sampled subsets of reads from the two biological replicates of GM12878, and we observed
that the number of identified editing sites, in both Alu and non-Alu regions, depends heavily
on the sequencing depth and increases with additional reads (Supplementary Fig. 6). This
analysis implies that more sites in both Alu and non-Alu regions could be identified if more
RNA-seq reads were obtained, as exemplified by the YH transcriptome with its deeper
sequencing coverage.

Most A-to-I RNA editing sites are located in introns (Supplementary Table 2). We
speculated that the non-Alu A-to-I editing sites were related to nearby edited Alu sites, and
discovered that the two classes of sites indeed tend to significantly co-occur in the same
genes (Fig. 2a). The 140,825 Alu, 2,324 repetitive non-Alu and 1,257 nonrepetitive A-to-G
sites that we identified in GM12878 (Table 1) fall in 12,764, 891 and 796 genes,
respectively. An example of locally clustered sites within the same gene is shown in Figure
2b. These observations prompted us to hypothesize that the dsRNA structure formed by
inverted Alu repeats facilitates the editing of the flanking adenosines. Several lines of
evidence seem to support this hypothesis. First, edited Alu sites were significantly closer to
non-Alu sites than to random adenosines in the same gene (Fig. 2c, Supplementary Fig. 7a).
Second, in comparison with genes containing Alu editing sites only, genes containing both
Alu and non-Alu sites tended to harbor greater numbers of Alu repeats, edited Alu repeats,
invert-repeated Alu pairs, invert-repeated and edited Alu pairs, and total edited Alu sites
(Fig. 2d,e; Supplementary Fig. 7b–e). Taken together, these observations suggest that the
editing of non-Alu sites depends on the presence of nearby edited Alu sites.

An unprecedented large number of RNA editing sites were called in this study. As
expected3, the vast majority of sites are promiscuously edited in Alu regions. We identified
a total of 493,111 Alu A-to-G sites (140,825 from GM12878, and 414,533 from YH). This
is a significant expansion of the previously annotated 36,802 Alu sites17 (Supplementary
Fig. 8). RNA editing sites in coding regions seem to be rare in the lymphoblastoid cell line
used in our work and others. Nevertheless, our framework can be readily applied to other
cell or tissue types in which RNA editing is biologically relevant.

As next-generation sequencing technologies become widely accessible, it will become
routine to generate sequencing data for RNA editing discovery. Tools developed for
detecting genetic variants in genomes are useful but insufficient to accurately identify RNA
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editing sites because of the complexity of RNA. Our approach achieved high sensitivity and
specificity by implementing meticulous mapping and filtering steps tailored for Alu and
non-Alu regions. The identification of RNA editing sites with our approach bypasses several
requirements of previous methods, such as clustering of editing sites3 and synthesis of
target-capturing probes5, while achieving very high accuracy. In addition, the insights
gained in our work will not only allow future endeavors for RNA editing identification, but
also benefit other studies that rely on accurate mapping of RNA-seq data.

ONLINE METHODS
Mapping of RNA-seq reads

We obtained poly(A)+ RNA-seq data for whole-cell GM12878 from the ENCODE project
(http://genome.ucsc.edu/ENCODE/dataSummary.html). The strand-specific RNA-seq
libraries were made as described previously18. The transcriptome was deeply sequenced
with Illumina HiSeq in two biological replicates, resulting in 235.8 and 263.7 million
paired-end 76-base sequencing reads, respectively (Supplementary Table 1). We chose
BWA14 as the mapper for RNA-seq reads due to its demonstrated high accuracy of
alignment19. We mapped each of the paired-end reads separately using the commands “bwa
aln fastqfile” and “bwa samse -n4”. In contrast to previous approaches, we mapped RNA-
seq reads not only to the reference genome8,9 or to the transcriptome6,7 but to a combination
of the hg19 reference genome plus exonic sequences surrounding all currently known
splicing junctions from gene models available in annotation from Gencode, RefSeq,
Ensembl and UCSC Genes. We chose the length of these splicing junction regions to be
slightly shorter than the RNA-seq reads to avoid simultaneous hits to the reference genome
and the splicing junctions (for 76-bp reads, a region of 75 bp up- and downstream was
chosen). When the adjacent exons up- and/or downstream of a splicing junction were shorter
than the required length (for 76-bp reads, with exons shorter than 75 bp), the regions were
extended across multiple exons. We only considered uniquely mapped reads and used
samtools rmdup20 to remove identical reads (PCR duplicates) that mapped to the same
location. Of these identical reads, only the read with the highest mapping quality was
retained for further analysis.

