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Abstract

Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes.
The evolutionarily conserved splicing activator Tra2b (Sfrs10) is essential for mouse embryogenesis and implicated in
spermatogenesis. Here we find that Tra2b is up-regulated as the mitotic stem cell containing population of male germ cells
differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2b binds a high
frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have
analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse
(Sfrs10fl/fl; Nestin-Cretg/+). This mouse has defects in brain development and allowed correlation of genuine physiologically
Tra2b regulated exons. These belonged to a novel class which were longer than average size and importantly needed
multiple cooperative Tra2b binding sites for efficient splicing activation, thus explaining the observed splicing defects in the
knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone
that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new
pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily
conserved, suggesting they might control fundamental developmental processes. Tra2b protein isoforms lacking the RRM
were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the
N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2b.
Versions of Tra2b lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length
Tra2b protein.
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Introduction

Almost all transcripts from genes encoding multiple exons are

alternatively spliced, and correct patterns of alternative splicing are

important for health and normal development [1,2,3]. Alternative

splicing introduces new coding information into mRNAs, thereby

increasing genome capacity to encode an expanded number of

mRNAs and proteins from a finite number of genes [3]. Poison

exons which introduce premature stop codons can also be

alternatively spliced to target mRNAs for degradation through

Nonsense Mediated Decay (NMD) [4,5,6,7,8].

Alternative splice events are controlled in part by trans- acting

RNA binding proteins which help establish patterns of alternative

splicing through deciphering a splicing code embedded within the

pre-mRNA sequence [9,10,11]. Tra2 proteins bind directly to

target exons thereby activating splicing inclusion [12], and have a

modular organisation comprising a single central RNA recognition

motif (RRM) which binds to target RNA sequences, flanked by
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arginine-serine rich (RS1 and RS2) domains [13,14]. The N-

terminal Tra2 RS1 domain is longer and contains more RS

dipeptides than RS2. The reason for this unique modular

organisation is unknown, but is conserved in vertebrate and

invertebrate Tra2 proteins and different from the classical SR

super-family which have a single C-terminal RS domain [15]. Also

unlike classical SR proteins, Tra2 proteins do not restore splicing

activity to S100 extracts [12].

A single Tra2 protein is conserved in fruit flies, where it is

essential for spermatogenesis and sex determination [16]. There

are two mammalian Tra2 proteins called Tra2a (encoded by the

Tra2a gene on mouse chromosome 6) and Tra2b (encoded by the

Sfrs10 gene on mouse chromosome 16) which share 63% amino

acid identity and similar RNA binding specificities [12]. NMR

analyses have recently shown that the optimal core RNA target

sequence for binding full length Tra2b protein is an AGAA motif,

with each of the nucleotide residues being specifically recognized

by the Tra2b RRM [17,18].

A key priority to understand the biological functions of Tra2b is

to identify target RNAs which are functionally regulated within

animal cells, and associated pathways of gene activity. Mice with

ubiquitous deficiency of the Sfrs10 gene die at around 7.5 to 8.5

days of gestation [19]. Splicing of some Tra2b candidate target

exons have been investigated using minigenes, but recently a well

known regulated splice target exon (SMN2 exon 7) was found to

have the same splicing pattern within wild type mice and Smn2/2;

SMN2tg/tg; Sfrs102/2 mouse cells which do not express Tra2b
protein [19]. These data suggest Tra2b is not the key protein

regulating physiological inclusion of SMN2 exon 7 within animal

cells.

The Sfrs10 gene itself is alternatively spliced to five mRNA

isoforms encoding at least 2 protein isoforms [20,21,22]. The

major isoform encodes full length Tra2b protein. Full length

Tra2b protein regulates its own levels through activating splicing

inclusion of a poison exon (exon 2) into a second mRNA isoform,

preventing protein translation (Figure 1A) [22]. A third mRNA

isoform encodes just the C-terminus of the protein (containing the

RRM, glycine linker and the RS2 domain) giving rise to the

protein isoform Tra2beta-3 or Tra2bDRS1 [20,21,22]. No

distinct function has been assigned to the Tra2bDRS1 isoform

compared to full length Tra2b [17], although this isoform is

conserved in invertebrates so likely important. Tra2bDRS1

expression is tissue specific in both flies and mammals, and is

up-regulated by expression of Clk kinases and neural stimulation

[20,21,22,23].

Male germ cell development is one of the few developmental

pathways to continue into the adult. In the fly testis, Tra2 regulates

splicing of Exuperentia and Att pre-mRNAs in male germ cells, as

well as its own alternative splicing pathway [24,25]. Tra2b has

been implicated in mammalian spermatogenesis through interac-

tion with RBMY protein which is genetically deleted in some

infertile men [26,27], and regulates the splicing of the human

testis-specific HIPK3-T exon through a switch-like mechanism

[28,29]. Given its important role in Drosophila spermatogenesis and

established interactions with proteins implicated in human male

fertility we predicted that Tra2b-regulated alternative splicing

events would control fundamental pathways in mammalian male

germ cell development. We have tested this prediction here using a

transcriptome-wide approach.

Results

Tra2b is ubiquitously expressed but up-regulated at the
onset of meiosis in male germ cells

We analysed the expression of Sfrs10 mRNA in different adult

mouse (Mus musculus) tissues by RT-PCR using primers in exons 1

and 4. An RT-PCR product derived from Sfrs10 mRNA in which

exons 1 and 3 were directly spliced (skipping poison exon 2) was

seen in every tissue indicating the Sfrs10 gene is ubiquitously

expressed (Figure 1A and 1B). A larger Sfrs10 RT-PCR product

made from mRNAs including poison exon 2 was detected at high

levels in just two tissues, testis and muscle, indicating that

expression of Tra2b is particularly tightly controlled in these

tissues [22]. Similar levels of expression of Hprt mRNA were

observed in each tissue by multiplex RT-PCR.

A polyclonal antiserum raised to Tra2b protein identified a

single endogenous protein of around 40 KDa in both transfected

and untransfected HEK293 cells corresponding in size to

endogenous Tra2b (Figure 1C). A Tra2b-GFP fusion protein

was additionally detected within transfected cells, but no cross-

reaction was detected with a Tra2a-GFP fusion indicating high

specificity of the antiserum. We were also able to detect a GFP-

fusion protein containing Tra2bDRS1, but not endogenous

Tra2bDRS1 protein suggesting that this particular isoform is

expressed at low levels in these cells. Further probing of the same

filter indicated that all the GFP fusion proteins were expressed at

similar levels (Figure 1C, lower panel).

We used indirect immunohistochemistry to determine the cell

type distribution of full length Tra2b in the adult testis (Figure 1D

and 1E). Tra2b was detected as a nuclear protein (Figure 1E upper

panel), and all staining was prevented by pre-incubation of the

antisera with the immunising peptide (Figure 1E lower panel).

Tra2b was most highly expressed during mouse male germ cell

development at the meiotic stage in spermatocytes (abbreviated

Spc), and afterwards in round spermatids (abbreviated Rtd). Less

intense Tra2b staining was detected within spermatogonia which

contain the mitotically active stem cell population. No immuno-

staining was detected in elongating spermatids (abbreviated Spd).

This regulated expression pattern predicts that Tra2b might play a

role in regulating meiotic and post-meiotic exon inclusion during

male germ cell development. Outside the germline, Tra2b protein

expression was detected in Sertoli cells (indicated by red arrows on

Figure 1E).

Author Summary

Alternative splicing amplifies the informational content of
the genome, making multiple mRNA isoforms from single
genes. Tra2 proteins bind and activate alternative exons,
and in mice Tra2b is essential for embryonic development
through unknown target RNAs. Here we report the first
target exons that are physiologically regulated by Tra2b in
developing mice. Normal activation of these regulated
exons depends on multiple Tra2b binding sites, and
significant mis-regulation of these exons is observed
during mouse development when Tra2b is removed. As
expected, Tra2b activates splicing of some target exons
through direct RNA binding via its RNA Recognition Motif.
Surprisingly, for some exons Tra2b can also activate
splicing independent of direct RNA binding through two
domains enriched in arginine and serine residues (called RS
domains). The N-terminal RS1 domain of Tra2b is
absolutely essential for splicing activation of physiological
target exons, explaining why this domain is conserved
between vertebrates and invertebrates. Surprisingly, Tra2b
proteins without RS1 operate as splicing repressors,
suggesting the possibility that endogenous Tra2b protein
isoforms may differentially regulate the same target exons.

