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The developmental trajectory of nervous system dynamics shows hierarchical structure on time scales spanning ten orders of
magnitude from milliseconds to years. Analyzing and characterizing this structure poses significant signal processing
challenges. In the context of birdsong development, we have previously proposed that an effective way to do this is to use
the dynamic spectrum or spectrogram, a classical signal processing tool, computed at multiple time scales in a nested
fashion. Temporal structure on the millisecond timescale is normally captured using a short time Fourier analysis, and
structure on the second timescale using song spectrograms. Here we use the dynamic spectrum on time series of song
features to study the development of rhythm in juvenile zebra finch. The method is able to detect rhythmic structure in
juvenile song in contrast to previous characterizations of such song as unstructured. We show that the method can be used
to examine song development, the accuracy with which rhythm is imitated, and the variability of rhythms across different
renditions of a song. We hope that this technique will provide a standard, automated method for measuring and
characterizing song rhythm.
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INTRODUCTION
Developmental learning (for example, speech acquisition in

human infants) takes place early in life but its effects may last

the entire lifetime of the individual. Developmental learning is

difficult to study because the behavioral changes involved span

many time scales: Behavioral changes can occur within hours,

across daily cycles of wakefulness and sleep and over develop-

mental stages. The study of developmental song learning in birds

provides a unique model system for examining this process in

detail.

Previous work has shown that song has structure that spans

many time scales [1,2,3,4]. Spectral analysis has proven to be a

useful tool in analyzing song temporal structure from milliseconds

to several seconds. For example, song spectrograms are the basic

tool used to characterize the time-frequency structure of

individual songs. Timescales that span several minutes can be

analyzed by examining the distribution of syllable features. These

distributions reveal stable organized structures (e. g., clusters) even

in the early song, where the individual spectrograms appear

unstructured. Visual examination of spectrograms and syllable

clusters across developmental timescales show the existence of

longer time scale structures which have been relatively difficult to

quantify.

We find that at these intermediate timescales, it is useful to

quantify the rhythmic patterns present in the vocal production,

which we call ‘‘song rhythm’’. There is no accepted method to

measure song rhythms in adult song, let alone juvenile song, which

appears unstructured and unstable. We show here, how the song

rhythm may be extracted by computing spectrograms of time

series composed of song features, and that the ‘‘rhythm

spectrogram’’ provides a useful tool to characterize and visualize

song development over the entire ontogenetic trajectory.

There is a pleasing symmetry between the rhythm spectrogram

and the song spectrogram, although the latter exhibits the

dynamics of the syringeal apparatus and the song system, while

the former exhibits developmental dynamics. In the same way

that study of the song spectrograms have led to mechanistic

insights into song production at the articulatory and neural

system level, we expect that the rhythm spectrogram will provide

insight into the developmental dynamics of the nervous system,

helping to disentangle genetically driven and environmentally

driven effects. For example, do juvenile birds have a steady

rhythm prior to song learning? Is the rhythm imitated ‘‘as is’’ or

does it evolve from an existing rhythm, etc. More generally,

investigating rhythm development can help us understand how

birds transform their sensory memory of the song they have

heard into a set of complex motor gestures that generate an

imitation of that song.

The methods described here are available in the form of

MATLAB code distributed as part of the freely available Chronux

and Sound Analysis software packages [5,6].

METHODS

Glossary of Terms and Units of Analysis
The song bout is composed of introductory notes followed by a

few renditions of a song motif. A syllable is a continuous sound

[7,8,9] bracketed by silent intervals. In this paper we define the

motif duration as the duration of the syllables and silent
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intervals, including the silent interval after the last syllable as

measured in a song with more than one motif. Figure 1 displays an

example of a bout with three motifs where each motif has three

syllables.

Multitaper spectral analysis
We make use of the multitaper framework of spectral analysis

[10,11]. In addition to robust estimates of spectra and dynamic

spectra for signals with complex structure, the multitaper

framework also provides robust estimates of time and frequency

derivatives of the spectrogram, which we use as the starting

point for the computations of song features other than amplitude

[12].

Recording and Analysis
Subjects & training We used 48 zebra finches (Taeniopygia

guttata) from the City College of New York breeding colony. All

birds were kept in social isolation from day 30 to day 90 after

hatching. Twelve birds were kept in social isolation and were not

exposed to conspecific songs. 36 birds were trained starting from

day 43 after hatching with one of three different song playbacks

(twelve birds per song model) [13,14]. The number of playbacks

was limited to 10 playbacks per session, two sessions per day.

The playbacks were initiated by key pecking. Speakers were

placed behind a bird model at the far edge of the cage. Birds

were raised from hatching under an artificial photoperiod of

12 h : 12 h LD.

