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ABSTRACT We studied fluctuations in the displacement
of silica beads driven by single molecules of the motor protein
kinesin, moving under low mechanical loads at saturating ATP
concentrations. The variance in position was significantly
smaller than expected for the case of stepwise movement along
a regular lattice of positions with exponentially distributed
intervals. The small variance suggests that two or more se-
quential processes with comparable reaction rates dominate the
biochemical cycle. The low value is inconsistent with certain
recently proposed thermal ratchet models for motor movement
as well as with scenarios where the hydrolysis of a single ATP
molecule leads to a cluster of several steps. Fluctuation analysis
is a potentially powerful tool for studying kinetic behavior
whenever the output of a single enzyme can be monitored.

Steady-state measurements yield only limited types of infor-
mation about enzymatic reactions. Individual reaction steps
are buried in lumped parameters, such as keat, the turnover
rate at saturating substrate concentration, and Km, the ap-
parent Michaelis-Menten constant. To overcome this limi-
tation, transient kinetics may be employed (1). However,
time resolution can be limiting, and large quantities of puri-
fied enzyme are required. Recently, it has become possible to
measure the output of individual proteins. The discrete
currents passed by single membrane channels, for example,
can be measured using patch-clamp techniques (2). The
movement of single motor molecules can be followed in vitro
using optical techniques (3-6). For the case of the kinesin-
microtubule (MT) system, single molecules can be observed
for extended periods of time (7-9). Inside cells, kinesin
proteins shuttle organelles and vesicles toward the plus ends
of MTs, for example, during anterograde axonal transport
(10). In vitro, single kinesin molecules can pull small silica
beads through distances of several micrometers (8), moving
with 8-nm-sized steps (9), along straight paths parallel to
single protofilaments of the MT lattice (11).
Knowledge of the distribution of time intervals for enzyme

turnover can be used to place severe constraints on the
underlying kinetic scheme. In the case ofion channels, direct
construction of the distribution of open and shut intervals is
often possible (12). This is due to a remarkable amplification
scheme: open channels pass 106 ions per second, dissipat-
ing energy equivalent to the hydrolysis of thousands ofATP
molecules during each current pulse. In contrast, molecular
motors such as kinesin or myosin consume only =1 ATP per
step, and the resulting low signal-to-noise ratios make direct
measurements of such distributions difficult (9). Here, we
show how displacement fluctuations can provide information
that is largely equivalent to the direct measurement of step
interval distributions. In contrast to direct measurements,

however, fluctuation analysis is considerably more forgiving
with respect to noise. We then apply our analysis to kinesin
movement along MTs.

METHODS
Bead Assay. Details of the preparation can be found in ref.

13. Kinesin was purified from squid optic lobe (10, 13) and
MTs were prepared from bovine brain (14). Experiments
were done at room temperature (22-23.50C). The assay buffer
contained 80 mM Pipes, 4 mM MgCl2, 1 mM EGTA, 50 mM
KCl, 1 mM dithiothreitol, 1 mg of filtered casein per ml, 20
AM taxol, 1 pg of phosphocreatine kinase per ml, 2 mM
phosphocreatine, and 2 mM ATP (pH 6.9). For some exper-
iments, the last three reagents were replaced by 1 mM
5'-adenylyl imidodiphosphate (AMP-PNP). Homogeneous
silica beads (diameter = 0.52 pm, gift of E. Matijevic) were
incubated with kinesin (13). The lower coverglass of the flow
chambers was pretreated with 4-aminobutyldimethylmeth-
oxysilane (Huls) to produce a surface that binds MTs.
Taxol-stabilized MTs were bound to this surface, and kine-
sin-coated beads were introduced by flow.