New Roles and Splicing Targets for Tra2b
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Tra2b primarily binds AGAA-rich target sequences in
mouse germ cells

To identify endogenous cellular RNA targets for Tra2b we

carried out high throughput sequencing cross linking immuno-

precipitation (HITS-CLIP) [30]. Adult mouse testis cells were used

according to published procedures (see methods for details) to

retrieve an average tag length of 40 nucleotides. These recovered

CLIP tags correspond to specific RNA sequences bound and

subsequently cross-linked to endogenous Tra2b protein within the

testis.

To identify frequent physiological Tra2b binding sites in mouse

testis we searched for frequently occurring 6-mers in the retrieved

CLIP tags, and normalised these to their background occurrence

in the mouse genome and transcriptome using custom-written

Python scripts (Table S1 and Table S2). Each of the most

frequently recovered 6-mers was significantly enriched in the CLIP

dataset compared to their representation in the mouse genome or

mouse testis transcriptome. Strikingly, purine-rich sequences were

preferentially recovered in our CLIP tags. In fact, 14 hexamers out

of the top 30 recovered genome corrected hexamers in Table S1

have only purine residues, and 13 have only one pyrimidine. More

specifically and consistent with the known RNA binding site for

Tra2b [17,18], GAA-containing sequences were frequently

observed. The distribution of GAA-containing 6-mers in the

overall population of CLIP tags was visualised by plotting the

genomic ranking of 6-mer recovery (X axis) against their

representation in the CLIP population (Y axis) (Figure 2A:

GAA-containing 6-mers are shown in red, with all other 6-mer

sequences in blue). Of the 30 most frequently recovered 6-mers, 27

had a core GAA motif and the other 3 an AGA motif. The most

frequent 6-mer (the AGAAGA motif, 10u on the X axis of

Figure 2A -equivalent to 1) was found in almost 20% of the

recovered CLIP tags. The ten most frequently recovered 6-mers

were found in more than 40% of the CLIP tags.

Next we aligned full length CLIP tags to generate a

transcriptome-wide consensus sequence. We anchored this line-

up between CLIP tags using the trinucleotide GAA from the core

binding motif which is essential for efficient RNA protein

interactions [17] (Figure 2B). Within this consensus alignment,

an A residue followed by a T residue (and less frequently a G

residue) was usually found upstream of the GAA motif (position 1

in Figure 2B), consistent with reported in vitro RNA-protein

binding data between the RRM of Tra2b and synthetic

oligonucleotides [17]. Furthermore, a G residue (and less

frequently an A residue) was preferentially selected at the position

downstream of the GAA motif (position 5), and an A at the next

nucleotide position downstream (position 6). This results in an

extended AGAAGA consensus, in agreement with the sequence of

the 3 top hexamers. Interestingly, when only a GAA triplet but not

an AGAA core is present within a CLIP tag, 89% of the tags have

a G residue immediately downstream (GAAG), consistent with the

important contribution of the G5 residue for efficient binding of

Tra2b to its natural RNA targets. No further strong sequence bias

was noticed in the sequences upstream and downstream of the

AGAAGA hexamer. A similar consensus was obtained previously

for SRSF1 protein [31]. However since SRSF1 has 2 RRMs with

different RNA binding capacities and only one RS domain, it is

most likely that its global specificity of RNA recognition and

binding are broader than that for Tra2b and also depends on

other ESEs within its individual target exons.

Tra2b binds a high frequency of exonic sequences
To identify specific endogenous target transcripts CLIP tags

were mapped onto the mouse genome sequence (a full bed file of

Tra2b CLIP tags is provided as Dataset S1) [32]. Overall, the

distribution of Tra2b CLIP tags was predominantly intragenic:

Around 69% of Tra2b binding sites were located within protein

coding genes, even though genes contribute just 25% of the

genome (Figure 2C). Network analyses indicated the main

functional properties associated withTra2b target transcripts were

post-translational modification, the cell cycle, gene expression,

RNA post-transcriptional modification and cell death (Figure 2D).

Top physiological systems associated with Tra2b target transcripts

included reproductive system and nervous system development,

and there was significant enrichment of signalling pathways in the

top detected pathways (Table S3). Most intragenic CLIP tags

mapped to transcripts in the sense orientation, but 7.5% of

retrieved CLIP tags were antisense to known annotated genes.

Only 1.3% of the mouse genome encodes exons (59 UTR, ORF

and 39 UTR, based on mm9 annotation version ensembl59). For

Tra2b some 29% of Tra2b CLIP tags mapped within exons of

protein coding genes (Figure 2C) which indicates the presence of

numerous Tra2b-specific target exons. Similar CLIP-based

transcriptome-wide analyses found that the SR protein SRSF1

also frequently binds to exonic sequences, while Nova and PTB

target sites are mainly intronic in distribution [30,31,33].

Non-exonic Tra2b binding sites were found within deep

intronic regions, within locations annotated as intergenic and

within noncoding RNAs (ncRNAs) [34]. Within ncRNAs Tra2b
binding sites were found within the small subunit rRNA (also

Figure 1. Tra2b is a nuclear protein highly expressed in mouse germ cells. (A) Diagram showing in silico PCR of the mouse Sfrs10 mRNA
redrawn from the UCSC mouse genome browser [69]. Two different RT-PCR products are amplified using primers in exons 1 and 4. The smaller
product (438 nucleotides) represents the amplified product when exon 1 is directly spliced to exon 3 and then exon 3 to exon 4 (upper Sfrs10 mRNA
isoform). The larger product (714 nucleotides) represents when the poison exon 2 is spliced resulting in the non-translated isoform Tra2b4 (lower
Sfrs10 mRNA isoform). (B) Capillary gel electrophoresis image showing levels levels of Sfrs10 mRNA assayed by multiplex RT-PCR using RNA purified
from adult mouse tissues. Primers were used for amplification complementary to exons 1 and 4 as described in (A) above. Within a multiplex RT-PCR,
primers were included to detect Hprt as a parallel loading control to ensure equivalent amounts of RNA were used in each lane. (C) Immunoblotting
experiment to confirm the specificity of the polyclonal antisera used for immunohistochemistry. HEK293 cells were transfected with plasmids
expressing the indicated proteins. Proteins were then isolated and analysed by SDS-PAGE and Western blotting. The same blot was probed
sequentially with an affinity purified antisera ab31353 raised against Tra2b (top panel) and then with a polyclonal specific for GFP to detect overall
expression of each of the fusion proteins (lower panel). The ab31353 a-Tra2b antisera detected a single band in HEK293 cells corresponding to
endogenous Tra2b protein, and in transfected cells additionally detected the Tra2b-GFP fusion protein and Tra2bDRS1-GFP. No cross reaction with
Tra2a-GFP was observed, indicating that this purified antisera is highly specific to Tra2b. (D) Flow chart summarising major developmental stages in
male germ cell development. (E) Tra2b is a nuclear protein expressed during and after meiosis. Paraffin embedded adult mouse testis sections were
stained with an affinity purified antibody raised against Tra2b (brown staining), and counterstained with haematoxylin (blue). Abbreviations: Spg –
spermatogonia (mitotically active population which includes stem cells); Spc –spermatocyte (meiotic cells); Rtd –round spermatid (post-meiotic
haploid cell); Spd –elongating spermatid (differentiating haploid cell with condensed nuclei). The scale bar is equivalent to 20 mm. The red arrows
indicate Sertoli Cells. Based on these immunohistochemistry results, the Tra2b protein expression levels during mouse germ cell development are
summarised also on the flow chart in part (D).
doi:10.1371/journal.pgen.1002390.g001

New Roles and Splicing Targets for Tra2b
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Figure 2. Identification of binding sites for Tra2b in the mouse transcriptome. (A) Nucleotide sequences enriched in the Tra2b CLIP tags are
enriched in the core motif GAA. The percentage of CLIP tags was plotted against the order of retrieval of individual 6-mers on a logarithmic scale to
identify the most frequently occurring 6-mer sequences within the CLIP tags. CLIP tag sequences which contain GAA are indicated in red. All other
CLIP tags are shown in blue. (B) Consensus binding site for Tra2b derived from alignment of full length CLIP tags. The consensus was constructed by
anchoring CLIP tags around GAA and then performing an alignment. The positions 1–6 which are particularly conserved are shown underneath and
discussed in the main text. (C) Pie chart showing percentage of retrieved CLIP tags mapping to different inter- and intragenic locations within the

New Roles and Splicing Targets for Tra2b
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identified as a binding site for SRSF1 [31]) and 7SK RNA. There

were also Tra2b binding sites within the ncRNA Malat1 which is

known to be localised in nuclear splicing speckles enriched in pre-

mRNA splicing components (Malat1 is also bound by SRSF1 [31]),

and within microRNAs. These identified targets suggest that

Tra2b might in fact be a somewhat multifunctional post-

transcriptional regulator. Similarly diverse classes of target RNA

(including both coding and ncRNAs) have been identified for a

number of other RNA binding proteins by HITS-CLIP

[30,31,33,35,36].