Data acquisition To facilitate the acquisition and analysis of

the continuous recording of song development of individual birds,

we have developed an open source software program that

automates much of the data acquisition, feature calculation and

database handling-Sound Analysis Pro. Song activity was detected

automatically and saved (16 bits, sampling frequency 44.1 kHz)

continuously throughout the experiment, except when song

playbacks were played. We recorded and analyzed 10 terabytes

of song, stored as wave files in Lacie external HDs. Songs were

analyzed with the batch module of Sound Analysis Pro, and results

(for example, millisecond features) were stored in mySQL 4.0

tables (http://mySQL.com). The batch module did spectral

analysis and computation of acoustic features using the first and

second taper of multitaper spectral analysis [10,11] to compute

spectral derivatives and acoustic features [5]. Subsequent analysis

was based on the six acoustic features computed on each spectral

frame: amplitude, pitch, entropy, FM, continuity and goodness of

pitch [12]. Those features were computed using a 9.27ms

advancing in steps of 1ms, effectively smoothing the data with

89.2% overlap. Final stages of analysis were performed with

MATLAB (The Mathworks, Natick, MA).

Preliminary Analysis
The song structure may be summarized using a set of song features

such as the amplitude, pitch, mean frequency, amplitude

modulation, frequency modulation, continuity in time, continuity

in frequency (a definition of these features may be found at [12,3]).

These features summarize the acoustic structure of the song. In

addition, a rhythm analysis summarizing the acoustic structure of

specific events in the song can be performed. To do this, a ‘‘point

process’’ is calculated, a time series in which all values are zero

except at the occurrence of an event, where the value is ‘‘one’’. An

event can be notes, syllables or any kind of temporal marker. For

example, in figure 2c, ‘‘one’’ marks the onset of a syllable. An

amplitude threshold was used to identify the onset of syllables. The

threshold was chosen and monitored manually with a graphical

user interface.

Rhythm analysis
The spectrogram, i.e. the short-time spectrum computed with a

sliding window, has proven in the past to be a good way of

looking at the fine temporal structure of songs [12]. The

duration of the sliding window is on the order of 10msec and

the spectrum shows power up to several kHz, indicating

temporal structure at the millisecond timescale (figure 2A).

Analysis of song features has shown temporal structure in the

song over longer timescales, including circadian oscillations [2]

and developmental song dynamics [13]. One motivation of the

current study was to look at these longer timescale dynamics

using the same set of tools as was used for the shorter timescale

dynamics.

To look at longer time scales, we use a nested spectral analysis

method. First, song feature time series are estimated (see 2.2.3

Preliminary Analysis section). The feature values at a given time

point depend on the fine temporal structure of the waveform with

millisecond resolution, while the features themselves change with a

slower timescale of 10–100ms. The continues (not segmented)

feature time series are subjected to a second spectral analysis, and

the result is a ‘‘rhythm’’ spectrogram, see figure 2B. In the rhythm

spectrogram, the fundamental frequency (that was defined as pitch

in a normal spectrogram) is in Hz instead of kHz in the regular

spectrogram.

Rhythm spectrograms can characterize not only continuous and

unsegmented song features, but also point process features where

each spike (i.e. a ‘‘one’’) represents the occurrence of a specific

event in the song. We use a point process feature when we want to

track how a certain temporal marker develops and how

stereotypically it occurs. Those temporal markers could be notes,

syllables, or onsets/offsets of syllables. For example, figure 2c

shows a feature that marks the onset of syllables.

We were interested in long time scales on the order of an hour,

i.e each column in the rhythm spectrogram would correspond to

an hour of singing. A time interval of an hour has many bouts of

song followed by silent intervals. The analysis is carried out by first

segmenting the time period into song bouts and silence. The

segmentation to bouts was done using a very low amplitude

threshold that was just above noise level. The threshold levels were

chosen manually according to the recording quality. We then

perform spectral analysis on the feature time series corresponding

to each song bout and then average the song bouts that are sung

during an hour. By doing so, we are losing the information on

temporal structure between bouts, but the spectral structure within

a bout remains.

From the rhythm spectrogram, we can derive second order

features. In the zebra finch, since the main repeating unit is the

motif, the fundamental of the rhythm spectrum may be expected

to relate to the motif duration. The degree of periodicity of the

rhythm may be assessed in the same way as for the regular song

Figure 1. A spectrogram of an adult zebra finch song. This song has
three repetitions of the motif. An occurrence of song is called a bout.
doi:10.1371/journal.pone.0001461.g001

Characterize Rhythms

PLoS ONE | www.plosone.org 2 January 2008 | Issue 1 | e1461



Figure 2. Regular song spectrograms versus Rhythm spectrograms. A. A regular song spectrogram using a 10msec sliding window, showing power
up to several kHz. B. Rhythm spectrograms display longer time scales. These are computed by estimating the dynamic spectrum of an appropriate
song feature (amplitude in the above example). Each column of the rhythm spectrogram represents the averaged spectrum of song features sung
during an hour long interval. C. Rhythm spectrograms that were generated using a point process that marks the onsets of syllables.
doi:10.1371/journal.pone.0001461.g002
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spectrum, using the amplitude and width of the corresponding

spectral peaks and the Wiener entropy.

