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Oncogene-dependent apoptosis in 
extracts from drug-resistant cells 
Howard O. Fearnhead, 1'3 Mila  E. McCurrach,  1 Jason O'Nei l l ,  2 Kam Zhang,  2 Scott W. Lowe,  1 and 
Yuri A. Lazebnik 1,3 

1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA; 2Fred Hutchinson Cancer Research Center, 
Seattle, Washington 98104 USA 

Many genotoxic agents kill tumor cells by inducing apoptosis; hence, mutations that suppress apoptosis 
produce resistance to chemotherapy. Although directly activating the apoptotic machinery may bypass these 
mutations, how to achieve this activation in cancer cells selectively is not clear. In this study, we show that 
the drug-resistant 293 cell line is unable to activate components of the apoptotic machinery--the ICE-like 
proteases (caspases)--following treatment with an anticancer drug. Remarkably, extracts from untreated cells 
spontaneously activate caspases and induce apoptosis in a cell-free system, indicating that drug-resistant cells 
have not only the apoptotic machinery but also its activator. Comparing extracts from cells with defined 
genetic differences, we show that this activator is generated by the adenovirus E1A oncogene and is absent 
from normal cells. We provide preliminary characterization of this oncogene generated activity (OGA) and 
show that partially purified OGA activates caspases when added to extracts from untransformed cells. We 
suggest that agents that link OGA to caspases in cells would kill tumor cells otherwise resistant to 
conventional cancer therapy. As this killing relies on an activity generated by an oncogene, the effect of these 
agents should be selective for transformed cells. 

[Key Words: Apoptosis; cancer; oncogenes; drug resistance; caspases; cell-free assays] 
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The failure to effectively and selectively eliminate can- 
cer cells is a major problem of cancer therapy. Nonethe- 
less, most mammalian cells, including those that give 
rise to cancer, have an intrinsic machinery whose func- 
tion is to carry out cell suicide. Activation of this execu- 
tion machinery results in apoptosis, a comprehensive 
process that can quickly eliminate large numbers of cells 
without triggering adverse responses such as inflamma- 
tion. The efficiency of such killing prompts the exami- 
nation of the apoptotic execution machinery as a poten- 
tial tool to kill cancer ceils. 

Indeed, many anticancer drugs kill cells by activating 
the apoptotic machinery. However, this killing is ineffi- 
cient as activation is indirect. The direct effect of these 
drugs is cell damage, such as DNA breaks or cell cycle 
aberrations (Hickman 1992), which then triggers signal- 
ing pathways that activate the execution machinery and 
eventually lead to cell death. However, alterations in the 
pathways linking the cell damage to the execution ma- 
chinery, such as p53 mutations (Lowe et al. 1993), are 
common in cancer cells. Therefore, a cancer cell may fail 
to die not because the drug does not induce cell damage 
but because the information about this damage fails to 
reach the execution machinery of apoptosis (Dive and 

3Corresponding authors. 
E-MAIL fearnhea@cshl.org; lazebnik@cshl.org; FAX (516) 367-8461. 

Hickman 1991). In principle, agents that directly acti- 
vate the execution machinery should bypass alterations 
that prevent apoptosis and kill cells that are otherwise 
resistant to cancer therapy. However, how to activate 
the apoptotic machinery directly and selectively in can- 
cer cells is not clear. 

An essential component of the apoptotic machinery is 
a family of cysteine proteases termed caspases (formerly 
known as interleukin-lf3 converting enzyme (ICE)-like 
proteases) (Martin and Green 1995; Alnemri et al. 1996; 
Chinnaiyan and Dixit 1996). These proteases are ex- 
pressed as inactive precursors that are activated by pro- 
teolytic processing. Despite their vital role in apoptosis, 
how caspase activation is regulated is not known. Fur- 
thermore, how this activation leads to highly coordi- 
nated cell destruction is also poorly understood. Never- 
theless, the irreversible nature of proteolysis suggests 
that activation of caspases is a critical step in apoptosis 
and, therefore, is an attractive target for drugs that di- 
rectly activate the apoptotic machinery. 

A basis for selective activation of caspases in cancer 
cells may lie in the mechanisms intrinsic to carcinogen- 
esis. A number of oncogenes, when expressed in cells, 
induce apoptosis (Harrington et al. 1994). However, 
transformed cells may survive and give rise to cancer 
because apoptosis is suppressed, for example, by overex- 
pression of Bcl2, an inhibitor of apoptosis (Hacker and 
Vaux 1995). Such suppression not only promotes the sur- 
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vival of cancer cells but also confers resistance to che- 
motherapeutic drugs that kill by inducing apoptosis 
(Lowe et alo 1993). Whether the proapoptotic activity of 
oncogenes is abolished by proteins like Bcl2 or whether 
it becomes latent is not known. Should this activity be 
present, even in a latent form, it may be exploited to 
selectively kill transformed cells. For example, agents 
that would link this activity to the apoptotic machinery 
would not harm untransformed cells that have the ma- 
chinery but lack the oncogene-induced activity. 

Cells expressing the adenovirus E1A and E1B onco- 
genes provide a tractable model that mimics how onco- 
genic changes can modulate apoptosis during tumorigen- 
esis and in response to anticancer agents (Lowe et al. 
1993, 1994). E1A promotes proliferation and, like many 
other oncogenes that deregulate the cell cycle, also pro- 
motes apoptosis (White 1993) and renders E1A-express- 
ing cells highly sensitive to anticancer drugs (Lowe et al. 
1993). E1A-induced apoptosis is prevented by products of 
E1B, allowing oncogenic transformation (Rao et al. 1992) 
and conferring drug resistance (Subramanian et al. 1993). 
Here we provide biochemical evidence that cells express- 
ing E1A retain a latent proapoptotic activity even when 
E1B is coexpressed. 