Displacement Measurements. A diffusing bead was cap-
tured with optical tweezers and held against a MT for a few
seconds. At the extremely low kinesin concentrations used,
the fraction ofbeads that subsequently moved was <0.5. The
probability that movement was caused by two or more
motors was estimated at <2%; hence movement was prob-
ably due to single motors (13). Bead displacements up to 200
nm from the trap center were measured with subnanometer
resolution (at 1 kHz) using optical trapping interferometry
(9). At low loads, beads powered by single molecules gen-
erally moved through the trapping zone before spontaneously
releasing from the MT substrate. Such beads were frequently
recaptured after escaping from the trap, so that several
200-nm-long runs in succession along the MT could be
measured for individual molecules. The trap acts like a spring
of constant stiffness ar acting on the bead (15). As a kinesin
motor draws the bead toward the edge of the trap, the load
on the bead increases and the bead-to-MT linkage (the
kinesin tether) becomes stretched: =16% of the motor move-
ment is absorbed in this linkage compliance. Kinesin velocity
was corrected for this stretching, as described (13). The
optical loads used here were low (a,, = 7.4 + 0.2 X 10-3
pN/nm), such that motor velocity was independent of posi-
tion in the trap.
Data Analysis. The data sampling interval was A = 1 ms.

We estimated the mean kinesin motor velocity, v, by fitting
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straight lines to traces, x(t), derived from single runs and
averaging over all the runs of an experiment (35 runs for each
of two experiments). The mean-square displacement devia-
tion from the mean [the variance, var()] for each run of
duration lA was calculated from var(t =jA) = Xi=-ti(x(jA + iA)
- x(iA) - vjA)2/(l - j + 1). We then averaged var(t) over all
runs of an experiment. For increasing values of t = jA, a
decreasing number of independent estimates of var(t) could
be averaged, and therefore sampling errors increased for
larger t (16) (Fig. 1B). To measure the randomness, r, we
computed the slope ofthe variance using a linear fit computed
over the time interval 3-50 ms. To estimate the significance
of r, we computed the expected standard deviation of r, or,
for a simulated Poisson stepper (ar = 0.17, 20 steps per run,
70 runs) and then computed the probability, p, that the
measured r is compatible with such a process. Since for
non-Poissonian steppers cr. is relatively smaller, the error
estimate given here should be considered conservative.

THEORETICAL RESULTS
Kinesin movement has been shown to be almost entirely
unidirectional and spatially regular under conditions ofeither
high load or low ATP, where individual steps can be seen (9).
Given the recent finding that kinesin moves along paths
parallel to single protofilaments of the MT lattice (11), and
attaches preferentially to (-subunits of tubulin dimers that
are spaced every 8 nm along such protofilaments (17), it
seems likely that kinesin movement remains spatially regular
even under conditions of low load, where individual steps
cannot be discerned. We assume, therefore, that fluctuations
in displacement derive from randomness in the step intervals,
and not from irregularities in the fundamental step size. This
randomness arises from two independent sources: (i) fluctu-
ations in the timing of the chemical cycles that produce steps
and (ii) fluctuations due to the finite probability, ps, that a
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FIG. 1. Fluctuation analysis for the movement of simulated
Poisson enzymes with Gaussian white noise, with mean step time To
= 10 ms and step size d = 1. (A) Example of a single 20-step run
subject to varying amounts of noise. (B) Displacement variance
computed for three different noise levels, averaged over 35 separate
runs. The y intercept gives 2(i9). Data are plotted as mean ± SEM.

completed cycle actually produces a step. We seek to derive
an expression for randomness due to both of these contri-
butions and compare it with our experimental data. Assume,
for the moment, that every biochemical cycle leads to a single
stepwise displacement (this assumption will be relaxed short-
ly). The displacement will then be given by

x(t) = dN(t) + 7(t), [1]

where d is the step size, N(t) is an integer corresponding to
the number of motor turnovers during time t, and 7(t) is the
Brownian displacement of the bead, characterized by (7) =
0 and (7)= kT/(atr + a,,X,), by the Equipartition Theorem
(18), where a,,,, is the stiffness ofthe bead-to-MT linkage and
atr is the stiffness of the optical trap (13). N(t) increments at
stochastic times.

