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ABSTRACT

Methylation of CpG islands associated with genes
can affect the expression of the proximal gene,
and methylation of non-associated CpG islands cor-
relates to genomic instability. This epigenetic mod-
ification has been shown to be important in many
pathologies, from development and disease to
cancer. We report the development of a novel
high-resolution microarray that detects the methyla-
tion status of over 25 000 CpG islands in the human
genome. Experiments were performed to demon-
strate low system noise in the methodology and
that the array probes have a high signal to noise
ratio. Methylation measurements between different
cell lines were validated demonstrating the accu-
racy of measurement. We then identified alterations
in CpG islands, both those associated with gene
promoters, as well as non-promoter-associated
islands in a set of breast and ovarian tumors. We
demonstrate that this methodology accurately iden-
tifies methylation profiles in cancer and in principle
it can differentiate any CpG methylation alterations
and can be adapted to analyze other species.

INTRODUCTION

It has become increasingly clear how epigenetic modifica-
tion can affect the structure and the expression of genes
encoded in the DNA. One such modification is the methy-
lation of cytosines that are 50 to guanines, so-called CpG
dinucleotides. Found scattered across the genome,

although at a lower than expected frequency, CpG dinu-
cleotides also cluster into what have been termed CpG
islands. The definition of a CpG islands differs somewhat
based on the algorithm used for identification, two com-
monly used algorithms being Gardiner-Garden and
Frommer (1) and Takai-Jones (2). The islands identified
can be classified as falling into two distinct classes, those
that are overlapping or proximal (within 2000 bp) to the
transcription start site (TSS) of genes and those that are
not associated with any transcription start site (non-TSS)
for an obvious gene. Most CpG islands proximal to the
TSS of genes (TSS–CGIs) are largely unmethylated nor-
mally, and methylation of these islands, as can occur
during tumorigenesis, has been shown to correlate highly
to the suppression of transcription (3). Of the non-TSS
CpG islands (non-TSS–CGIs) in the genome, many of
these are proximal or inclusive to repetitive sequences,
and are generally heavily methylated in normal tissue
(4,5). However, during tumorigenesis hypomethylation
occurs at these islands (4,5), which can result in the expres-
sion of certain repeats (6,7). Interestingly, this hypomethy-
lation correlates to the severity of some cancers (8,9) and
DNA breakage and genome instability (10).
Under certain circumstances, which can occur in

pathologies such as cancer, imprinting, development,
tissue specificity and X-chromosome inactivation, TSS–
CGIs can be heavily methylated (11). Specifically, in
cancer, methylation of islands proximal to tumor suppres-
sor genes such as p16, RASSF1A, BRCA1, is a frequent
event (12–14). Since the analysis of such genes was pre-
viously done one at a time using bisulfite sequencing, the
value of accurate high-throughput methods is obvious.
Several higher throughput methods, many array based,

have been developed to identify CpG methylation in the
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genome for several different species including human and
plants. An indirect approach compares expression analysis
of 5-aza-cytidine treated to untreated cells (15). Early
methods utilized fragments cloned from CpG island
libraries (16). Illumina Inc. has developed an array-like
procedure based on their bead platform (17). Several
other approaches have adopted more standard array plat-
forms utilizing DNA precipitations for human and arabi-
dopsis with either methyl-binding proteins or antibodies
that recognize methyl cytosine (ChIP-chip) (18–21). Other
methods utilize methylation sensitive restriction endonu-
cleases with or without fractionation of the genome
(22–25). More recently, sequencing methods have been
developed using the newest generation sequencers such
as the Roche Genome Sequencer FLX (454 Lifesciences
technology) (26). Although these methods are likely to
replace array-based method they are presently prohibi-
tively expensive to analyze the entire genome of large
sets of samples. It is more likely that for the time being,
many islands will be analyzed for few samples or few
islands will be analyzed for many samples.
We have developed a method to profile genome-wide

methylation that is similar to the HpaII tiny fragment
Enrichment by Ligation-mediated PCR (HELP) assay
(27) and MASS, which utilizes the enzyme McrBC (28),
but we have made modifications to increase the methyla-
tion detection limits as well as the classes of islands ana-
lyzed. We have analyzed cell lines and validated
measurements of methylation with bisulfite sequencing.
We then went on to develop methods, which allow us to
analyze tumors with unmatched normals, thereby acces-
sing any samples in our tumor collection. This methodol-
ogy will be useful to identify methylation events in the
field of cancer as well as other fields such as development,
aging, imprinting, etc.

