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Abstract

The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify
genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations
that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number
variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined
CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples
analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the
tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated
changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data
sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor
suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression
for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities
and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors
candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes
exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We
provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic
landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor
suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates.

Citation: Wrzeszczynski KO, Varadan V, Byrnes J, Lum E, Kamalakaran S, et al. (2011) Identification of Tumor Suppressors and Oncogenes from Genomic and
Epigenetic Features in Ovarian Cancer. PLoS ONE 6(12): e28503. doi:10.1371/journal.pone.0028503

Editor: Xin-yuan Guan, The University of Hong Kong, China

Received July 25, 2011; Accepted November 9, 2011; Published December 8, 2011

Copyright: � 2011 Wrzeszczynski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Department of Defense W81XWH-05-1-0068, The Starr Foundation (http://www.starrcancer.org) and Philips Research
North America. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Part of this research is funded by Philips Research North America. Vinay Varadan, Sitharthan Kamalakaran and Nevenka Dimitrova are
employees of Philips Research North America. There are no patents, products in development or marketed products to declare. This does not alter the authors’
adherence to all the PLoS ONE policies on sharing data and materials, as detailed online in the guide for authors.

* E-mail: kwrzesz@cshl.edu

Introduction

In the United States, there will be over 22,000 new cases of

ovarian cancer in 2011. Of those, approximately 14,000 will

succumb to the disease. In order to better treat these women and

improve survival, our goal is to determine the molecular changes

that have occurred in the patients’ tumors, and to be able to

interpret the significance these changes have on the growth and

development of the tumor. This aberrant growth is a result of

chromosomal abnormalities and epigenetic variations [1,2]. In

addition, generally low rates of somatic nucleotide mutation in

ovarian cancer as compared to other solid tumors suggest an

increased significance of copy number and epigenetic aberrations.

This type of regulation has been shown to affect many tumor

suppressors and oncogenes pertaining to ovarian cancer [3].

Copy number variations (CNV) are a common occurrence in all

forms of cancer [4,5,6,7,8,9]. A typical cancer sample exhibits an

average of 17% amplifications and 16% deletions within an entire

genome. Somatic copy number alterations have been shown to

significantly affect pathways involving kinase function, cell cycle

regulation, the Myc and NF-kB networks and apoptosis [4].

Detection of these alterations and identification of the specific

genes responsible for cancer proliferation can help to molecularly

subtype cancers and lead toward more individualized cancer-type

specific therapies [7,10,11,12,13,14,15,16,17,18,19,20].

Epigenetic properties of the cancer genome correlate with the

development and function of the cancer cell [1,21,22,23,24].

Specifically, DNA methylation at gene promoter regions can

regulate the gene expression of various oncogenes and tumor

suppressors [25,26,27]. It has been proposed that total DNA

cytosine 5C-methylation between normal and cancer cells appears

to be redistributed to specific CpG loci in the cancer cell [28,29].

Loss of function or transcriptional silencing via hypermethylation

has been identified for tumor suppressor genes, while hypomethy-

lation has been attributed to oncogenesis and the loss of imprinting

properties of certain cancer related alleles [1,30].

Tumor suppressor and oncogene genomic and epigenetic

features are highly variable within ovarian cancer [3]. Known
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tumor suppressors and oncogenes do not equally contribute to the

development of the cancer. We hope to identify those genetic and

epigenetic aberrations that have the most impact on gene function

within the tumor. Many of the current bioinformatics protocols

employ only single modal analysis to determine gene function of a

particular tumor type. A genome wide approach combining

multiple sources of genetic aberration data is necessary for the

prediction of possibly consistent and epigenetically integrated

pathways that function in tumorigenesis. We performed a broad

bioinformatics analysis of copy number variation, expression and

epigenetic information to identify potential tumor suppressors and

oncogenes associated to serous ovarian cancer. Analyzing 42

independent serous ovarian cancer samples and taking advantage

of The Cancer Genome Atlas (TCGA; http://tcga.cancer.gov)

[31] data to compare and enhance our protocol, we identify

abnormal DNA copy number with correlated changes in

methylation and expression for serous ovarian cancer genes. The

combination of epigenetic and expression data analysis can

possibly provide information specific to the molecular basis of

cancer and cancer subtypes and elucidate the genes driving

various tumors [28,32,33,34,35]. Thereby, eventually allowing

clinicians to incorporate these types of comprehensive multimodal

data analyses into tumor biospecific based diagnostics and

pathway directed therapeutics [36].