Ifa single biochemical step is rate-limiting, the distribution
of turnover intervals, po(T), will be exponential (19), po(r) =
T-1 exp(-T/To), where To = l/kca, is the mean turnover
interval. In this situation, the probability of turning over N
times in time t is given by the Poisson distribution, P(N, t) =
((t/1TO)/N!)exp(-t/TO). For such a "Poisson enzyme," the
mean displacement is given by

[21(x(t)) = (d/o)t
and the variance in the displacement is

((x(t) - (x(t)))2) = (d2/oT)t + 2(v2). [3]

Both the mean displacement and its variance rise linearly
with time. The ratio of the slope of the variance versus time
to the mean velocity, d/To, gives the step size, d. For a
Poisson enzyme, determination of the mean velocity and the
variance are therefore sufficient to compute the step size. We
simulated Poisson enzymes on a computer, with To = 10 ms
and d = 1, in the presence of varying amounts of Gaussian
white noise (Fig. 1A). Inspection of the traces shows how
even in the relatively favorable case where the noise is
comparable to the step size, i.e., where \/7) = 1, the
distribution of turnover intervals cannot be discerned di-
rectly. However, the variance analysis is comparatively
robust: the ratio of the slope of the variance to the mean
velocity is =1, equal to the step size, and is nearly indepen-
dent of the noise level.

Simulations imply that for the purposes of fluctuation
analysis, it is not critical to observe the displacement of a
motor protein with an especially high signal-to-noise ratio.
The reason for this is that the fluctuations for a nonstationary
Markov process, such as motor stepping, grow without
bound with time, whereas the measurement noise remains
constant. The analysis is therefore analogous to determina-
tions of diffusion coefficients from observations ofBrownian
motion with finite spatial resolution. In both cases, the
microscopic fluctuations in the force that produce movement
manifest themselves in macroscopic fluctuations in position.
More complicated reaction schemes than those involving a

single rate-limiting step lead to nonexponential turnover
interval distributions, P0(T). Although it is not feasible to
compute explicitly the equivalent of the Poisson distribution
(above) for the general case of P0(T), both the mean and
variance for any such process can nevertheless be derived
(see Appendix). In particular, consider the m-step sequential
process

kA k2 km,-' k,,,
1 --+ 2 >m-). .> 1, [4]

where each completed cycle of reactions is assumed to lead
to one step. The average turnover time is To = l/kcat =
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hY,,=j1/kj and the mean displacement is (x(t)) (d/TO)t, with
a variance

((x(t) - (x(t))2) (d2/TO)t T T/T+ 2(q1). [5]

This expression is valid for t >> To. For example, if ki = mkca,
for all i (i.e., when all the rate constants happen to be equal
in Eq. 4, hence T, = To/m), the variance is reduced by a factor
m-1 with respect to a Poisson enzyme. Thus, a two-step
sequential process with comparable rates has precisely half
the variance of a one-step process taking the same overall
time. It can be shown that even in a cyclical scheme with
reversible reactions, nonexponential step intervals arise only
when two or more of the forward rates are rate limiting (the
details of this derivation will be given elsewhere).
A convenient measure of step interval randomness, r, can

be defined as

((x(t) - (x(t)))2) - 2(7?)
d(x(t))

400
csi
E
C 300
()
C.)a 200

CU>l100
[6]

For the case of a Poisson enzyme, r = 1. For the scheme of
Eq. 4, r = XT?/TI, and therefore r = 0.5 for the two-step
sequential process just considered. For the extreme case of
completely regular movement, where the step interval dis-
tribution is described by a delta function (i.e., a molecular
clock), r = 0. In principle, such a clock can be generated by
an inifinite sequence of reactions with finite overall turnover
time, To, and any sufficiently large number of sequential steps
with comparable rates will appear clock-like.