METHODS

Materials

Enzymes, MspI, McrBC, T4 DNA ligase, were supplied
by new England Biolabs. Primers were supplied by Sigma
Genosys. Cot1 DNA and tRNA were supplied by invitro-
gen. The Megaprime�labeling kit, Cy3-conjugated dCTP,
and Cy5-conjugated dCTP were supplied by Amersham-
Bioscience. Taq polymerase [Eppendorf mastermix (2.5X)]
was supplied by Eppendorf. Centricon YM-30 filters
were supplied by Amicon and formamide was supplied
by Amresco. Phenol:chloroform was supplied by Sigma.
NimbleGen photoprint arrays were synthesized by
NimbleGen Systems Inc. Design of the array was
described previously (29).

Samples

Cell lines, SKBR3, Huh7, PANC1, were acquired through
ATCC and grown according to specified conditions. The
cell line chp-skn-1 is a primary fibroblast cell line cultured
from a skin sample provided by an anonymous donor,
cultured under the following conditions: DMEM+20%
FBS, Penn/Strep, and non-essential amino acids. Tumor
DNA from 11 patients with advanced ovarian carcinomas

who were treated at the Department of Gynecological
Oncology at The Norwegian Radium Hospital (NRH)
during the period May 1992 to February 2003 were
included in this study. The collection is approved by the
Regional ethical review board (Reference No: S-01127).
Tumor DNA from 28 patients treated for localized
breast cancer at the Norwegian Radium Hospital
(NRH) from 1995 to 1998 was included in this project.
The samples were collected under an informed consent
and the project approved by the local REK/IRB (30). A
small number of samples 12 breast tumors and 12 normals
and 7 ovarian normals were obtained from The
Cooperative Human Tissue Network, a repository of
tumor material run by the National Institutes of Health.

Methylation array and detection

Coverage. Our approach to map genome-wide methyla-
tion involves tiling all the predicted CpG islands.
All annotated CpG islands were obtained from the
UCSC genome browser. These islands were predicted
using the published Gardiner-Garden and Frommer
(1) definition and involves the following criteria: length
�200 bp, %GC� 50%, observed/expected CpG� 0.6.
There are �26 219 CpG islands in the range of
200–2000 bp in the genome. These islands are well covered
by Msp I restriction fragmentation. Arrays were manufac-
tured by Nimblegen Systems Inc. using the 390K format
to the following specifications. The CpG island annotation
from human genome build 33 (hg17) was used to design a
50-mer tiling array. The 50 mers were shifted on either side
of the island sequence coordinates to evenly distribute the
island. The 390K format has 3 67 658 available features
which would not fit all islands with a 50-mer tiling.
Therefore, we made a cutoff on the islands to be repre-
sented based on size, with only CpG islands of size
200–2000 bp being assayed. The array represents classical
CpG islands and does not include imprint control regions
or other non-island promoters known to be methylated.
Background hybridization signal could be high with
probes of high GC content since by definition these
probes will be. Therefore, control probes, which are not
in an MspI representation, were designed to represent
background signal, and these probes were used to calcu-
late signal to noise (see Supplementary Figure 2). Array
design, probe sequences and further annotation are
available on line http://www.ncbi.nlm.nih.gov/geo/, data-
set number GSE15801.

Sample preparation and hybridization

Representations have been described previously (29), with
the following changes. The primary restriction endonu-
clease used is MspI. After the digestion the following lin-
kers were ligated (MspI24mer CAGCATCGAGACTGA
ACGCAGCAG, and MspI12mer CGCTGCTGCGTT.
The 12 mer is not phosphorylated and does not ligate.
After ligation the material is cleaned by phenol chloro-
form, precipitated, centrifuged and resuspended. The
material is divided in two, half being digested by the endo-
nuclease McrBC and the other half being mock digested
according to specification by New England Biolabs.
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The digestion time is 3 h. As few as four 250 ml tubes
were used for each sample pair for amplification of the
representation each with a 100 ml volume reaction. The
cycle conditions were 958C for 1min, 728C for 3min,
for 15 cycles, followed by a 10-min extension at 728C.
The contents of the tubes for each pair were pooled
when completed. Representations were cleaned by phe-
nol:chloroform extraction, precipitated, resuspended and
the concentration determined. Representations were run
on a gel to check for content, the McrBC digested repre-
sentation being �100–150 bp shorter on average than the
Mock. DNA was labeled as described with minor changes
(29). Briefly, 2 mg of DNA template was placed (dissolved
in TE at pH 8) in a 0.2ml PCR tube. Five microliters of
random nonomers (Sigma Genosys) were added brought
up to 25 ml with dH2O, and mixed. The tubes were placed
in Tetrad at 1008C for 5min, then on ice for 5min. To this
5 ml of NEB Buffer 2, 5 ml of dNTPs (0.6 nm dCTP, 1.2-nm
dATP, dTTP, dGTP), 5 ml of label (Cy3-dCTP or
Cy5-dCTP) from GE Healthcare, 2 ml of NEB Klenow
fragment and 2 ml dH2O were added. Procedures for
hybridization and washing were followed as reported pre-
viously (29) with the exception that oven temperature for
hybridization was increased to 508C. In general two hybri-
dizations were performed for all samples (carried out as
dye swaps to decrease variation of labeled nucleotide
incorporation) with the exception for samples analyzed
in Figure 2 where four hybridizations were performed.