Methods

Patient Samples (MSKCC Data)
Tumor DNA from 42 patients with newly diagnosed, untreated,

advanced stage, serous ovarian carcinomas seen at the Memorial

Sloan Kettering Cancer Center between the period May 1992–

February 2003 were included in this study. The samples were

collected under research protocols approved by the Memorial

Sloan-Kettering Cancer Center IRB. The study on patient

samples and analysis of all sample data complied with the

guidelines of the Memorial Sloan-Kettering Cancer Center IRB

and was approved by the Memorial Sloan-Kettering Cancer

Center IRB. Patients individually provided written informed

consent to use their specimens for research purposes. In addition,

we used 7 ovarian tissue normal samples obtained from The

Cooperative Human Tissue Network, a repository of tissue and

tumor material run by the National Institutes of Health. We refer

to this patient and normal sample set as the MSKCC data set.

Copy Number Detection via Representational
Oligonucleotide Microarray Analysis (ROMA)

The ROMA protocol as previously outlined [11,15,37] was

performed on a high-density oligonucleotide array containing

,85,000 features manufactured by Nimblegen Systems Inc.

Briefly, complexity-reduced representations [38] consisting of

small (200–1200 bp) fragments, generated by cleavage of DNA

samples with the restriction endonuclease BglII, were amplified by

adapter-mediated PCR of genomic DNA [11]. DNA samples

(2 mg) were labeled either with Cy5-dCTP or Cy3-dCTP using

Amersham-Pharmacia MegaPrime labeling kit and competitively

hybridized to each other on the same slide [11]. Hybridizations

consisted of 35 mL of hybridization solution (37% formamide, 46
SSC, 0.1%SDS, and labeled DNA). Microarry application and

hybridization was performed as previously reported [11]. Scanned

on an Axon GenePix 4000B scanner using a pixel size of 5 mm and

all data was imported into S-Plus 2000 analysis software

(Insightful, Seattle, WA). The normalized log ratios from each

experiment were averaged per segmentation. We then applied the

CBS (Circular Binary Segmentation) algorithm to this data. The

CBS segmentation method is the circular binary segmentation

algorithm as described in Olshen, AB. et. al. [39]. As in prior

analysis, CNV segments are defined as regions of statistically

combined probe (marker) intensities calculated by the CBS

algorithm [39,40]. All general analysis and statistics were

computed using S-plus, R packages and individual Perl/Python

scripts. All ROMA data is MIAME compliant and can be found in

the GEO database (http://www.ncbi.nlm.nih.gov/geo/) for the

subseries accession number GSE28013.

Methylation Detection via Representational
Oligonucleotide Microarray Analysis (MOMA)

The MOMA protocol was performed as previously described

[41,42]. The MOMA methylation detection array has been

performed and validated on cell lines and breast cancer tumor

samples. Annotated genomic CpG island locations were obtained

from the UCSC genome browser. At the time of the experiment

the genome contained 26,219 CpG islands in the range of 200–

2000 bp. These CpG island locations were covered by MspI

restriction fragmentation. Arrays were manufactured by Nimble-

gen Systems Inc. using the 390,000 probes format. The CpG

island annotation from the human genome build 33 (hg17) was

used to design a 50-mer tiling array. The primary restriction

endonuclease used is MspI. After the digestion linkers were ligated

and the material is cleaned by phenol chloroform, precipitated,

centrifuged, and resuspended. The material is divided in two, half

being digested by the endonuclease McrBc according to

specification by New England Biolabs and the other half being

mock digested. Procedures for hybridization and washing were

reported previously [41]. The procedure was performed in

duplicate with a dye-swap for the second experiment. The labels

were swapped between the McrBc treated and mock samples. For

each probe, the geometric mean of the ratios (GeoMeanRatio) of

McrBc treated and control samples were then calculated per

experiment and its associated dye swap. Microarray images were

scanned on GenePix 4000B scanner and data extracted using

Nimblescan software (Nimblegen Systems Inc). The GeoMeanRa-

tios of all the samples in a data set were then normalized using a

quantile normalization method [43]. All general analysis and

statistics were computed using S-plus, R packages and individual

Perl/Python scripts. All MOMA data is MIAME compliant and

be found in the GEO database (http://www.ncbi.nlm.nih.gov/

geo/) for the subseries accession number GSE27940.