If, rather than leading to every step with certainty, each
enzyme turnover produces a step with probability ps < 1, one
obtains

r= 1 -Ps(l-=TI/TT) [7]

for the scheme of Eq. 4 (see Appendix). Note that in the limit
of small p, the enzyme spends most of its time cycling in a
mechanically futile manner, and r 1, independent of the
particular distribution of stepping intervals.

EXPERIMENTAL RESULTS
We measured kinesin movement at a saturating (2 mM) ATP
concentration and low mechanical load (F < 1.5 pN). Under
these conditions, the thermal noise was too large and To was
too short to measure step intervals directly (Fig. 2A). For
quantitative analysis, we first characterized the Brownian
noise of a bead in the absence of kinesin stepping, by
tethering it to a MT via a kinesin molecule in the presence of
the nonhydrolyzable ATP analog AMP-PNP, which produces
a rigor-like linkage. The tethered bead was then driven
through the detector zone of the interferometer at constant
velocity (by moving the piezo stage carrying the experimental
preparation) while the bead position was measured by inter-
ferometry. As expected for a tethered Brownian particle, the
variance ofthe noise leveled off, and the correlation time was
1-2 ms (Fig. 2B). In contrast, the variance ofbead movement
driven by the ATP-dependent motion of a kinesin molecule
increased linearly, with a slope of 2.79 nm2/ms (computed
over t = 3-50 ms). The mean kinesin velocity was 670 nm/s.
Since d = 8 nm, Eq. 6 implies r = (2.79 nm2/ms)/(670 nm/s
x 8 nm) 0.52, significantly smaller than expected for a
Poisson enzyme (p < 0.004).
Could this small value of r be due to an artifact? Most

experimental sources ofnoise and error would be expected to
increase the variance and hence r, not to decrease it. Possible
sources of additional variance include (i) nonlinearities in the
position detector and/or in the kinesin linkage compliance,
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FIG. 2. Fluctuation analysis for kinesin movement at 2 mM ATP
in the low-load regime. (A) Three examples of =20-step runs. (B)
Displacement variance averaged over 35 runs for ATP-dependent
kinesin movement (o); displacement variance averaged over 35 runs
for a moving stage carrying beads tethered to MTs via kinesin motors
immobilized with AMP-PNP (o); expected variance for a Poisson
enzyme with mean speed v = 670 nm/s and step sized = 8nm (---- -)

both of which were assumed to be linear for this analysis, (ii)
spatial heterogeneities in the MT lattice spacing (hence in the
step size or step interval), (iii) heterogeneities in the kinesin
population, leading to variable mean rates of advance, (iv)
drift in the experimental conditions, and (v) rundown of the
specimen. Since these factors, and other independent
sources of noise, all make positive contributions to the
variance, r = 0.52 probably represents an upper bound for the
randomness of kinesin stepping. It is conceivable that two or
more motors located on a single bead and coupled via elastic
elements could generate motion characterized by a smaller
effective step size and thereby a lower variance. However,
given the exceedingly low kinesin concentrations used in
these experiments and the fact that the probability for bead
movement is well fit by a Poisson model, we consider this to
be an unlikely explanation for the data (13). Equivalently, if
single motors were to take smaller steps (<8 nm) under the
conditions of these experiments, a lower variance could
result.