Data analysis and statistics

Microarray images were scanned on GenePix 4000B scan-
ner and data extracted using Nimblescan software
(Nimblegen Systems Inc.). For each probe, the geometric
mean of the ratios (GeoMeanRatio) of McrBc and control
treated samples were then calculated for each experiment
and its associated dye swap. The GeoMeanRatios of all
the samples in a dataset were then normalized using quan-
tile normalization method (31). The normalized ratios for
each experiment were then collapsed to get one value for
all probes in every MspI fragment using the median polish
model. The collapsed data were then used for further ana-
lysis (32). Collapsed fragment data were then subjected
to Welch’s two-sample t-test for identifying significant
differences between tumors and normals. P-values were
corrected for multiple testing by controlling false discov-
ery rate (FDR) (Benjamini-Hochberg algorithm) (33)
implemented in R [multitest package (34)]. Significance
threshold was set at 0.001 for breast and 0.05 for the
smaller ovarian set.

General computations and statistics were performed in
Python (35), S-Plus and R (32).

Bisulfite sequencing

Probes were identified with differing methylation between
the two samples, SKBR3 and chp-skn-1. DNAs from
the two samples were treated with bisulfite using the EZ
DNA Methylation-Gold Kit (Zymo Research, CA, USA).
PCR primers were designed to flank the corresponding
MspI fragments using MethPrimer (36). For two
fragments, the PCR-amplified fragments were ligated

and transformed using the TOPO-TA Cloning kit
(Invitrogen, CA, USA); the transformant clones were
picked for plasmid extraction, which were then sequenced.
To increase throughput, the remaining 32 were sequenced
as PCR products. Results for subcloning and direct
sequencing were compared to determine the peak heights
required to call heterozygotes.

McrBC PCR

The sequence of the MTSS1 CpG island was obtained,
including sequence beyond the ends of the island to aid
in the design of PCR primers. Genomic DNA was
digested with McrBC or mock digested followed by heat
killing. Ten nanograms of DNA was used for PCR with
Qiagen Taq polymerase for 30 cycles. Ten microliters of
this product was then used as template for an additional
15 cycles of PCR. Products were run on 2% agarose gel,
and pictures were taken to illustrate the fragments that
were methylated.

RESULTS

In order to further investigate the role that CpG island
methylation plays in cancer, we have designed a new com-
prehensive CpG island microarray and have developed
robust methods for its use. While sharing some similarities
to previously developed methylation arrays (22,27,37), our
method has several features that allow for increased CpG-
island coverage and sensitivity. First, we utilized high-
density oligonucleotide arrays with close to 400K features
that allowed us to maximize tiling coverage of 26 219 out
of 27 801 (HG17) annotated CpG islands (which includes
non-promoter islands), while other CpG island arrays
only contain selected promoter sequences (22,37).
Second, our hybridization target, because it is made
from MspI representations, enriches for CpG island
sequences by 10-fold relative to total genomic DNA
(based on the size or the MspI amplifiable fragment)
and thus provides superior hybridization specificity.
In addition since this method is representational based,
very little DNA is required (as little as 50 ng) which
makes this method well suited to the analysis of primary
tumors. Third, each island generally corresponds to mul-
tiple MspI fragments, yielding positional information of
which portion of an island is methylated. Finally, our
method is based on enzymatic depletion of methylated
sequences with fewer steps than other methods (37,38);
having fewer steps may be less prone to variability. The
enzyme chosen for depletion, McrBC, has the unusual
recognition site A/GCm(N40–3000)A/GCm and has been
used by others to analyze methylation including its appli-
cation to arrays (39,40). This enzyme recognizes two
methyl groups and because of the varied distance and
that the methyl groups can be on the same or both strands
(41), a type of combinatorial recognition and cleavage
occurs, which greatly increases the number of potentially
methylated CpG dinucleotides that can be queried. Using
in-silico analysis we calculate using McrBC (specifically
the preferred distance for recognition between methyl
cytosines of 40–150 bp) our methodology queries over
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1 million of the 1.7 million CpG dinucleotides occurring in
CpG islands, much more than can be queried by other
techniques that utilize different enzymatic depletions
such as HpaII and MspI (�225 000). This gives our meth-
odology a 4-fold increase in potential coverage over other
methods. According to these calculations combined with
the increased array coverage (where we include non-pro-
moter sequences and do not discriminate against any other
promoter sequences except for larger islands, see ‘Methods
for array design’ section) we will have increased the level
of DNA methylation that can be measured in the genome
over other methods which either use restriction enzymes
or limited array coverage (data not shown).
The procedure as schematized in Figure 1 involves

