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SMELL, 

The final frontier. These are the enterprises of a Jewish graduate student. His five-year 

mission: to explore strange new facts, to seek out new data and new techniques, to boldly go 

where no man has gone before. 
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1 Introduction  

 

1.1 Combinatorial Coding in the Brain 

 

When an organism interacts with its environment, it does not look for information – it looks 

for meaning. As any scientist who received data from a Solexa run can attest, data is easy to come by, 

but extracting meaning is a challenge. The brain extracts meaning by constructing objects from the 

deluge of information it is constantly receiving. By making assumptions about the world (some innate 

and some acquired) the brain is able to extract complex features and detect patterns. It does so by 

integrating information across different input channels. Each single neuron receives input, integrates 

it, and has to “decide” whether to fire or not. We have decided to study exactly that process of 

integration in the fly. Since the neurons we are studying are in a well-characterized system, and they 

have relatively few inputs, we hoped to gain insight into the decision making process of neurons.  

 

1.1.1 Where the Brain Guesses Wrong 

Please take a moment and listen to the short example from Pressnitzer et al. 2011 listed as 

sound example 7 ( http://audition.ens.fr/dp/Frontiers_Sound_Examples/ ). The piece is Suite no. 3 in 

G major from suites for solo cello by Johan Sebastian Bach. The reason I have chosen to start my 

thesis with it is because I believe it epitomizes what the brain does. As can be deduced from the 

name, there is a single cello playing in this piece. However, we can clearly hear more. As explained 

in Pressnitzer et al. 2011, the reason for that is the intricate play between the frequency and the time 

interval between the notes.  
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When we listen to stimuli from our surroundings, the only input channel is the vibrating 

membrane in our ear. To deduce from those vibrations how many different sources generate them is 

an algorithmically ill-posed problem. The brain has to make assumptions about certain frequencies 

being generated together and about a certain level of constancy through time to solve this problem. 

The important aspect for our purpose is not so much how the brain solves this problem but that the 

brain is trying to solve it. When we hear this piece, we are not content with simply registering the 

vibrations as they come. We imbue them with meaning as to the different possible sources that 

generate them. We make separate objects out of a continuous stream based on what we assume about 

the world. But is the ear simply a special case, where the shape of the input imposes implicit 

solutions? We shall now turn to another example, this time from vision.  

 

1.1.2 Seeing is Believing  

There are myriads of visual illusions that shed light onto how our brain works. The reason I 

chose this one as an example is that when we look at the image displayed in Figure 1.1 our brain 

seems to be doing a similar thing to what it did when we listened to the cello suite. We perceive two 

continuous lines that merge behind the rectangle, since our brain is again making assumptions about 

the world. Even though we can clearly see the two lines do not overlap, we group them into a single 

object, since most of the clues point us in that direction (same color, same orientation, same spatial 

contingency). Again we see that our brain is not pleased with simply registering input – it is creating 

objects.  
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Figure 1.1 Poggendoff illusion. Example taken from UML psychology website ( http://dragon.uml.edu/psych/ ). 
See text for details.  
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Lastly, we turn to a different visual example that, hopefully, will convey a slightly different 

perspective about the workings of our mind. Please flip back and forth between the 2 images in 

Figure 2 and try to spot the difference between them (example taken from 

http://www.cogsci.uci.edu/~ddhoff/cb.html, where the illusion can be viewed more easily). If this 

problem was given to a computer, the solution would be instantaneous. By simply comparing pixel 

values throughout the image the difference can be clearly spotted. But this is not the way we perceive 

the image. Again, our brain is not content with simply registering the image – it imbues it with 

meaning. We perceive depth in the image, we construct objects, and we group them together based on 

physical proximity and continuity. The few pixels that do not overlap between the images are 

meaningless to our brain and are therefore not registered. Interestingly, once we perceive the change 

(a flower in the bottom right corner) we cannot un-perceive it. It becomes blazingly obvious. This 

tells us another thing about the way our brain works – though it is preprogrammed to look for certain 

types of meaning (constructing objects) we can actively imbue meaning onto previously ignored 

parts.  
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Figure 1.2 Part 1 
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Figure 1.2 Part 2 
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1.1.3 The Effort After Meaning 

In the transcript from a lecture given in 1984, Horace Barlow repeats a phrase he recalls had 

influenced him very early on in his career – “the effort after meaning” (Barlow 1985b). The phrase 

was used repeatedly by his psychology professor, sir Frederick Bartlett, and encouraged Barlow to 

choose physiology over psychology, since this is where the effort might bear fruit. But what does it 

mean? 

At the same lecture, when Barlow is trying to explain the meaning of the phrase he claims: 

“… the eye was not so much a detector of light as a detector of patterns created by those objects and 

events in the environment that were important for the animal (Barlow 1985b).” In other words, as I 

hope to have demonstrated from the above illusions, stimuli themselves are meaningless. The 

organism is not interested in sensing them or representing them reliably. It is what the stimuli 

represent that has meaning to the organism; they are signs to events in the world that are crucial for its 

survival.  

The Estonian physiologist, Jakob von-Uexkull, went so far as to claim that this is what 

defines biology - the existence of a subject (Uexkull 1982). The subject constructs its own inner 

world  - termed Umwelt - from the cues it extracts from the environment. In this view “Behaviors are 

not mere tropisms, but they consist of perception and operation; they are not mechanically regulated, 

but meaningfully organized (Uexkull 1982).” 

Again we see that meaning is an organizing principal in biology, and it is ultimately what the 

organism is searching for in the world (not in an existential sense but in a more concrete one). 

Therefore, “the effort after meaning” would be our attempt to bridge the gap between the stimuli we 

present and what the animal perceives. But how can the brain extract meaning from stimuli, and how 

can we, as researchers, uncover it? A prime example of an answer to both of these questions can be 

found in the classic work that has been done on visual processing of information. And this is what we 

shall discuss next. 
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1.2 The Search for Meaning in the Eye 

 

When physiologists started to record activity in the frog’s retina it was obvious that a high 

level of integration is imperative. The frog’s retina has many more photoreceptors than Retinal 

Ganglion Cells (RGCs), whose efferents are the nerve fibers exiting the eye. It was originally 

assumed that an individual neuron is noisy and unreliable (Barlow 1972), so it seemed almost natural 

that only by averaging several inputs can one produce a good image. However, the discovery of on-

off units (known today as RGCs with center-surround inhibition) challenged this simplistic view 

(Barlow 1953). RGCs in the frog retina that have this type of receptive field are not simply averaging 

inputs; they are not just transmitting information reliably from one level to the next; they are, in fact, 

extracting features. 

Barlow, in his original paper, went so far as referring to these cells as “bug detectors” 

(Barlow 1953). Although there is no simple relationship between activity in these neurons and food-

seeking behavior directed towards the respective receptive fields, the cells do seem to signal 

something stronger than a trivial change in luminance. In later papers, Barlow refers to what these 

cells might signify as “trigger features” (Barlow 1972). In that respect, “… an RGC signals that 

something specific is happening in front of the eye. Light is the agent by which it does it, but the 

detailed pattern of light carries the information (Barlow 1972).” We can see that even at this level, 

only 2-3 synapses from the receptors, features are extracted that are meaningful for the animal. 

Therefore, the retina does not transmit a map of the world, but a map of “trigger features” that were 

induced by the world (Barlow 1972). 

Another conclusion that stemmed from the 1953 study and other studies of the time was that 

individual neurons were actually reliable. And their reliability was not a result of averaging, but 

simply of their inherent properties (Barlow 1972). This has led Barlow to suggest a framework in 
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which the activity of a single neuron can be viewed as a result of an hypothesis test (Barlow 1985a). 

A neuron with its pattern of synaptic connections and their weights represents a hypothesis about the 

sense organs it connects to. Its firing indicates how strongly this hypothesis is violated based on the 

current condition of the sense organs. In that sense, an ON cell tests the hypothesis: “there has not 

been a local increase in illumination in my part of the retinal image (Barlow 1985a).” We can view 

these neurons as making up the elementary units of a percept, the units with which we, and other 

organisms, confer meaning onto the world.  

 

1.2.1 How to Compress Information 

We have mentioned earlier that the eye has more inputs than outputs. This implies that the 

eye is compressing the information it is receiving – but how? This question has gained significant 

momentum with the advent of information theory into neuroscience, and specifically into vision 

research (Attneave 1954). Early researchers noticed that natural images are highly redundant in 

information. Since our visual scene is constructed out of objects, and parts of an object are more 

similar to each other than they are to the surroundings, parts of the visual scene are highly correlated 

and so - redundant. A different way of defining this simple feature is that in a natural image 

information is concentrated where a subject would guess wrong (Attneave 1954). Given knowledge 

of the proximal part of the image, or even just the sequence of preceding pixels, a subject would be 

wrong in guessing what the next pixel is where boundaries occur. And if the boundary is regular 

enough, the subject would guess wrong when the boundary changes orientation, and so on.  

Though this approach was exceptionally fruitful, it focused on the information content of the 

stimulus and not the meaningful information for the organism. Invoking the digital analogy again, if a 

computer needs to transmit information efficiently, eliminating redundancy is a prime concern. But 

for the brain transmission is not the main concern - meaning is. Therefore, a more current view of 
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redundancy treats it not as something to be eliminated but as something to be recognized and 

exploited (Barlow 2001). And for that we need the cortex. 

Signals from the retina are transmitted through the lateral geniculate nucleus to the visual 

cortex. If we try and attribute a general role for the cortex as such it would be of forming associations. 

The cortex, according to Barlow, is a gifted detective – looking for suspicious coincidences in the 

afferent inputs (Barlow 1985a). Coincidences that are unlikely to occur by chance, but not so unlikely 

as to never occur at all; in other words, coincidences that result from objects in the natural world 

(Phillips et al. 1984). 

As we have already mentioned, the high correlations in the visual input stem from the 

presence of objects in the natural world. Therefore, redundancy is far from being unnecessary or 

wasteful, it is indicative of meaningful coincidences that the animal can exploit. The visual system is 

built so that it can detect those coincidences (Barlow 2001). Support for this view comes from studies 

that found high correlations between independent components in natural images, and the receptive 

fields of cells in the visual cortex (e.g. Hateren and Schaaf 1998). To understand more clearly how 

these coincidences are detected, we will now turn our attention towards the cortex and the 

computations it performs.  

  

1.2.2 Ceci N'est Pas Une Pomme 

In their search for meaning, neuroscientists went deeper and deeper into the brain. The first 

region in which a significant transformation of the input was found is the striate cortex. Hubel and 

Wiesel recorded from the cat striate cortex and found receptive fields of two types: simple and 

complex. The simple cells’ receptive fields seem like an agglomeration of receptive fields from the 

earlier layers (Figure 1.3). By aligning several center-surround receptive fields on a single axis, both 

orientation-selectivity and increased selectivity to stimuli are accomplished. Complex cells, as their 

name implies, have even more complex receptive fields. These cannot be described simply by 
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aligning receptive fields from earlier layers; and more importantly their spatial specificity was 

dramatically reduced (Hubel and Wiesel 1962).  

 

 

 

B A 

C 

Figure 1.3 Receptive fields in the cat visual cortex (A) Example ON (top) and OFF (bottom) cells 
from the lateral geniculate nucleus. (B) Two simple cells receptive fields from the striate cortex. (C) A 
hypothesized model for how the receptive fields in B might be constructed from the more basic 
receptive fields in A. X indicate excitatory responses, and Δ indicate inhibitory responses. Images were 
adapted from Hubel and Wiesel 1962. 
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Though at this layer we still do not have a firm handle on meaning, we might have a handle 

on its alphabet. Barlow suggested that the hierarchy in the complexity of receptive fields along the 

visual pathway might be viewed as the hierarchy in language (Barlow 1985b). First, we have the 

individual components that make up all the letters - small lines, ticks, and curves. Next, with those 

components we can construct each individual letter in our alphabet. With the letters we can construct 

each word and, with the words sentences, and so on (Barlow 1985b). Conceptually, it is easy to 

imagine how receptive fields of retinal ganglion cells are the building blocks of simple cells’ 

receptive fields (Figure 1.3C). By aligning several basic units together, one might define an edge or 

another important feature in an image. The appealing nature of the analogy stems, in part, from the 

realization that a single word, though very specific, still has a wide semantic field and depends upon 

its context for an exact interpretation. Much in the same way, a single “visual word”, be it an edge or 

a boundary, depend upon its context for the full interpretation.  

In that same classic paper, Hubel and Wiesel describe another important property of cells in 

the striate cortex – binocularity (Hubel and Wiesel 1962). At this layer in the circuit integration and 

the extraction of features is no longer limited to the information from a single input channel. Later it 

was shown that the cells responded maximally when the separation in the two eyes was different 

(Barlow 1985b). This condition would occur only if the stimulating object is at a certain distance, 

which is exactly what this transformation extracts.  

Climbing even higher into the depth of visual processing we find more and more complex 

“visual words”. While recording from the inferiotemporal cortex in monkeys, and as a result of a 

hand-waving fit of despair, (Gross et al. 1972) found “hand responding” neurons. The high specificity 

of the stimulus shape plus the relatively large spatial receptive field of these cells conform with the 

hierarchical prediction Hubel and Wiesel made in their paper (Hubel and Wiesel 1962). Based on 

their findings, they deduced that cells in higher regions will respond to bigger regions in the retina but 

will limit their responses to more specific stimuli.  
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10 years after the finding of the “hand responding” neurons, “face responding” cells were 

found in the superior temporal sulcus of an alert monkey (Perrett et al. 1982). Although reports of 

cells of this type have been made earlier, this was the first study in which a detailed characterization 

of the cells have been made. Surprisingly, the cells responded mainly to frontal views of the face. A 

sideways turn, even of 5-10 degrees, eliminated the response completely (Perrett et al. 1982). Though 

it is still not clear how a face responding neuron is made and what are the actual inputs it receives, it 

is possible to image how it is built with the simple “visual alphabet” that constructs more complex 

features as we move deeper into the brain.   