Gene Expression Analysis for Human Ovarian Tumor
Samples

Gene Expression data was performed using the Affymetrix

Human Genome U133A array: GEO platform identifier GPL96.

RNA was isolated using the trizol protocol. RNA is converted into

cDNA and the double-stranded cDNA is used as the template in

an in-vitro transcription reaction containing biotinylated CTP and

UTP in addition to the four unmodified ribonucleoside triphos-

phates. The standard affymetrix protocol is applied. Final signal

intensities are processed using the RMA normalization method in

the affy package of R Bioconductor 2.5. All array data is MIAME

compliant and corresponding CEL files can be found in the GEO

database (http://www.ncbi.nlm.nih.gov/geo/) for the subseries

accession number GSE27943.

Cross-modal Analysis of The Cancer Genome Atlas Data
(TCGA data)

Copy number variation data for primary ovarian tumors was

downloaded from TCGA (http://tcga.cancer.gov/) and CBS [39]

Genomic and Epigenetic Features in Ovarian Cancer
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data files from the Agilent SurePrint G3 Human 1 M CGH

(Comparative Genomic Hybridization) Microarray with the label

mskcc.org_OV.CGH-161M_G4447A were analyzed. The CBS

processed data from the TCGA was then annotated with the

UCSC Genome Browser hg18 assembly information to assign

copy number variation seg.mean values per gene per sample. For

the purpose of studying CNV per gene we limited our data to one

complete CBS segment per gene per sample. Therefore, if a gene

locus is partially covered by two or more CBS segments per sample

we did not include it in our analysis. Only if a complete gene locus

was within a sample CBS segment was it included into our

analysis. Furthermore, we excluded any CBS segment with an

informative (num.info) value of less than 4. Additionally, in order

to capture significant CNV we only analyzed samples in 90% of

the data excluding 5% of the data closest to a seg.mean of 0 from

the positive and negative value distribution. TCGA methylation

data was obtained from the jhu-usc.edu_OV.HumanMethyla-

tion27.2.lvl-3 data files for each corresponding tumor and normal

sample. This is from the Illumina Infinium Human27-methylation

assay. A final mean beta value for genes with 2 or more probes was

calculated per gene per sample. Finally, the TCGA expression

data used for this analysis was from the broad.mit.edu HT_HG-

U133A gene expression file for each corresponding tumor and

normal sample run on the Affymetrix GeneChip HT Human

Genome U133A array. We examined 379 samples from the

TCGA that were present at the time of our analysis. Prior to the

final submission of our manuscript The Cancer Genome Atlas has

made public their preliminary report on ovarian carcinoma [31].

Our use of the TCGA data set is to enhance and compare our

tumor suppressor and oncogene discovery protocol that we

applied to the MOMA-ROMA (MSKCC) dataset. We acknowl-

edge any similar findings we have made using our protocol on the

TCGA dataset with that found in the recent TCGA publication.

Bioinformatic Analysis of MSKCC Copy Number (ROMA),
DNA Methylation (MOMA) and Expression Data

All analysis was performed using Perl, Python, Matlab, and R

packages. Our strategy was to examine the epigenetic and

genomic features for possible tumor suppressors and oncogenes

in primary ovarian tumors. With the base feature being copy

number variation we examine methylation and expression data for

each gene under amplified or deleted copy number conditions.