digesting the genome with a restriction endonuclease
with a CG-rich recognition sequence (MspI), and ligation
of adaptors for use in a subsequent step of reducing geno-
mic complexity. We next divide the ligation in half and
deplete one-half of its methylated sequences by digestion
with the methylation-specific endonuclease, McrBC (37),
and mock treat the other half. In both cases, we use care-
fully balanced PCR conditions to size select MspI frag-
ments and reduce the overall genome complexity as
previously described (29). The McrBC-treated representa-
tion is compared to the mock-treated sample that serves as
the reference for comparative hybridization to the
designed oligonucleotide array.
To determine if our method accurately identifies

the methylation state of CpG islands, we first performed
initial experiments with cell lines. To determine the level of
noise in the system we performed analysis on a normal
fibroblast cell line (chp-skn-1). Two cultures of chp-skn-1
were grown and DNA prepared. Representations were

prepared and were used to compare hybridization results
from the same representations, representation from the
same sample prepared separately, as well as the chp-skn-
1 grown separately. Generally two hybridizations are per-
formed one being a dye swap to decrease variation but in
this case four hybridizations were performed for all condi-
tions; however to demonstrate how little noise there
is in the system, results and correlation from a single
hybridization were compared graphically shown in
Figure 2A–C. The close correlation demonstrates the
small variation in the representational process, the labeling
and the hybridization. We also found little variation
among different lots of McrBC (data not shown).
Included on the array are probes that are not in a repre-
sentation but have moderate CpG density. Using the
average intensity for these probes in the mock channel as
the background component we measured signal to noise
for the probes on the array. The average signal to noise for
probes on the array was 10.39.

We then performed a comparison of the breast cancer
cell line SKBR3 with chp-skn-1, shown in Figure 2D (with
a correlation of 0.831, which demonstrates that there are
differences detected between two different samples as com-
pared to the control experiments shown in Figure 2A–C.
In the scatter plot (Figure 2D), points off the central diag-
onal represent fragments detecting differential methylation
between the two samples. To evaluate the accuracy of
measurements 25 fragments identified with methylation
differences between chp-skn-1 and SKBR3, and nine frag-
ments with no detection of methylation were selected for
validation by sodium bisulfite sequencing (42). Analysis of
one representative fragment is shown in Figure 2E. In
each of the 28 fragments sequenced CpG dinucleotides
inclusive ofo McrBC sites were mapped and their methy-
lation state identified in the two samples (Supplementary
Figure 1 for five non-gene islands, five non-CpG island
regions and 10 gene-associated islands; Supplementary
Table 1 which has data for all 28 fragments). Fragments
were selected based on varying the difference in the array
ratios measured for both samples. By doing so we were
able to determine at what level accurate measurements of
methylation can be determined. At a difference around 0.3
the measurements may be incorrect as can be seen by two
fragments, which had a difference in ratio of 0.317. Any
ratio difference above this level was found to be methy-
lated in one of the samples. To determine if our method
could accurately identify known tumor suppressor CpG
island methylation, we then analyzed the hepatocellular
cancer cell line HuH7 with known methylation of the
p16 promoter (43). In Figure 2F we show the detection
of methylation of the region of the p16 gene CpG island
commonly methylated and correlated with decreased gene
transcription.