Analysis of endogenous target exons indicate that
isoforms of Tra2b can activate, co-activate, and repress
exon inclusion

Tra2b bound to both constitutive and alternative exons and also

to each different class of alternative events annotated on the mouse

genome browser at UCSC. In particular, Tra2b binding sites

mapped preferentially to cassette exons (this is also the most

frequent class of alternative splicing event in metazoans [37])

(Figure 2E). To test for splicing regulation of these identified target

exons by Tra2b, a panel of seven cassette exons with high numbers

of mapped CLIP tags, together with flanking intronic sequences,

were cloned into an exon trap vector (see Materials and Methods).

The resulting minigenes were then transfected into HEK293 cells

with expression constructs encoding either GFP, Tra2b-GFP, or

GFP-tagged Tra2b deletion variants. Western blots indicated each

of the GFP-fusion proteins were efficiently expressed in HEK293

cells (Figure 3A), although the fusion protein without the RS1

domain was expressed at higher levels.

Splicing patterns of pre-mRNAs were analysed using RT-PCR.

We observed particularly strong splicing activation of a poison

exon in the Tra2a gene in response to co-expression of Tra2b-GFP

(Figure 3B). Ectopic expression of both Tra2a and Tra2b were

equally able to activate splicing of the Tra2a poison exon

indicating that these two proteins are functionally equivalent in

this assay (Figure 3B, lanes 2 and 3). No splicing activation of the

Tra2a poison exon was observed with either Tra2bDRRM-GFP or

GFP alone, indicating a requirement for RRM-dependent binding

by full length Tra2b proteins for splicing activation (Figure 3B,

lanes 1 and 4).

Full length Tra2b also mediated statistically significant splicing

activation of a cassette exon annotated Nasp-T in the Nasp gene.

Surprisingly, equally strong and highly statistically significant Nasp-

T exon splicing activation was also observed in response to ectopic

expression of Tra2bDRRM-GFP protein (Figure 3C, lanes 2 and

3). Because of the high levels of splicing inclusion observed for the

wild type Nasp-T exon at endogenous cellular concentrations of

Tra2b (Figure 3C), we also repeated these experiments using a

mutated exon which is less efficiently spliced (mutant M3+M4 –see

below) and again observed significant splicing activation by

Tra2bDRRM-GFP protein (Figure 3D –in this case the effect of

Tra2bDRRM-GFP is clearer because of the lower levels of splicing

inclusion of this mutated exon at endogenous cellular Tra2b
protein concentrations). Together these data indicate that for some

exons including Nasp-T, Tra2b can activate splicing through

RRM independent interactions as well as being a direct splicing

activator as previously described.

The Sfrs10 locus encodes a second endogenous protein isoform

called Tra2bDRS1 [20,21,22] which lacks the RS1 domain.

Surprisingly, after co-expression of a Tra2b-GFPDRS1 protein

isoform we observed significant splicing repression of both the

Tra2a poison exon and Nasp-T exon (Figure 3B–3D) indicating

that this protein isoform behaves as a potent splicing repressor,

and of the same target exons recognised by full length Tra2b
protein.

Two further exons, Creb exon 2 and Lin28b exon 2, did not

detectably respond to ectopic expression of full length Tra2b or

any of its derivatives (Figure 3G and 3H) and were already

included at high levels in the absence of ectopically expressed

Tra2b protein. No strong splicing repression of Creb exon 2 and

Lin28b exon 2 was observed on co-expression of Tra2b-

GFPDRS1. Full length Tra2b weakly but significantly activated

splicing of two other target exons, Krba1 exon 9 and Pank2 exon 3

(Figure 3E and 3F) and splicing of these exons was also not

significantly repressed by Tra2b-GFPDRS1 (compare lanes 1 and

3: notice slight repression which was not statistically significant).

We also looked at two other exons which are spliced in the testis

and which we independently characterised as being regulated by

Tra2b. Minigene experiments indicated both the Crebc and Fabp9

exons [38,39] were moderately activated by Tra2b, and were also

co-ordinately moderately repressed by the Tra2bDRS1 isoform

(Figure 3I and 3J, lanes 1 and 4). Taken together these data are

consistent with full length Tra2b protein activating specific target

exons, and the Tra2bDRS1 protein isoform specifically repressing

exons which are at least moderately to strongly activated by full

length Tra2b, but not acting as a general repressor of cellular

splicing.

Tra2b directly binds to target transcripts identified by
CLIP, and binding efficiency correlates with splicing
activity

We carried out further in silico and molecular analyses to

correlate Tra2b binding with the observed patterns of exon

regulation. We firstly looked for the occurrence of over-

represented transcriptome-wide enriched 6-mer sequences (k-

mers) [40] to identify putative Tra2b binding sites in the analysed

target exons in silico (Figure S1). Both the Nasp-T and Tra2a poison

exon had a high predicted content of 6-mers corresponding to

putative Tra2b binding sites and consistent with their strong

Tra2b regulation observed in vitro.

We then directly measured Tra2b binding affinities using

Electromobility Shift Assays (EMSAs) (Figure 4: the positions of

predicted binding sites within the RNA probes are shaded as in

Table S1. Notice the dark green corresponds to the top 5 most

frequently recovered 6-mers, and lighter shades of green

correspond to less frequently recovered 6-mers). Both Nasp-T

and Tra2a poison exon probes were very efficiently shifted by even

very low concentrations of Tra2b protein (the Nasp-T probe was

shifted into the well by only 50 ng of added Tra2b protein

indicating formation of very large Tra2b protein-RNA complexes,

and increasing molecular weight Tra2a RNA-protein complexes

were observed with increasing concentrations of full length Tra2b
protein).

A series of increased molecular weight complexes also formed

on the Crebc exon RNA probe (corresponding exon regulated in

mouse transcriptome. (D) Summary of the top 5 molecular and cellular functions for Tra2b determined by Ingenuity Pathway Analysis. (E) Distribution
of Tra2b binding sites relative to the different classes of alternative events annotated on the mouse genome. Alternative events are shown in red, and
the constitutive events as yellow boxes (exons) or black lines (introns). Alternative events are annotated according to the UCSC genome browser
track Alternative Events (URL: http://genome.ucsc.edu/cgi-bin/hgTrackUi?g = knownAlt&hgsid = 212031267).
doi:10.1371/journal.pgen.1002390.g002
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cellulo by Tra2b) and on the Krba1 RNA probe (weakly responsive

in cellulo to Tra2b splicing activation). A single higher molecular

weight complex formed on the Lin28 probe (exon splicing not

activated in vitro by Tra2b, and contains a single predicted Tra2b
binding site). Much less efficient binding was observed for the non

Tra2b-responsive Creb exon 2 (which formed a single molecular

weight complex only with 200 ng added Tra2b protein, compared

with 50 ng for the Crebc probe).

The Tra2a poison and Nasp-T cassette exons are
phylogenetically conserved and show high levels of
splicing inclusion in mouse testis

An important measure of the functional importance of

individual alternative splice events is evolutionary conservation

[1,2,37,41,42]. Although many testis-specific exons are species-

specific, phastcons analysis (which measures phylogenetic conser-

vation of sequences on a scale of 0 to 1, with 1 being most

conserved) indicated very high levels of phylogenetic conservation

for the Tra2a poison exon along with flanking intronic sequences

(Figure 5A–5C). Similar high levels of nucleotide conservation

have been reported for poison exons in other genes encoding

splicing regulator proteins including Sfrs10 itself [4,5,22].

The Tra2a poison exon, which is 306 nucleotides long,

introduces stop codons into the reading frame of the Tra2a

mRNA which encodes Tra2a protein. Despite the lack of protein

coding capacity, 48% of nucleotides within the Tra2a poison exon

are in fact conserved in all vertebrates (Figure S2A: the nucleotide

positions universally conserved in sequenced vertebrate genomes

are shown in red). As a group, the 24 top most frequently

recovered 6-mers from the entire transcriptome-wide screen were

enriched in the nucleotide positions conserved between all

vertebrates at levels much higher than would be expected by

chance (Figure S2A, p = 0.0075, Fisher exact test: p = 0.0003, Chi

Squared test). These data are consistent with maintenance of

multiple Tra2b-binding sites within the Tra2a poison exon since

the radiation of vertebrates. When analysed by RT-PCR, the

Tra2a poison exon was found to be particularly strongly

alternatively spliced in the testis, with zero or much lower levels

in other adult tissues (Figure 5A–5C).