As an experimental model, we used the 293 cell line 
that was derived from human embryonic kidney cells 
following transfection of adenovirus 5 DNA (Graham et 
al. 1977). These cells express both E1A and E1B and are 
highly resistant to multiple anticancer drugs. However, 
we found that extracts from these cells spontaneously 
activated endogenous caspases and induced apoptosis in 
a cell-free system. Using extracts from primary mouse 
embryo fibroblasts (MEFs) and MEFs transformed with 
E1A or E1A/E1B, we demonstrated that spontaneous 
caspase activation in the extracts required expression of 
E1A. Following partial purification of the E1A-generated 
activity, we showed that this activity induced caspase 
activation when added to extracts from untransformed 
cells. We suggest that this activity is a potential target 
for drugs that will selectively kill transformed cells. 

Results 

293 cells are resistant to apoptosis 

293 cells are highly resistant to multiple anti-cancer 
drugs. For example, the chemotherapeutic drug etopo- 
side did not induce morphological changes of apoptosis 
in 293 cells at the concentrations sufficient to kill Jurkat 
cells, a drug-sensitive tumor cell line (Fig. 1A). To deter- 
mine whether etoposide treatment induces biochemical 
changes of apoptosis, we examined the activity of 
caspases, which are essential components of the apop- 
totic machinery (Martin and Green 1995; Alnemri et al. 
1996; Chinnaiyan and Dixit 1996). Active caspases were 
visualized by affinity labeling using a biotin-labeled spe- 
cific inhibitor, biotin-Tyr-Val-Ala-Asp-acyloxymethyl- 
ketone, (biotin-YVAD-amk) that irreversibly binds to 
active caspases (Thornberry et al. 1994). Cells were lysed 
in the presence of biotin-YVAD-amk and incubated to 
label caspases. The labeled caspases were separated by 
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Figure 1. 293 cells are resistant to drug-induced apoptosis. 293 
or drug-sensitive Jurkat cells (1 x 10S/ml), used as a control, 
were incubated with or without etoposide (50 taM). (A) 293 cells 
treated with etoposide do not acquire apoptotic morphology. 
The percentage of cells with apoptotic chromatin condensation 
is shown. At least 300 cells were counted per sample. (B) 293 
cells treated with etoposide do not contain active caspases. At 
the indicated times, cells incubated with or without etoposide 
were lysed in the presence of biotin-YVAD amk, an affinity 
probe that binds irreversibly to the catalytic center of active 
caspases but not caspase precursors (Thornberry et al. 1994). 
Labeled caspases were visualized using avidin-biotin detection 
system as described in Materials and Methods. 

SDS-PAGE, transferred to a membrane, and visualized 
using an avidin-biotin detection system and enhanced 
chemiluminescence. No active caspases were detected 
in etoposide-treated 293 cells (Fig. 1B), whereas multiple 
active caspases were detected in etoposide-treated Jurkat 
cells, which was consistent with the morphological 
manifestations of apoptosis. These caspases were identi- 
fied as multiple forms of CPP32 and Mch2 (Faleiro et al. 
1997). Thus, in 293 cells drug treatment failed to activate 
caspases and induce apoptosis. 

Extracts from 293 cells induce apoptosis in a cell-free 
sys tem 

The failure to undergo apoptosis upon drug treatment 
could be caused by defects in signaling pathways leading 
to the execution machinery of apoptosis or by inactiva- 
tion of the machinery itself. To distinguish between 
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these possibilities, we obtained extract from 293 cells 
and tested it in a cell-free system. In such systems, ex- 
tracts from apoptotic cells induce apoptotic changes in 
isolated nuclei (apoptosis in vitro), whereas extracts 
from untreated cells do not (Lazebnik et al. 1994; Mart in 
et al. 1995; Enari et al. 1996). Like apoptosis in vivo, 
apoptosis in vitro requires caspase activity that  is absent 
in extracts from untreated cells. Unexpectedly, an ex- 
tract prepared from untreated 293 cells induced apopto- 
sis in vitro. Virtually all isolated nuclei added to the 293 
extract underwent  morphological changes typical of 
apoptosis wi thin  an hour incubation at 37°C (Fig. 2A). 
Apoptosis in vitro was prevented by b io t in-YVAD-amk,  
a caspase inhibitor, indicating a requirement  for caspase 
activity. Thus, 293 cells retained a functional apoptotic 
machinery.  However, this result was puzzling: Although 
extracts from 293 cells induced apoptosis in vitro, 293 
cells were unable to activate caspases and undergo apop- 
tosis. 

Caspases are spontaneously activated in extracts from 
293 cells 

The observation that  apoptosis in vitro was inhibited by 
treating the 293 extract wi th  a caspase inhibitor was con- 
sistent wi th  the role of caspases in apoptosis and also 
indicated that  caspases were active in this extract. Be- 
cause caspases were inactive in intact 293 cells, they 
may  have been activated during either extract prepara- 
tion or subsequent incubation in the cell-free system. To 

distinguish between these possibilities, we followed 
caspase activation in the 293 extract. Caspase activity 
was measured either by use of a fluorogenic caspase sub- 
strate (Nicholson et al. 1995; Enari et al. 1996)(Fig. 2B) or 
by visualizing active caspases by affinity labeling 
(Thornberry et al. 1994; Faleiro et al. 1997) (Fig. 2C). In 
addition, processing of CPP32, a caspase thought  to par- 
ticipate in apoptosis (Nicholson et al. 1995), was exam- 
ined by immunoblot t ing (Fig. 2D). CPP32, like other 
caspases, is expressed as an inactive precursor and pro- 
teolytically processed during activation. 293 extracts had 
no detectable caspase activity and CPP32 was present as 
an inactive precursor. If the extracts were kept on ice, 
caspases remained inactive for up to 24 hr  (data not 
shown). However, incubation of the extract at 37°C re- 
sulted in caspase activation as measured by the fluoro- 
genic assay, which detected a 250-fold increase in 
caspase activity (Fig. 2B). Consistent  wi th  this result, 
affinity labeling revealed activation of mult iple caspases 
(Fig. 2C), one of which was CPP32, as detected by im- 
munoblot t ing (Fig. 2D). Thus, caspases were extracted 
from 293 cells as precursors and were activated during 
incubation at 37°C, indicating that  the 293 cell extract 
had an activity capable of activating caspases. 