Identification of RNA editing candidates
After the removal of PCR duplicates, the remaining reads were used to detect mismatches
between RNA and DNA that may be putative RNA editing sites. We inspected all positions
that showed variation in the RNA and were homozygous in the genomic DNA of the same
individual. To determine homozygous positions in the genomic DNA of GM12878, we used
read mapping data provided by the 1000 Genomes Project (http://www.1000genomes.org).
The genome was sequenced at 44× coverage21, allowing accurate genotype calls. A site was
called homozygous if 10 or more reads contained the same base that represented more than
95% of the complete coverage and if only 2 or fewer alternative bases were present at the
same position. We only took variant positions in the RNA into consideration if they
conformed to our requirements for number, frequency, and quality of bases that vary from
the reference genome. We specifically required that each variant be supported by two or
more variant bases having a base quality score of ≥25 and a mapping quality score ≥20. We
ensured that no variation in the human genome confounded our results by removing all
known SNPs present in dbSNP (except SNPs of molecular type “cDNA” database version
135; http://www.ncbi.nlm.nih.gov/SNP/), the 1000 Genomes Project or the University of
Washington Exome Sequencing Project (http://evs.gs.washington.edu/EVS/). To avoid false
positives at the 5′ read ends due to random-hexamer priming, we truncated the first 6 bases
of each read. Subsequently, all variants were separated into Alu and non-Alu regions.
Mismatches in Alu regions showed a convincingly high fraction of A-to-G mismatches and
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did not receive more stringent filtering. Variants in non-Alu regions were subjected to
further refinement (see below). The DNA-RNA mismatch type was determined according to
the strandedness of RNA-seq reads; we removed sites with conflicting annotation of editing
types.

Refinement of non-Alu RNA editing candidates
RNA editing candidates in non-Alu regions were subjected to more stringent variant call
criteria than their counterparts in Alu regions (we required at least three variant reads and
mismatch frequency ≥0.1). We removed sites in simple repeats according to RepeatMasker
annotation, discarded intronic candidates if they were located within 4 bp of all known
splicing junctions according to RefGene, UCSC Genes and Gencode (version 7) gene
annotations, and removed sites in homopolymer runs of ≥5 bp. Finally, we removed RNA
editing candidates if they were located in regions of high similarity to other parts of the
genome. For that purpose we applied BLAT to all reads that overlap an RNA candidate site
and at the same time show a mismatch from the reference. We required for each read that (i)
the best hit overlap the candidate site and (ii) the second-best hit have a score <95% of the
best blat hit. We only kept sites for which the number of reads passing the above BLAT
criteria was larger than the number of reads that failed the criteria.

Application of our pipeline to YH data
To directly evaluate the performance of our method, we applied our pipeline to the Han
Chinese (YH) genome and RNA-seq data obtained from Peng et al.9. The RNA-seq data
consists of two different libraries: an unstranded poly(A)+ library and a strand-specific
poly(A)- library. Candidate editing sites were called and run through our filtering pipeline
using three different subsets of the data: poly(A)+ reads only, poly(A)- reads only, and
poly(A)+ reads combined with poly(A)- reads. For the sites obtained from poly(A)- reads
only, the DNA-RNA mismatch type was determined according to the strandedness of the
edited reads, as we did for GM12878. For the sites obtained from poly(A)+ reads only and
from the combination of poly(A)+ and poly(A)- reads, the DNA-RNA mismatch type was
determined based on RefSeq, UCSC genes and Gencode v7 gene annotations. Sites with
conflicting annotation of editing types were removed.