 

1.3 The Brain – What is it Good For? 

 

As I hope to have demonstrated, starting with the auditory illusion and ending with the 

detailed description of visual processing, the brain looks for meaning in the world. It is not simply 

collecting stimuli passively and registering them, but actively extracting relevant features from the 

surrounding world. The details in the visual system serve as a guiding principal: features are 

extracted, at least in part, by integrating nonlinearly over more basic inputs. Each neuron can be 

regarded as making a statistical statement about the correspondence between its “trigger feature” and 

the current state of the world (as shown to it by its inputs). By combining such units of higher and 

higher complexity we can imagine how the brain is able to extract common features. The level at 

which a specific feature is extracted depends on the organism. What happens at the frog’s retina 

happens in the cat only after three more synapses - but the mechanism is the same (see also Gollisch 

and Meister 2010 for a recent review of the computation in the mammalian retina). 

The same principles apply if we look at different modalities or different organisms. The 

similarities between the mammalian and the insect visual system, which were already noticed by 

Cajal (Sanes and Zipursky 2010), allows for a similar investigation with all the advantages of using a 
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powerful genetic organism. The inputs to the system are fewer, the genetic control of cell types is 

greater, and accessibility to higher brain regions is usually not an obstacle. A recent study, for 

instance, found a looming responding neuron in the fly and was able to elicit an appropriate 

behavioral response in a blind fly by artificially activating that neuron (de Vries and Clandinin 2012).  

In what follows I will try to explain why we have chosen to study integration in the 

Drosophila olfactory system, what we already know about the system, and what can we hope to learn 

from it about the workings of the brain.  
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2 Drosophila Olfactory System as a Model for Combinatorial 

Coding 

 

2.1 Intrinsically Combinatorial Nature of Olfaction 

 

Odors are an unusual set of stimuli. Unlike light or sound, which are immutable physical 

entities, odors are generated by other organisms and are therefore constantly changing (both on a 

phylogenetic and an ontogenetic timescale) (Bargmann 2006). The indication for just how different 

they are can be found in the outlandish number of receptors that are involved in detecting them. 

Olfactory receptor (OR) genes are among the largest gene families known, and in the extreme case of 

rats they comprise about 6% of the functional genes in the genome (Ache and Young 2005). 

As the number of odorant receptors suggests, there is no clear dimension across which the 

odorant stimuli change. If there was one (or even several dimensions for that matter), organisms 

would likely not need so many different receptors. From the extremely low level of conservation 

between odorant genes we can deduce that odorant receptors are not ligand-specific. From their 

appearance in duplicated clusters throughout the genome, we can deduce that they are probably also 

not independent. They are changing as part of the response to the constantly changing environment 

(for a recent example see McGrath et al. 2011). As such, they are probably not specific detectors of 

features, but fuzzy detectors that add just enough information to be preserved through evolution.   

Indeed, as the genetic data on ORs predicts, the responses of Olfactory Receptor Neurons 

(ORNs) are inherently combinatorial. In a tour-de-force experiment (Hallem and Carlson 2006) have 

characterized the response of more than half of the ORNs in Drosophila to a set of 110 odorants. A 

clear outcome of the study was that every odor elicited a response in several ORNs; and every ORN 
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was activated by several odorants (Hallem and Carlson 2006)(apart from a few labeled line examples 

that will be discussed later). This leads us to the inevitable conclusion that for a fly to identify an odor 

uniquely, inputs from different ORNs need to be integrated. The above principle is true for most 

organisms, from nematodes to humans (Ache and Young 2005). In the next section we will discuss 

the anatomy of the fly’s olfactory system and try to deduce the possible site for such integration.   

  

2.2 Mushroom Bodies Are the Main Sites for Olfactory Integration 

 

In this section I describe the evidence we had pointing to the Kenyon Cells (KCs) of the 

mushroom bodies as the main sites of integration along the olfactory circuit. The evidence is from 

both anatomical and functional studies. However, before we delve into the details, I will provide a 

brief description of the olfactory circuit of the fly.  

 

2.2.1 How Do Flies Smell? 

A lot has been learned about the fly olfactory system, from the different receptors that are 

expressed in each type of sensilla, to the different odorant binding proteins that facilitate olfactory 

perception (for a detailed review see Laissue and Vosshall 2008). For the purpose of my thesis, our 

main focus will be the connectivity pattern within the circuit, since it implies where integration of the 

different olfactory channels might occur.  
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Figure 2.1 Schematic of the fly olfactory circuit. See text for details. Image taken from Jefferis 2007 
Cell. 
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The first layer of the olfactory system in the fly is comprised of the Olfactory Receptor 

Neurons. Most ORNs express a single OR, in addition to co-receptor Or83b (Sato et al. 2008). All the 

ORNs that express the same receptor project to the same region in the Antennal Lobe called a 

glomerulus (see Figure 2.1) (Vosshall et al. 2000; Fishilevich and Vosshall 2005). In the antennal 

lobe, each glomerulus is innervated by several Projection Neurons (PNs). The antennal lobe also has 

several different types of Local Interneurons (LNs) that innervate numerous glomeruli, but we will 

discuss their function in section 2.2.3.2 . PNs that innervate the same glomerulus are considered to 

constitute a single PN type, since both their projection patterns and their spiking patterns are highly 

correlated (see below). For that reason, the olfactory system in Drosophila is usually regarded as 

having ~54 different input channels (the number of different glomeruli). Though still a substantial 

number when considering combinatorial activation patterns, it is far less than other commonly studied 

insects, or mammals.  

From the antennal lobe, PNs project to higher brain regions in the fly, which are called the 

mushroom bodies and the lateral horn. The lateral horn in Drosophila is considered to be responsible 

for innate olfactory behavior (e.g. Suh et al. 2004; Jefferis et al. 2007) and will only be discussed in 

this work in reference to the mushroom bodies. PN projections into the mushroom bodies form 

relatively large synaptic boutons (5-6µm) in a region called the mushroom body calyx. The boutons 

are innervated by the intrinsic cells of the mushroom bodies – the Kenyon Cells.  The KCs send their 

axons in bundles to output regions named the mushroom body lobes, and these contact a diverse 

group of extrinsic neurons. There are several PNs that innervate multiple glomeruli, but those are far 

fewer than the ‘typical’ uniglomerular PNs, and they mostly bypass the calyx (Tanaka et al. 2008; 

Okada et al. 2009).  
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2.2.2 Integration in Kenyon Cells– Anatomical Evidence 

Golgi impregnations of individual KCs in the fly revealed that these neurons form unique 

dendritic structures in the calyx (Strausfeld et al. 2003). The structures were described as claws, 

wreaths, clusters, or rosettes, but they all were comparable in size and matched PN bouton size. Later 

studies using 3-dimensional electron microscopy reconstructions have confirmed that PN boutons are 

in fact contacting KC claws (Leiss et al. 2009; Butcher et al. 2012). Furthermore, it has been shown 

that several KCs can contact a single bouton (Leiss et al. 2009), and that PNs are the main source of 

input to the KCs (Butcher et al. 2012). What remains undetermined is whether a single KC actually 

contacts several different PN types or just a single input channel.  

Another line of evidence that suggests KCs can integrate inputs comes from the study of PN 

projection patterns into higher brain regions. As mentioned above, PN dendrites in the antennal lobe 

are well organized and constrained within glomeruli. PN projections to the lateral horn, though less 

constrained, are still organized into regions. This is especially true for PNs that convey fruit odors 

versus PN that convey conspecific odors (Jefferis et al. 2007). Projections to the mushroom bodies, 

on the other hand, are considerably more intermingled (Marin et al. 2002; Jefferis et al. 2007; Lin et 

al. 2007). Though it is still possible to identify a PN type based on its projections (Lin et al. 2007), the 

arborization zones of different PN types in the calyx are much more overlapping than in the lateral 

horn. This divergent anatomical organization implies the mushroom body calyx is an integrative 

region.   

2.2.3 Integration in Kenyon Cells – Functional Evidence 

2.2.3.1 PNs Type as Single Input Channels 

Previously I stated that we can regard all the PNs that innervate a single glomerulus as a 

single type. The support for this claim is both anatomical and functional. As mentioned in the 

previous paragraph, projections to higher regions from the same PN type are highly similar between 
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different brains (Marin et al. 2002; Jefferis et al. 2007; Lin et al. 2007). Though some of the studies 

disagree as to the degree of similarity in the mushroom body calyx (Jefferis et al. 2007; Lin et al. 

2007), it is clear that projections in the lateral horn are stereotyped, and imply similarity of inputs.  

To address the similarity between PNs from the same type from the functional perspective 

(Kazama and Wilson 2009) performed dual recordings from homotypic PNs (from the same 

glomerulus). They have found that homotypic PNs are highly correlated, both in their sub-threshold 

activity and in their odor-evoked activity (Kazama and Wilson 2009). The correlations originated 

from the PN layer, since no correlations were found between ORNs from the same type. The dendritic 

arbor of a PN innervates the entire glomerulus (Kazama and Wilson 2008), and in fact all the PNs of 

one type connect to all the ORNs projecting to that glomerulus. Therefore, they receive exactly the 

same input, and can be regarded as multiple copies of the same channel.  

2.2.3.2 Integration in the Antennal Lobe Functions Mainly as Gain Control 

Though the antennal lobe contains both multiglomerular PNs and LNs, they are not 

considered to play a major role in integrating information across input channels. The multiglomerular 

PNs are the minority among the PNs and most of them bypass the calyx and project directly to the 

lateral horn (Tanaka et al. 2008). Though it is possible they play a role in integrating channels that 

elicit innate responses to odors, they are not considered to play a major role in acquired odor 

preferences.  

The LNs in the antennal lobe are also known to contact multiple glomeruli. However, recent 

studies have shown that LNs are mostly GABAergic and that their main function is to apply a gain 

control mechanism in the antennal lobe (Olsen and Wilson 2008; Olsen et al. 2010). Tracing 

individual LNs has shown that most of the neurons arborize to almost 90% of the antennal lobe, 

making specific integration a minor component of the layer (Okada et al. 2009; Chou et al. 2010). 

Additionally, by isolating direct and indirect inputs to PNs, Olsen et al. (2010) were able to show that 

the LN circuit boosts weak PN responses while attenuating strong responses, so as to increase the 
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dynamic range of the PNs. No specific integration across input channels was found (Olsen et al. 

2010). Although a modeling study has predicted a role for lateral inhibition also in decorrelating PN 

inputs, this is still achieved by global and not by specific integration (Luo et al. 2010). Note however, 

that it has also been shown that the coincident-detector Rutabaga is required in the PN for appetitive 

memory to form (Thum et al. 2007). 

2.2.3.3 Functional Integration in Kenyon Cells 

For years it has been well-established that the mushroom bodies are necessary for olfactory 

learning and memory. Studies that either ablated the mushroom bodies specifically (de Belle and 

Heisenberg 1994), or disrupted their activity during different phases of memory  (Dubnau et al. 2001; 

Schwaerzel et al. 2003; Krashes et al. 2007) have shown that these regions are necessary for acquired 

odor behaviors, but not innate odor preferences (see for example Suh et al. 2004). The flies in these 

studies still avoided the odors and the shock to a similar extent as wild type flies, which suggests that 

they did sense the odors, but they did not form any association. Forming a specific odor memory 

requires the full odor percept, which will require the integration across input PN channels.  

Additionally, we know from KC recordings that odor responses in this layer are sparser when 

compared to the PN layer, both in terms of the number of spikes evoked and the number of odors that 

evoke a response (Turner et al. 2008). In fact, a recent study from our lab has shown that sparseness is 

an underlying characteristic of the mushroom bodies (Honegger et al. 2011). As described in the 

introduction, sparse responses are usually indicative of higher integrative brain regions. If we return 

to Barlow’s model, a sparse and strong response is indicative that a significant meaningful event has 

occurred, and meaning can only be detected by integration.   

2.3 Of Mice and Flies 
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Evidence for integration of PN inputs can also be found from a comparison to the mammalian 

olfactory system. Surprisingly, the architecture of the Drosophila olfactory system is similar to that of 

mammals (for reviews see Strausfeld and Hildebrand 1999; Ache and Young 2005; Bargmann 2006). 

As in flies, sensory neurons express a single OR, and all the neurons that express the same receptor 

project to a single glomerulus in the olfactory bulb (equivalent to the antennal lobe; see also Figure 

2.1). Glomeruli are innervated by Mitral cells that project to higher brain regions like the piriform 

cortex (PCx) and the amygdala (mammalian equivalent to mushroom bodies and lateral horn, 

respectively). Naturally, the system is more complex in mammals. Most notably by various different 

forms of interneurons in the olfactory bulb (for an example on their processing role see (Fantana et al. 

2008), and by feedback from the cortex back to the bulb, which so far has not been convincingly 

shown in flies (but see Hu et al. 2010).  

The question of whether third layer neurons (PCx cells) receive convergent input from 

different glomeruli was also addressed in mammals, and can therefore shed light into our inquiry in 

flies. A recent anatomical study (Miyamichi et al. 2011) has used retrograde trans-synaptic tracers to 

label the connections between mitral cells and cortical cells. By counting the number of starter cells 

labeled in the cortex and the corresponding mitral cells labeled in the bulb, the authors were able to 

show that the different mitral cells converge onto a single cortical neuron. However, due to the 

inefficiency of the tracer it cannot be determined what is the exact number of mitral cells that connect 

to one cortical neuron. Additional tracing studies have shown that PCx projections of homotypic 

mitral cells are as similar as heterotypic projections, implying a low level of stereotypy (Ghosh et al. 

2011; Sosulski et al. 2011).  

Functional studies that addressed this question have also found evidence for input integration. 

(Stettler and Axel 2009) used calcium imaging in the cortex to find PCx cells that respond 

specifically to mixtures. A synergistic response to the mixture implies convergent input from different 

mitral cells (Stettler and Axel 2009). Similar results were found when imaging mitral cells 

presynaptic responses in the PCx, which accounts for intracortical connections (Mitsui et al. 2011). A 
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more recent study used glutamate uncaging to induce controlled activation of combinations of mitral 

cells. By recording the evoked responses in cortical cells, they were able to show that third layer 

neurons respond to specific combinations of inputs (Davison and Ehlers 2011). The responses were 

clearly supra-linear, implying that combinations of inputs are much more efficient at driving PCx 

cells.  