Phastcons analyses also showed the Nasp-T cassette exon,

which is also particularly long at 975 nucleotides, has been

conserved since the last common ancestor of all vertebrates

(Figure 5D–5F). However neither the nucleotide or the peptide

sequence encoded by Nasp-T are particularly highly conserved

over the full length of the exon (Figure 5E).The Nasp gene

encodes a histone chaperone essential for mouse development

[43], and the Nasp-T exon introduces a peptide-encoding cassette

exon generating a longer version of the Nasp protein. Similar to

the Tra2a poison exon, 6-mers predicting Tra2b binding site

sequences were found throughout the Nasp-T exon, and high

frequency 6-mers mapped closely adjacent to CLIP tags (Figure

S2B). Within mammalian Nasp-T exons multiple Tra2b binding

sites have been conserved. Extremely high levels of Nasp-T exon

inclusion were detected by RT-PCR in the testis and heart. In

gut, muscle and ovary, the Nasp-T exon inclusion isoform was

also preferentially included but in other tissues it was frequently

skipped (Figure 5F).

Efficient splicing activation of the testis-specific Nasp-T
by Tra2b depends on multiple Tra2b binding sites

To experimentally address the function of multiple Tra2b
binding sites in Nasp-T we used a combination of in silico and

experimental analyses, and focused on an upstream portion of the

exon (from positions 117 to 271). Using octamers predictive of

splicing enhancers and silencers [44,45,46], we firstly identified 3

strong putative ESEs (Exonic Splicing Enhancers, ESE1 to ESE3)

which we selected for further analysis, as well as other putative

moderate ESEs (Z score around 4) of which only one designated

ESE4 was further studied (Figure 6A). Each of these putative ESEs

directly overlapped with Tra2b binding sites initially identified

through 6-mers derived from the transcriptome-wide CLIP

analysis.

To experimentally test the need for individual Tra2b binding

sites in splicing regulation, individual sites were mutated within the

minigenes without creating Exonic Splicing Silencer (ESS)

sequences (Figure 6A) [28], and the splicing effect monitored.

Mutation of single Tra2b binding sites had only a minor effect on

Nasp-T splicing inclusion at endogenous cellular concentrations of

Tra2b. However, pre-mRNAs containing double mutations

affecting Tra2b binding sites (M2+M3, M1+M2 and M3+M4)

had strongly reduced Nasp-T exon splicing inclusion compared to

their wild type counterparts at normal endogenous cellular

concentrations of Tra2b (Figure 6B). Mutation of different Tra2b
binding sites within Nasp-T also had distinct outcomes on exon

inclusion, indicating underlying combinatorial effects between

different patterns of Tra2b binding. In particular, mutant M3+M4

reduced exon inclusion levels to 20% of wild type at endogenous

cellular levels of Tra2b, whereas double mutations comprising M2

and M3 reduced Nasp-T exon inclusion to just below 60%

(Figure 6B).

Although they showed decreased exon inclusion at normal

cellular concentrations of Tra2b, each of the double mutated

Nasp-T exons gave at least 80% splicing inclusion after Tra2b
protein was ectopically expressed. This suggested a requirement

for higher levels of ectopic Tra2b protein for splicing inclusion.

To test this, we co-transfected cells with minigenes containing

either wild type Nasp-T exon or the M3+M4 mutant derivative,

and a concentration gradient of Tra2b (Figure 6C). Splicing

inclusion of the wild type Nasp-T exon was already 90% without

over-expression of Tra2b and was maximal after co-transfection

of no more than 30 ng Tra2b expressing plasmid. In contrast,

levels of inclusion of the M3+M4 NaspT exon derivative increased

more slowly over the whole concentration gradient, indicating

decreased splicing sensitivity to Tra2b after removal of just two

binding sites. This is particularly striking since the M3+M4 NaspT

exon retains multiple other Tra2b binding sites (both experi-

mentally confirmed sites in the case of ESEs 1–4, and further

predicted sites throughout the exon shown in Figure S1). We used

EMSAs to directly analyse RNA-protein interactions using both

wild type and mutated versions of the Nasp-T RNA probe

Figure 3. Different protein isoforms of Tra2b can act as specific splicing activators, co-activators, and repressors of a target exons
identified by HITS-CLIP. (A) Efficient protein expression levels of different GFP fusion proteins used in these experiments (upper panel). Levels of
actin were measured in parallel (lower panel). (B)–(J). Upper panels: Bar charts showing percentage splicing inclusion (PSI) of a panel of exons
identified through HITS-CLIP in response to GFP and Tra2b-GFP fusion proteins. All data used to make the bar charts was from at least 3 biological
replicates, and the error bars are shown as standard errors. Lower panels: Representative capillary gel electrophoresis image from each RT-PCR
analysis. Probability (p) values were calculated using an independent two-sample T-test between the PSI levels for cells co-transfected with GFP and
each of the different Tra2b-GFP constructs (* p#0.05, **p#0.01).
doi:10.1371/journal.pgen.1002390.g003
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(Figure 7). While wild type Nasp-T and the single mutant M2

RNA were efficiently shifted, the average size of the M3+M4

RNA-protein complex was only slightly smaller (the average size

of the shifted complexes is indicated by a red asterisk on Figure 7).

Hence even a moderate change in in vitro RNA-protein

interactions translates to a detectable change in splicing inclusion

within cells.

Levels of neuronal Tra2b protein are depleted in a
Nestin-Cre mouse model and are functionally buffered
by the Sfrs10 poison exon

Mice with clearly reduced expression levels of Sfrs10 would be a

prerequisite to enable detection of altered splicing patterns in

Tra2b- targeted transcripts identified by CLIP. Since ubiquitous

Sfrs10 deletion leads to embryonic lethality [19], we generated a

Figure 4. Tra2b CLIP targets bind to full length Tra2b protein. (A) EMSAs of Creb exon 2, Creb exon c and the wild type Nasp-T exon. (B) EMSAs
of Krba1 exon 9, Lin28 exon 2 and the Tra2a poison exon. Electrophoretic Mobility Shift Assays (EMSAs) were carried out with full length Tra2b protein
and short radioactive RNA probes from pre-mRNAs identified by CLIP and which contained predicted Tra2b protein binding sites from the
transcriptome-wide 6-mer analysis. The RNA probes are shown to the right of the gel panels, and the sequences are highlighted for different
categories of 6-mers as in Table S1. Exon sequences are shown in upper case, and any flanking intron sequence in lower case (the Lin28b exon is very
short).
doi:10.1371/journal.pgen.1002390.g004
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neuronal specific Sfrs10-depleted mouse by crossbreeding Sfrs10fl/fl

mice with Sfrs10fl/+ mice carrying the Nestin-Cre transgene

(Nestin-Cretg/+). In Sfrs10fl/fl; Nestin-Cretg/+ offspring the Cre

recombinase would be specifically activated in neuronal and glial

precursor cells from embryonic day 11 [47] to generate animals

with a homozygous Sfrs10 knockout in the developing central

nervous system (CNS).

Homozygous neuronal Sfrs10 mice died immediately after birth

at postnatal day 1 (PND1) whereas heterozygote mice had normal

lifespans. Neuronal specific Sfrs10-depleted embryos showed

severe malformations of the brain including strong dilation of

the third and lateral ventricles as well as degeneration of cortical

structures (Figure 8A, right panel and data not shown) whereas

heterozygous knockout mouse embryos (Sfrs10fl/wt; Nestin-Cretg)

had normal brain morphology (Figure 8A, left panel). This

indicates Tra2b protein is functionally very important for brain

development in the mouse. As the liquid filled ventricles make up

the majority of the whole brain volume, the brain morphology is

heavily altered and the proportion of intact tissue is heavily

reduced. Immunohistochemical analysis of whole brain paraffin-

embedded cross-sections showed strongly decreased expression of

Tra2-b with some Tra2-b positive cell areas in the cortical plate

zone (Figure 8A, right panel). These residual Tra2-b positive cells

likely do not express Cre from the Nestin promoter and are likely of

Figure 5. The Tra2a poison exon and Nasp-T cassette exon are conserved in vertebrates and spliced at high levels of inclusion in the
mouse testis. (A) The structure of annotated alternative Tra2a transcripts (purple) and predicted PCR products (black) are shown above. (B)
Comparative genomic analysis with supporting EST information confirm splicing inclusion of these Tra2a poison exons indicate they are found in
vertebrates as distantly related as humans, mice, zebrafish and frog. (C) Expression of the Tra2a poison exon in different mouse tissues was monitored
using RT-PCR (primers in exons 1 and 4) followed by capillary gel electrophoresis, and a representative capillary gel electrophoresis image is shown.
(D) Multiple Tra2b CLIP tags mapped to a poison exon in the Nasp-T gene. The structure of annotated alternative Nasp transcripts (purple) and
predicted PCR products (black) are shown above. (E) Underneath the Phastcons alignment of the Nasp-T exon from multiple vertebrates is shown. (F)
Incorporation of the Nasp-T exon was monitored by RT-PCR and capillary gel electrophoresis. High levels of splicing inclusion were detected in the
mouse testis, and lower levels of inclusion in other tissues. Multiple CLIP tags mapped to an evolutionarily conserved cassette exon in the Nasp gene.
The Phastcons alignment of the Nasp-T exon from multiple vertebrates is shown. Phastcons analyses in parts (B) and (E) are shown as downloads from
UCSC [69]. The key for both parts (A) and (D) are indicated in (D).
doi:10.1371/journal.pgen.1002390.g005