Caspase activation depends on expression of the E1A 
oncogene 

Although only a few cell lines have been tested, apopto- 
sis in mammal i an  cell-free systems previously has re- 

Figure 2. Extracts from untreated 293 A 
cells induce apoptosis and caspase activa- 
tion in a cell-free system. (A) 293 extracts 
induce nuclear changes of apoptosis in a 
cell-free system. 293 cell extract (10 pl) 
was incubated with isolated HeLa nuclei 
(1 x 105) for 60 min at 37°C. Another ali- 
quot was incubated with nuclei under the 
same conditions but biotin-YVAD-amk 
(100 ~M), an inhibitor of caspases, was 
added. After incubation, nuclei were fixed 
and stained with DAPI, they were exam- 
ined by fluorescence microscopy for apop- 
totic changes. Virtually all nuclei under- B 
went apoptotic changes in the 293 extract. 
No nuclei displayed apoptotic morphology 
in the extract containing biotin-YVAD- 
amk. The nuclei shown are representative 
of each treatment. (B-D) Caspases are ac- 
tivated in extracts from 293 cells. 293 cell 
extracts were incubated at 37°C and at the 
indicated times activation of caspases in 
the extracts was assessed by three assays. 
(B) caspase activity as measured by the 
amount of DEVD-afc, a fluorogenic 
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caspase substrate, cleaved by the extracts (Nicholson et al. 1995). Activity is expressed in picomoles of free afc released by milligram 
of total extract protein per minute at 30°C. Activity of extract before incubation was 17 pmoles/min per mg. (C) Activation of caspases 
as revealed by affinity-labeling with biotin-YVAD-amk (10 I~M); (D) processing of CPP32, a caspase implicated in apoptosis, as revealed 
by immunoblotting with an anti-CPP32 antibody. The antibody used detects the CPP32 precursor and the large subunit of the active 
enzyme. The results presented in B-D are from the same experiment. The same blot was used to visualize affinity labeled caspases (C) 
and the processed forms of CPP32 (D). 
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quired extracts f rom cells undergoing apoptosis  (Lazeb- 
n ik  et al. 1993; Enari et al. 1995; Mar t in  et al. 1995). 293 
cells are different f rom cell l ines used previous ly  in  tha t  
they  express the adenovirus  E1A and E1B oncogenes.  Be- 
cause E1A expression can induce  apoptosis  (White 1993), 
it  was possible tha t  ac t iva t ion  of caspases in the 293 cell 
extract  resul ted direct ly  or indi rec t ly  from the expres- 
sion of E1A. To test  this  hypothesis ,  we used p r imary  
MEFs and thei r  E1A-expressing derivatives.  This  model  
has been used extens ive ly  to s tudy E1A and E1B func t ion  
in t r ans fo rmat ion  and apoptosis  (Lowe et al. 1993, 1994). 
Fur thermore,  this  model  a l lowed analysis  of the  specific 
effects of these oncogenes in p r imary  cells w i t h o u t  in- 
terference from secondary genet ic  changes. 

MEFs expressing E1A alone are h igh ly  prone to apop- 
tosis (Lowe et al. 1993; Boulakia  et al. 1996; McCur rach  
et al. 1997). Cons i s t en t  w i th  this  effect, extracts  f rom 
these cells induced apoptosis  in  vi t ro (Fig. 3A) and acti- 
vated caspases (Fig. 3B) upon  incuba t ion  at 37°C but  not  
4°C. In cont ras t  to extracts f rom cells expressing E1A, 
extracts  from norma l  MEFs (Fig. 3) or MEFs con ta in ing  
the vector  a lone (data not  shown) failed to induce  apop- 
tosis in the  cell-flee sys tem and did no t  act ivate  caspases 
(Fig. 3A, B). Thus,  caspase ac t iva t ion  in the extracts  de- 
pended on expression of E1A. 

It was possible tha t  un t r ans fo rmed  MEFs fail to acti- 

vate caspases because they  lacked e i ther  the  caspase-ac- 
t iva t ing  ac t iv i ty  or the caspases themselves .  To test  
whe the r  extracts f rom un t r ans fo rmed  cells had caspase 
precursors, we added r ecombinan t  ICE, a caspase tha t  
can act ivate  o ther  caspases in vi t ro (Xue et al. 1996). As 
revealed by aff ini ty labeling, endogenous  caspases were 
act ivated by addi t ion  of ICE (Fig. 3C). To conf i rm this  
result,  we used the observat ion  tha t  dATP act ivates  
CPP32 in cell extracts  (Liu et al. 1996). Indeed, addi t ion  
of dATP to extracts  f rom un t r ans fo rmed  cells ac t ivated 
caspases, as measured  by the  f luorogenic assay. Further- 
more,  the  a m o u n t  of l a ten t  caspase ac t iv i ty  revealed in 
extracts f rom un t r ans fo rmed  MEFs was comparable  to 
tha t  spon taneous ly  act ivated in  extracts f rom ei ther  
E1A/E1B t ransformed MEFs or 293 cells. Thus,  the  ex- 
tract  f rom no rma l  MEFs con ta ined  inact ive  caspases, but  
lacked the  E1A-generated ac t iv i ty  capable of ac t iva t ing  
them.  We wil l  refer to this  ac t iv i ty  as the  oncogene-  
generated ac t iv i ty  (OGA). 