2.4 On Odor Objects and Their Creation  

 

We shall now take a brief hiatus from experimental evidence and return to a theoretical 

discussion. As you may recall, in the introduction we emphasized the role object construction plays in 

the extraction of meaning. Auditory objects are the independent sound sources detected in a stream; 

visual objects are ontological entities detected by edges and their orientations; but what is an olfactory 

object? And, more importantly, what is an olfactory object for a fly? 

An attempt to answer the first question was given in a recent review (Gottfried 2010). 

Gottfried sees the odor object as possessing similar qualities to that of a visual object. (1) Feature 

synthesis – an object is made up from several components that create a single percept. For a visual 

object the features are edges and colors; for an odor object they are the components of a mixture. (2) 

Figure-ground segmentation – an object can be separated from its background. For a visual object it 

is the ability to distinguish it from its surroundings; for an odor object it is the ability to detect it over 

a background odor. (3) Categorization – the ability to form equivalence groups for objects. For a 

visual object it could be the ability to group all images of an apple into a group “apple”; for an odor 

object it would be to group the different aromas of apples into a single group. (4) Separation – the 

ability to discriminate between similar objects. Continuing with the same example, for a visual object 

it is the ability to distinguish between Gala and Pink Lady; and for an odor object it would be the 

ability to distinguish between their aromas. All of these properties have been shown for odor percepts, 
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both in humans and animals (Gottfried 2010), making the concept of an “odor object” an 

experimentally useful concept.  

Though any perceived object can be regarded as the equivalence group that holds the same 

meaning, this is especially true for odors. When we smell an apple, even between our first and second 

whiff of it, the stimulus itself changes. Wind direction, background odors, humidity, temperature, and 

the discontinuous nature of the odor plume, all affect the actual composition of volatile chemicals. So 

if an object is in essence a category, creating an object means defining the boundaries of a category 

and refining them. In humans and rats we know that the boundaries can be very fine, since they can 

be taught to distinguish between enantiomers (Rubin and Katz 2001; Li et al. 2008). Considering the 

limited number of inputs entering the fly’s olfactory circuit, it seems safe to assume that its odor 

categories are much broader.  

In the mammalian olfactory circuit the assumption is that different regions are responsible for 

encoding different facets of an odor. As mentioned above, the amygdala is responsible for innate 

responses, and should therefore have broad odor categories. The PCx encodes quality in its posterior 

part and identity in its anterior part (Kadohisa and Wilson 2006). Odor categories in the PCx should 

be finer than the amygdala, and categories in the anterior part should be finer than those in the 

posterior part. If we now return to the fly’s circuit and take into account the small number of cells 

actually reading the mushroom body output, it is possible that the fly does not encode odor identity at 

all, but only encodes odor quality (fruity, flowery, minty, etc.). 

In this context it is interesting to speculate what do the mushroom bodies actually do in the 

circuit. We know that the highly specific response properties of KCs are distinctive within the 

olfactory circuit (Turner et al. 2008). Projection neurons, extrinsic neurons (that contact the 

mushroom body output), and probably also lateral horn neurons, are all more broadly tuned and 

respond with many more spikes (Wilson et al. 2004; Gupta and Stopfer 2011) Hige Toshihide 

personal communication). Based on these responses, I assume that if categorization is performed 

anywhere in the circuit, it is likely to be performed in the mushroom bodies. As a consequence, the 
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function of the KCs would be to encode these categories, refine them as a result of experience, and 

possibly also assign an input to a different category. If this is true, a predicted consequence is that 

associative learning in flies should induce a more generalized association than an equivalent 

association in mice, though it is not easily verified experimentally.  

This is another theoretical reason for integration to occur at the mushroom bodies. The first 

synapse of the circuit is one of amplification, with similar ORNs converging onto a single 

glomerulus. Within the antennal lobe the main processing is of gain control, which accounts for 

different intensity of the stimulus. If the KC layer is responsible for categorization, as its responses 

imply, then integration across channels should be a fundamental property of that layer.   

2.5 How do Animals Integrate Information? 

 

When we wish to consider how an organism integrates inputs to decide about an appropriate 

behavior, the simplest possible answer is – it does not! Labeled lines have long been suggested as the 

mechanism by which animals choose their actions. Since Sherrington’s “concatenation of reflexes” 

(Sherrington 1923) and Barlow’s “bug detectors” (Barlow 1953), it was thought that certain inputs act 

as triggers for certain behaviors in a very direct way. Current examples include studies on the CO2 

sensing glomerulus in Drosophila, whose activity alone evokes avoidance behavior (Suh et al. 2004). 

A similar concept was asserted in (Semmelhack and Wang 2009), who found that activation of certain 

glomeruli induced either innate avoidance or innate attraction to an odor (Semmelhack and Wang 

2009).  Similarly, in the gustatory system, it was found that a neuron in the sub-esophageal ganglion, 

which controlled proboscis extension, seemed to regulate extension by adding up the sweet and bitter 

inputs (Gordon and Scott 2009). In the latter two examples the response of the fly was seen as tallying 

the innate values and acting accordingly. However, since the responses are tallied, somewhere in the 

circuit a neuron needs to integrate inputs and “decide”, even in this labeled line scenario.  



	
   	
  30	
  

Recently the labeled line model has been challenged even on its most solid ground – innate 

behaviors in simple organisms. In C. elegans a switch between attraction and repulsion was found to 

involve just a single olfactory neuron (Tsunozaki et al. 2008). A neuron that was associated with 

attraction was found to induce repulsion by simply using an alternative mode of neurotransmission, 

and without invoking any of the known avoidance neurons (Tsunozaki et al. 2008). Work done in 

pheromone processing in moths has found that even in the macro-glomerular complex coding is still 

combinatorial and the pheromones of different species are distinguished by the ratios of the 

components and not their identity (Galizia and Rössler 2010). Studying social recognition in ants, 

(Brandstaetter and Kleineidam 2011) have shown that odor-cues from nestmates and non-nestmates 

evoke overlapping response patterns in the antennal lobe (Brandstaetter and Kleineidam 2011). This 

again suggests that combinatorial processing is integral to even these highly specific innate behaviors.  

To cross the chasm between stimulus and behavior we must therefore consider combinatorial 

coding and integration across different input channels. A recent study from the Konnerth lab, for 

example, has examined integration in cortical neurons by looking at dendritic hotspots and their 

distribution along the dendritic tree (Jia et al. 2010). The authors were able to detect individual inputs 

on the dendritic arbor, characterize them, and deduce that adjacent dendritic segments are tuned to 

distinct orientations. However, it still seems an insurmountable challenge to deduce how receiving 

random orientations inputs dispersed along the arbor would produce a specifically tuned neuron. 

Another study of dendritic integration was focused on the barrel cortex and was therefore able to 

assess the contribution of individual inputs. By comparing responses to the primary whisker versus 

the surround whisker, the authors were able to show that some dendritic hot spots respond to both. 

Although the authors have shown integration within a hotspot, it is still unclear how it relates to the 

integration performed by the entire dendritic arbor (Varga et al. 2011). Due to the size of pyramidal 

neurons and the number of synaptic partners these studies can only provide a glimpse into the 

intricate dynamic network that drives a cortical neuron. And that is why we have chosen to focus on 

KCs as a model for combinatorial coding. 
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As mentioned, Drosophila KCs have only a few olfactory inputs (between 5-7). The inputs 

themselves are clearly demarcated by the claw structure, which facilitates online identification for in-

vivo manipulations. The olfactory system in flies has been very well characterized in its first two 

layers (Vosshall et al. 2000; Hallem and Carlson 2006; Jefferis et al. 2007), so the inputs to the 

system and their properties are known. Additionally, the powerful genetic toolbox in flies allows us to 

manipulate different layers independently and assay the effect on integration output.  

 

2.6 Synopsis  

 

Inputs from individual ORNs converge onto few PNs, and these in turn diverge within the 

mushroom body calyx. In the next layer, the Kenyon cells display both unique anatomy, with several 

distinct dendritic claws, and unique functional properties, with sparse and brief responses. It all points 

to the KCs being the main site for integration of olfactory input channels. It is thought that this type 

of integration diversifies the available tuning curves in the olfactory system, thus enabling more 

specific odor responses. But how does a KC integrate? How many different inputs does it actually 

receive? And how many of them must be active to induce a response? At one extreme is a KC as an 

obligate integrator that only spikes when all its inputs are firing. This will ensure sparse responses and 

will generate new and narrower tuning curves than those possessed by PNs. On the other extreme is a 

KC as an amplifier that receives inputs from identical PN types. This will decrease detection 

threshold and confer identification of odor specificity to the next layer in the brain. We have decided 

to test where between these two extremes lie the response properties of KCs. For that purpose we 

have devised two experiments.  

The first experiment was designed to test whether dendritic claws of an individual KC receive 

different inputs. We used calcium imaging in individual KCs to establish the odor tuning curves of all 
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the dendritic inputs to the cell. By comparing tuning curves of different claws we conclude that KCs 

receive different inputs channels.  

The second experiment was designed to test how many different inputs must a KC receive 

and how strong do they need to be, for a KC to spike. We have used a sparsely expressing PN driver 

to drive Channelrhodopsin-2 (ChR2) in just 3 glomeruli out of the 54. Using whole cell recordings we 

then establish the functional relationship between the PN subset and a particular KC. Post-hoc 

imaging allowed us to determine the number of anatomical connections between the recorded cell and 

the stimulated PNs. Combining the functional and the anatomical results showed that KCs require 

three active inputs to fire reliably, and that spatial integration across claws is more effective than 

temporal integration within a claw.  
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3 Dendritic Tuning Curves Show KCs Receive Different PN 

Inputs 

 

3.1 Abstract  

 

The experiment described in this chapter was designed to answer one of the open questions in 

fly olfaction: do KCs integrate inputs from different PN types or do they receive information just 

from a single type. In other words, do KCs utilize the combinatorial code, forming the odor percept, 

or do they function as labeled lines, transmitting specific odor channels reliably.  

To address this question we chose to characterize the tuning curves of all the PN inputs of an 

individual KC. We reason that since the inputs coming from the same PN type are highly correlated 

(Kazama and Wilson 2009), rank order inversions will indicate different inputs converging onto the 

same cell. By expressing GCaMP3 (Tian et al. 2009) in individual KCs we were able to acquire 

olfactory responses of KC dendritic sites in a live fly. Comparing the tuning curves of all the inputs 

from the same cell allowed us to conclude that KCs do receive different inputs. Additionally, we see 

that those inputs are more correlated than chance, implying a biased sampling of PN inputs.  

 

3.2 Background  

 

As discussed in the Introduction, there are both anatomical and functional reasons that lead us 

to believe integration of olfactory input is occurring at the KC layer. Functionally, it has been known 

for quite some time that the mushroom body is involved in olfactory conditioning (de Belle and 

Heisenberg 1994). Since the region is required for forming a specific olfactory memory (i.e. 
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associating a particular odor with a particular punishment or reward), it is likely that the odor percept 

has to form in this layer. Additionally, it is known that KC odor responses themselves are sparse and 

specific (Turner et al. 2008), which is a hallmark for higher integrative brain regions. 

Electron microscopy reconstruction studies (Yusuyama et al. 2002; Leiss et al. 2009; Butcher 

et al. 2012) have established that the main inputs coming to a KC are through its connections with the 

PN boutons. Each KC has between 5-7 input sites (Butcher et al. 2012, and our data) with which it 

contacts the PN boutons in the calyx. Each site is clearly demarcated by a claw shaped structure that 

is comparable in size to the KC soma (3-4µm) and sometimes even bigger (Strausfeld et al. 2003). 

This unique anatomy allows us to identify the KCs olfactory input sites online in functional imaging 

experiments, focus on these regions, and determine their odor response properties.   

Our hypothesis is that a single KC receives inputs from several different PN types. To test 

this we looked for differences in the response properties of dendritic claws belonging to the same cell. 

There are two experimentally supported assumptions that bridge between this hypothesis and our 

practical approach: (1) Claws are the main point of contact between PNs and KCs. (2) PN inputs of 

the same type are highly correlated. Assumption 1 is supported by several studies from the 

Meinertzhagen lab (Leiss et al. 2009; Butcher et al. 2012), and assumption 2 is supported by studies 

from the Wilson lab (Kazama and Wilson 2009). For more details on the supporting experiments 

please refer to sections 2.2.2 and 2.2.3.1, respectively. 

These studies provide a basis for us to deduce that different odor response properties in the 

claws of a KC reflect differences in PN input. Naturally, not any difference in the tuning curve 

indicates different PN inputs. Differences in magnitude of response across claws or even tuning 

curves that appear to be thresholded versions of one another could simply arise from technical reasons 

(e.g. differences in GCaMP levels). Therefore, only rank order inversions in the tuning curves would 

imply different inputs, and those have been the focus of our analysis. 
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3.3 Methods 

 

Fly strains 

Flies used in this experiment were 2-5 day old females generated from crossing hs-FLP, tubP-

Gal80, neoFRT(19A); UAS-GCaMP3; myr-tdTomato/TM3, ser to neoFRT; OK107 flies. The first 

stable line for the cross was generated using Bloomington stock 5133 (hs-FLP, tubP-Gal80, 

neoFRT(19A); Pinyt/CyO), crossed with UAS-GCaMP3 (courtesy of Loren Looger), and myr-

tdTomato (courtesy of Tom Clandinin). The second line was generated from Bloomington stock 1744 

and Gal4-OK107 (Connolly et al. 1996). The above cross produced heterozygote flies that were then 

heat shocked to generate single or double cell clones using the Mosaic Analysis with a Repressible 

Cell Marker (MARCM) technique (Lee et al. 1999). This allowed us to express the red tdTomato as 

an anatomical marker, and the green GCaMP3 as a functional indicator in a single KC. 