A flowchart of the procedure is shown in figure 3. The spectrum

of the song waveform x(t) is computed to get the song spectrogram

S(f,t), or a derivative of that spectrogram [12]. A feature time series

F(t) is derived from the spectrogram to get a coarser time scale

representation of the song and subjected to a second round of

spectral analysis. The result is a ‘‘Rhythm’’ spectrogram SR(f,t)

which shows the temporal structure on longer (e.g. developmental)

time scales. Second level features may be derived from the

‘‘Rhythm’’ spectrograms (e.g. the song rhythm as defined by the

fundamental frequency if the spectrogram shows a harmonic

structure).

RESULTS

The adult zebra finch song is composed of a few renditions of the

song motif. Each motif has a number of syllables. The rhythm

spectrogram shows this repeating structure in the frequency

domain, with the fundamental frequency corresponding to the

motif duration. In order to verify that this is true, we checked in 20

adult birds, that Indeed, the fundamental of the rhythm

spectrograms corresponds to the motif durations. During devel-

opment there are instances where two types of motifs with two

motif durations are sung in one bout, or in different bouts but at

the same hour. In those cases, there would be two harmonic trains

with different fundamentals. The structure of the harmonics in the

Figure 3. A flowchart of the nested spectral analysis as described in the text.
doi:10.1371/journal.pone.0001461.g003
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rhythm spectrogram, i.e. the energy distribution across the

harmonics for one column, is explained by the syllabic structure.

Figure 4 shows a rhythm spectrum (figure 4a) at a develop-

mental stage where the motif duration changes from 270 ms

(3.7 Hz) at the age of 47 days, to 400 ms (2.5 Hz)at the age 55, to

600 ms (1.66 Hz) zHYat age 60 (figure 4b). The transformation

from a fundamental of 2.5 Hz to 1.66 Hz, was caused by the

incorporation of an additional syllable in the song motif.

Sometimes in low frequencies of the rhythm spectrum it is

possible to identify song elements (syllables and notes) that

correspond to the rhythm. The energy of the corresponding

frequency band increases when either the rhythmic component at

that frequency range becomes more periodic or its appearance is

more frequent. It is possible to distinguish between these two

possible causes by looking at the sharpness of the frequency peak.

A signal that is less periodic would appear to be smeared, and a

signal that is less abundant will look fainter. For example, the most

dominant frequency band (around 11Hz) is caused by a short

harmonic stack at the beginning of the motif. At day 47, the

energy in that frequency band becomes stronger as the short

harmonic stack emerges as a distinct syllable. But, as in sonograms,

it is not always straightforward to relate the temporal waveform to

the frequency patterns observed in the sonogram. Frequency

bands in the rhythm spectrogram might not correspond to

syllables and notes in a simple and direct way because rhythm is

a global feature of the time varying signal.

The juvenile’s song structure can be highly variable, not only in

its notes and syllables, but also in its motif composition (Figure 5B).

It is often hard to visually identify a motif, or any repeating unit in

the juvenile’s song spectrogram. The rhythm spectrogram has

proven to be a useful tool in identifying repeated units even in

these relatively unstructured songs. Figure 5A shows the rhythm

spectrogram for a juvenile bird, age 47–48 days, using the

amplitude feature. A strong spectral peak is visible in the rhythm

spectrogram at 1.35 Hz. Figure 5B shows a sample of songs from

the same days. It is hard to identify by eye any repeating unit in

the song spectrogram, but a periodicity of 740msec (corresponding

to 1.35Hz) may be found in the onsets of song syllables

(highlighted by the black lines- figure 5B).

DISCUSSION
In this paper we have presented a method that nests spectral

analysis across timescales to study longer time scale structure in

Figure 4. The relations of motif durations and the fundamental frequency of the rhythm spectrogram. Changes in the motif duration show up as
changes in the fundamental frequency of the rhythm spectrogram as described in the text.
doi:10.1371/journal.pone.0001461.g004
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birdsong development. This technique can detect rhythm early in

the zebra finch song development, and can track the transition

from the juvenile rhythms to the adult rhythms which correspond

to the song motif. The study of rhythm development should

provide a different perspective from the one where attention is

paid to template matching at the level of the spectral frame [4,13].

It also promises to provide mechanistic insight into the

development of the song circuitry, in the same way that the study

of song spectrograms has provided mechanistic insight into the

dynamics of the peripheral apparatus that produces song [8,9].
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