New Roles and Splicing Targets for Tra2b

PLoS Genetics | www.plosgenetics.org 10 December 2011 | Volume 7 | Issue 12 | e1002390



New Roles and Splicing Targets for Tra2b

PLoS Genetics | www.plosgenetics.org 11 December 2011 | Volume 7 | Issue 12 | e1002390



non-neuronal origin, or may represent mosaicism of Nestin-Cre

expression. Furthermore, Western blots from whole brain also

demonstrated a clear down-regulation of Tra2-b in neuronal

specific Sfrs10-depleted embryos compared to controls and

heterozygous knockout animals at 16.5 dpc (Figure 8B). In control

animals the Sfrs10 mRNA levels remained largely unchanged

during development (16.5 dpc, 18.5 dpc and PND1) (Sfrs10fl/fl

n = 10; Sfrs10fl/+ n = 6; data not shown).

Expression analysis of whole brain RNA from neuronal Sfrs10-

depleted embryos at 16.5 dpc and 18.5 dpc and mice at PND1

showed clearly reduced Sfrs10 mRNA levels compared with

brains of control littermates (Sfrs10fl/fl, Sfrs10fl/+ or Sfrs10fl/+;

Nestin-Cretg/+) (Figure 8C). Regardless of the developmental stage

the majority of Sfrs10fl/fl pups exhibited somewhat reduced Sfrs10

expression levels compared with heterozygously floxed mice,

which suggested that the integration of the floxed allele has a

slightly negative influence on Sfrs10 expression. Therefore for

statistical analysis the expression levels of splice isoforms of

Sfrs10fl/fl; Nestin-Cretg/+ mice were always compared with Sfrs10fl/+

and not Sfrs10fl/fl mice.

Tra2-b regulates its own expression level via alternative splice

regulation in an autoregulatory feedback-loop. Inclusion of poison

exon 2 into Sfrs10 transcripts introduces a premature stop codon

which leads to a non-functional protein and thus a reduction in

Tra2-b levels [22]. Isoform specific qRT-PCR indicated a highly

significant down-regulation of both individual mRNA splice

isoforms and total length Sfrs10 mRNA in neuronal specific

Sfrs10-depleted mice Sfrs10fl/flNestin-Cretg/+) compared to con-

trols at 16.5 dpc (Figure 8C). In contrast, in heterozygous

knockout animals (Sfrs10fl/+Nestin-Cretg/+) down-regulation of

the functional isoform (2 exon 2) was less effective than for the

non-functional (+ exon 2) isoform indicating the involvement of

the autoregulatory feedback loop which counteracts any decrease

in functional Tra2b protein in neuronal cells.

Tra2b physiologically regulates splicing inclusion of the
Tra2a poison and Nasp-T cassette exons in mouse brain
development

We next set out to determine whether the Tra2a poison exon

and Nasp-T cassette exon were true physiological target exons

regulated by Tra2b in vivo. Correlating with an important

regulatory role for Tra2b protein, splicing inclusion of the poison

exon into the Tra2a mRNA was reduced 3-fold in neuronal Sfrs10-

depleted mouse brains compared to controls at 16.5 dpc

(Figure 8E). Surprisingly, this decrease in poison exon inclusion

could not be detected at later developmental stages like 18.5 dpc

or PND1 (data not shown).

Figure 6. The splicing response to Tra2b is mediated through binding to four independent sites. (A) z-score plot predicting the splicing
control sequences according to [45] in the upstream portion of the Nasp-T cassette exon. Investigated exonic regions with z-scores above the
threshold value for exonic splicing enhancers are labelled ESE1–4. The z-score plots of the wild type Nasp exon is shown in black, superimposed with
z-score plots for each of the point mutants which affected individual ESEs (shown as blue coloured lines, with the changed nucleotide indicated as a
broken line). Individual mutants are shown as M1–M4. Local CLIP tag coverage is shown as black lines, and the relative positions of local 6-mers
identified at a high frequency in the CLIP screen as green lines. (B) Effect of Tra2b on splicing inclusion of different Nasp-T cassette exons (wild type
and mutants) co-expressed in HEK293 cells in the presence of endogenous Tra2b or with constant levels of Tra2b (500 ng, ectopically expressed). (C)
Percentage exon inclusion of the wild type and Nasp-T exon derivative M3+M4 obtained after transfection of increasing levels of each of Tra2b. Error
bars are shown as the standard error of the mean. Probability (p) values were calculated using an independent two-sample T-test between the PSI
levels for cells co-transfected with GFP and Tra2b-GFP (black asterisks), or between endogenous PSI for each of the Nasp-T constructs at endogenous
Tra2b concentrations (just transfected with GFP, red asterisks). P value scores are indicated as * p#0.05 and **p#0.01.
doi:10.1371/journal.pgen.1002390.g006

Figure 7. Point mutants in the Nasp-T exon within candidate Tra2b binding sites are still able to bind to Tra2b. RNA-protein
interactions were monitored by EMSAs. The average position of the slowest migrating complex in the lane containing 10 ng of added Tra2b protein is
indicated by an asterisk, and the RNA probes used were as in Figure 4 but containing the appropriate point mutation.
doi:10.1371/journal.pgen.1002390.g007
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To determine whether low Tra2b levels directly affect the

splicing of the Nasp-T exon, qRT-PCR was carried out on whole

brain RNA of 16.5 dpc and PND1 pups. The levels of the T-exon

isoform of Nasp mRNA (Nasp-T) were 4-fold reduced in brains of

neuronal Sfrs10-depleted mice compared to controls at 16.5 dpc

(Figure 8D) and PND1 (data not shown). Given the 4-fold

reduction of the Nasp-T isoform in Sfrs10-depleted tissue, we

conclude that Tra2b protein is likely to be an important in vivo

activator of Nasp-T exon inclusion during mouse development.

These data correlate a defect in splicing regulation of Nasp-T

and Tra2a with Sfrs10 depletion but do not necessarily imply a

causal relationship, because of the differences in cell types present

after Sfrs10 depletion which result from the physiological

importance of Tra2b for brain development. To address this

further we compared overall patterns of expression of the Nasp and

Tra2a genes in wild type and knockout mice, by quantifying levels

of the somatic Nasp and Tra2a mRNA isoforms. Consistent with no

significant changes in overall Tra2a gene expression resulting from

changes in the cell type population of the knockout brains, no

statistically significant changes in functional Tra2a or Nasp

expression were seen when comparing brain RNA of Sfrs10fl/+

mice with RNA of Sfrs10fl/fl; Nestin-Cretg/+ mice (Figure 8D and

8E). These results are consistent with essentially similar patterns of

Nasp and Tra2a gene expression in the mutant and wild type brains

despite any differences in cellular composition, while in contrast

the Tra2b-regulated splice isoforms from these same genes are

very different between the wild type and mutant mice.

Discussion

Here we have identified (for the first time to the best of our

knowledge) physiological target exons regulated by Tra2b during

mouse development. Identification is based on the criteria of in vivo

cross-linking of endogenous RNAs and proteins, in cellulo

experiments using transfected minigenes and proteins, RNA-

protein interaction assays and genetic analysis using a newly

derived conditional mouse strain which does not express Tra2b
protein in neurons and has significant abnormalities in brain

development. Our analyses reveal important pathways regulated

by Tra2b protein in vivo which likely contribute both to prenatal

death in Sfrs102/2 embryos and also to normal germ cell

development [19]. Nasp protein is a histone chaperone required

for nuclear import of histones at the G1-S phase transition of the

cell cycle, and is essential for cell proliferation and embryonic

survival [43]. Nasp functions in chromatin remodelling after DNA

repair, and links chromatin remodelling to the cell cycle

machinery after S phase [48]. The T exon is also spliced in

embryos, and within the testis alternative splicing inclusion of the

Nasp-T cassette exon generates the testis-enriched tNASP protein

isoform. Timing of tNASP protein expression during male adult

germ cell development [48,49] exactly parallels the expression of

Tra2b protein. The tNASP protein isoform localises to the

synaptonemal complex of meiotic chromosomes where it may help

monitor double strand DNA break repair [43,48,50].