Generating sparsely labeled clones  

To generate single cell clones we decided to use the MARCM technique. The technique 

induces a mitotic recombination between two FRT sites. The event is stochastic and is initiated by 

expressing Flipase from a heat shock promoter. The recombination releases the Gal4 driver from its 

Gal80 repression in a clone of cells (for more details see Lee et al. 1999). The following procedure 

was used to generate the clones.  

Mated females were transferred onto an agar plate in the morning and encouraged to lay eggs 

by supplementing the plate with a dab of yeast paste. After 4 hours the females and the yeast paste 

were removed, and the plate was placed in a 25°C incubator for 23 hours. The following morning the 

plate was cleared from all the hatched larvae and placed in the incubator for an additional 2 hours. 

The newly hatched larvae were then collected into a fresh vial and placed back at 25°C. After an 

additional 4 days, vials were transferred into a heated water bath and heat-shocked for 20-30min at 

37°C. 4 days were selected to increase the probability of labeling α`/β` neurons, which are known to 
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be more responsive to odors (Turner et al. 2008). 20-30min was selected to increase the probability of 

generating either a single or a double-labeled clone (dual clones were imaged only when the 

processes were clearly separated). We have found that by using this protocol we could get a useful 

clone, on average, every 4 flies (the two brain hemispheres mean that each fly is in fact two separate 

experiments). 

Animal preparation  

Flies were anesthetized on ice briefly and inserted into a hole cut in the aluminum foil of the 

recording platform. The fly’s head was tilted forward so as to expose the caudal part, and the fly was 

glued to the platform using fast drying epoxy (Devcon 5min Epoxy). The position of the fly was such 

that the antennae were exposed to the air below the recording platform, while the head capsule could 

be opened and exposed to saline on the upper side of the platform. Sometime it was necessary to glue 

to proboscis inside its socket. The proboscis retractor muscles (Muscle 16) were removed from 

between the antenna to minimize brain movement. The head capsule was opened using fine forceps, 

the air sacks, and fat residues were removed, but care was taken not to remove the peri-neural sheath.  

Odor delivery 

Chemicals used in the study were: apple-cider vinegar (Richfood), 1-Hexanol (CAS No. 111-

27-3), 2-Phenylethanol (60-12-8), Pentyl acetate (628-63-7), Methyl benzoate (93-58-3), trans-2-

hexanal (6728-26-3), Geraniol (106-24-1), and 3 essential oils from AuraCacia: Peppermint, Pine and 

Orange. Odors were presented using a custom-built odor-delivery system at a flow rate of 1liter/min 

(for more details see Honegger et al. 2011). Odors were delivered at a 1:20 air dilution to increase 

response probability. Odor pulses were 1sec long and reached the fly with a latency of ~400ms after 

valve switching (due to the distance between the final valve and the platform). Photoionization 

detector (PID) traces were recorded for most odor presentation to ensure stimulus reproducibility. 

Odors were diverted to the PID by a separate tube with an identical length, to recapitulate the latency 

to the fly.  

Calcium imaging  
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Two-photon imaging was carried out using a Prairie Ultima system (Prairie Technologies) 

and a Chameleon Ti-Sapphire laser (Chameleon XR, Coherent Inc.) tuned to 920 nm. Laser power 

was tuned to deliver the minimal amount of power that still allowed detection of the dendritic 

processes in the red channel (not more than 8mW at the sample). All images were acquired with 

Olympus water immersion objectives (LUMPlanFl/IR 60x, 0.90 NA). Extracellular saline contained 

(in mM) 103 NaCl, 3 KCl, 4 MgCl2, 1.5 CaCl2, 26 NaHCO3, 5N-tris(hydroxymethyl) methyl-2-

aminoethanesulfonic acid, 1 NaH2 PO4, 10 trehalose, and 5 glucose. Saline osmolarity was adjusted 

to 275 mOsm with sucrose if necessary and equilibrated to pH 7.3 by constantly bubbling with a 

mixture of 95% O2 -5% CO2. The preparation was continuously superfused with this solution 

throughout the recording. 

Flies were dissected and placed under the microscope to identify whether they possessed a 

useful clone (either single cell or 2-cell clone with non-overlapping processes). When such a clone 

was found a low-resolution z-stack was taken so as to identify all the possible claws of that clone. 

Claws were then imaged sequentially (claws were imaged simultaneously only when they were 

exactly on the same image plane) at a frame rate of around 12Hz. If the first 3 dendritic claws of a 

cell did not display any odor response acquisition was aborted.   

Odors were presented at least 3 times in a pseudo-random order using custom built Matlab 

routines (MathWorks 2010). The inter-stimulus interval was 18s, with a 1s odor pulse delivered 8sec 

after trial onset. Data were acquired from 4s prior to stimulus delivery until 6s after.  

Data analysis 

Data were analyzed using custom routines written in Matlab. To correct for motion artifacts 

we aligned frames from the same trial by calculating a translational-based discrete Fourier analysis 

(Guizar-Sicairos et al. 2008) on the red channel and applying the translation on both channels. Since 

each individual frame was too noisy to allow for movement correction, 3 sequential frames were 

averaged, then median filtered, and the resulting translation was applied to the middle frame. The 
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same algorithm was then applied again to the mean images of each trial to correct for movement 

between all the trails from the same claw.  

A Region of Interest (ROI) was selected manually for each claw in the frame. The ROI was 

tailored to the actual image of the claw by identifying the right-most trough in the log-histogram of 

pixel values (this was based on the observation that ROIs in the ‘background’ areas of the frame lack 

the right-most component). Using this algorithm, pixels that lacked signal throughout the presentation 

were eliminated from the ROI.  

To calculate the magnitude of the response the following steps were taken. First, the mean 

fluorescent (F) signal was calculated for green (GCaMP) and red (tdTomato) channels separately 

based on the corrected ROI. Second, the red channel was corrected for photo-bleaching by fitting an 

exponential to the means of red F values of all the trials from the same claw (only the red channel was 

corrected since it displayed obvious bleaching between trials). Third, frames in which the red signal 

was 2 standard deviations below the mean for that claw were discarded from the analysis. If a trial 

had more than 65% of its relevant frames (frames in the baseline and response periods) discarded 

based on this criterion, the whole trial was discarded. Fourth, a ΔFGreen/Fred value was calculated for 

each frame using this formula: (F(t)Green – FbGreen)/ F(t)Red. Here F(t) is the fluorescent signal for that 

frame and Fb is the baseline fluorescence (defined as mean F 3s before the odor delivery valve 

opens). Finally, the response to the odor is calculated for each ROI by adding ΔFGreen/Fred values that 

were bigger than two standard deviations from the baseline. If no such frames were found the 

response was defined as zero, and no negative responses were calculated. The calculated responses 

will be referred to from hereon as ΔG/R. 

Tuning curve correlation  

To calculate the correlations between different tuning curves we chose the rank based 

correlation measure Kendall’s τ. The built-in Matlab function corr was used with the ranks being 

generated by the tiedrank function. The reason we chose this measure was to account, at least 

partially, for technical thresholding artifacts. The measure itself calculates all the shared ordered pairs 
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of the 2 rank sequences and subtract all the non-shared ordered pairs. Normalizing by all the possible 

pairs generates the correlation value (see explanation for Figure 3.5 for more details).    

 

3.4 Results 

 

Flies rely on olfactory cues to find food, mates and oviposition sites, which is probably 

irrelevant for this thesis. However, flies are also capable of forming associations between novel odors 

and aversive or appetitive stimuli (Tully and Quinn 1985; Schwaerzel et al. 2003). Since even 

monomolecular odors evoke responses in several distinct input channels (Hallem et al. 2004; Hallem 

and Carlson 2006), forming specific associations would require integration across said channels. We 

have decided to focus on KCs as the likely site of integration for several reasons. First, earlier layers 

do not show any local integration. Although LNs do contact several glomeruli, they usually cover the 

entire antennal lobe and mainly provide global gain control (Kazama and Wilson 2009; Okada et al. 

2009). Second, the unique anatomical structure of KC dendrites implies integration. KCs have large 

claw-like dendritic structures that have been shown to contact large PN boutons (Leiss et al. 2009). 

Yet, It is still unclear whether they actually contact different PN types. Third, KCs unique response 

properties imply integration. Both neurons of deeper layers and neurons of more superficial layers 

show odor responses that are more broadly tuned. KCs sparse and specific responses (Turner et al. 

2008; Honegger et al. 2011) are indicative of higher integrative brain regions.  

To reveal whether KCs are the actual site of olfactory integration we chose to characterize 

odor-tuning curves of individual dendritic inputs from the same cell. For that purpose we have 

expressed the genetically encoded Ca+2 indicator, GCaMP3, in individual KCs and assayed their 

olfactory responses throughout the dendritic tree.  
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3.4.1 KC Dendritic Claws Generate Distinct Responses to Odors 

To assay odor responses from all the dendritic claws of a neuron, we have optimized 

conditions to both increase the probability of sparsely labeled clones and increase the probability of 

seeing a response. Since the clones analyzed in this study were generated using the MARCM 

technique (Lee et al. 1999), it was necessary to adjust the duration of the heat-shock so as to produce 

single cell clones, and to determine the heat-shock timing so the clones would be from the α`/β` 

population (see Methods). We chose to focus on single cells, since it removed the need to trace 

neurites and assign individual claws to a neuron. And we focused on the α`/β` population to increase 

the probability of seeing an odor response (Turner et al. 2008). Figure 3.1A shows the distribution of 

cell types in this study, and it is clearly biased towards the α`/β` population. However, since we could 

not find any obvious difference between the types, for the purpose of our analysis we have grouped 

all the cells and treated them as a single population. Figure 3.1B shows the number of connections 

assayed for each cell in this study, which conforms with previously published results (Butcher et al. 

2012). Cells vary in the number of claws they possess but the vast majority have between 4-7 such 

claws, and in most cases the claws imaged are all the claws of a cell (we have not quantified the 

discrepancy between the number of claws imaged versus the number of claws the cell has, since it is 

not pertinent to our question).  
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Figure 3.1 Properties of cells analyzed by functional imaging of dendritic claws and soma. 
(A) Distribution of the different cell types imaged. (B) Distribution of the number of claws 
imaged per cell 
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Next, we wanted to verify that we could detect odor responses in dendritic claws and that 

those responses would be reproducible. For that purpose we expressed GCaMP3 and myr-tdTomato 

in individual cells, identified their dendritic claws online, focused on each claw individually, and 

acquired their odor responses (Figure 3.2). The rationale for using the red channel was three-fold: (1) 

it allowed us to acquire a low-resolution z-stack and identify the location of the claws within that 

stack (2) while imaging responses, it allowed us to decrease laser power to the minimum so as to 

avoid bleaching and photo-damage (3) in the post-hoc analysis phase, the red channel provided an 

independent measure of image quality and consistency (see Methods).  

Responses in the claws are easily identifiable and different odors evoke different responses 

(Figure 3.2Aiii vs. Aiv and Biii vs. Biv). Note that although the two claws depicted in Figure 3.2A are 

clearly from the same cell and are connected by a short neurite, they exhibit independent responses to 

the odors. Both claws show a strong response to apple cider vinegar, but only the right claw responds 

strongly to methylbenzoate (Figure 3.2Aiii vs. Aiv). Claws were not always imaged simultaneously, 

because of the difficulty of capturing them in the same plane, but when they were (as in this 

example), independent responses were evident (data not shown).  
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A 

Aii Ai 

Aiii Aiv 

B 

Bi Bii 

Biii Biv 

Figure 3.2 Independent responses to odors in dendritic claws. (A,B) maximum Z-stack projection of two 
example cells. Boxes demarcate the magnified region presented below. (Ai) Mean fluorescence image of 10 
frames from the Red channel. (Aii) Mean fluorescence image of 10 frames for the green channel prior to odor 
exposure. (Aiii) Mean fluorescence image for 10 frames in response to apple cider vinegar. (Aiv) Same as Aiii 
only in response to methyl-benzoate. (Bi-ii) Same as Ai-ii but for corresponding cell. (Biii) Mean fluorescence 
image for 10 frames in response to orange. (Biv) Same as Biii only in response to pentyl acetate. For each cell 
the color scale is the same for all images.  
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Having identified responses, our subsequent goal was to quantify them and establish their level of 

reliability. We chose to calculate ΔG/R, since dividing by the red channel circumvented the problems 

arising from dividing by the much weaker green signal, which during the baseline period was close to 

zero (see again Figure 3.2Aii and Bii). Each claw was presented with 10 different odors and a clean air 

control 3 times in a pseudorandom manner (the same odor was never presented twice in a row). Odors 

were selected from different chemical classes and included 6 monomolecular odorants and 4 natural 

complex mixtures that were meant to increase the probability of seeing a response. Figure 3.3 shows 

the response curves to all the odors from a single claw. As can clearly be seen, the claw responded 

only to certain odors from the panel, and the responses are fairly consistent between repeats. We have 

quantified the responses by summing the area underneath the response curve that was above a 

baseline-derived threshold (for details see Methods). The figure shows the individual thresholds 

determined for each odor and each presentation, and also examples of false positive (third response to 

2-phenylethanol) and false negative calls (third response to 1-hexanol). Having calculated the 

responses of all the individual claws to all the odors, we could now compare between the different 

claws from the same cell.  
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Figure 3.3 Odor responses from an individual dendritic claw. The plot presents all the data acquired from one 
claw. Each subplot is the response to one odorant, and each color represents a different odor presentation trial. 
X-axis is given in frames and Y-axis in ΔG/R. Odors were presented in a pseudorandom manner and grouped for 
display. Bold bars at the bottom left of each subplot represent the threshold for a significant response. Bold lines 
demarcate the frames that were used to calculate the response magnitude. Gray bars in each subplot delineate 
odor presentation. 
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3.4.2 Claws Exhibit Different Degrees of Similarity 

If a single claw shows a well-defined tuning curve to our panel of odors, what are the 

responses of all the dendritic claws from a single cell? And, do all the cells show a similar level of 

correlation between their claws? To address these questions we first examine the entire response 

repertoire acquired from five example cells (Figure 3.4). Each row in the figure represents the data 

from a single cell, while each column is a claw from that cell (column are arranged based on the 

overall response magnitude). This plot also depicts the reproducibility of claw responses, since each 

dot denotes the magnitude for a particular trial and each bar is the median response. Qualitatively, it is 

clear that different cells display different degrees of similarity in their inputs. Cell 1, for example, 

seems to share just a single input channel, albeit a broadly tuned one. Cell 3 also seems to share 

mostly a single input channel, though this is a narrowly tuned channel that responds strongly just to 

apple cider vinegar. Cell 2 seems to receive a different input channel in each one of its claws (all 

relatively narrowly tuned). And cells 4 and 5 display a mixture of both phenotypes. Claws 7 and 5 in 

cell 5 have the same tuning curve, while claws 4 and 3 are highly dissimilar (note that claw numbers 

indicate the order in which they were imaged, while their position in the plot indicates magnitude of 

response).  
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Figure 3.4 Dendritic claw tuning curves show evidence of both integration 
and amplification of input. The figure presents five example cells from the 
dataset. Each subplot is data from a single cell, while each column is data 
from a single dendritic claw. The X-axes are the magnitude of the 
fluorescence response (ΔG/R) and the Y-axes are the different odors. Claws 
are arranged from the strongest responding to the weakest responding, while 
odors are arranged by the somatic response for that cell.  
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To capture this qualitative impression of similarity between claw tuning curves we decided to 

use Kendall’s τ as our rank-order correlation measure. Since this measure is not commonly used I will 

include a brief description of its logic and the reason we chose it. The algorithm for calculating the 

measure is as follows. First, one generates all the ordered pairs from the lists that are being correlated. 