Un l ike  MEFs expressing E1A alone, MEFs t ransformed 
by E1A and E1B are h igh ly  res is tant  to drug-induced 
apoptosis  (Lowe et al. 1993; Subramanian  et al. 1993). 
However,  extracts  f rom MEFs expressing E1A and E1B 
induced apoptosis  in  vi t ro  (Fig. 3A) and act ivated 
caspases (Fig. 3B), as did extracts  f rom MEFs expressing 
E1A. Similar  results  were obta ined  w h e n  E1B was sub- 
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Figure 3. Extracts from MEFs expressing 
E1A or E1A plus E1B, but not from untrans- 
formed MEFs, induce apoptosis and caspase 
activation in a cell-free system. (A) Extracts 
induce nuclear changes of apoptosis in a 
cell-free system. Extracts (10 lal) were incu- 
bated with HeLa nuclei (1 x l0 s) for 60 min 
at 37°C. After incubation, nuclei were 
stained with DAPI and examined by fluo- 
rescence microscopy for apoptotic changes. 
Virtually all nuclei underwent apoptotic 
changes in extracts from MEFs expressing 
E1A or E1A plus E1B. No nuclei displayed 
apoptotic morphology in extracts from un- 
transformed MEFs. The nuclei shown are 
representative of each treatment. (B) Acti- 
vation of caspases as revealed by affinity- 
labeling with biotin-YVAD-amk (10 }aM). 
Extracts were incubated for 60 min at 37°C 
and active caspases were labeled as de- 
scribed in Materials and Methods. Activa- 
tion of caspases was confirmed using a fluo- 
rogenic substrate, DEVD-afc (data not 
shown). Before incubation at 37°C all MEF 
extracts had caspase activity <15 pmoles/ 

min per mg. After incubation, extracts from untransformed MEF had activity of 3 pmoles/min per mg whereas extracts from E1A alone 
and E1A plus E1B MEF had activity of 2300 and 5200 pmoles/min per rag, respectively. (C,D) Extracts from untransformed MEFs have 
caspase precursors but fail to activate them. (C) Recombinant ICE activates caspase precursors in the extract from untransformed 
MEFs. The extract (10 }al) was incubated for 15 rain at 37°C with or without recombinant ICE (15 ng). Extracts from E1A/E1B MEF 
(10 }al) containing active caspases were used as a positive control. Active caspases in all extracts were labeled with biotin-YVAD-amk 
(10 }aM) and visualized as described in Materials and Methods. (D) Activation of caspase precursors by dATP as measured by the 
cleavage of DEVD-afc, a caspase substrate. The extract from untransformed MEFs was incubated for 1 hr with or without 2 mM dATP. 
Extracts from E1A/E1B transformed MEFs and from 293 cells were used for comparison. The results are typical of two independent 
experiments. 
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stituted wi th  the antiapoptotic oncogene bcl2 (data not 
shown). Thus OGA was latent in these cells and was 
revealed in cell extracts. 

EIB-19K and Bcl-2 are absent in cell extracts 

Although E1B-19K (an antiapoptotic protein encoded by 
the E1B gene) and Bcl2 are potent inhibitors of apoptosis 
in whole cells, extracts from cells expressing either pro- 
tein readily activated caspases in vitro. To investigate 
why E1B failed to inhibi t  caspase activation in extracts, 
we determined whether  E1B-19K was present in extracts. 
Consistent  wi th  previous reports (White et al. 1984), 
E 1 B- 19K partit ioned wi th  insoluble material  during cen- 
trifugation and was absent in extracts from either 293 
cells or E1A/E1B expressing MEFs (Fig. 4). Similarly, 
when Bcl2 was coexpressed with E1A, it also partitioned 
wi th  insoluble material  during extract preparation (data 
not shown). Thus, the absence of E1B-19K and Bcl2 from 
cell extracts may  explain why caspase activation was not 
inhibi ted in vitro. 

We at tempted to reintroduce E1B-19K and Bcl2 to the 
extracts. Reintroduction of E 1 B- 19K was not feasible be- 
cause of its poor solubility. Recombinant  Bcl2 made 
soluble by removal of the membrane  anchoring domain 
(Hockenbery et al. 1993) had no effect on caspase activa- 
tion (data not shown). Whether  caspase activation in cell 
extracts is beyond Bcl2 control, or whether  the recombi- 
nant  Bcl2 is impaired, remains to be investigated. 

OGA requires ATP hydrolysis 

As the first step in the characterization of OGA, we de- 
termined its thermostabil i ty.  Caspases in the 293 extract 
were activated at 30°C and 37°C, but  remained inactive 
at room temperature or when  kept on ice (Fig. 5A). In- 
cubation of extracts at 45°C prevented caspase activation 
although had no effect on activated caspases. We also 
investigated the ion requirement  of OGA. Because the 
extracts contain 5 mM EGTA, OGA is unl ikely  to require 
calcium and other ions that bind to this chelator. How- 
ever, OGA, but not activated caspases, required magne- 
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Figure 4. E1B-19K is depleted from cell extracts during extract 
preparation. For each cell type, an aliquot of total cell lysate was 
loaded in lane T. An equal aliquot was separated by centrifuga- 
tion at 100,000g for 1 hr to obtain pellet (P) and extract (E). The 
results are typical of two independent experiments. 

sium, as determined by adding EDTA or by dialysis (data 
not shown). 

Although caspases in the extract were activated spon- 
taneously, we noticed that addition of an ATP-regenera- 
tion system increased the rate of activation two- to 
threefold, but did not have an effect on activated 
caspases (data not shown). The dependence on ATP and 
magnes ium suggested that OGA requires ATP hydroly- 
sis. 293 extract dialyzed to remove both ATP and mag- 
nes ium did not activate caspases, but OGA was restored 
by addition of both ATP and magnes ium (either alone 
was insufficient)(Fig. 5B). ADP supported caspase acti- 
vation in the presence of magnes ium but was much  less 
efficient than ATP even at concentrations 10 t imes that 
of ATP (Fig. 5B; data not shown). AMP, adenosine, and 
GTP failed to promote caspase activation (Fig. 5B; data 
not shown). The nonhydrolysable ATP analogs, ATP-~-S 
and AMP-PNP, did not substi tute for ATP, indicating 
that ATP hydrolysis was required (Fig. 5C). Hence, OGA 
required hydrolysis of ATP to activate caspases. 