DISCUSSION
Kinesin Kinetics. Analysis of motion driven by single

kinesin molecules implies that the distribution of step inter-
vals is nonexponential, because the variance is too low. The
measured value r = 0.52 is consistent with a reaction scheme
in which two or more sequential processes with comparable
rates become limiting. Gilbert and Johnson (20) recently
studied the transient kinetics of a recombinant, single-headed
kinesin subfragment consisting of the presumptive motor
domain and reported that ADP release is rate-limiting. Sev-
eral explanations could reconcile their observations with
ours. For example, it is possible that two (or more) kinetically
distinct ADP-kinesin complexes with comparable lifetimes
occur during the cycle. Alternatively, it may be that the
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two-headed molecule used in our assays follows a different
kinetic scheme from an isolated head, possibly because of
coupling between the two motor domains. Given that kinesin
molecules, like those of myosin, possess two heads, it is
intriguing to speculate that the two kinetically distinct states
suggested by these data reflect steps that are carried out in an
obligatory sequence by each of the two motor domains,
perhaps working "hand-over-hand." Certain classes of such
models can lead to a reduced variance relative to that of a
Poisson enzyme. However, not all two-headed mechanisms
imply this property (21): some form of kinetic coupling
between the heads must exist.
An interesting study suggested by these results will be to

measure r as a function of ATP concentration. We predict
that r should pass through a minimum when c is on the order
of Km, since the ATP binding step will be partially rate
limiting. At limiting ATP, c << Km, and displacement fluc-
tuations reflect the ATP binding kinetics.

Relevance to Thermal Ratchet Models. Recently, a novel
class of thermal ratchet models for molecular motors has
been proposed (22-25). The motor protein is described as a
particle moving in a periodic potential consisting of a series
of asymmetric potential wells. The well depths fluctuate in
time due to ATP hydrolysis, leading to a net particle flux in
the direction toward the steeper part of the potentials. One
allure of such models is that its only two essential elements
are a periodic, locally asymmetric substrate and a time-
varying binding energy, both of which seem plausible and are
believed to be important for real biological motors. However,
for the kinesin-MT system one such model predicts p, < 0.02
(23). From Eq. 7, it follows that r >1 - p, > 0.98, independent
of details of the biochemistry, which is close to unity and
incompatible with our experimental estimate. A successful
thermal ratchet model would have to take steps with much
greater certitude in order to accommodate the low random-
ness of actual movement.

Estimate of the Stepping Probability, p,. Can variance
measurements be used to place a lower bound on ps? The
variation in stepping intervals arises from two distinct con-
tributions (Eq. 7): the stochastic nature of the hydrolysis
cycle itself (Eq. 5) and randomness in the efficiency of
mechanochemical coupling, parametrized here by p,. Assum-
ing that the hydrolysis cycle were entirely clock-like (and
thereby setting the stochastic contribution ofall biochemistry
to zero), then IT /T2 = 0, and ps = (1 - r) = 0.48. Any
additional contributions from random biochemistry would
therefore cause ps to exceed this value. We conclude from the
measured value of r that somewhere between one and two
turnovers are required for a successful step, consistent with
one:one (hydrolysis-to-step) coupling at low loads. Recent
measurements of single-molecule force-velocity curves at
both limiting and saturating ATP concentrations suggested
that the load-dependent diminution in kinesin velocity might
be due to a concomitant decrease in the stepping probability
(13). The current findings suggest an independent way of
checking this suggestion experimentally, since Eq. 7 predicts
that the randomness, r, should approach unity as load is
increased.
One:Many Coupling. A number of solution measurements

of kea, have been completed on native kinesin molecules, but
typical values (=3 s-1) (26) have not been consistent with the
measured kinesin speed, v 670 nm/s, a step size of d = 8
nm, and one:one coupling, since v/d should then equal kcas.
Perhaps the simplest explanation of the discrepancy (by a
factor of =20) is that values obtained with the native molecule
in solution are low due to the fact that the native molecule is
in an inhibited state (21). Alternatively, it has been suggested
that one ATP hydrolysis might generate a rapid series of n
steps, where n >> 1, so-called one:many coupling (27, 28).
The smallness of the observed variance in kinesin motion

argues strongly against this one:many coupling hypothesis.
For example, let the cycle turnover time be To, the duration
of a step cluster be Tc << To, and hydrolysis intervals be
exponentially distributed: this amounts to a Poisson enzyme
with effective step size nd. Eqs. 2, 3, and 6 then imply r n
>> 1, much larger than observed (note that stepping events
no longer define a simple Markov process here; hence r > 1
is allowed).
Conduding Remarks. Fluctuation analysis is applicable