Tra2a and Tra2b are very similar proteins, and are inter-

changeable in our in cellulo splicing assays. Tra2b protein helps

regulate overall Tra2 protein levels through both activating

splicing inclusion of a poison exon into its own Sfrs10 mRNA,

and also activating splicing inclusion of a poison exon into Tra2a

mRNA which encodes Tra2a protein. In vivo experiments

described here show that reduced inclusion of the poison exon

does indeed help buffer the effect of decreased gene dosage in

Sfrs10 heterozygote mice. However, down-regulation of Tra2a

poison exon inclusion in Sfrs102/2 cells does not lead to an

increase in Tra2a mRNA levels sufficient to restore splicing

patterns of Tra2b target exons, perhaps suggestive of unique

functions for the Tra2a and Tra2b proteins. In flies, auto-

regulation of splicing by Tra2 protein of its own pre-mRNA has

been shown to be critical for spermatogenesis, indicating that it

might be a highly conserved feature for germ cells to tightly

maintain expression levels of this class of splicing regulator

[24,25,51]. Since Tra2a regulates Tra2a poison exon in cellulo, it is

likely that it also autoregulates its own mRNA levels in vivo through

activation of this same poison exon.

An important current question is how RNA binding proteins

like Tra2b achieve sequence specificity in target sequence selection

despite having fairly short target sequences [15]. Here we have

found a short consensus binding motif for Tra2b (AGAAGA,

Figure 2A) which matches perfectly with specific motifs obtained

both by classical SELEX analysis [12] and from identification of

Tra2b specific ESEs in various genes [22,29,52,53,54,55,56,57].

Parallel genome-wide mapping showed that Tra2b primarily binds

to exonic sequences. An explanation for exonic enrichment despite

the short binding site would be if Tra2b binds to exons

cooperatively with adjacent exonic RNA binding proteins. In the

case of SMN2 exon 7, the Tra2b binding site is flanked by

cooperative binding sites for SRp30c and hnRNP G [17,53,58].

For Nasp-T and Tra2a there are instead arrays of exonic Tra2b

Figure 8. Tra2b protein levels are drastically reduced in the brains of neuronal specific Sfrs10 knockout mice and correlate with
defects in splicing of the Nasp-T cassette and Tra2a poison exon. (A) Whole brain sections derived from 16.5 dpc Sfrs10fl/wt; Nestin-Cretg (left
panel) and Sfrs10fl/fl; Nestin-Cretg (right panel) stained with antibodies against Tra2b. Brains of heterozygous knockout animals (left panel) appear
normal and Sfrs10 is expressed throughout all cortical layers. Brains of neuronal specific knockout animals (right panel) show a vast dilation of the
lateral ventricles and disturbed cortical patterning. Tra2b expression is not detectable in the majority of intact tissue areas but is clearly retained in
some cells of the cortical plate region. Scale bars represent 200 mm. Abbreviations are mz: marginal zone; cp: cortical plate zone; sp: subplate zone; iz:
intermediate zone; svz: subventricular zone; vz: ventricular zone; lv: lateral ventricle. (B) Western blot analysis indicates that Tra2b expression is
reduced in neuronal specific knockout mice. Proteins were isolated from whole brains of 16.5 dpc embryos and Tra2b was specifically detected by
Western blotting. The Tra2b protein level is drastically reduced in Sfrs10fl/fl; Nestin-Cretg animals compared to controls or heterozygous knockout
animals. b-actin was used as a loading control. The relative levels are shown underneath as a bar chart (a.u. = arbitrary units). (C) Expression of the
Sfrs10 mRNA in different mouse genotypes used in this study. Levels of the Sfrs10 mRNA isoforms in different mouse genotypes were independently
measured by qRT-PCR from whole brain RNA isolated at 16.5 dpc (Sfrs10fl/fl, n = 4; Sfrs10fl/+, n = 5; Sfrs10fl/+; Nestin-Cretg/+, n = 4; Sfrs10fl/fl; Nestin-Cretg/+,
n = 4). Levels of Sfrs10 mRNA isoforms are consistent with use of the poison exon for autoregulation of transcript levels in vivo at 16.5 dpc. Isoform-
specific qRT -PCR for Sfrs10 on whole brain RNA revealed a coordinate downregulation of both the functional (278%) and the non-functional (288%)
isoform in neuronal specific knockout animals at a highly significant level. The decrease of Sfrs10 transcripts was also detectable in heterozygous
knockout animals, in which the functional and non-functional isoform were decreased by 24% and 61%, respectively. (D) Splicing of the Nasp-T
cassette exon is misregulated in Sfrs10fl/fl; Nestin-Cretg/+,mice. Levels of the different mRNA isoforms were measured by qRT-PCR from brain RNA
samples isolated at 16.5 dpc (Sfrs10fl/fl, n = 2; Sfrs10fl/+, n = 3; Sfrs10fl/+; Nestin2Cretg/+, n = 5; Sfrs10fl/fl; Nestin-Cretg/+, n = 2). (E) Splicing of the Tra2a
poison exon is misregulated in Sfrs10fl/fl; Nestin-Cretg/+mice. Levels of the different mRNA isoforms were measured by qRT-PCR from brain RNA
samples (Sfrs10fl/fl, n = 2; Sfrs10fl/+, n = 3; Sfrs10fl/+; Nestin-Cretg/+, n = 5; Sfrs10fl/fl; Nestin-Cretg/+, n = 2). (C–E) Error bars represent the s.e.m. Statistical
significance was monitored using the T-test, and the significance values are as indicated.
doi:10.1371/journal.pgen.1002390.g008
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binding sites. Removal of more than one binding site negatively

affects exon activation by Tra2b, indicating for Nasp-T and Tra2a

adjacent binding and assembly of homotypic Tra2b protein

activation complexes play important roles in splicing activation.

A model of splicing activation for the Nasp-T and the Tra2a

poison exon which depends largely on sole binding of Tra2b
protein might explain why these exons are particularly sensitive to

depletion of Tra2b in vivo compared with SMN2 exon 7 (splicing of

which is not affected after deletion of Sfrs10, and which has a single

Tra2b binding site, Figure S1). The human testis-specific HIPK3-

T exon [50] also requires multiple Tra2b binding sites to enable

splicing activation of a weak 59 splice site in vitro [28], and the

Sfrs10 poison exon also has multiple Tra2b binding sites [22].

Other than Tra2a and Nasp-T, the remaining target exons we

analysed using minigenes here have less dense coverage of Tra2b
binding sites (Figure S1). These remaining exons also responded

less robustly to Tra2b protein expression in vitro in transfected cells,

and it is likely that RNA binding proteins other than Tra2b might

also be more important for their splicing regulation in vivo.

We also found that full lengthTra2b protein activates splicing of

the Nasp-T exon at a lower level through its RS1 and RS2 domains

only (i.e. without the RRM and so without direct RNA binding).

Mechanistically the RS domains of Tra2b might activate splicing

by helping assemble other RS-domain containing splicing

regulators and components of the spliceosome into functional

splicing complexes. Although both RS domains could co-activate

splicing when present together, removal of the RS1 domain

completely disabled Tra2b-mediated splicing activation of the

physiological target exons identified here. The observed functional

importance of RS1 provides a mechanistic explanation why this

N-terminal RS domain structure is maintained for Tra2 proteins

in both vertebrates and invertebrates. Surprisingly Tra2b
molecules without the RS1 domain were not just neutral for

splicing inclusion in cellulo, but for some exons actually functioned

as potent splicing repressors. Since the Tra2bDRS1 isoform

contains a functional RRM sequence, splicing repression could be

due to competitive inhibition through this shorter Tra2b protein

binding to the same RNA targets, but then being unable to

assemble functional splicing complexes with other Tra2b proteins

in the absence of the RS1 domain. Detection of such a competitive

inhibitory function might have been helped by the increased levels

of the Tra2bDRS1 isoform expressed in our experiments. In vivo,

the Tra2b-3 protein which lacks the N-terminal RS1 domain

might also operate as a natural splicing repressor isoform

[20,21,22], depending on its level of expression being enough in

specific cell types or tissues. Tra2bDRS1 actually activates SMN2

exon 7 rather than being a repressor as seen for the physiological

target exons we describe in this report [17]. Although the biology

of SMN2 exon 7 has been an area of controversy in the literature

[59,60], a possible mechanistic explanation for this difference

might be if Tra2b binding to SMN2 exon 7 blocked the action of

an adjacent Exonic Splicing Silencer, rather than directly

activating splicing by itself.