Therefore, an oncogene is classified as an amplified gene having

low methylation and elevated expression (Figure 1). This same

amplified oncogene may be epigenetically regulated through

hypermethylation in ovarian cancer resulting in a decreased

expression even if copy number is amplified. Conversely, a tumor

suppressor can have lowered copy number variation and be

hypermethylated resulting in decreased expression or regulated

through hypomethylation allowing for its expression under

lowered CNV conditions (Figure 1). ROMA fragments were

attributed to genes using the UCSC Genome Browser hg17

assembly. We identified through sample comparison between the

TCGA platform and the ROMA platform (for which 7 samples

were in common) a ROMA platform-specific threshold of ,0.0

seg.mean that captures a maximum percentage of deleted genes

while maintaining a minimum false positive percentage of

amplified or neutral copy genes. Final gene methylation

assignment was performed using the maximum probe value for

each MOMA fragment and the maximum MOMA fragment

value was attributed to the closest gene. The Wilcoxon signed-rank

test was used to calculate enrichment p-values for CNV and

expression data and the Benjamini-Hochberg (BH) method was

used for the multitest adjustment and False Discovery Rate (FDR)

control. Euclidean distances were calculated between normal and

tumor samples for methylation and expression data points for all

genes in both the MSKCC and TCGA data sets. In the case of the

MSKCC data set when sufficient normal sample expression data

was not available, a 506bootstrap sampling was performed using

the TCGA normal samples expression data per gene. Single

variate and Hotelling multivariate t-tests were performed on these

distances to calculate all p-values when performing the methyla-

tion and expression analysis at varying copy number values, with

statistical multiple test FDR adjustments as above. In order to

identify likely functional and pathway changes captured by our

feature based gene analysis we tested whether the membership of

predicted MSKCC genes in each feature class within a total of 173

KEGG biological pathways was proportional to their size. This

translates to identifying pathways whose gene membership in each

feature class deviates significantly from the null, as defined by a

hypergeometric distribution. The final list of significant pathways

was chosen after controlling the false discovery rate by Benjamini-

Hochberg multiple testing correction. Data analysis scripts and

further analysis information can be found in Analysis S1.

Results

Ovarian Tumor Copy Number Aberrations and DNA
Methylation

We first individually analyzed both the copy number variation

and DNA methylation for each gene by chromosomal position in

42 serous primary ovarian tumors provided by the Gynecology

Research Laboratory at Memorial Sloan-Kettering Cancer Center

(MSKCC data set) using Representational Oligonucleotide

Microarray Analysis (ROMA) [37,44] and Methylation detection

Oligonucleotide Microarray Analysis (MOMA) [41,42]. The

amplified and deleted breakpoint loci cover a total of 561 regions

among all samples (Figure 2). ROMA identifies 205 deletion and

356 amplification breakpoints. Breakpoints were defined as

regions between each segment (statistically combined probe

intensities) calculated using the CBS (circular binary segmentation

[39,40]) method. Among the 42 tumor samples, we find an

average of 76 CBS calculated segments per chromosome.

Segmentation count per chromosome corresponded with chro-

mosome size except for chromosomes 8, 11, 12, 17, 19, and 20

where segmentation density was greater than normalized for

chromosome size and less for chromosomes 6, 9, 10, 14, 15, 16,

and 18. The greatest variability of copy number variation (as

measured by CBS segmentation mean values) among all samples

occurs in chromosomes 19, 2, 10 and 4, respectively (Figure S1).

The most frequent deletions (.10% tumor samples) were observed

in loci; chr4:q25-q35.2, chr7:p22.3-p15.3, chr8:p23.3-p21.1,

chr13q12.11-q34, chr14q32.2-q32.33, chr15q13.3-q21.1,

chr16q11.2-q24.3, chr17p13.3-q25.3, chr19:q13.2-q13.43 and

chr22:q11.21-q13.33 (Table 1 provides the percentage of all

samples deleted within a loci). The most frequently amplified

(.10% tumor samples) loci within all chromosomes among all 42

tumor samples are; chr1:p34.4-p34.1, chr1:q21.1-q21.2,

chr3:q13.2-q23, chr8:q11.22-q24.3, chr19:q12-q13.12 and

chr20:q13.12-q13.2 (Table 1). Three breakpoint symmetry loci

(amplifications and deletions at similar genomic positions in

multiple samples) were found; chr17:q11.2-q21.32, chr19:q13.12-

q13.2 and chr21:q21.3–22.13. Comparing the ROMA results

(Table 1) with copy number data of normal individuals found in

HapMap [45] shows no overlap with the few amplified regions

found in the HapMap normal data set. Overlapping regions of

deletion between our CNV results and HapMap are 8p23 and

22q11.23 where both regions show frequent heterozygous loss. We

Genomic and Epigenetic Features in Ovarian Cancer
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then analyzed the DNA methylation at CpG islands using the