Finally, we compared the results of our methodology on
the two cell lines HPDE and PANC1 with results from the
same two cell lines reported by Sato and colleagues using a
different method and different array design (44). Although
there were some differences in detection between the two
methods they were in good agreement (68%) for islands
methylated in the samples. Of the 34 interesting islands
listed and validated, 26 were represented on our array

Figure 1. Schematic of the procedure. Shown at the top is genomic
DNA with a CpG island that is methylated. The DNA is cleaved
with the restriction endonuclease MspI and adaptors ligated. The
ligated material is divided evenly, one half being digested with
McrBC and the other half being mock digested. This material is used
as template for PCR amplification and the resulting product is used
for microarray comparison.
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Figure 2. Comparison of methylation analysis of cell lines. (A–C) shows the comparison of a normal fibroblast used to produce representations from
two separate aliquots of DNA and the representations were analyzed and the intensity compared to each other by scatter plot; the intensities of each
being on one and the other axis, and the correlation calculated: (A) being replicate hybs, (B) being technical replicates and (C) being biological
replicates. (D) The comparison of the breast cancer cell line SKBR3 and the normal female fibroblast cell line as a scatter plot of the intensities from
the SKBR3 experiment as the y-axis and the intensities of chp-skn-1 on the x-axis, and the correlation shown. (E) An example of bisulfite validation
for a fragment found methylated in the tumor and not in the normal at a CpG island at chr 9:2197965–21980065, which lies upstream of the p14
gene. The original data showing the ratio differences is shown with the position of the fragment. To the right is the electropherogram identifying a
region of cytosines that do not convert and at the bottom is a short table identifying the genomic position and number of McrBC site. (F) shows data
for the cell line Huh7 compared to the normal cell line chp-skn-1 for the p16 gene CpG island graphed by genomic position. The x-axis is the
genomic position of the probes and the y-axis is the ratio of two experiments, blue being chp-skn-1 and orange being Huh7. Inset above is shown is
the relation of the transcript and inset below is the relation of the CpG island to the probes.
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(Supplementary Table 2, panel A). Of the 26, 17 regions
were properly identified with methylation in PANC1 or
both. Four regions identified as methylated by Sato and
colleagues were not detected in our assay. There was dis-
agreement in four regions. One gene RELN, which was
reported as not methylated in either sample by Sato and
colleagues, was found methylated in PANC1 cells.
Interestingly, this gene is frequently methylated and
silenced in pancreatic tumors (45), suggesting that our
cell line may have genetically drifted over time apart
from that used by Sato and colleagues. With our
method we can obtain positional information for the
region of the CpG island methylated and for all methyla-
tion events the region is very close to the TSS, the region
critical for suppression of transcription. To determine the
accuracy of methylation detection as well as the positional
prediction we performed sodium bisulfite sequencing on
the fragment, which was detected as methylated in the
RELN CpG island in the PANC1 cell line. Interestingly,
we found that the CpG island fragment at position
chr7:103223731–103223823 is methylated (Supplementary
Table 2, panel B) demonstrating that the method can
accurately identify methylation and that positional infor-
mation is also available. In addition we have determined
that our line of PANC1 cells has deviated from the line
used by SATO and colleagues.
The standard method to analyze tumor-methylation

profiling is to utilize matched normal-tumor samples,
and we have done this for 12 breast tumor and normal
pairs. As with many tumor banks, ours contain many
unmatched tumor samples. To determine if unmatched
tumor-normal pairs could be analyzed first we compared
our results obtained with matched samples to those
obtained with unmatched samples as a set and measured

the degree of common alterations. We developed statisti-
cal criteria for identifying CpG-islands most significantly
altered between tumor and normal (see ‘Methods for
details’ section). Our analysis identified considerable over-
lap (30%) of CpG-islands significantly altered
(Supplementary Table 3) between a matched tumor-
normal set (12 normals, 12 tumors) compared to an
unmatched set (12 normals, 28 tumors). Since all tumor
samples are different, similarity among a set could be a
measure of tumor selection. We determined how different
all 40 tumors were from the normal samples. We com-
puted pair-wise correlations between each normal sample
and the other normals and each tumor sample to each
normal. From this data we then computed the mean cor-
relation between each sample and the normal samples.
The mean correlation from normals to normals is 0.93,
from tumors to normals is .88 (P< 10E–017). These
data (plotted in Figure 3) show that tumors are different
from matched or unmatched normals. However, while
some tumors are vastly different from normal several are
more normal like in their methylation profile. In the future
it will be interesting to have more detailed clinical infor-
mation to determine if methylation profile can determine
specific clinical parameters. Thus, we moved on to the
analysis of a larger set of unmatched tumors and normals.