For example, if the lists are {1,2,3} and {1,3,2}, then their ordered pairs will correspondingly be 

{[1,2], [1,3], [2,3]} and {[1,3], [1,2], [3,2]}. Next, one subtracts the number of all the discordant pairs 

from the number of concordant pairs (in our example: 2-1). Next, this number is normalized by all the 

possible non-ordered pairs for a list of that size (in our example: 3). Normalizing limits the measure 

to values between 1 (completely concordant) to -1 (completely discordant). A τ value is given by the 

formula:  

 

The reason we chose this correlation measure was to be conservative in what we deem to be 

different tuning curves, as will become clear in the example in Figure 3.5. 

The conversion from a set of tuning curves into a correlation matrix is displayed in Figure 

3.5, with Figure 3.5A presenting the tuning curves of all the claws from a single cell, and Figure 3.5B 

presenting its corresponding Kendall’s τ matrix in a color coded manner. The high degree of 

similarity between claws 1 and 2 is clearly captured by the measure. The similarity between claw 3 

and claws 1 and 2 is still relatively high, which is because claw 3 could be regarded as a thresholded 

version of claw 1. Since thresholding can result from several technical differences (e.g different 

GCaMP levels in different claws, using a different laser power and/or a different PMT gain), we did 

! 

" =
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not want to regard it as stemming from a biological difference. Claw 4 however, both clearly 

represents a different input and has a very low correlation value.  

 

 

 

 

A B 

Figure 3.5 Determining odor tuning similarity across dendritic claws. (A) Example showing claw and somatic odor tuning of a 
single cell using the same conventions as in figure 3.4. (B) Correlation matrix (Kendall’s τ ) for the claw tuning curves from the cell in 
A. Notice that the soma is excluded from the analysis. 
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3.4.3 Kenyon Cells Receive Different Inputs 

KCs with a high correlation values can be considered amplifiers, since most of the signal they 

receive is from the same PN channel. KCs with a low or negative correlation value are integrators, 

since most of their inputs are clearly different. Having measured the correlations between all the 

claws, we can now look at the overall distribution of correlation values within each cell. By 

considering the correlation distribution of each individual cell, we can see that there is no clear 

distinction between the 2 types (Figure 3.6A). The individual lines span a range from highly 

correlated to highly non-correlated, with no apparent discontinuity in between. Even within a cell we 

can sometimes see a combination of both extremes. The third cell from the top (Cell 32), for example, 

has identical inputs in all of its claws but one, which is highly uncorrelated (Figure 3.6A). Figure 

3.6B shows a histogram of all the pooled pair-wise correlation values calculated for all the claws of 

each cell separately (the figure can be regarded as a projection onto the x-axis of the Figure 3.6A). 

Several observations are evident from this histogram. First, the correlation values span a wide range, 

from 1 (identical within the limits of our detection) to -0.5 (almost completely inverted rank order). 

Claws with a correlation of 1 display tuning curves like cell 1 in Figure 3.4. As can be seen from the 

histogram, there are several such cells. Claws with a correlation value of -0.5 show comparable 

similarity to that between the claws of cell 2 in Figure 3.4. Second, it is clear from the abundance of 

low correlation values that KCs do receive different input channels. Even if we consider only the 

stringent threshold of 0.2 as considerably different, we can see that more than 15% of the pairs get 

different inputs (though there is a statistical test for Kendall’s τ, the limited number of odors tested 

and the even more limited number of actual responses in each claw decrease the power of the test 

considerably and make its use in this case irrelevant). Third, as is clear from the comparison between 

the experimental correlation values and the randomly generated correlations (Figure 3.6C) there are 

more high correlation values than expected by chance.  
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High correlation values could result from two different reasons: (1) KCs get different inputs 

but the inputs are more correlated than expected by chance. (2) Back-propagating action potentials 

that induce the same reaction in claws not because of similar inputs, but due to a shared output. To 

address the second possibility partially, we recalculated all the pair-wise correlations between the 

claws excluding all the odors that evoked a somatic response for that particular cell (Figure 3.6D). As 

can be seen, the distribution of τ values in Figure 3.6D still has higher correlation values than the 

random distribution, implying again stronger correlation than by chance alone. Though there are still 

certain caveats with this approach (GCaMP is not calibrated in these cells and so action potentials are 

not necessarily represented with a somatic response), these results indicate that the inputs are more 

correlated than by chance. In other words, KCs tend to sample PNs that have similar tuning curves, or 

possibly even sample PNs from the same channel more than once. We will postpone the discussion on 

the correlated inputs to the end of the next chapter, since it presents corroborating evidence.  

 

3.5 Discussion 

 

The olfactory modality has always been regarded as an intrinsically combinatorial sense. 

Inputs in the first layer of the system (both in flies and mammals) are broadly tuned and respond to 

numerous stimuli, while even simple monomolecular stimuli evoke responses in several ORN types. 

This implies that to generate the complete percept of an odor, integration between the channels has to 

occur. Based on our current knowledge of the fly olfactory system it was postulated that the majority 

of channel integration occurs in the KC layer. Using single cell 2-photon in-vivo imaging we were 

able to show that the inputs coming into different dendritic claws of the same cell are functionally 

distinct. Since the differences between the claws involved rank order inversions in their tuning 

curves, we deduce that KCs do, in fact, receive inputs from different PN channels. Interestingly, the 

level of correlations we saw between the claws from a single cell was higher than expected by 
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chance. Though we cannot prove this definitively, we believe the reason for that is due to inputs with 

correlated tuning connecting to the same KC. In other words, KCs receive different PN inputs but in a 

biased way – they tend to connect to PNs with similar odor tuning properties. 
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4 Kenyon Cells Functionally Integrate Inputs 

 

4.1 Abstract 

 

In the previous chapter we have shown that KCs receive inputs from different PN types, but 

do they really integrate those inputs in order to spike? If KCs function as obligate integrators in the 

olfactory pathway, only when all of their inputs are active will the KC spike. The experiment 

described below addresses the question of how many inputs are needed to drive a KC to spike. We 

used ChR2 to stimulate a small subset of PNs and recorded the evoked responses in single KCs using 

whole-cell recordings. By expressing YFP together with ChR2, and dye-filling the KC during the 

recording, we were able to correlate the response evoked with the number of physical connections 

between the PN subset and a particular KC. Our results show that responses become stronger and 

more reliable when three or more connections are active. By examining responses to individual spikes 

we also show that integration between claws is more efficient than integration within a claw. Finally, 

by looking at the distribution of the number of connections, we are able to corroborate our finding 

from the previous chapter that KCs’ connection to PNs is biased.  

 

4.2 Background  

 

KCs are notorious for their sparse responses. When compared to the earlier layers in the 

pathway (ORNs and PNs), KCs respond to fewer stimuli, with fewer spikes, and with fewer cells in 

the population responding to any particular odor (Murthy et al. 2008; Turner et al. 2008; Honegger et 

al. 2011). Though this response pattern is characteristic of higher brain regions, it is still unclear how 
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KCs achieve this level of sparseness. In the previous chapter we have shown that KC claws have 

different odor tuning curves, and therefore that an individual KC receives input from more than one 

PN type. However, we do not know if KCs actually require those different inputs in order to spike.  

Considering the particular anatomy of a KC it seems unlikely that the activation of a claw 

will have no impact on the spiking properties of a cell. This seems especially true if we recall that 

each KC claw forms more than 20 active zone contacts with a single PN bouton (Leiss et al. 2009). 

Since dendritic claws are the main source of input for a KC, and since each KC only has between 5-7 

claws that are comparable in size to its soma, evidence for different inputs in the claws strongly 

support functional integration in KCs. However, it is still unclear how many of the inputs need to be 

active to induce KC spiking and how strongly they need to fire to drive the KC above spike threshold.  

For the purpose of this experiment, we chose to drive ChR2 in a subset of PNs using the 

Mz19 driver line. We chose this line since it drives expression in 3 out of the 54 different PN types 

(Jefferis et al. 2004). The labeled glomeruli themselves (VA1d, DA1, DC3) are of less consequence 

for our purpose. Rather, this line provides us with strong and sparse expression in the PN layer. 

Strong expression ensures that we will be able to drive PN activity to levels comparable to an odor 

stimulus; and sparse labeling ensures that we are able to detect individual connections between PN 

boutons and KC claws. Naturally, there are sparser lines, but those will reduce the probability of 

finding a connection.  

Although we are using light microscopy to detect synaptic connections, we believe that 

considering the unique KC anatomy, it is tenable. Each individual dendritic claw is usually a large 

complex structure that forms multiple connections with a PN bouton (~5µm in diameter). Therefore, 

identifying a single connection will usually entail an overlap between 2 complex structures across 

several frames of a confocal stack (see Figure 4.5). While not providing the same degree of certainty 

as electron microscopy reconstruction, we believe that it is sufficient for our purposes.  
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4.3 Methods 

 

Fly strains 

Flies used in this experiment were 5-7 day old heterozygous females generated from the 

Gal4-Mz19 (Tanaka et al. 2004) to UAS-ChR2-YFP (Hwang et al. 2007) cross. Flies were collected 

on the day of eclosion and transferred onto agar plates where they were supplied with yeast paste 

supplemented with 5mM all trans-retinal. The flies were then reared in the dark for 2 days, 

supplemented with a fresh plate of yeast paste retinal, and used for recordings for the next 2 days.  

Animal preparation  

For KC whole cell recordings flies were positioned in the same angle as described in section 

3.3. The antennae were surgically removed to reduce baseline activity and facilitate identification of 

photostimulation-evoked activity (Olsen et al. 2007). For PN cell-attached recordings, flies’ head was 

tilted backwards so that the antennae appeared on the upper side of the recording platform. The 

cuticle cover between the eyes and the antennae was removed completely to expose the antennal 

lobes. Extracellular saline used for both preparations was identical to that described in the previous 

chapter.  

Whole cell and cell attached recordings 

The saline in the recording electrode contained (in mM) 125 L-K aspartate, 10 HEPES, 1.1 

EGTA, 0.1 CaCl2, 4 MgATP, 0.5 Na3GTP, and for the whole cell recordings 250µM Alexa568 

hydrazide was added fresh to the internal solution prior to each experiment (internal solution 

osmolarity was adjusted accordingly). Details for KC recordings are described elsewhere (Turner et 

al. 2008). Cell-attached PN recordings were done under similar conditions with marginally bigger 

pipettes to impede spontaneous break-in. A strong current pulse (500pA for 500ms) was delivered at 

the end of the recording to verify that no spikes are generated and no spontaneous break-in occured. 

Selection criteria for KC whole cell recording included both the quality of the recording and the 
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possibility of a connection. For quality control we have injected each cell with a current ramp and 

determined the spiking threshold at three separate times throughout the experiment. Cells in which 

spikes could not be detected were excluded from the analysis. Though some cells with no connections 

were analyzed fully in this experiment, we often aborted the recordings of cells that did not show any 

sign of functional connection. If after three repeats of the entire stimulus set, there was not obvious 

response in the KC, the recording was aborted and the cell was not processed any further.  

Tetrodotoxin (TTX) and Mecamyamine were applied to the bath by mixing them into the 

regular bath saline at a concentration of 1µM and 100µM, respectively. Solutions were prepared fresh 

from a frozen concentrated stock prior to each experiment.  

Light stimulation 

Light stimulus was delivered using a THORLABS high-power LED driver (LEDD1B) 

driving a blue LED (470nm) at 1Amp, mounted on a THORLABS collimated LED holder (LEDC1). 

We used a Matlab code to control stimulus duration. Light was delivered through the objective and 

bathed the whole preparation.  

Confocal imaging 

After data acquisition, the brain was dissected out of the head capsule and immediately 

transferred to a Phosphate Buffer filled vial. Para-formaldehyde was then added to the vial to a final 

concentration of 4% and the brain was rocked for 10min at room temperature. After fixation, the 

brain was washed three times with phosphate buffer and mounted directly on a slide using 

Vectashield (VECTOR laboratories). This particular protocol was chosen as a compromise to get 

reasonable anatomical information from both PNs and KCs. The Alexa signal (labeling the KC claws) 

was reduced dramatically if triton was added to the washing steps. The YFP signal could not be 

augmented with immunocytochemistry, since without triton antibodies did not penetrate the tissue 

properly. Several attempts were made to image the brain directly without any fixation, but although 

the Alexa signal was of high quality, severe damage to the boutons will sometimes ensue under these 

conditions. Confocal images were acquired using a ZEISS LSM-510 microscope with a 63X oil 
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immersion objective. Identifying connections between PN boutons and KC claws was done manually 

in a blind manner using the ImageJ software (Abramoff et al. 2004).  