same 42 primary ovarian tumors and 7 normal tissue samples

(Figure 3). We compiled methylation values for 11,978 gene

promoter regions covering 22 chromosomes. When directly

compared to normal tissue a total of 68 genes were found to be

ranked as hypermethylated and 19 ranked as hypomethylated

within 10% of the entire normal to tumor ratio distribution (Table

S1). The genes exhibiting methylation values above normal

samples include the oncogene PHOX2B, the neuroblastoma

associated gene ALX3, the commonly methylated PCDHa gene

cluster, POU4F2, REXO1L1, BAPX1, and the potassium-

channel KCNJ8. Specifically, REXO1L1, (RNA exonuclease)

shows high levels of methylation in both tumor and normal

samples however there is a 56% increase of methylation in tumor

samples. Genes with the lowest tumor to normal methylation

ratios include the chromosome 4 variant of the oncogenic

promoting gene ubiquitin hydrolase DUB3 (19% decrease) and

CAPS (oncogene implicated in endometrial cancer, 25%

decrease). Other hypomethylated genes as compared to normal

samples included; RNPC3, USP37, LDHD, GJB4 (gap junction

protein), LCN8 (implicated in metastasis) and CGB1 (chorionic

gonadotropin, beta polypeptide 1) (Table S1).

Correlations of Gene Expression with Copy Number
Variation or DNA Methylation

We separately examined the dependency of gene expression (via

the Affymetrix Human Genome U133A array, see Methods) on

copy number amplification, copy number deletion and promoter

methylation in ovarian cancer tumors. We first compared the

distribution of gene expression for discrete high and low CNV

genes found in our MSKCC data set and TCGA data set. The two

data sets showed similar tendencies in expression distribution for

genes with high and low copy number variation (Figure 4, Figure

S2). As the copy number variation increases from deletion to

amplification the average gene expression also increases (Figure 4).

We therefore show a correlation between an increase in total gene

expression with the amplification of gene copy number in primary

ovarian tumors. Additionally, we measured the cumulative

distribution of gene expression for deleted and amplified genes.

The cumulative distribution is the total percentage of genes found

below a dynamic expression threshold. If genes with a low CNV

(deleted) are more under expressed than genes with a higher CNV

(amplified and over expressed) the cumulative distribution curve

results in a steeper rise at lower expression values for deleted genes

(indicating a greater percentage of genes found with lower

expression values). A maximum cumulative expression difference

between 7–17% is observed for genes with low copy number

compared to genes with high copy number (Figure S3). Next, we

performed expression to CNV correlation per gene for all tumor

samples in both the MSKCC data set and TCGA data set. We

discovered 124 genes with positive CNV to expression Pearson

correlation coefficient limits of $0.8 in the TCGA data set (p-

values,1.0610210, Table S2B). The seg.mean amplification and

deletion range for the MSKCC data set is not as great as observed

in the TCGA data set (Figures S1 and S2) and therefore fewer

genes are captured with significant CNV to expression correla-

tions. However, we are able to identify 32 genes with Pearson

correlation values$0.6 (p-values,4.061025, Table S2A) with 18

of the 32 genes also identified in the TCGA data set (Table S2A).