OGA can be separated from its targets by 
chromatography 

Having established dependence of OGA on ATP, we par- 
tially purified this activity by ion-exchange chromatog- 
raphy. We fractionated the 293 extract on a Sepharose Q 
column into a flowthrough (FT), a 100 mM KC1 eluate 
(fraction 1), and a 450 mM eluate (fraction 2). FT and 
fraction 2 contained -48 % each of all recovered protein 
with 3%--4% eluted in fraction 1. None of the fractions 
had caspase activity and no caspases were activated by 
incubat ion at 37°C, as measured by the fluorogenic assay 
(Fig. 6A) or affinity labeling (Fig. 6B). However, caspase 
activation was reconstituted by combining the FT wi th  
fraction 1 but not wi th  fraction 2. Affinity labeling wi th  
b io t in -YVAD-amk confirmed these observations (Fig. 
6B). Consistent  wi th  our finding that OGA requires ATP, 
combining FT wi th  fraction 1 resulted in caspase activa- 
tion only in the presence of ATP (Fig. 6C). 

Although no fraction alone had active caspases, 
caspase precursors could be present in any fraction. 
Therefore, to activate precursors, should they be present, 
we added recombinant  ICE to each fraction and then 
quantified caspase activity using DEVD-afc, a fluoro- 
genic substrate not cleaved by ICE. Although caspase 
activity was revealed in all fractions, 90% of the activity 
was present in the FT, 7% in fraction 1, and 3% in frac- 
tion 2 (Fig. 6D). Affinity labeling wi th  biot in-YVAD- 
amk revealed a s imilar  distr ibution (data not shown) and 
immunoblo t t ing  for CPP32 revealed that this caspase 
was present only in the FT (data not shown). Hence, 
OGA and its targets were distributed between FT and 
fraction 1. 

OGA from 293 cells activates caspases in extracts 
from untransformed MEFs 

It is possible that OGA is present only in the FT or only 
in fraction 1, but we require target caspases in the other 
fraction to detect it. Alternatively, OGA may consist of 
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Figure 5. The E1A-generated activity that processes caspases is thermolabile and requires ATP hydrolysis. Caspase activity was 
measured by cleavage of DEVD-afc and expressed in pmoles of free afc released by milligram of total extract protein per minute at 
30°C. (A) Temperature sensitivity of caspase activation. 293 cell extracts were incubated at the indicated temperatures for 60 min and 
caspase activity was then measured. (B) Caspase activation requires ATP and magnesium. 293 cell extracts were dialyzed overnight 
using a 10-kD cutoff membrane and a buffer lacking magnesium. Extracts were supplemented as indicated, incubated for 15 min at 
37°C and caspase activity then measured. (Ade) Adenosine. (C) Caspase activation requires ATP hydrolysis. 293 cell extracts dialyzed 
against a buffer lacking magnesium were supplemented with 1 mM MgC12 and either ATP {1 mM) or nonhydrolysable ATP analogs (1 
mM). Extracts were incubated at 37°C for 60 min and caspase activity was measured. Three independent preparations of 293 cell 
extracts were used for each experiment. 

componen t s  d i s t r ibu ted  be tween  fract ion 1 and FT. To 
d i s t ingu ish  be tween  these  possibi l i t ies ,  we  added the 
f ract ions to extracts  f rom norma l  MEFs, w h i c h  con ta in  
caspase precursors  bu t  lack the  ac t iva t ing  signal  (see Fig. 
3C,D). Remarkably ,  the  addi t ion  of f ract ion 1 bu t  not  
f ract ion 2 or FT ac t iva ted  caspases in  MEF extracts  (Fig. 
7A, B). Two  pieces of evidence suggest  tha t  adding frac- 
t ion  1 to extracts  from un t r ans fo rmed  cells resul ts  in  

ac t iva t ion  of MEF caspases. First, caspases ac t iva ted  had  
e lec t rophore t ic  mob i l i t y  s imi la r  to those  of caspases ac- 
t iva ted  in  extracts  f rom E1A/E1B-t ransformed MEFs. 
Second, f ract ion 1 had no detectable  caspase ac t iv i ty  and 
adding r e c o m b i n a n t  ICE to fract ion 1 revealed on ly  a 
smal l  a m o u n t  of caspase precursors,  w h i c h  canno t  ac- 
coun t  for the  d ramat ic  increase  of caspase ac t iv i ty  in the 
MEF extract  (Fig. 6D). Finally,  the  ac t iva t ion  factor in  
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Figure 6. (A,B) Combination of fractions 
lacking caspase activity reconstitute 
caspase activation. 293 cell extract was 
fractionated by anion exchange chroma- 
tography into the flow through (FT), frac- 
tion 1, and fraction 9.. FT (40 lag) was com- 
bined with either fraction 1 (6 ~ag) or frac- 
tion 2 (6 ~g), supplemented with 1 mM 
ATP and incubate for 15 min at 37°C. Ac- 
tive caspases were then detected by using 
either fluorogenic substrate DEVD-afc (A) 
or affinity labeling with biotin-YVAD- 
amk (10 UM)(B). (C) Reconstituted caspase 
activation is ATP-dependent. Input ex- 
tract or a mixture of FT (40 lag) and frac- 
tion 1 (6 pg) was incubated for 15 min at 
37°C with or without 1 mM ATP, and 
caspase activity was measured using the 
caspase substrate DEVD-afc. (D) Caspase 
precursors are present in all fractions. FT, 
fraction 1, and fraction 2 were incubated 
for 15 min at 37°C with or without 15 ng 
of active recombinant ICE. Caspase activ- 
ity was then measured using DEVD-afc. 
To show the relative amount of caspase 
precursors the results are presented as to- 
tal activity in each fraction. The fraction- 
ation and reconstitution shown is typical 
of four independent experiments. 
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fraction 1 displayed a similar ATP dependence as shown 
for OGA in whole 293 extracts. Hence, fraction 1 con- 
tains partially purified OGA that  is able to biochemi- 
cally reproduce the proapoptotic effect of E 1A expression 
on caspase activation. 

As OGA required E1A expression, OGA could be E1A 
itself. Therefore, using immunoblot t ing  we tested 
whether  E1A is present in fraction 1 and found that  it is 
not  (Fig. 7D). OGA could also be cytochrome c, a protein 
required for CPP32 activation in a cell-free system (Liu 
et al. 1996). However, cytochrome c was not detectable 
by immunoblot t ing  in fraction 1 (Fig. 7D). 