whenever the output of a single enzyme can be measured. In
its favor, the method is relatively forgiving with respect to
signal-to-noise ratio and can be applied in situations where
single enzyme turnovers cannot be resolved. Even when such
events can be discerned, fluctuation analysis has some ad-
vantages. The construction of turnover interval distributions
from noisy, finite-bandwidth data suffers intrinsically from
the missing-event problem (29, 30), an issue that does not
arise in fluctuation analysis. A drawback of the approach is
that the interpretation of fluctuations is somewhat model-
dependent. We anticipate that statistical analysis of varia-
tions in motor protein displacements will yield further in-
sights into mechanochemistry.

APPENDIX
We seek to calculate the displacement variance for an en-
zyme with an arbitrary turnover interval distribution, PO(T).
The probability that the enzyme has not completed its cycle
a time T after the completion of the preceding cycle is ¢O(T)
= f Po(X')dT''. Let P(N, t) be the probability of turning over
exactlyN times in time t. P(N, t) can be expressed as the sum
of the probabilities for the first turnover occurring in the
interval (T, T + &) and the remaining N - 1 steps occurring
in the remaining time t - :

P(N, t) = dTPo(T)P(N - 1, t -), [8]

which has the Laplace transform

P(N, s) = Po(s)Po(N - 1, s). [9]

Noting that P(O, t) = Do(t), we solve the recursion relation
(Eq. 9) to obtain

P(N, s)= fN (S)4) (S). [10]

The probability moment-generating function is defined as
G(g, t) = YX=Oexp(Ai)P(i, t), with the property

akG
(Nk(t)) =- [11]

In the Laplace transform domain, Eq. 8 can be summed to
give

-~, S =

1 (1 - Po(s) )
G(ts) (- exp(A)PO(s))'

[12]

and therefore

(Nw(s))= (
POW

s 1 -P(s)/ [13]

and

(N2(S))= - ( 2(() ) + (N(s)). [14]
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For the multistep reaction scheme of Eq. 4, PO(T) is the
m-fold convolution of exponential distributions, PT(r) =

T.1exp(-n/T1), where k,71 = Ti, with Laplace transforms
PTr(s) = (Tis + 1)-1. Therefore Po(s) = HITm1(Tjs + 1)-1.
Computing (F(s)) and (ft2(s)) for small s (corresponding to
large t) and transforming back into the time domain gives
(N(t)) t/TO, and for the variance ((N(t) (NQ
(t/TO)Y2T?/T , which leads to Eqs. 5 and 7.

Relaxing the requirement that each enzyme turnover must
lead to a step, we now assume that each turnover leads to a
step with some probability, Ps For a given number ofenzyme
turnovers in time t, N(t), the number of steps taken, Nm(t),
is binomially distributed with mean p5N(t) and variance
N(t)p,(1 - Ps). Taking the fluctuations of N-(t) into account,
we obtain (Nm(t)) = ps(N(t)) and (Nm(t)2) = (N(t)2)p2 +
(N(t))ps(1 - ps). The variance of Nm(t) is then

((Nm(t) - (Nm(t)))2) = pt/To(l- p5(l--T3T'), [15]

which leads directly to Eq. 7.

Note Added in Proof. We have recently become aware of a proposal
by Susan Gilbert, Kenneth Johnson, and colleagues, designed to
reconcile their data on turnover rates of the kinesin biochemical
cycle determined by pre-steady-state and steady-state kinetics. In
their proposal, the two heads of the molecule are coordinated so as
to dissociate sequentially from the microtubule, with each head
release being a rate-limiting step (S. Gilbert and K. Johnson, personal
communication). This form of two-step sequential reaction is suffi-
cient to produce a diminished variance consistent with the physiol-
ogy we report here.
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