Greater gene expression differences between normal and tumor

samples are not observed until we rely only on those samples

containing genes with extreme amplifications and deletions

(Figure 4). Therefore our approach to identify genes with altered

copy number variation correlated to expression was to examine

the expression values of genes within high and low copy number

seg.mean values and compare the expression of those genes to that

of normal tissue samples. In an event where there is copy number

aberration in normal samples this same type of correlation would

be observed. We examined only tumor samples since the

magnitude and extent of copy number alterations is more

significantly detected through our protocol. Initially we calculated

the average expression value for each gene where 20% of the

tumor samples showed a CNV value of above 0.50 seg.mean or

below 20.50 seg.mean and also filtered out the genes for which

the normal expression was not within the standard deviation (the

default TCGA CNV thresholds were used which correspond to at

least one amplified or deleted copy and with the ability to capture

as many altered CNV samples per gene as possible). This strict

Figure 1. Genomic and epigenetic features of tumor suppressors and oncogenes. Copy number variation is the base genomic feature for
our identification of tumor suppressor and oncogenic gene properties in ovarian cancer. An oncogene can be overexpressed under amplified copy
number and low methylation, while hypermethylation can be used for regulating expression in a gene amplified state. Similarly, decreased tumor
suppressor expression can be the result of partial copy number loss with hypermethylation. Tumor suppressors may also possibly be regulated via
hypomethylation in a copy number deleted stated. Our analysis is modeled for such properties and first examines the CNV per gene and then
attributes epigenetic alteration for each copy number aberration with gene expression.
doi:10.1371/journal.pone.0028503.g001
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criteria of 20% of TCGA tumor samples captured 21 genes (Table

S3). These 21 genes such as CCNE1 and GSTT1 represent the

most altered CNV genes in the tumor samples with differential

expression as compared to tissue normal samples in the TCGA

data set. However this approach is greatly dependent on the

normal gene average expression levels. For TCGA, at the time of

our analysis expression information was only available for 8

samples designated as normal. Therefore, a gene such as MYC

(most often over expressed in tumor cells) which has a mean

sample expression value of 8.93 in the eight TCGA normal

samples (Figure S4) and a mean tumor sample expression value of

7.75 (from 339 tumor samples) is not observed by this method. By

performing tumor sample specific analysis we may not fully

eliminate these variations but hope to limit their magnitude.

So as not to rely on the small normal tissue sampling for

expression values, we performed a Wilcoxon rank test only on

expression values from a minimum 20% of the tumor samples

within very low and high gene copy number seg.mean thresholds.

In the TCGA tumor data set this produced a set of 54 genes within

a false discovery rate of 5% at seg.mean values of 1.25 and 20.50

for high and low copy number variation, respectively (Table 2,

Table S4). The number of genes captured is dependent on the

high copy number segmentation mean value used as a filtering

threshold (while maintaining a set low copy threshold at 20.50,

thereby at minimum capturing a loss of heterozygosity per gene

[8]; Figure S5). A total of 1114 genes are captured (FDR,0.05) at

a lower CNV threshold of 0.8 seg.mean (Figure S5). With the

Wilcoxon rank test we find genes such as MYC, CCNE1, KRAS,

NDRG1, MLL4 and MTSS1 for which data set specific normal

tissue expression may not be significantly different from all tumor

samples but is variable between low and high copy number tumor

samples. Conservative threshold limitations of 20% tumor sample

inclusion resulted in the identification of genes from extreme CNV

loci such as in chromosomes 1, 8, and 19. Of interest, transcription

factor CEPBG was found to have good CNV to expression

correlation and also expression and methylation correlation in the

MSKCC data set. Similarly, performing the Wilcoxon rank test on

MSKCC tumor samples at a high copy number threshold $0.5

and a low copy number ROMA platform-specific threshold ,0.0

(see Methods) we captured 62 genes at a false discovery rate #0.05

(Table 2, Table S4). Genes identified in the MSKCC data set were

from similar genomic loci as those found in the TCGA data set.

Five genes were predicted from both data sets: CCNE1, POP4,

UQCRB, PHF20L1 and C19orf2 (Table 2). We have integrated

the expression data with CNV to determine the genes that are

more likely to be candidates as functioning cancer genes with

potential tumor suppressor and oncogenic CNV-expression

features. This makes the number of genes in further studies more

approachable for functional validation of genes affected by genetic

aberrations.

We also analyzed the classical dependence of DNA methylation

in gene promoter regions with that of gene expression.

Figure 2. Amplification and deletion breakpoint variability
among ROMA segments. Breakpoint positions of copy number
variability (deletions depicted in blue, amplifications depicted in red) in
22 chromosomes are shown as determined from ROMA generated
segmentation data. The initial altering deletion or amplification
genomic position is depicted from all 42 ovarian tumor cancer samples.
doi:10.1371/journal.pone.0028503.g002

Table 1. Chromosomal deletions and amplifications in
ovarian cancer tumors*.