Thus, this s tudy provides biochemical evidence that  
expression of an oncogene generates a proapoptotic ac- 
tivity (OGA) that  persists even when cells acquire drug 
resistance. The assays for OGA developed here should 
facilitate identification of this activity. 

Discussion 

Many oncogenes that  promote cell proliferation also in- 
duce apoptosis (Harrington et al. 1994), indicating that  
t ransformation by these oncogenes requires suppression 
of cell death. However, whether  the proapoptotic activ- 
ity generated by oncogenes persists in transformed cells 
was not known. Here we used cells expressing the pro- 
apoptotic oncogene E1A and the antiapoptotic oncogene 
E1B as a model of cell transformation.  Employing ex- 
tracts from these cells in a cell-free system of apoptosis 

we provide evidence that the proapoptotic activity gen- 
erated by E1A (OGA) persists in transformed cells, even 
when they acquire resistance to apoptosis through ex- 
pression of E1B. We suggest that  because OGA is gener- 
ated by an oncogene and is absent from untransformed 
cells, this activity may  be exploited to selectively kill 
t ransformed cells. 

The dependence of apoptosis on caspase activity indi- 
cates that  the activation of caspases is the critical step in 
cell death. Although it is well established that the ex- 
pression of many  oncogenes induces apoptosis (Evan et 
al. 1992; Rao et al. 1992; Howes et al. 1994; Yamada et al. 
1994; Galakt ionov et al. 1996; Sala et al. 1996), how on- 
cogene expression activates caspases is not known. In 
principle, E1A expression may  induce caspase activation 
by the removal of an inhibitor that prevents this activa- 
tion in normal  cells or by the generation of a factor that 
activates caspases. Several of our observations suggest 
that  the latter possibility is more likely. First, caspase 
activation is prevented by extract fractionation, indicat- 
ing that caspases cannot activate themselves.  Second, 
this activation can be reconsti tuted by combining the 
fractions, indicating that  the fractionation separates 
caspases from an activator. Third, this activator induces 
caspase activation in the extracts from untransformed 
cells. Thus, the expression of E1A generates an activity, 
which we termed OGA, that  drives caspase activation. 

Although OGA remains to be identified, it is very 
likely to be protein or protein complex because of its 

Figure 7. OGA induces caspase activa- 
tion when added to extracts from untrans- 
formed MEFs. (A,B) Fraction 1, but not FT 
or fraction 2, induces caspase activation 
when added to extracts from untrans- 
formed MEFs. Extracts from untrans- 
formed MEFs (160 lag) were incubated for 
15 min at 37°C with FT (33 lag), fraction 1 
(33 lag), or fraction 2 (33 lag) in the presence 
of 1 mM ATP. Caspase activity was then 
measured using DEVD-afc (A) or by affin- 
ity labeling with YVAD-amk (10 laM)(B). 
(C) Caspase activation triggered by frac- 
tion 1 requires ATP. Extracts from un- 
transformed MEFs were dialyzed to re- 
move endogenous ATP. Dialyzed extract 
alone (160 lag) or plus fraction 1 (33 lag)was 
incubated for 15 min at 37°C with or with- 
out 1 mM ATP. Caspase activity was then 
measured using DEVD-afc. The results are 
typical of two independent experiments. 
(D) Immunoblotting reveals that fraction 1 
does not contain cytochrome c or E1A. Ex- 
tracts from 293 cells (input) were fraction- 
ated by anion exchange chromatography 
(see Fig. 6) into FT, fraction 1, and fraction 
2. An equal amount of protein from each 
fraction (10 lag) was loaded in each lane. 
The blot was first probed using an anti- 
body to cytochrome c and then stripped 
and probed with an antibody to E1A. 
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behavior during chromatography and dialysis, its ther- 
molability, and its requirement for ATP hydrolysis. Al- 
though we cannot rule out that OGA is a caspase, this is 
unlikely because the activity of known caspases does not 
require ATP hydrolysis and no caspase activity was de- 
tected in partially purified OGA. Because OGA could be 
generated by the expression of a single gene, E1A, then in 
principle OGA could be E1A itself. However, E1A is ab- 
sent from partially purified OGA (fraction 1), showing 
that OGA is not E1A. Hence, it is likely that E1A ex- 
pression activates caspases indirectly by inducing OGA. 

How caspases are activated by OGA, or by any other 
apoptotic stimulus, is not known. Recent studies suggest 
two possible mechanisms, both involving Bcl2-con- 
trolled-release of proteins that activate caspases from 
mitochondria. One of these proteins is cytochrome c 
(Kluck et al. 1997; Yang et al. 1997) and the other is 
a_poptosis inducing factor (AIF) (Susin et al. 1996; 
Zamzami et al. 1996), which is yet to be characterized. 
Because our extract preparation is likely to result in the 
release of mitochondrial contents, either cytochrome c 
or AIF could be OGA. However, several observations ar- 
gue that OGA is neither. First, both cytochrome c and 
AIF (Susin et al. 1996) are present in normal cells, 
whereas OGA is not. Second, as detected by immunob- 
lotting, all extracts contained comparable amounts of 
cytochrome c (data not shown), whereas only extracts 
from transformed cells activated caspases. Although we 
could not measure AIF in the extracts, comparable 
amounts of cytochrome c suggested that other mito- 
chondrial contents were also released equally during 
preparation of all extracts. Thus, the release of mito- 
chondrial contents alone is unlikely to explain caspase 
activation. Third, cytochrome c was not detected in par- 
tially purified OGA (fraction 1). Finally, neither cyto- 
chrome c nor AIF require ATP hydrolysis, whereas OGA 
does. Hence, OGA is not cytochrome c and is unlikely to 
be AIF, although the identification of AIF and OGA will 
provide an unambiguous answer. 