We then examined the set of 40 breast tumors, com-
pared to 12 normal breast samples and 11 ovarian
tumors compared to 7 normal ovarian samples (33).
Using the statistical criteria developed (detailed in the
‘Methods’ section) we obtained a list of 916 significant
alterations in breast cancer and 151 in ovarian cancer
and have listed these by their genomic location (see
Supplementary Table 4 for entire list and Table 2 for a
summary of whether the alterations were found with more
methylation or less methylation than normal, based on
specific classes, non-promoter associated or promoter
associated as well as non-island regions). In Table 1 we
highlight genes selected based on functional information,
many of which have previously been documented to alter
methylation in cancer again demonstrating the ability of
this methodology to detect CpG methylation. Genes iden-
tified hypermethylated in both ovarian and breast tumors
include several HOX genes and protocadherins, known to
be methylated in many tumor types (46–49). In addition to
genes known to undergo methylation we have found new
targets of methylation. For example, we detected for pro-
moter methylation of a micro-RNA gene has-mir-9-3,
occurring in more than half the breast tumors. This
miRNA has been shown to be downregulated transcrip-
tionally in thyroid cancers (50).

Another gene identified as methylated in the breast
tumors, MTSS1 (metastasis suppressor 1) (Table 1) is
known to be preferentially methylated in several cancers
including breast cancer (51–53). To determine if our ana-
lytical methods identified this gene accurately, two pri-
mary tumors were identified with methylation from the
dataset for further validation. Being that they were not
cell lines we only had 25 ng of material that we wanted
to check multiple times. Although bisulfite sequencing is
generally used for validation we wished to use an alterna-
tive due to the small amount of genomic DNA remaining.

Figure 3. The mean correlation for each sample with the normal sam-
ples (mean of 12 correlations for each tumor and 11 correlations for
each normal) is shown. The 12 samples to the left of the vertical line
are the normals. The 40 to the right are tumors. The horizontal line is
drawn at the minimum mean correlation for the normals with normals.
It is apparent that the tumors are on the whole distinct from the
normals in comparison with each other (P< 10E–017).
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Others have utilized McrBC combine with PCR to study
methylation (39,54). Due to the constraints on us we chose
to perform McrBC PCR (40) to validate the region of the
island detected as methylated (Figure 4). The island was
broken down into five fragments where fragment one

overlaps the TSS up to fragment five that is the farthest
away from the TSS. For tumors that were suspect to
have methylation, fragment 1, which overlaps the gene
TSS could not be amplified in the tumor samples (due to
digestion by McrBC demonstrating methylation) as

Table 1. Short list of genes selected from Supplementary Table 4 with altered CpG islandsa

GeneName Name Location Importance

Methylated
EPHA2 Ephrin receptor A2 chr1_16196139_16227870 With E cadherin, mult roles in cancer
HOXD11 Homeodomain protein chr2_176795292_176795763 Development and differentiation
HOXD9 Homeodomain protein chr2_176807548_176807855 Development and differentiation
PPM1G Protein phos’tase 1G chr2_27544151_27545066 Cell cycle progression
RAB6B Ras oncogene family chr3_135097550_135098100 G protein regulation of proliferation
MFI2 Melanoma-associated Ag 2 chr3_198245561_198245644 Melanoma tumor progression
IL17RB Interleukin 17 receptor B chr3_53855151_53855185 With HOXB13 progression in breast cancer
HHIP Hedgehog interacting protein chr4_145923993_145924160 Metastasis in panc cancer
SFRP2 Secreted frizzled related protein 2 chr4_155067811_155068195 Methylated is marker for colon cancer
CRMP1 Collapsin response mediator prot 1 chr4_6010436_6010699 Wnt pathway, lung met suppression
PKD2 Polycystic kidney disease 2 chr4_89285337_89285745 Cell cycle
PCDHGA10 Protocadherin gamma, subfam A chr5_140768066_140768556 Cell adhesion
HOXA2 Homeodomain protein chr7_26919212_26919376 Development and differentiation
HOXA3 Homeodomain protein chr7_26942376_26942852 Development and differentiation
EPDR1 Ependymin related protein 1 chr7_37728939_37729281 Ca++ dependent cell adhesion
TAC1 Tachykinin, precursor 1 chr7_97005815_97006071 Inflam prohormones; low act’y in brst cncr
MTSS1 Metastasis suppressor 1 chr8_125810238_125810819 Metastasis suppressor
TNFRSF10D Tumor necrosis factor superfamily chr8_23077244_23077520 Progresssion neuroblastoma/breast cancer
CUGBP1 CUG triplet rpt, RNA bind prot chr11_47531208_47531279 Reg p21, cell cycle control
NFYB Nuc. transcr. fctr Y beta chr12_103034912_103035336 p53 cell cycle
�PCDH8 Protocadherin 8 chr13_52320446_52320832 Cell adhesion
ONECUT1 Onecut homeobox domain 1 chr15_50874380_50874668 Reg.expression of FOXA2
CDH8 Cadherin 8, type 2 chr16_60627191_60627579 Cell adhesion; freq deleted in brst cncr
PPP1R14A Protein phos’tase 1 reg subunit 14A chr19_43439132_43439444 Reg act’y RAS and ERK in tumor lines
IL28A/B Interleukin 23 interferon like chr19_44447259_44447674 Inhibit tumor proliferation
FOXA2 Forkhead box A2 chr20_22514937_22515431 Lung/prostate cancer
PLCG1 Phospholipase C gamma 1 chr20_39198472_39198934 Implicated in cancer and metastatsis
RTEL1 Regulator telemere elong.helicase chr20_61758790_61759467 Req for telomer elong.; chr breaks/loss
PRR5 Proline rich 5 (renal) chr22_43445548_43445907 Downreg in breast cancer
SHOX Short stature homeobox chrX_551021_551222 Reg of proliferation and viability