Location Frequency

Deletions

chr4:q25-q35.2 11%

chr7:p22.3-p15.3 12%

chr8:p23.3-p21.1 15%

chr13q12.11-q34 19%

chr14q32.2-q32.33 12%

chr15q13.3-q21.1 14%

chr16q11.2-q24.3 20%

chr17p13.3-q25.3 50%

chr19:q13.2-q13.43 20%

chr22:q11.21-q13.33 67%

Amplifications

chr1:p34.4-p34.1 12%

chr1:q21.1-q21.2 19%

chr3:q13.2-q23 12%

chr8:q11.22-q24.3 35%

chr19:q12-q13.12 20%

chr20:q13.12-q13.2 15%

*Sample frequency for the most common chromosomal deletions and
amplifications found using ROMA in the MSKCC 42 ovarian cancer sample set.
doi:10.1371/journal.pone.0028503.t001

Genomic and Epigenetic Features in Ovarian Cancer
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Methylation data exhibits poorer correlation to expression than

copy number variation (Figure S6). We determined Pearson

correlations between DNA methylation and gene expression in

both the MSKCC and TCGA ovarian primary tumor data sets.

Pearson correlation values .0.5 (p-values,2.061024, low meth-

ylation and high expression to high methylation and low

expression) are observed in 86 genes between the two data sets.

Prominently, the gene encoding ubiquitin B (UBB) shows a high

correlation between methylation and expression in both data sets

and RAB25 a known ovarian cancer suspect is also found in the

TCGA data set [31,46] (Tables S2A and S2B).

Tumor Suppressor and Oncogene Identification Using
Methylation and Expression Features Associated with
Copy Number Variation

We decided to integrate all forms of the data when possible to

determine which gene candidates are affected by CNV and

methylation and have a concomitant change in gene expression.

Correlations with expression will allow us to better determine

which gene functions are potentially altered in tumor samples.

Methylation and expression gene features can identify potential

tumor suppressor and oncogenic behavior in various forms of

cancer [3]. Furthermore, this epigenetic significance can be

identified when both expression and methylation data types are

examined at amplified and deleted CNV changes. Here, we

combined methylation and expression data with CNV information

from the MSKCC data set and TCGA data set to isolate genes

with potential oncogenic and tumor suppressor features (Figure 1).

Genes with low CNV or high CNV in the MSKCC and TCGA

data sets were filtered and their methylation and expression values

identified (Figure 5). In general, a potential tumor suppressor is a

gene with suppressed expression and is either functionally altered

through mutation, epigenetically silenced or deleted in the cancer

cell. Furthermore, tumor suppressors can undergo a dual

regulation with one gene copy being deleted and the other

regulated via hypermethylation [47]. A potential oncogene can

undergo direct or indirect expression control with amplified copy

number and/or low methylation features [22,47,48]. We looked

for genes with such genomic and epigenetic features (Figure 1). We

investigated altered expression by tumor sample to normal sample

expression ratios (Figure 5, Table S5). Over and under expression

thresholds for tumor to normal ratios were determined by the top

25% and bottom 25% of the entire ratio distribution, respectively.

Thresholds capturing the extreme 25% distributions within low

and high methylation were used for both the MSKCC and TCGA

data sets. We isolated 126 genes in the MSKCC data set with

tumor suppressor properties of low CNV, low tumor to normal

expression ratios and were hypermethylated (Figure 5B). When

compared to both the methylation and expression values among

the normal data samples, 114 out of these 126 genes had p-values

below 561022 (results for all genes from this analysis are found in

Tables S5, S2A and S2B). The classic tumor suppressor RB1

(retinoblastoma protein, p-value 2610216) and the tumor

suppressor BIK (Bcl-2-interacting killer, apoptosis inducing

protein, p-value 1610213) are among this feature class of gene.