The observation that OGA requires ATP hydrolysis 
suggests several possible mechanisms of caspase activa- 
tion. One is that an ATP-dependent protease directly 
processes caspases. Our observation that fraction 1 does 
not process recombinant CPP32 (data not shown) argues 
that this is not the case. Another possibility is that phos- 
phorylation of caspases changes caspase conformation 
and induces autocatalytic processing. ATP-dependent 
conformational changes in caspases may also be induced 
by chaperones, proteins whose expression is increased by 
E1A (Nevin 1982). The finding that dATP or dADP can 
activate CPP32 in cell extracts (Liu et al. 1996) and our 
observation that dATP can activate caspases in extracts 
from untransformed cells suggests a third possibility: 
OGA requires ATP to generate dATP or dADP. In un- 
transformed cells, the pool of dNTPs is controlled by 
ribonucleotide reductase (RNR), whose expression is 
tightly regulated in the cell cycle (Elledge et al. 1992). 
This regulation is lost in transformed cells (Hengst- 
schlager et al. 1994). Thus it is possible that deregulation 
of the cell cycle forced by E1A expression is linked to 

caspase activation through dATP. However, we found 
that hydroxyurea, an inhibitor of RNR, failed to block 
activation of caspases in the 293 cell extract (data not 
shown). Nevertheless, dATP might be produced by an- 
other reductase insensitive to hydroxyurea. Identifica- 
tion of OGA should determine what role ATP has in 
caspase activation. 

Although cells expressing E1A alone are susceptible to 
apoptosis, coexpression of E1B or Bcl2 renders them 
highly resistant to apoptosis-inducing agents. Nonethe- 
less, we show that irrespective of their sensitivity to 
apoptosis, extracts from E1A-expressing cells activate 
caspases. Thus, a reasonable interpretation is that OGA 
generated by E1A is latent in resistant cells but is re- 
vealed by extract preparation. This latency may be ex- 
plained if OGA is sequestered by Bcl2-1ike proteins in 
cells but is released during extract preparation. This is 
consistent with our observation that both these proteins 
are segregated with the insoluble fraction during extract 
preparation and are not detectable in the extracts. One 
possibility is that Bcl2 homologs sequester OGA by di- 
rectly binding to it. This is consistent with the model 
that E1B-19K and Bcl2 bind activators of apoptosis such 
as Bad and Bax (Oltvai et al. 1993; Yang et al. 1995). Bax 
itself is unlikely to be OGA because expression of Bax 
kills E1A/E1B-transformed fibroblasts but has little ef- 
fect on untransformed cells (McCurrach et al. 1997). The 
selectivity of Bax killing can be explained if Bax releases 
OGA from a protein-like E 1 B- 19K. Another explanation 
of why OGA is revealed in cell extracts is that in cells, 
OGA is sequestered in subcellular compartments that 
are disrupted by extract preparation. This model implies 
that in cells, the release of OGA is controlled by Bcl2- 
like proteins. 

Whatever OGA is, it is generated by the expression of 
an oncogene and persists in cells that acquired drug re- 
sistance. Thus, exploiting OGA may provide a basis for 
selective activation of apoptotic caspases in transformed 
cells, even those that are resistant to conventional 
therapy. It is likely that the OGA is not limited to cells 
expressing E1A because E1A is only one of many onco- 
genes that have proapoptotic activity (Evan et al. 1992; 
Howes et al. 1994; Yamada et al. 1994; Galaktionov et al. 
1996; Sala et al. 1996). Consistent with this prediction, 
we detected spontaneous activation of caspases in ex- 
tracts from HeLa cells, a human cervical carcinoma cell 
line expressing proapoptotic papillomavirus oncogene E7 
(data not shown). However, even if OGA is limited to a 
few experimental models, identification of this activity 
should provide a link between oncogene expression and 
the apoptotic machinery that may be exploited to induce 
apoptosis in transformed cells. 

Materials and methods 

Ceil culture 

293 cells were maintained in suspension at 37°C in Joklik modi- 
fied minimum essential medium supplemented with 5% calf 
serum. Jurkat cells were maintained in suspension at 37°C in 
RPMI-1640 supplemented with 10% fetal bovine serum. Trans- 
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formed and untransformed MEFs were maintained at 37°C and 
7.5% CO2 in Dulbecco's modified Eagle medium (DMEM) 
supplemented wi th  10% calf serum. 

MEF transformation and infection 

Preparation of primary MEFs and their derivatives transformed 
by adenovirus-5 E1A and E1B have been described previously 
(Lowe et al. 1994). Extracts from normal MEFs were prepared at 
or before passage 5. MEFs expressing E1A alone were generated 
by infection of second-passage MEFs with a high-titer retroviral 
vector coexpressing a 12S E1A cDNA with puromycin phos- 
photransferase as described elsewhere (McCurrach et al. 1997). 
Cells were expanded minimally  (approximately four additional 
passages) to avoid the occurrence of secondary genetic changes. 

Extract preparation 

Extracts were prepared essentially as described (Lazebnik et al. 
1993). 293 cells (5 x l0 s to 7 x l0 s cells/ml) were washed and 
the pellet was gently resuspended in i0 volumes of extract 
preparation buffer (50 mM PIPES at pH 7.0, 50 mM KC1, 5 mM 
EGTA, 2 mM MgClz, 1 mM DTT) supplemented with 10 ~ag/ml 
of cytochalasin B and protease inhibitor cocktail (0.1 mM PMSF 
and 2 lag/ml each of chymostatin, pepstatin, leupeptin, and an- 
tipain). Cells were immediately pelleted (200g for 5 min) and 
lysed by three cycles of freezing and thawing. The lysate was 
centrifuged at 100,000g for 1 hr to produce the cell extract. 
Extracts from MEFs were prepared by the same protocol except 
MEFs were first detached from plates with trypsin and washed 
with medium containing 50% fetal bovine serum to inactivate 
trypsin. 