Data analysis 

All data analysis was performed in Matlab (MathWorks 2010). Spikes were identified using a 

filtering and time-derivative based algorithm. Due to the relative small size of KC spikes, all traces 

were also corrected manually for both false positive and false negative calls of spikes. To calculate 

response magnitude, the mean trace for a particular stimulation duration was calculated and the 

baseline value was subtracted from the maximal value during the stimulation period. Spiking 

response was calculated in a similar manner. The number of spikes for a particular stimulation regime 

was calculated as the mean number of spikes during a window that included the stimulation period 

plus 200ms (since spikes were seen to occur sometimes right after stimulation offset) minus an 

equivalent time frame prior to the stimulation.  

 

4.4 Results 

 

4.4.1 Calibrating PN Responses to Light Stimulation  

For this experiment to be informative, we needed to verify that we would be able to drive PN 

spiking in a way that is comparable to odor stimulation. Based on pervious published results (Wilson 

et al. 2004; Bhandawat et al. 2007), PN responses can reach 200Hz directly after odor onset. We have 

explored different stimulation regimes so as to try and maximize the yield of spikes from a constant 

light intensity. Other studies have shown that intrinsic adaptation of ChR2 can decrease its 

conductance by more than half, and that interleaving the stimulation with dark periods might alleviate 

the problem (Grossman et al. 2011). We, therefore, recorded from ChR2-YFP expressing PNs, 

visually guiding the pipette to the YFP-labeled cells that were either dorsal or lateral to the antennal 
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lobe, and tried different stimulation regimes. The underlying principle was to try using the shortest 

stimulation that induces a reliable response, while interleaving it with the shortest dark periods that 

would allow for the recovery of the response.   

Figure 4.1A shows the response of one PN to constant stimulation with different light 

durations. Though the response is clearly reliable, it does show a detectable adaptation after more 

than 25ms and a loss of entrainment as stimulation duration increases. Although we have tested 

several different stimulations regimes (Figure 4.1B), we were unable to induce a faster spiking 

response (after the dark periods have been accounted for). Fortunately, even with a constant light 

stimulation, the spiking rate evoked in the PNs was similar to that evoked by a strong odor response 

(Figure 4.1C).  
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Figure	
  4.1	
  Light	
  stimulation	
  induces	
  reliable	
  responses	
  in	
  PNs.	
  (A)	
  Raster	
  plots	
  from	
  a	
  single	
  PN	
  showing	
  
responses	
  to	
  six	
  different	
  stimulation	
  durations.	
  X-­‐axes	
  are	
  time	
  in	
  ms,	
  and	
  Y-­‐axes	
  are	
  trial	
  number.	
  Red	
  lines	
  
demarcate	
  light	
  stimulation.	
  As	
  can	
  be	
  seen,	
  evoked	
  responses	
  are	
  highly	
  reliable.	
  (B)	
  Mean	
  PSTH	
  for	
  different	
  
stimulation	
  regime.	
  Each	
  row	
  is	
  the	
  mean	
  of	
  one	
  stimulation	
  regime	
  applied	
  on	
  different	
  cells	
  (N=8).	
  The	
  3	
  
numbers	
  next	
  to	
  each	
  regime	
  represent:	
  1st	
  –	
  number	
  of	
  times	
  regime	
  was	
  repeated;	
  2nd	
  –	
  light	
  on	
  period;	
  3rd	
  –	
  
light	
  off	
  period.	
  Colors	
  represent	
  number	
  of	
  spikes	
  in	
  a	
  bin.	
  Note	
  that	
  recovery	
  of	
  fast	
  spiking	
  is	
  always	
  preceded	
  
by	
  prolonged	
  silence.	
  (C)	
  Light	
  evoked	
  spiking	
  responses	
  in	
  PNs	
  for	
  stimulation	
  duration	
  chosen	
  for	
  the	
  study	
  
(N=8).	
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4.4.2 Characterizing KC Responses to Light Stimulation 

Having established a stimulation regime in the PN subset, we turned to record the evoked 

responses in the postsynaptic KCs. In the previous experiment we could not control the number of 

claws stimulated and the strength of their stimulation. Therefore, any somatic responses that were 

seen could have been the result of several independent variables. Since the stimuli were different 

odorants, changing an odor could change both the number of claws stimulated and the magnitude of 

their response. With the experiment detailed below, we achieved a finer level of control over the 

stimuli. Although we cannot excite individual connections separately on the same KC, we can control 

the stimulation strength a cell receives and can compare cells with different number of connections. 

The traces displayed in Figure 4.2A are an example of the graded response evoked by the 

light stimulation. In this particular example even the shortest stimulation evoked a detectable 

response. The figure shows how the input is gradually being summated until, eventually, the strongest 

stimulation evokes a spike. Note, that due to the unipolar nature of insect neurons, and the relative 

small size of the KC somata, the spike is detectable but small in amplitude. The traces displayed in 

Figure 4.2B exemplify additional characteristics of the data. First, even in individual traces it was 

sometimes possible to perceive the inputs being summated. Each step is indicative of an additional 

EPSP and its magnitude. Second, the two repeats from the cell indicated in red show that even a 

stimulation that was strong enough to evoke a spiking response did not necessarily evoke a consistent 

response. Finally, and most importantly, both panels of the figure show that ChR2 stimulation in a PN 

subset can be sufficient to drive a KC to spike. 
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A B 

Figure 4.2 Evoked responses in Kenyon cells. (A) Membrane potential responses of one KC to a series of increasing 
photostimulation (1, 2, 5, 10, 25, 50, 100, 250 ms duration). Colors become brighter as stimulation duration increases. 
Note that the strongest stimulation induces a spike. (B) Examples of post-synaptic responses evoked in two different KCs 
(red and blue). EPSPs are clearly visible in each recording. Note different time scale from A. 
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To assess the overall effect the stimulation induced in different KCs, we chose to calculate 

two separate parameters for each light duration – mean magnitude of response and mean number of 

spikes evoked (see Methods). Figure 4.3A displays the summary of all the trials recorded from the 

cell in Figure 4.2A. The mean response is depicted by the red line and the magnitude was calculated 

as the difference between the peak and the baseline. The number of spikes evoked is shown in a raster 

underneath each response plot, with the mean being calculated with respect to the baseline (the 

characteristic baseline firing rate was zero). As with the individual traces (Figure 4.2A), it is clear 

also from the mean that the response gradually builds up and that the spiking response evoked in this 

cell is not highly consistent. Different cells, however, showed different response patterns.  

Considering just the spiking response, we can describe the pattern displayed by the example 

cell in Figure 4.3A as non-consistent. Figures 4.3B and 4.3C show examples of two different spiking 

responses: consistent and biased. In the consistent case, the cells responded with spikes to more than 

80% of the trials (Figure 4.3B). Cells with a biased pattern, had a low baseline-firing rate; spiking 

was entrained to the light stimulation epoch but overall spike rate did not increase much (Figure 

4.3C). Focusing on the mean response of each cell, we can see a clear hyperpolarization in both 

Figure 4.3A and 4.3C. This pattern was characteristic for our dataset, although some cells did not 

display it (e.g. Figure 4.3B) and some showed just a strong slow hyperpolarization with no excitatory 

response. Overall, our dataset contains 39 cells that were connected but could not be driven to spike, 

5 that showed biased spiking, 10 that showed non-consistent spiking (sometimes with just a few 

spikes), and 6 that showed consistent spiking. Unfortunately, we were not able to recover anatomical 

information from all the recorded cells, and due to Murphy’s Law, most of the cells that lack an 

image are consistently spiking cells.  
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Figure 4.3 Types of spiking responses in Kenyon cells. (A) Response summary from a single cell that 
spiked sporadically. Each subplot shows KC membrane potential from individual trials in gray and the mean 
response in red. Title for each plot lists the stimulation duration. Bottom panels display raster plots of KC 
spiking. (B) Same as in A only for a cell with a reliable spiking response. Note only four longest stimulation 
durations are presented. (C) Same as in B only for a cell with biased spiking response.  
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As mentioned, most of the cells showed a wave of hyperpolarization following the 

stimulation. Some cells displayed hyperpolarization with no apparent excitation and without having 

any connections to the excited PNs. This hyperpolarization is probably a result of a global inhibitory 

signal related to the general level of activity in the calyx (possibly the GABAergic APL neuron, (Liu 

and Davis 2008). It is worth noting that not all hyperpolarization seemed to originate from a global 

signal. As part of the quality control process in this experiment, every cell was injected with an 

increasing current ramp to induce spiking. Though this stimulated only a single cell, if the ramp 

induced more than a few spikes, a strong hyperpolarization followed, which could last several 

seconds (data not shown).  

The responses displayed so far are a result of light stimulation applied to the entire brain of 

the fly. To verify that the responses recorded at the KC somata were a result of PN spiking, we 

applied both TTX and mecamylamine to the bath after the data acquisition phase. Application of 

mecamyamine alone (at 100µM) abolished most of the responses and left only a small transient that 

was probably a result of either the photoelectric effect or ChR2 evoked Ca+2 release (Figure 4.4A). 

This verified that the response is a result of activation of nicotinic acetylcholine receptors on the KCs, 

as should be the case if PNs are driving the response (Yusuyama et al. 2002). When TTX was applied 

to the bath (at 1µM), the response was also completely abolished (Figure 4.4B). This result verifies 

that it is the spiking activity of the PNs that drives the response, and not simply the activation of PN 

terminals. There have been several cases in which application of TTX did not block the response 

completely (Figure 4.4C). In these cases, responses were usually seen only in the two longest 

durations of stimulation (100ms and 250ms) and their profile was different than the ordinary response 

profile. Instead of a sharp rise and a steady state throughout the stimulation period, a gradual and 

steady increase throughout the duration of the stimulation. Interestingly, these responses were usually 

associated with cells that had multiple connections (mostly three and up) and they were abolished 

completely by the additional application of mecamylamine to the bath (Figure 4.4D). Taken together, 
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these data suggest that though it is possible to drive KCs by artificially releasing from the PN 

terminals, the responses evoked in this study are mainly the result of evoked spiking in the PN subset.  
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Figure 4.4 Light evoked responses are mediated by spike-dependent cholinergic transmission. 
Traces present KC membrane potential in response to the four longest stimulation durations. (A) 
Evoked response before (top) and after (bottom) bath application of 100µM mecamylamine. (B) 
Evoked response from a different cell before (top) and after (bottom) application of 1µM TTX. (C) 
Same as B only a small residual response can be seen after 1µM TTX application. (D) Same cell as 
in C supplemented with 100µM mecamylamine.   
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4.4.3 Claws and Boutons Show Complex Connections 

Having characterized the functional part of the experiment we now turn to characterizing the 

anatomical part. As mentioned in the Methods section, ChR2 expressing PNs were labeled with YFP, 

while the postsynaptic KC was labeled with Alexa. Images were scored without knowledge of their 

functional responses to avoid any bias when determining the number of connections. While 

identifying claw-bouton connections, we have noticed that they are comprised of several distinct 

types. Even though we chose to regard only the number of connections and not their type, it is 

certainly possible that other aspects of the claw-bouton interaction are important in governing the 

strength of the connection. Figure 4.5 displays the three types of connections we have identified in 

this study. The first, and most common type is of an interleaved connection (Figure 4.5A). The claw 

wraps around the bouton sending fine processes that seem to sometimes merge with the bouton itself. 

The second most common type can be described as a cup-shaped claw (Figure 4.5B). In this type the 

claw forms a cup-shaped structure that nestles the bouton in its bosom. In the third type, which was 

the least common of all, the claw wraps specifically around the base of the bouton (Figure 4.5C). 

Apart from identifying different connection types, we have observed a surprising finding – a 

single claw is not always a single input. A recent study has categorized claws into simple and 

complex forms based solely on their structure, and still assuming that a claw is a single unit of input 

(Butcher 2012). We have encountered several examples of complex claws, and in a few of these (< 

10) we noticed contact to more then one bouton. The examples presented in Figures 4.5D and 4.5E 

show claws that contact two boutons from the labeled subset. The example in Figure 4.5F represents 

an even more striking result. This claw does not only contact more than one bouton, but the second 

bouton it contacts is not labeled by the Mz19 line. In other words, this claw is a clear example of 

integration occurring already within a single claw. This finding has prompted us to revisit our 

imaging data looking for sub-regions within complex claws that respond differently. Unfortunately, 

our temporal resolution does not allow differentiation on that scale. It is important to note, however, 
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that this finding does not detract from our conclusions –quite the contrary. It only makes a stronger 

case for integration of different PN inputs within a single KC.  

Another aspect of the claw-bouton connection that showed large variability was the size of 

the connection itself. This will not be presented in a figure, since it was not quantified, but suffice to 

say that several claws were either exceptionally big or exceptionally small (when compared to other 

claws from the same cell). Although the size of the claw usually was an indication of a complex 

structure that might form connections with more then one bouton, we observed several instances 

where a large claw contacted a correspondingly large single bouton.  
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Figure 4.5 Dendritic claws show different modes of contact with PN boutons. (A) Dendritic claw interleaved around a PN 
bouton. (B) Cup-shaped claw. (C) Claw enfolds around base of bouton. (D) Complex claw with major (right) and minor (left) 
structures, each contacting a different bouton. (E) Same as in D only with minor structure on the right side. (F) Claw wrapping 
around base of bouton, while having room for another contact. Note that contact is from a different PN type. For panels D-F 
several frames were required to generate the Z projections, and therefore the boutons appear more blurry.  
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4.4.4 Kenyon Cells Require Three Active Connections to Fire Reliably  

So far we have gleaned insight from the functional and the anatomical datasets separately. 