Demethylated
BRDT Bromo domain prot testis spec. chr1_92126308_92126790 Spermatogenesis
RRM2 Ribonucleotide reductase M2 chr2_10212057_10212966 Chemotherapy target
BCL11A B cell lymphoma protein 11A chr2_60694090_60694350 Cofactor w/ SIRT1 in transcrip’n regulation
DUB3 Deubiquinating enzyme 3 chr4_9040795_9041453 Proliferation
RHOG Ras homolog gene family G chr11_3819507_3820119 Apoptosis, migration
SULT1A1 Sulfotransferase family chr16_28542367_28542407 Response to therapy and prog. brst cancer
BECN1 BCL2 interacting protein chr17_38229845_38229898 Multiple roles in cancer
STRA13 Stimulated by retinoic acid 13 chr17_77574908_77575250 Role in cell cycle and carcinogenesis
MAPK1 Map kinase 1/ERK chr22_20546877_20547317 Proliferation

aGenes of possible functional interest were tabulated from the two categories based on TSS association. The gene abbreviation, full gene name,
fragment location, and description of the gene are given.

Figure 4. McrBC PCR of two different fragments of the MTSS1 CpG island for tumors identified of having methylation of this island compared to
matched normal samples. Fragment 1 encompasses the MspI fragment we have identified as being methylated and overlaps the gene TSS. Fragment
5, we do not detect methylation. Both Normal and Tumor were digested with McrBC or mock digested for both matched pairs.
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compared to the normal, which was not digested by
McrBC (no methylation). Fragment 5 that is far from
the TSS is amplified in all samples including McrBC
digested due to a lack of methylation and no cleavage
by McrBC, demonstrating that the MTSS1 CpG island
is methylated in primary tumors.

DISCUSSION

We have designed a methylation array and developed
methods to detect CpG methylation. This methodology
was performed on cell lines and measurements validated
with more standard methods. Comparing the analysis of
two cell lines by our methodology allowed us to test the
accuracy by bisulfite sequencing fragments with differen-
tial methylation between the two cell lines. We found no
errors except for one fragment that was methylated but
was not detected. This could have been a failure of the
McrBC or the array detection. We suspect the oligonu-
cleotide probe since as in all hybridization-based
method, there are bound to be probes that do not report
well. In comparison of our method with another array-
based methods for the analysis of the same samples, we
found good correspondence between the two methods.
One gene we found particularly interesting, RELN, is fre-
quently silenced in pancreatic cancer. Sato and colleagues
demonstrate that it is not methylated in this particular
pancreatic cancer cell line but our measurements suggest
that it is methylated. Judging from its frequency of silenc-
ing and our success in validation of our measurements it is
likely that our version of the cell line has genetically, or in
this case, epigenetically drifted from that used by Sato and
colleagues. To determine if this was the case we validated
our findings by bisulfite sequencing and determined that
our version of the cell line had deviated and the array was
correct in its measurement.
In our analysis of tumors versus normal, as expected,

the tumors had more variation than the normals.
However, some tumors were remarkably similar while
others very different from their matched normal. More
importantly, the unmatched tumors were for the most
part similar in variation to normal as the matched
tumors. Three breast tumors out of 40 and 2 ovarian
tumors out of 11 were extremely different from the nor-
mals, which could be interesting in reference to clinical
parameters or genome structure and we are investigating
this further with sample sets of a larger size. We then
developed statistical methods that could be used to

identify those CpG islands that differ in their methylation
status in the tumors as compared to the normals.