Our analysis shows that the RNA targets identified for Tra2b in

developing adult germ cells can predict patterns of splicing

regulation by Tra2b in the developing brain. However, our data

further suggest that splicing regulation by Tra2b is temporally

restricted during development and also differentially regulated

between various Tra2b targets. This is highlighted by Tra2a

poison-exon splicing, which is affected by neuronal specific Sfrs10

knockout only at a defined developmental stage, while Nasp-T

exon inclusion is perturbed by Sfrs10 knockout in all analyzed

situations. Both the Nasp-T and the Tra2a poison exon are

biologically important: they are conserved in all vertebrates for

which genome sequences are available; have known functional

roles; and like other phylogenetically conserved exons are spliced

at high levels in at least some tissues [4,37,41]. The tNASP protein

has been identified immunologically after the leptotene stage of

meiosis in both rabbits and mice, indicating that this exon is

meiotically expressed in both species [48,49]. In addition, although

a high frequency of alternative splicing events in the testis are

species-specific [61], the high conservation of binding sites in the

Tra2a poison-exon suggests regulation by Tra2b has been

conserved since the radiation of vertebrates. Overall our data

indicate maintenance of ancient patterns of splicing regulation

controlled by this RNA binding protein, consistent with its

observed key role in development [19].

Materials and Methods

Detection of RNA and proteins in different mouse tissues
mRNA levels were detected in total RNA isolated from different

mouse tissues using RT-PCR and standard conditions. RT-PCR

products were analysed both by normal agarose gel electrophoresis

(not shown) and capillary gel electrophoresis [62,63]. Sfrs10

primers were specific to sequences in exons 1 and 4 respectively

(59-GAGCTCCTCGCAAAAGTGTG-39 and 59-CAACAT-

GACGCCTTCGAGTA-39). Tra2b protein was detected using

immunohistochemistry in the mouse brain as previously described

[64] and in the mouse testis using Abcam polyclonal Tra2b
antibody ab31353 [28] as previously described [26].

Different Tra2a mRNA isoforms mRNA were detected by

multiplex RT-PCR using Tra2aF (59-GTTGTAGCCGTCGC-

CTTC T-39), Tra2aB (59-TGGGATTCAGAATGTTTGGA-39)

and Tra2a poison (59-TTCAAGTGCTTCTATCTGACCAA-39).

Different Nasp-T mRNA isoforms were detected by RT-PCR

using Nasp-TF (59-AATGGAGTGTTGGGAAATGC-39), Nasp-

TB (59-TTGGTGTTTCTTCAGCCTTG-39) and Nasp-TC (59-

TGCTTTGAAGTCGGTTCAACT-39).

Hprt expression was detected using primers HrptF (59-

CCTGCTGGATTACATTAAAGCACTG-39) and HprtR (59-

GTCAAGGGCATATCCAACAACAAAC-39).

HITS-CLIP
HITS-CLIP was performed as previously described [30] using

an antibody specific to Tra2b [65]. The specificity of the antibody

to Tra2b was confirmed by the experiment shown in Figure S3, as

well as the additional characterization already described [65]. In

short, for the CLIP analysis mouse testis was sheared in PBS and

UV crosslinked. After lysis, the whole lysate was treated with

DNase and RNase, followed by radiolabelling and linker ligation.

After immunoprecipitation with purified antisera specific to Tra2b
[65], RNA bound Tra2b was separated on SDS-PAGE. A thin

band at the size of 55 kDa (Tra2b migrates at around 40 kDa and

MW of 50 nt RNA is about 15 kDa) was cut out and subject to

protein digestion. RNA was recovered and subject to sequencing

which was carried out on the Newcastle University Roche 454 GS-

FLX platform. Mapping was done with Bowtie [66], allowing for

two mismatches (parameter –v 2). 297070 reads were processed, of

which 177457 (59.74%) aligned successfully to the mouse genome

(Mm9). 74476 (25.07%) failed to align, and 45137 (15.19%) reads

were suppressed due to multiple hits on the mouse genome. K-mer

analysis was carried out using custom written scripts in Python.

Briefly, we calculated the frequency of occurance of each possible

6-mer sequence in the following: our CLIP dataset, the mouse

genome (mm9) and in the mouse testis transcriptome (http://www.

ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc = GSM475281). The

genome and transcriptome corrected frequencies were obtained
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by subtracting the background (genome and transcriptome

frequencies respectively) from the signal (frequency in CLIP

dataset). CLIP reads were filtered to remove duplicates

including overlapping reads. Statistical significance was deter-

mined using a Chi-squared test. The weblogo was derived from

tags containing a GAA sequence by analysing the sequence

composition surrounding the fixed sequence, using custom

written scripts to generate an input for the freely available

program weblogo (http://weblogo.berkeley.edu/).

Generation of neuronal specific Sfrs10 knock-out mice for
in vivo splicing analysis

In our in vivo splicing study we utilized a previously established

Sfrs10 mouse model on pure C57BL/6 background as described

[19]. Genotyping was performed using tail DNA according to

established protocols [19]. To induce a conditional Sfrs10 knock-

out in the central nervous system we crossbred Sfrs10fl/fl mice with

a Nestin-Cretg/+ mouse line. These mice express Cre recombinase

under control of the rat nestin (Nes) promoter and enhancer [47].

Therefore Cre recombinase is expressed in neuronal and glia cell

precursors from embryonic day 11 as well as in neurogenic areas

of the adult brain [47,67]. For our analyses the presence of the

Nestin transgene was determined by a standard PCR using the

oligonucleotides 59–CGCTTCCGCTGGGTCACTGTCG-39 (for-

ward) and 59–TCGTTGCATCGACCGGTAATGCAGGC-39 (re-

verse) at an annealing temperature of 58uC producing a 300 bp

amplicon.

Quantitative analysis of Sfrs10 expression and Tra2b
targeted transcripts

Whole brain RNA was isolated from 16.5 dpc, 18.5 dpc and

PND1 mice using the RNeasy Lipid Tissue Mini Kit (Qiagen,

Hilden, Germany). RNA concentration was determined by

Quant-iT RiboGreen RNA Reagent and Kit (Invitrogen,

Darmstadt, Germany) and equal amounts of RNA were used for

first strand cDNA synthesis utilizing the QuantiTect reverse

Transcription Kit (Qiagen, Hilden, Germany). Quantitative real-

time PCR was carried out using the Roche LC FastStart DNA

Master SYBR green Kit (Roche, Mannheim, Germany) on the

Roche LightCycler 1.5. For realtime quantification total Sfrs10

transcripts were amplified using the oligonucleotides 59-TA-

GAAGGCATTATACAAG-39 (forward) and 599-CTCAACC-

CAAACACGC-39 (reverse) at 3 mM MgCl2 and an annealing

temperature of 63uC producing a 186 bp bp amplicon. To

quantify Sfrs10 isoforms specifically we used the oligonucleotides

59-AGAACTACGGCGAGCGGGAATC-39 (forward) and 59-

CCTTGTATAATGCCTTCTAGAACTTCTTC-39 (reverse) for

the functional isoform and 59-GAACTACGGCGAGCGGGT-

TAATG-39 (forward) and 59-CAAGTGGGACTTCTGGTCT-

GATAATTAGC-39 (reverse) for the non-functional isoform. Both

were run at annealing temperatures of 64uC resulting in amplicons

of 191 bp and 161 bp, respectively. For the quantification of

different target splice variants single isoforms were amplified

separately. For the Nasp-T exon containing isoform the oligonu-

cleotides 59-GGAGTGCATGTAGAAGAGG-39 (forward) and

59-CGTCATAAACCTGTTCTCTC-39 (reverse) were used at

1 mM MgCl2 and annealing at 65uC producing a 115 bp

amplicon. The somatic isoform of Nasp was amplified using 59-

AATGGAGTGTTGGGAAATGC-39 (forward) and 59-CTG-

AGCCTTCAGTTTCATCTAC-39 (reverse) at 3 mM MgCl2,

62uC annealing while producing a product of 118 bp length. The

functional Tra2a transcript was amplified using the oligonucleo-

tides 59-GTTGTAGCCGTCGCCTTCT-39 (forward) and 59-

GAGACTCTCTGCCCTCGAAG-39 (reverse) at 3 mM MgCl2
and 66uC annealing resulting in a 155 bp product. For the poison

exon-containing isoform we used the same forward oligonucleo-

tide as for the functional isoform and 59-CTTGATTTATCTTC-

CACATTCTTGG-39 (reverse) at 3 mM MgCl2 and 64uC
annealing producing a 206 bp amplicon. All quantification data

was normalized against Gapdh. Amplification was performed using

the oligonucleotides 59-GGCTGCCCAGAACATCATCC-39

(forward) and 59-GTCATCATACTTGGCAGGTTTCTC-39

(reverse) at 3 mM MgCl2 and 63uC annealing producing a

169 bp amplicon. Agarose gel electrophoresis and basic melting

curve analysis was performed to confirm PCR product specificity.