We shall now consider the two datasets concurrently with the hope of gaining additional 

understanding into the workings of the mushroom body calyx. Cells that do have both functional and 

anatomical data allow us to relate them and address the question we have set out to answer – how 

many claws need to be active for a KC to fire? Figure 4.6 displays exactly that.  

The threshold for activating a cell is not a clean and sharp boundary (Figure 4.6A). Though it 

is possible to evoke spikes with just one connection being driven, the reliability of spiking increases 

with the number of connections, while the strength of the stimulation needed to induce a spike 

decreases. Note, however, that it is only for cells with three or more connections that we see the 75th 

percentile (top part of boxplot) clearly above zero. In other words, it is only with three or more 

connections that the spikes are produced in a reliable manner.  

If we now turn to consider not only the spiking response but also the magnitude of the evoked 

response, we can partially explain the reason for the soft spiking threshold. Examining the responses 

evoked by all the cells based on their number of connections, we can see that the response tend to get 

bigger with the increase in the number of connections (Figures 4.6B-E). However, there are also 

several notable cases where a cell with few connections responds more strongly than a cell with more 

connections. A prominent example can be seen in Figure 4.6B, where a cell with a single connection 

surpasses all other recorded responses (compare to Figures 4.6C-E). This can be attributed, in part, to 

the different anatomical types of claw-bouton connections we have observed. It is entirely possible 

that bigger claws form stronger synapses, that interleaved claws are easier to excite, or that complex 

claws actually require both inputs to be active.  
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Figure 4.6 Spiking probability and response magnitude increases with the number of connections. (A) Boxplot 
representation of mean number of spikes evoked per stimulation duration and per number of connections. Dots represent 
outliers. Note that in most cases, KCs did not spike, so most boxplots are simply lines centered at 0. We found 16 KCs with a 
single synaptic contact, 12 with two contacts, 11 with three, and 2 with five. (B) Mean evoked response for all the cells with 1 
connection. Each line represents the response amplitude (mV) of one cell across a range of different stimulus durations (ms).   
Dots on the line indicate a spiking response, with the size of the dot proportional to the evoked number of spikes. (C-E) Same 
as in B, only for KCs showing 2, 3 and 5 synaptic connections respectively. (F) Mean evoked response and mean evoked 
spiking for all the cells, with different  connection numbers indicated by line color. 
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Another likely source for the fuzziness in the number-of-inputs boundary is the variability we 

encountered in the spiking threshold itself. Most KCs rest relatively far from spiking threshold, and 

therefore even evoked responses that were 20mV in size did not induce any spiking. However, some 

of the recorded KCs were either very close to spike threshold or even had a low baseline firing rate. 

Naturally, since there was no correlation between intrinsic spiking threshold and the number of 

connections with our PN subset, this added to the observed variability. Nevertheless, by examining 

either the distributions of evoked responses per connection (Figure 4.6B-E) or the mean evoked 

response (Figure 4.6F), we see that three or more connections induce considerably stronger responses. 

Having one or two connections is practically indistinguishable in terms of the response magnitude. 

But, as with the evoked spiking responses, adding the third connection seems to change the response 

distribution in a supra-linear manner. 

4.4.5 Kenyon Cells Integrate More Efficiently Across Dendritic Claws 

We now direct our attention to the lower end of the stimulation spectrum to probe deeper into 

the mechanics of integration in the mushroom bodies. PN responses to these short stimulation 

durations provide an opportunity to address the efficiency of temporal versus spatial summation in 

KCs. When stimulated with just 1ms of light, PNs produce a single reliable spike with a latency of 

about 4ms (Figure 4.7A). The second spike is produced with a lower reliability (~20% failure rate) 

and with a longer latency (a median of more than 10ms). There is typically no third spike, but if 

present it arrives with latency greater than 20ms. Increasing the stimulation to 2ms increases the 

reliability of the second spike to 100% and reduces its latency. Increasing it to 5ms generates three 

reliable spikes with a latency of less than 15ms for the third spike (Figure 4.7A). The results are even 

more striking if we consider the evoked responses in individual PNs (Figure 4.7B). Focusing on the 

response differences between these short stimulation durations allows us to ask what is a more 

efficient type of integration in KCs, temporal or spatial? 
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Figure 4.7 PN spiking latency reduces with stronger stimulation. (A) Boxplot of spiking latency for 
1st, 2nd, and 3rd spikes for 1ms stimulation (white background), 2ms stimulation (light gray) and 5ms 
(dark gray). Overlaid dashed red line shows spike failure rate for each condition. (B) Same as A, but for 
all the individual cells (shading signifies stimulus duration). Note that the first two cells were not tested 
at all stimulation conditions. In all boxplots, the width of the box corresponds to the number of spikes it 
represents.  
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For this purpose we calculated the mean KC response to 1ms, 2ms and 5ms stimulation and 

binned them based of the number of connections they were observed to make (see table in Figure 

4.8). We can now address the question of what induces a stronger post-synaptic response - adding a 

spike using the same claw or adding a spike through a different claw. We will first consider temporal 

integration. Increasing stimulation from 1 to 2ms (i.e. from one to two reliable input spikes) only 

increases the amplitude of postsynaptic response by 1mV (red dots in Figure 4.8A). In other words, 

adding a spike temporally increases the evoked responses by 1mV on average. Note however, that in 

neurons with three or more connections, adding a spike produced a significantly greater increase in 

the response than neurons with one or two connections (p < 0.05 Student t test). As with spiking 

responses and the magnitude of the evoked response, even at the low end of the stimulation regime 

three active connections are significantly different from just one or two. Overall, we found a similar 

increase in the post-synaptic response when we increased the stimulation from 2 to 5ms (i.e. from two 

to three reliable spikes; blue dots in Figure 4.8A).  

A clear difference emerges when we consider spatial integration (Figure 4.8B). Increasing the 

number of connections from one to two does not have much effect on the magnitude of the response, 

regardless of the stimulation used (black curve). However, there is a large increase as the number of 

connections increases from two to three. The increase is to such a degree that the 5ms stimulus 

duration adds 3mV on average to the response amplitude (green curve). Again, as with spiking, 

evoked response amplitude, and temporal integration, the results change considerably with the 

addition of a third connection. Although this same increase is not observed as the number of 

connections increases from three to five (cyan curve), it is likely the result of the small number of 

instances where we observed five connections (we never observed four, a rare event we simply did 

not capture in our dataset). Juxtaposing the results for the temporal and the spatial integration, it is 

clear that spatial integration is much more efficient in the KC layer (Figure 4.8C).  
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Figure 4.8 Spatial summation is more efficient than temporal summation in Kenyon cells. (A) Temporal integration. Increase in 
evoked response (mV) between 1ms and 2ms stimulation (red points) and between 2ms and 5ms (blue points).  These increments are 
calculated for each connection number separately (1,2,3 or 5 connections). Dots represent the mean values from responses of individual 
cells while asterisks represent the mean for that number of connections. (B) Spatial integration. Increase in evoked response between 
cells with 2 and 1 connections (black), 3 and 2 connections (green), and 5 and 3 connections (cyan), calculated for each stimulation 
duration separately. (C) Figures A and B juxtaposed. Note the much stronger effect of adding an extra connection versus adding an 
extra spike.  
Table in the left lower corner is meant for illustrative purposes. Figure A was generated by calculating R2X – R1X (red) and R5X – R2X 
(blue), and displaying it for each X (# connections) separately. Figure B was generated by calculating RY2 – RY1 (black), RY3 – RY2 
(green), and RY5 – RY3 (cyan), and displaying it for each Y (stimulation duration).  
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Though it is hard to draw conclusions about the integration properties of cells with five 

connections because of their small sample size, they do raise an interesting biological question – what 

is the probability of finding cells with five connections when one has only labeled 3 out of the 

possible 54 inputs? To address this question we counted the total number instances of each level of 

connectivity (Figure 9). It should be noted that the number of zero connections is partially deduced. 

As explained in the Methods section, although we have anatomical data from cells with zero 

connections, recordings from most of the non-responding cells were aborted and no image was 

acquired. Hence, their number of connections is deduced. Nevertheless, when compared to the 

number of cells that are expected to be found in a population (under the assumption of random 

connection probabilities) there is a striking difference. The expected number is calculated from a 

binomial distribution with p = 3/54 and N randomly sampled from our estimate of claws-per-cell 

from the previous experiment (see also Figure 3.1). Distributions are still incongruent even if we 

increase the connection probability to 10/54 and increase the number of claws for a cell to account for 

possibly missed claws.  
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Figure 4.9 Distribution of number of synaptic contacts indicates biased 
connectivity between PNs and KCs. The observed number of connections is 
shown in comparison to the distribution expected if the probability of a PN-KC 
connection were uniform and random. All aborted recordings were added as 
zeros to the observed distribution. The distribution of connection numbers 
expected if connectivity were uniform and random was calculated using a 
binomial model with p=3/51 and the number of claws on a KC (N) drawn at 
random from the data in Figure 3.1. The biased distribution was calculated 
using a binomial model only in this case p=8/51 and the number of claws on 
each KC was uniformly increased by three to account for the possibility that we 
missed some claws. The distribution of observed synaptic contacts is 
considerably higher than both the uniform and the biased distributions. 



	
   	
  79	
  

The discrepancy between the observed and the expected curves corroborates our results from 

the previous experiment – sampling a particular PN channel increases the probability that a KC 

samples that channel again. It could be argued that we are looking at the connection probability of a 

very specific driver (Mz19) and it is different from the general population of PNs. Although the Mz19 

driver line has been used in numerous experiments as a representative subset of the PN population 

(Ito et al. 1998; Tanaka et al. 2004; Berdnik et al. 2006; Jefferis et al. 2007; Lin et al. 2007; Tanaka et 

al. 2008; Okada et al. 2009; Kremer et al. 2010), we acknowledge that using this line might bias our 

results.  

 

4.5 Discussion 

 

In this chapter we have used ChR2 to drive a subset of PNs and recorded responses in 

individual KCs. We were able to recover anatomical connectivity between the recorded KC and 

stimulated PNs using a combination of genetic labels and intracellular dye-fills. This allowed us to 

conclude that having three active connections results in more reliable spiking (Figure 4.6A), stronger 

evoked responses (Figure 4.6F), and more efficient integration (Figure 4.8). Since it was also possible 

to induce firing in neurons with fewer than three connections, we believe that there is a great 

variability in the strength of individual KC connections. Possible reasons for this variability include 

both the variable anatomical structures we have detected (Figure 4.5) and the variability in the size of 

individual dendritic claws.  

By comparing responses to the shortest stimulation duration, we were able to conclude that 

KCs are more efficient spatial integrators than temporal integrators. In other words, a KC responds 

more strongly if the additional input it gets comes from a different claw and not from an already 

active claw. This statement does not necessarily imply that KCs function as coincidence detectors. 

Though one possible model for KCs’ sparse responses identifies them as coincidence detectors, our 
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data shows they can be driven to spike with just a single active input. The lower efficiency of 

temporal integration can be attributed, at least in part, to the nature of the PN to KC connections. 

From the anatomy of this unique connection it seems probable that the PN to KC connection is a 

depressing synapse, with a high probability of release but a depreciating response magnitude over 

time. This hypothesis is bolstered by a recent study that reported T-bar synapses in the PN boutons 

(Butcher et al. 2012). This type of synapse in flies have been shown to be exactly that - a depressing 

synapse with a high probability of release (Kittel et al. 2006). Therefore, the weaker efficiency of 

temporal integration could be a simple result of this depression, and not necessarily a result of a brief 

integration window, as in the locust (Jortner et al. 2007).  

Comparing the observed number of connections with the number expected by chance, we 

have found that the connectivity pattern seems to be biased. This corroborates our finding from the 

imaging experiment, where individual claws from the same cell showed a high degree of correlation. 

Though the previous experiment had certain caveats associated with analyzing the degree of 

correlations between claws, the independent evidence presented here supports our suggestion that 

connections between PNs and KCs are biased. It is interesting to note that variable but non-random 

connections were recently found in Drosophila’s olfactory circuit in the connectivity patterns of 

specific LNs in the antennal lobe (Chou et al. 2010). 

Finally, we have also found that a single dendritic claw can form multiple connections with 

PN boutons (Figure 4.5D-F). The example shown in Figure 4.5F makes the finding even more 

surprising – it is not only that the claw contacts more then one bouton, but the second bouton is from 

a different PN type. This, in turn, transforms the single complex claw into an integration unit, though 

the properties of integration at that level have not been addressed in this study. While it could be 

claimed that a complex claw is actually several independent claws, it is obvious that integration 

within a complex claw is different from integration within claws. Since there is no thin neurite 

between the different parts of a complex claw, it seems likely that compartmentalization is weaker, if 

not completely absent.  
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5 Conclusions and Perspectives 

 

5.1 Summary 

 

How does the fly identify an odor? Since even monomolecular odorants activate multiple 

ORs, it is clear that integration across input channels is necessary. The first synapse in the olfactory 

circuit establishes the odor channels. ORNs expressing the same receptor converge to form synapses 

with a homotypic group of PNs. This convergent connectivity increases the signal to noise ratio, and 

lowers the odor detection threshold. Internal computations within the antennal lobe decorrelate the 

inputs, and increase their dynamic range, further establishing the independence of different 

glomerular channels. We have shown that the next synapse, between PNs and KCs, is where 

integration across channels occurs. By imaging odor responses in the dendritic claws of individual 

KCs, we were able to characterize the tuning curves of individual claws, and show that KCs receive 

inputs from different PN channels. By performing whole-cell recordings in KCs while controlling the 

spiking input from a small population of PNs, we established how much activity is needed to drive a 

KC to spike. We also characterized integration dynamics in the KC layer and showed that a KC 

integrates more efficiently across claws than within a claw. Analyzing the number of synaptic 

contacts we found between the PN subset and the individual KCs corroborates our conclusion from 

the correlations between claw tuning curves: KCs sample PN boutons in a biased manner.  