We have identified a number of CpG islands, both asso-
ciated with gene TSSs or islands far from the TSS for any
genes, which have altered methylation from both breast
and ovarian tumors as compared to normal. However, we
did not identify well-known tumor suppressors in the pri-
mary tumor dataset such as p16. The lack of known tumor
suppressors could be a fault in our analysis or our meth-
ods. However, the frequency of methylation for many
classically known tumor suppressors varies widely, some
being as low as 15% (55–58). Using p16 as an example,
analysis of the tumor samples with matched normals did
not uncover tumor suppresors such as p16 and since we
demonstrate the ability to detect p16 methylation in
the cell line HuH7 (43) with known methylation it is
likely that none of the tumors had methylation of p16.
Therefore, although improvements are always possible,
we feel that our technical and analytical methods are
sound. Unfortunately, the tumor suppressor Rassf1a
that is a common target of methylation in cancer is not
measurable with the current array. The next generation
array will include better design of CpG islands such as
those proximal to the Rassf1A.

One disadvantage of our method of analysis is that
those genes whose CGIs are found with altered methyla-
tion in few samples may not be identified. The MiR-196
loci on chromosome 17 is methylated in several of the
breast cancers in our study as compared to matched nor-
mals but overall is not significant in the larger set. It has
been previously shown that the miR-196 directs the cleav-
age of HoxB8 mRNA (59), which appears to function in
myeloid differentiation (60,61), however it is possible that
it plays a role in the deregulation of breast cells in becom-
ing cancer. Presently we are further developing our statis-
tical methods to improve our level of detection.

Of the islands associated with gene TSSs identified as
methylated there are a number that have been found
altered and/or have been shown by other to decrease in
expression in cancer, such as MTSS1 (51–53). We found
this island methylated in a number of the primary breast
tumors and verified by McrBC PCR (54) that it was
methylated in two of these (one such sample shown in
Figure 4). Tumor suppressors that are methylated are
often found in regions of loss of heterozygosity (LOH).
It will be interesting to determine which of the genes found
methylated are in regions of LOH. It is interesting that
MTSS1 is found on the q arm of chromosome 8, which is

Table 2. Summary of significant methylation changes listed in Supplementary Table 4 for breast cancera

TSS associated (%) Non-TSS associated (%)

Methylated Demethylated Total Methylated Demethylated Total

CGI (801) 166 (77.93) 47 (22.07) 213 517 (87.92) 71 (12.07) 588
Non CGI (115) 3 (33.33) 6 (66.64) 9 23 (21.70) 83 (78.30) 106

aAll methylation and demethylation events from Supplemental Table 4 were broken down into categories of associated to a gene (TSS associated) or
not (Non-TSS associated), and methylated or demethylated within each of these groups. Finally the probes are divided based on inclusiveness to a
CpG island or the probes that are non-CGI probes. The total number is given for breast cancer comparison as well as the conversion to percentages
in parentheses.
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amplified very frequently in breast cancer and ovarian
tumors. It is possible that MTSS1 loss is important to
the tumor growth as suggested by its role in cytoskeletal
rearrangement (62) and its correlation with the disease
state (51), so that in order to ensure lack of transcription
within a region of genomic amplification the gene is
silenced by methylation. It will be interesting to associate
CGH data with methylation data and incorporate expres-
sion analysis to identify genes that are methylated and
suppressed and determine if they are amplified or deleted
genomically.

Of the genes identified, those that are functionally inter-
esting should have their methylation validated by other
means such as bisulfite sequencing or McrBC PCR.
Those that pass can be functionally validated as candi-
dates with possible tumor-suppressive activity. In conclu-
sion, we have developed a powerful method to profile
genome-wide DNA methylation. We have demonstrated
that there is very low system noise from either the repre-
sentational process or the labeling and hybridization. We
then legitimatized the method’s ability to detect methyla-
tion by bisulfite sequence validating over 15 fragments.
We went on to analyze a number of samples that have
been analyzed by others either by bisulfite sequencing or
by other genome-wide approaches for methylation detec-
tion (43,45). In the case of Maeta et al., we have validated
specific methylation events and in the case of Sato et al. we
have reproduced the majority of their findings using our
methodology. We then used this method to develop meth-
ods for the analysis of tumors with unmatched normals,
which will be of interest to the greater community since
many tumor banks do not have matched normals. We
plan on using this methodology to identify methylation
events that correlate to clinical parameters to determine
if tumor sub-classification can be achieved, markers from
this type of analysis being very valuable. In addition, this
methodology will have utility in the study of other pathol-
ogies, such as imprinting, development, or tissue specifi-
city, which all are affected by epigenetic modifications.

SUPPLEMENTARY DATA
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