For quantification a dilution series of cDNA was used to generate a

standard curve for each isoform. Therefore the cycle threshold was

plotted versus the logarithm of the concentration and the standard

curve was determined by linear regression. This curve was then

utilized to calculate the template concentration of unknown

samples. All samples were measured in duplicates. Individuals of a

genotype were averaged using the arithmetic mean. Fluctuations

are displayed by the standard error of the mean, and these are

indicated on the bar charts by error bars. The significance of

differences between genotypes was verified using student’s t-test.

Minigene splicing experiments
Candidate alternatively spliced exons identified by HITS-CLIP

and approximately 240 nucleotides of intronic flanking region at

each end were amplified from mouse genomic DNA with the

primer sequences given below. PCR products were digested with

the appropriate restriction enzyme and cloned into the Mfe1 site in

pXJ41 [68], which is exactly midway through the 757 nucleotide

rabbit b-globin intron 2. PCR products were made using the

following primers:

Krba1L: 59-AAAAAAAAGAATTCtggggatcctagcaggtaca -39

Krba1R: 59-AAAAAAAAGAATTCccaaggatgtgataagcagga -39

CREB2U: 59-AAAAAAAACAATTGgggaccattcctcatttcct -39

CREB2D: 59-AAAAAAAACAATTGaaggcagttgtcatcattgc -39

LIN28F: 59-AAAAAAAAGAATTCccagcctggtctttaagagagt -39

LIN28B: 59-AAAAAAAAGAATTCcatacagtgaattatttgaaaacacc

-39

PankF: 59-AAAAAAAAGAATTCcacatctgtgggtgcacttt -39

PANKR: 59-AAAAAAAAGAATTCttcaaaggactatttggttaacagc -

39

FABP9F 59-AAAAAAAACAATTGtggcattcctttctcacctt -39

FABP9R 59-AAAAAAAACAATTGgagccttcctgtgtgggtat -39

CREBGammaF: 59-AAAAAAAACAATTGcaaacttctagatggta-

gaatgatagc -39

CREBGammaR: 59-AAAAAAAACAATTGtagccagagaacggaac-

cac -39

NaspTF: 59-AAAAAAAACAATTGtccttggaggacttctgttttc-39

NaspTR: 59-AAAAAAAACAATTGggcatgcctgcttaagtgta-39

Tra2aF: 59-AAAAAAAAGAATTCattagggactaggatggaacatga -

39

Tra2aR: 59-AAAAAAAAGAATTCgcatgatggcacatgacttt-39

ESE mutations within Nasp-T were made by overlap PCR with

the additional primers NASPM1-S (59-GGGTGGACGATAA-

GACAT GG-39) and its complementary primer (59-CCATG-

TCTTATCGTCCAC CC-39); NASPM2-S (59-GTGAGCCT-

CAAGAGTAGCTCC-39) and its complementary primer 59-

GGAGCTACTCTTGAGGCTCAC-39; NASPM3-S (59-GAAT-

CCTCTGCATAGGCAAAAG-39) and its complementary primer

(59-CTTTTGCCTATGCAGAGGATT C-39); NASPM4-S (59-

GGACTGACTCAAGTTGAGGTCGC-39) and its complemen-

tary primer (59-GCGACCTCAACTTGAGTCAGTCC-39).
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Analysis of splicing of pre-mRNAs transcribed from minigenes

was carried out in HEK293 cells as previously described using

primers within the b-globin exons of pXJ41 [29]. Because of the

length of the regulated exons, additional internal primers were

included in multiplex to detect inclusion of the Nasp-T cassette

exon (59-TGCTTTGAAGTCGGTTCAACT-39) and Tra2a poi-

son exon (59-TTCAAGTGCTTCTATCTGACCAA-39).

EMSAs
EMSAs were carried out as previously described [28] using full

length Tra2b protein and in vitro translated RNA probes made

from constructs containing amplified regions of the mouse genome

cloned into pBluescript. Regions of the mouse genome were

amplified using the following primers:

Nasp1TraGSF 59-AAAAAAAAGGTACCGAAGTGGAGAA-

GGGTGGAAG-39

Nasp1TraGSB 59-AAAAAAAAGAATTCGAAGCGACCTC-

ATCTTCATTC-39

Krba1GSF 59-AAAAAAAAGGTACCGACTCCTCCCCAC-

CCTAGTC-39

Krba1GSR 59-AAAAAAAAGAATTCGCCCAGCCATCTT-

CTACCTT-39

Tra2aGSF 59-AAAAAAAAGGTACCTTAATGTTCGTGA-

AGAAATTGAAGAG-39

Tra2aGSR 59-AAAAAAAAGAATTCTCATTAGCCTTCT-

TTTATCTTGATTTA-39

Lin28GSF 59-AAAAAAAAGGTACCCTTGAACTCTCTGA-

TTTTAGGTTCTTC-39

Lin28GSR 59-AAAAAAAAGAATTCAACAGACTAACCTG-

GGGCTGA-39

CrebcF 59-AAAAAAGGTACCTCATTGTTCTAGGTGCT-

ATCAAAGG-39

CrebcR 59-AAAAAAGAATTCCTGACATATTTTATTTT-

CTCATAGTAT GTCTCTC-39

Creb2F 59-AAAAAAGGTACCGTAACTAAATGACCATG-

GAATCTGGAGCA-39

Creb2R 59-AAAAAAGAATTCCTGGGCTAATGTGGCAA-

TCTGTGG-39

Supporting Information

Dataset S1 BED file containing the Tra2bCLIP tag sequences and

their location in the mouse genome (mm9). This bed file can be saved

and added as an optional track on the UCSC mouse genome browser

(http://genome.ucsc.edu/). To load this BED file on the UCSC

genome browser, use the ‘‘manage custom tracks’’ button under

genomes. Alternatively, the bed file can be visualised by up loading the

link http://research.ncl.ac.uk/ElliottGroup/UCSC/hub.txt into the

My Hubs textbox in the UCSC Track Hubs menu.

(TXT)

Figure S1 Sequence of all the exons analysed using minigenes

and some known Tra2b target exons. The Tra2b binding sites

predicted from the k-mer analysis are coloured as indicated in

Table S1.

( )

Figure S2 Multiple Tra2b binding sites are phylogenetically

conserved in Tra2a poison exons and Nasp-T exons. (A) Sequence of

the Tra2a poison exon from mouse. (B) Sequence of Nasp-T exon

from mouse. Nucleotides in red are conserved in all vertebrates

analysed (mouse, frog, rabbit, human, rat, cow, orang-utan, chimp,

macaque, marmoset, guinea pig, dog, horse, elephant, opossum,

lizard, zebrafinch, tetraodon, stickleback, medaka, chicken).

Nucleotides conserved in all mammals are shown in blue. All other

nucleotides are shown in black. The Tra2b binding sites predicted

from the k-mer analysis are shaded as indicated in Table S1, and the

positions of CLIP tags are underlined (note that some of these

underlined regions correspond to multiple overlapping CLIP tags

which have been joined in this figure).

( )

Figure S3 Experiment to confirm the specificity of the polyclonal

antisera used for CLIP analysis. HEK293 cells were transfected with

plasmids expressing the indicated proteins, proteins isolated and

analysed by SDS-PAGE and Western blotting. The same blot was

probed sequentially with an affinity purified antisera raised against

Tra2b [65] and then with a polyclonal specific for GFP to detect

expression of the fusion proteins. The affinity purified a-Tra2b
antisera detected a single band in HEK293 cells corresponding to

endogenous Tra2b protein, and also the Tra2b-GFP fusion protein.

No recognition of either Tra2a or Tra2bDRS1-GFP was observed,

indicating that this antisera is highly specific.

(TIF)

Table S1 Properties of the 30 most frequently retrieved 6-mers

in the Tra2b CLIP tags. The 6-mers are ordered from the most

frequently recovered at the top of the table (AGAAGA) to the 34th

most frequently recovered 6-mer at the bottom (GAAGCT). The

6-mers are arranged in colour blocks of 5 according to their

frequency of retrieval, and compared and corrected with their

frequencies in both the total mouse genome and mouse testis

transcriptome. The same colour code of the different 6-mer

categories are also used to illustrate the occurrence of these 6-mers

within the Tra2b target exons in Figures S1 and S2.

(DOC)

Table S2 List and properties of all 6-mers recovered by Tra2b
CLIP above background levels.

(XLSX)

Table S3 Top functions associated with Tra2b-bound mRNAs

determined from Ingenuity Pathway Analysis (IPA).

(DOCX)
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