5.2 Connectivity in the Mushroom Bodies 

 

The biased connectivity we see in both number of connections and tuning curve correlations 

raise questions concerning the rules governing connectivity in the olfactory circuit of Drosophila. If 

the KC layer is indeed where odor objects are formed, it should be designed to represent as many 
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distinct odors as possible, and with the least probability of overlap. To exploit the KC coding space 

efficiently, an underlying principle needs to guide the PN to KC synapses. In what follows we will 

discuss what are the possible rules that guide this connection, and do they change throughout the life 

of the organism. 

One answer to the connectivity problem, which is especially appealing in insects, is that 

connections are hard-wired. Indeed, several studies have shown that connections can form 

stereotypically even without active input. PNs form stereotypic projections in the lateral horn even 

before ORs are expressed (Marin et al. 2002), and both PNs and ORNs project to their corresponding 

glomeruli even when their cognate partners are inactive (Dobritsa et al. 2003; Berdnik et al. 2006). It 

is therefore acknowledged that development of the first two layers of olfactory system in Drosophila 

does not rely on evoked activity or OR expression, and is fairly hard-wired (sachse 2007 neuron).  

Nonetheless, it has been shown that this extreme version of hard-wired specificity is not 

conveyed to the KC layer (Murthy et al. 2008). Even within the first two layers, LNs in the antennal 

lobe require activity for proper development (Chou et al. 2010). Additionally, it is clear that the 

olfactory system also exhibits a certain level of plasticity. For example, even highly stereotyped sub-

circuits, like the CO2 circuit, show changes in size and response magnitude in PNs and ORNs when 

flies are raised in conditions with constant CO2  exposure (Sachse et al. 2007; Iyengar et al. 2010). 

Although plasticity in the mushroom bodies has not been measured directly, several morphological 

studies have shown environmental effects on calyx size (Technau 1984; Heisenberg et al. 1995). A 

more recent study has silenced a subset of PNs and found a size increase in the corresponding boutons 

and their matching KC claws (Kremer et al. 2010). Therefore, hard-wiring is probably only the 

solution for the first 2 layers (due to the small number of different inputs), and only during 

development. 

Another possibility for guiding connectivity is complete randomness. By forming random 

branches in the calyx, the KC population can ensure an unbiased representation of the afferent inputs. 

However, anatomical evidence suggests this is not the case. Numerous studies have shown that PN 
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and KC projections in the calyx are non-random (Marin et al. 2002; Zhu et al. 2003; Tanaka et al. 

2004; Lin et al. 2007); and to a lesser extent (Jefferis et al. 2007). Since PNs project with a certain 

spatial bias, a single KC would have to correct for this inherent bias to maintain an unbiased 

sampling. Additionally, random connectivity would not be helpful in the context of experience-based 

plasticity that likely occurs in the mushroom bodies.  

Another possible connectivity rule is Hebbian wiring. According to this regime, Kenyon cells 

would preferentially connect to PNs with similar firing properties. Such a wiring scheme can ensure 

that KCs do not sample combinations of input that are rarely or never co-active. Even if we consider 

only half of the PN channels to be completely independent and even if we treat the channels as 

binary, this still leaves the encoding capacity of the system at 225. Since there are far fewer KCs, it 

would clearly be preferable to choose behaviorally/ethologically relevant combinations of input and 

not all the possible ones. Additionally, a Hebbian wiring scheme could contribute to concentration 

invariance of KC responses to odors. It has been shown that insects KCs display a significant degree 

of concentration invariance (Stopfer et al. 2003; Honegger et al. 2011). Examining responses of 

sensory neurons to increasing concentrations has shown that responses become less sparse, usually by 

recruiting more and more glomeruli as the concentration increases (Wang et al. 2003), see also Figure 

5.1A). Naturally, this increases the correlation between PN activity patterns in the PN population. A 

KC that detects these correlations and wires to the relevant PNs could show considerable 

concentration invariance in its odor responses, with each additional channel increasing the certainty 

of the response. Using Figure 5.1 as an example, we can generate a KC that will respond invariably to 

odor 2. First, it will connect strongly with glomerulus 5, so as to guarantee a response to a low 

concentration. Next it will form slightly weaker connections to glomeruli 2 and 10, and an even 

weaker connection with glomerulus 4. As concentration increases, all the inputs still signal the same 

odor only with greater certainty. If this wiring scheme is utilized in the mushroom bodies it might 

explain the connectivity bias we see in our data.  
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A B 

Figure 5.1 Possible scenarios for a single claw to induce spiking. (A) Adapted from Wang 2003 Cell (Figure 3). 
Increasing odor concentration recruits more glomeruli, but does not change the identity of the glomeruli that responded to 
low concentration. Therefore, to generate concentration invariance for Odor 2 for example, a KC might connect with 
glomeruli 2, 4, 5, and 10, with the strongest weight on glomerulus 5 (follow by 2 and 10, and weakest on 4). SV – 
saturated vapor (B) Receiving input from excitatory and inhibitory PNs with similar tuning might ensure that a KCs odor 
tuning is decorrelated from that of its inputs. In this example the yellow bouton is excitatory, while the orange bouton is 
inhibitory (corresponding tuning curves are shown adjacent to each bouton). The neuron’s output is therefore the 
subtraction of the 2 tuning curves, which can further be thresholded. In our experiment, we may have stimulated just the 
excitatory bouton, which under natural conditions will never occur. 



	
   	
  85	
  

The last option for a wiring scheme we shall discuss is anti-Hebbian. Under this regime a KC 

will preferentially contact anti-correlated inputs. An advantage of using such a scheme could be a 

strong decorrelation of input, which will ensure KCs respond to rare and significant events (Barlow 

and Földiák 1989). Naturally, the system has to be tuned for combinations of inputs that still occur, so 

a balance has to be struck between rare events that are meaningful (detecting the scent of a rotten 

banana), and rare events that are meaningless (combinations of active glomeruli that are never 

encountered). However, the anti-Hebbian framework is usually considered on a shorter timescale. Use 

of this rule to regulate dendritic weights allows for the cancellation of predicted features in the inputs, 

and the accentuation of novelty (Roberts and Leen 2010). This trait serves a circuit mainly in adapting 

to the recent stimulus history, and not when forming substantial connections such as KC claws.  

Because decorrelation of inputs would be a useful feature for the mushroom bodies, we shall 

now consider an alternative for achieving it without the use of anti-Hebbian plasticity. If a single KC 

integrates both active and inactive inputs, decorrelation can still be achieved using simple Hebbian 

wiring. Simply put, integration of inactive inputs means that the inactive channel also conveys 

information to the KC (see for example Osborne et al. 2008; Schneidman et al. 2011). If we imagine 

two correlated PN channels, one excitatory and one inhibitory, a KC that integrates over both of them 

would exhibit tuning that was highly decorrelated from the inputs (Figure 5.1B). Such a KC will only 

respond to odors at the periphery of the excitatory tuning curve, effectively decorrelating highly co-

active inputs. Inhibitory PN inputs can either be direct - through GABAergic PNs (Jefferis et al. 2007; 

Okada et al. 2009), or indirect  - through inverting the sign of the synaptic contribution of a dendritic 

claw. The latter can be accomplished by the pre-synaptic sites on the claw stems, which most likely 

activate GABAergic extrinsic neuron (Christiansen et al. 2011; Butcher et al. 2012). 

To evaluate which of these different connectivity schemes is in play in the mushroom bodies, 

it will first be necessary to prove that there is plasticity at the KC layer. We believe plasticity to be a 

highly likely at this layer, since it has already been shown that certain LNs wire variably between 

individuals (Chou et al. 2010). In future experiments, we will raise flies in different odorized 
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environments: one odorized with odor A only, one with odor B and one with their combination. By 

imaging the responses of the KC population we hope to see if KCs have changed their response 

properties. Hebbian plasticity predicts that in flies reared in the third environment (combination) we 

will find more cells that respond specifically to the combination but not to the components. If we do 

see changes at this layer, we will use the ChR-based PN stimulation approach described in Chapter 4 

to dissect the phenomenon even further. Studies have already shown that the Drosophila olfactory 

circuit displays a critical period (Sachse et al. 2007). Assuming that we find plasticity in the 

mushroom bodies, it would be interesting to stimulate a small subset of PNs during development 

using ChR2 (either larval stage or just post eclosion) and repeat the experiment that was performed in 

Chapter 4. This could potentially reveal a critical period for plasticity, and the effects it has on KC 

response properties. Will repeated stimulation of a PN subset induce more connections to a KC? Will 

individual connections evoke stronger responses or will they be suppressed? And will more or fewer 

connections be required to evoke a somatic response using the same stimulation regime? 

5.3 The Sound of a Single Claw Spiking 

 

Although the majority of our evidence indicates that KCs should be regarded as integrators, 

we have seen several examples where a single claw-bouton synaptic contact is capable of driving 

spiking in the connected KC. Does this mean that KCs are not integrators, and that they can simply be 

activated by any one of their inputs? In this light, it is useful to consider the integration properties we 

have already discussed above (Section 5.2). The first property that might provide a partial explanation 

for KC firing in response to activation of a single claw is concentration invariance. A KC could 

generate concentration invariant responses to the same odor by contacting all the PN channels that are 

successively recruited as concentration increases (Figure 5.1A). For the odor to be detected at the 

lowest concentration, the active channel should induce a response (glomerulus 5 for odor 2 in our 

example), and should therefore have a relatively large synaptic weight. If, by chance, we have 



	
   	
  87	
  

activated a PN that represents the lowest concentration of a particular odor, and recorded from its 

cognate KC, we should not be surprised to see a response.  

An alternative explanation stems from the “synergy from silence” mechanism (Schneidman et 

al. 2011), which was discussed as an alternative for input decorrelation (section 5.2). As mentioned, 

inhibitory PN channels can result from GABAergic PNs or local inhibitory circuits inverting the 

contribution of an excitatory PN. PNs project form the antennal lobe in four main tracts, only one of 

which sends all its axons through the mushroom body calyx. These PNs are mainly excitatory (Okada 

et al. 2009). Nevertheless, some inhibitory PNs are found in this tract (Okada et al. 2009), and other 

inhibitory tracts have recently been found to project weakly into the calyx (Tanaka et al. 2008). It is 

possible that KCs still utilize the Hebbian scheme to connect to PNs with similar odor responses. If 

our hypothesis is correct and KCs integrate both excitatory and inhibitory PN channels (or if KCs 

simply invert the contribution of an excitatory PN), this will effectively induce decorrelation between 

the inputs. Under these conditions artificially stimulating only the excitatory channel without its 

inhibitory counter-point would drive the KC into an imbalance and induce spiking.  

A simpler explanation for the potency of an individual claw might be found from a 

comparison to the PCx (the mammalian equivalent of mushroom bodies). Dissecting excitatory drive 

to the olfactory cortex has shown that the main drive is from intra-cortical connections and not mitral 

cells (Poo and Isaacson 2011). In our experiments we have also seen both functional and anatomical 

evidence suggesting strong connections between KCs. Several cells in the imaging experiment have 

displayed unusual somatic structures that seemed to envelop another soma. During our KC whole-cell 

recordings, we frequently (about 1 in 10) observed an adjacent soma filled with dye, indicating the 

existence of gap junctions between these cells. And several cells have also shown responses that 

suggest the presence of strong recurrent activity, which in some cases forced us to increase the 

interval between photostimulation events by several seconds. Though this does not establish the main 

drive to the KCs as intra-calycal, it does argue for strong lateral connections. In insects, these 

connections have been suggested to play a role in inhibitory gain control (Papadopoulou et al. 2011). 
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Since we have removed the antennae in these experiments, the global input to the system is low. As a 

result, these mechanisms will ensure that the gain is relatively high, which could account for the cases 

where even a single input is sufficient to induce spiking. Although these suggestions are speculative, 

it would be interesting to pursue this path further. The first step towards such as inquiry would be to 

repeat the experiment with the antennae intact. Though it would be harder to identify the evoked 

responses, it is possible that baseline activity (that is almost absent under our current experimental 

conditions) plays a crucial role in shaping KC responses.  

5.4 The Quest for Meaning 

 

As the introduction to my thesis implied, my main interest lies not in what the animal senses 

but in what it perceives. This might be a small semantic change on paper, but experimentally it 

involves completely different frameworks. Though I cannot claim to have found meaning in the fly’s 

brain just yet, I believe that I took a step in that direction. Perhaps it is not so much a search for 

meaning but a long and arduous quest that, again as implied, might require several sequels of a “next 

generation” series.  

Pursuing such a quest in the fly as a model organism seems ideal. On the one hand, it is 

simple enough. It has a well-characterized olfactory system, with major parts of the anatomy and the 

functionality of the different layers ironed out. We know it has only 54 different input channels, we 

know some of their response properties, and we know how they connect. We also know that a fly 

neuron is simpler than a mammalian neuron. It is impossible to follow all the inputs of a single 

pyramidal cell, but the major olfactory inputs to a KC are less than ten. On the other hand, the fly is 

complex enough. It is a sophisticated organism that is capable of learning in several different assays. 

It displays complex, yet stereotypical behaviors (such as courtship and aggression) that are modulated 

by the environment and its internal conditions.  
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From what we currently know about the olfactory system in Drosophila, it seems that the 

KCs are a significant step in odor processing. Responses are much less sparse both before and after 

the mushroom bodies. Since the distance between the KCs and the actual motor output cannot be 

more than a few synapses away, it seems likely that meaning in the fly’s olfactory system will be 

found in our lifetime.  
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6 List of Abbreviations 

	
  

	
  

ChR2    Channelrhodopsin 2 

F    Fluorescence 

KC   Kenyon Cell  

LN    Local Inter-neuron  

MARCM   Mosaic Analysis with a Repressible Cell Marker  

OR    Olfactory Receptor  

ORN    Olfactory Receptor Neuron  

PCx    Piriform Cortex  

PID    Photoionization Detector 

PN    Projection Neuron  

RGC    Retinal Ganglion Cell  

ROI    Region Of Interest  

TTX    Tetrodotoxin  

YFP   Yellow Fluorescent Protein  

ΔG/R    Delta Green Fluorescence Over Red Fluorescence  
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