Nuclei preparation 

HeLa or 293 nuclei were prepared as described (Lazebnik et al. 
1993). Briefly, HeLa or 293 cells were allowed to swell on ice for 
20 min  in the nuclei buffer (10 mM PIPES at pH 7.4, 10 mM KC1, 
1.5 mM MgC12, 1 mM DTT, 10 lag/ml of cytochalasin B, and the 
protease inhibitor cocktail) and then gently lysed with a Dounce 
homogenizer. The nuclei were pelleted through the nuclei 
buffer supplemented with 30% sucrose, washed in nuclei buffer, 
and either used or stored at -20°C in nuclei storage buffer (10 
mM PIPES at pH 7.4, 80 mM KC1, 20 mM NaC1, 250 mM sucrose, 
5 mM EGTA, 1 mM DTT, 0.5 mM spermidine, 0.2 mM spermine, 
the protease inhibitor cocktail, and 50% glycerol) at 1 x 108 nu- 
clei/ml.  Nuclei were washed twice in extract dilution buffer 
(DB) (10 mM HEPES at pH 7.0, 50 mM NaC1, 2 mM MgC12, 5 mM 
EGTA, 1 mM DTT) immediately before use. 

Cell-free system 

The cell-free assays were similar to that described previously 
(Lazebnik et al. 1993). Purified nuclei (5 x l0 s) were added to an 
extract (10 lal) supplemented with an ATP regeneration system 
(2 mM ATP, 10 mM creatine phosphate, and 50 lag/ml of creatine 
kinase). The reaction was incubated for 60 min  at 37°C. To 
observe nuclear apoptotic changes, nuclei were fixed with 4% 
paraformaldehyde, stained with DAPI (1 ~ag/ml), and examined 
by fluorescence microscopy. Images were acquired using a Pho- 
tometrics PXL CCD camera (Photometrics Ltd.) controlled by 
Oncor Image software (Oncor Inc.) and figures were prepared 
using Adobe Photoshop software. 

Measuring caspase activity using a fluorogenic substrate 

Caspase activity was measured essentially as described (Thorn- 
berry 1994). Two hundred microliters of assay buffer (50 mM 
PIPES-potassium hydroxide at pH 7.0, 0.1 mM EDTA, 1 mM 
DTT, 10% glyceroll containing the fluorescent substrate 
DEVD-afc (20 laM) (Enzyme Systems Products) was incubated 
with 1 lal of extract for 20 min  at 30°C. The release of free afc 
was measured with a fluorescence plate reader, Cytofluor 4000 
(Perseptive Biosystems), and expressed as pmoles of afc gener- 
ated per minute  per milligram of the total extract protein at 
30°C. 

Affinity labeling of active caspases 

The caspase affinity probe biot in-YVAD-amk (Thornberry et al. 
1994) (Biosyn, Ireland) was prepared as a 10 mM stock solution 
in DMSO, which was aliquoted and stored at -70°C. Immedi- 
ately before use aliquots were diluted to either 20 or 10 }aM with 
DB buffer. 

Labeling of cells Cells were labeled essentially as described 
(Faleiro et al. 19971. Cells (2 x 106) were resuspended in 10 laM 
biot in-YVAD-amk in DB (10 lal) supplemented with the prote- 
ase inhibitor cocktail and 10 lag/ml of cytochalasin B, and lysed 
by three cycles of freezing and thawing. The lysate was centri- 
fuged (16,000g, 20 min, 4°C) and the supematant  incubated at 
37°C for 4 min  to label active caspases. This incubation was 
sufficient to achieve maximal caspase labeling (data not  shown). 
Labeling was stopped by adding 2x SDS sample buffer (10 lal). 
The samples were boiled for 4 min, cooled, subjected to 15% 
SDS-PAGE with 10 lag of total protein loaded per lane, and 
transferred on to a PVDF membrane. The membrane was probed 
with 1 lag/ml of avidin followed by 50 ng /ml  of biotin-peroxi- 
dase and labeled caspases visualized by ECL (Amersham Inc). 

Labeling of extracts Extract (5 lal) was supplemented with an 
equal volume of 20 laM biot in-YVAD-amk in DB and incubated 
at 37°C for 4 rain. Labeling was stopped by adding 2x SDS 
sample buffer (10 lal) and boiling the samples for 4 rain. Labeled 
caspases were visualized as described for caspases labeled in 
cells. 

Detection of CPP32 processing 

After affinity-labeled caspases were visualized as described in 
the previous section, membranes were soaked in methanol  for 5 
min  to inactivate horseradish peroxidase, dried, and probed with 
a monoclonal  antibody to CPP32 (Transduction Laboratories) 
followed by incubation with a secondary antibody conjugated to 
horseradish peroxidase. The position of CPP32 on the blot was 
visualized by ECL (Amersham Inc). 

Fractionation of 293 cell extracts 

All steps were carried out at 4°C. 293 cell extracts were diluted 
1:5 with a buffer containing 50 mM PIPES at pH 7, 5 mM EGTA, 
1 mM MgC12, 1 mM DTT, and 0.1 mM PMSF. Extract (40 mg) was 
then bound in batch to 5 ml  of Sepharose-Q and a column 
poured. The column was washed first with  a buffer containing 
50 mM PIPES at pH 7, 10 mM KC1, 5 mM EGTA, 1 mM MgC12, 1 
mM DTT, and 0.1 mM PMSF, and fractions containing proteins 
pooled (FT). Proteins were then eluted with the same buffer 
containing 100 mM KC1 (fraction 1) followed by the same buffer 
containing 450 mM KC1 (fraction 2). Eluted proteins were pre- 
cipitated wi th  polyethyleneglycol and resuspended in extract 
preparation buffer. 
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Detection of cytochrome c and E1A 

Sample buffer (2x SDS) was added to an equal volume of unfrac- 
tionated 293 cell extracts or fractionated (FT, fraction 1, and 
fraction 2) extracts. The samples were boiled for 4 min, cooled, 
and subjected to 15% SDS-PAGE with 10 ~ag of total protein 
loaded per lane. Protein was transferred on to a PVDF mem- 
brane and the membrane was probed with an antibody to cyto- 
chrome c, which was visualized by enhanced chemilumines- 
cence (ECL). The blot was then stripped and probed with an 
antibody to E1A, which was also visualized by ECL. 
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