Validation of sites with PCR and Sanger sequencing
We used PCR to validate whether a subset of candidate sites are edited in vivo. Primer
sequences are listed in Supplementary Table 4. Typically, a 25-μl PCR reaction was
assembled with 1x iQ SYBR Green Supermix (Bio-Rad), ~50 ng of gDNA (or ~10 ng of
cDNA) template, and 200 nM each of the forward and reverse primers. We used the
following touch-down PCR program: 95 °C for 5 min, 24 cycles of 95 °C for 30 s, 72 °C for
30 s with a decrement of 0.7 °C every cycle, and 72 °C for 45 s, then 40 cycles of 95 °C for
30 s, 55 °C for 30 s, and 72 °C for 45 s. PCR amplicons were sequenced by Eurofins MWG
Operon.

Statistical analysis
To evaluate the significance of the overlap between Alu and non-Alu A-to-G site containing
genes, we calculated the cumulative probability of the hypergeometric distribution with the
following equation:
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where N is the total number of loci, n is the number of genes with Alu A-to-G sites, m is the
number of genes with non-Alu A-to-G sites, and k is the number of genes with both Alu and
non-Alu A-to-G sites.

The significant difference in (i) the distance between Alu and non-Alu editing sites, (ii) the
number of Alu repeats, (iii) the number of edited Alu repeats, (iv) the number of invert-
repeated (present on both strands with different orientations) Alu pairs, (v) the number of
invert-repeated and edited Alu pairs and (vi) number of edited Alu sites in genes with Alu-
only editing versus genes containing Alu and non-Alu editing was determined using a one-
tailed Mann-Whitney test.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A computational framework to identify RNA editing sites in Alu and non-Alu regions
(a) Pipeline for the identification of RNA editing sites. RNA-seq reads (short lines) were
mapped to the human reference genome (where blue reads map) and regions spanning all
known splicing junctions (yellow lines separated by dashes). Boxes denote exons, and
striped parts of two adjacent exons are joined together as the splicing junction sequence. (b)
Relationship between the percentage of A-to-G mismatches and the minimum number of
reads with altered nucleotides in Alu, repetitive non-Alu and nonrepetitive regions in
GM12878. For all non-Alu sites, a minimum frequency of 10% for the RNA variant was
required, whereas no minimum variant frequency was used for Alu positions. In non-Alu
regions at least three variant nucleotides are required to achieve high specificity in RNA
editing detection. (c) Percentage of all 12 mismatch types in GM12878.
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Figure 2. Editing of many non-Alu sites appears to be dependent on nearby edited Alu sites
(a) Venn diagram showing the overlap between genes that contain A-to-G editing sites in
Alu (yellow), repetitive non-Alu (purple) and nonrepetitive regions (blue). A significant
number of genes contain both Alu and repetitive non-Alu A-to-G editing sites (P = 1.9 ×
10−83) and Alu and nonrepetitive sites (P = 3.7 × 10−71). (b) Example of a gene that contains
all three types of editing. Editing in Alu, repetitive non-Alu and nonrepetitive regions occurs
in close proximity to each other. (c) The identified non-Alu A-to-G sites are significantly
closer to the nearest Alu A-to-G site than to random adenosines in genes with Alu editing
only (nonrepetitive sites versus random adenosines: P = 1.1 × 10−96; repetitive non-Alu sites
versus random adenosines: P = 7.9 × 10−160). (d,e) The number of edited Alu repeats is
significantly higher in genes with Alu and nonrepetitive editing (P = 2.0 × 10−40) (d) and
Alu and repetitive non-Alu editing (P = 2.8 × 10−20) (e), compared to genes with Alu editing
only.
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