A similar analysis with the TCGA data set (Figure 5A) yields 54

genes with potential tumor suppressor behavior among genes with

deleted CNV with all but 11 genes having a normal to tumor p-

value of,0.05. Examining genes with oncogenic properties such as

high tumor to normal expression ratios, high CNV and low

methylation we find 33 genes in the MSKCC data set and 285 in

Figure 4. Distribution of gene expression per copy number
variation from ovarian cancer tumor cells. As gene copy number
variation increases from deletion to amplification the mean gene
expression also increases in both the MSKCC (blue line) and TCGA
(green line) data sets.
doi:10.1371/journal.pone.0028503.g004

Figure 3. MOMA methylation in ovarian cancer tumors. The tumor:normal ratio percentage for MOMA methylation per gene from 42 ovarian
cancer tumor samples and 7 tissue normal samples is outlined per chromosome. For each sample the mean methylation value is calculated from the
maximum MOMA value per probe that incorporates the gene promoter region. MOMA methylation data covered 11,978 gene promoter regions.
Prominent hypermethylation (red) and hypomethylation (green) genes are labeled and provided in Table S2.
doi:10.1371/journal.pone.0028503.g003
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the TCGA data set (Figure 5C–D). A total of 611 genes were

identified in both data sets using tumor suppressor and oncogenic

gene features (Figure 1). Genes previously found as over expressed

in ovarian or other cancers were captured as also having over

expression and low methylation properties in ovarian cancer.

These genes with oncogenic features from either data set were

GSK3B, MMP9, ATAD2, MCM2 and UBE2C. Importantly, we

discover CDCA8 (member of the chromosomal passenger

complex), ATAD2 (AAA family protein implicated in cell

proliferation), BOP1 (resides on 8q24 similar to the MYC loci)

and EIF2C3 (involved in RNA interference) within both data sets

for genes with oncogenic properties of high expression from copy

number amplification and low methylation despite low overlap-

ping coverage of genes with all three feature modalities between

the MSKCC and TCGA data sets (2703 genes have all three

modes of data within both data sets).

In addition, we show all MSKCC predicted genes (ranked by

percentile by their FDR p-value,0.05) per chromosome with

relation to the ROMA probe copy number variation sample

frequency (Figure 6). Regions of amplification and deletion are

shown along with the number of genes with significant expression

and methylation differences from normal. In the MSKCC data set

941 genes were identified with significant changes from normal

(based on Euclidean distance measurements as described in

Methods) in both DNA methylation and expression in amplified

and deleted copy number loci, 25% (238) of which were also

discovered using the tumor suppressor and oncogene gene features

protocol. Therefore, we illustrate how loci with minor CNV

frequency among tumor samples can still contain significantly

altered expression and methylation gene features such as seen in

chromosomes 2, 6, 10 and 12 (Figure 6). These specific gene

identifications within less frequent aberrant loci can potentially

lead to a better understanding of direct functional gene

contributions in ovarian subtype cancer networks. Finally, in

order to identify likely functional and pathway changes captured

by our feature based gene analysis we tested the membership of

predicted MSKCC genes in each feature class within a total of 173

KEGG biological pathways. Performing a KEGG pathway

enrichment analysis on the predicted MSKCC data set genes

within each feature class identifies KEGG pathways associated

with cancer; endometrial cancer (hsa05213), ErbB signaling

pathway (hsa04012), amino acid metabolism (hsa00340), epithelial

cell signaling in h. pylori infection (hsa0512) and regulation of actin

cytoskeleton (hsa4810) (Figure S7).

Epigenetics and Genomics of Known Tumor Suppressors
and Oncogenes

Our Wilcoxon rank analysis revealed correlations for expression

and CNV for the oncogenes CCNE1, KRAS, MLL4 and MYC,

while our methylation/expression per CNV screen significantly

Table 2. Selected ovarian cancer genes captured by Wilcoxon rank test based on copy number variation and expression data*.

Gene Name p-value Chr. Position Gene Function

TCGA Data Set

POP4 3.53e-16 19 34789009 Component of ribonuclease P.

C19orf2 1.09e-14 19 35125264 RPB5 binding protein.

CCNE1 1.56e-14 19 34995400 Cyclin E1, ovarian cancer marker.

PAF1 7.42e-10 19 44568109 RNA polymerase II-associated factor.

KRAS 3.29e-09 12 25249446 GTPase signal transduction.

UQCRB 1.96e-08 8 97398479 Ubiquinol-cytochrome c reductase binding protein.

NFKBIB 7.88e-08 19 44082454 NF-k-B inhibitor.

PHF20L1 1.99e-07 8 133856785 PHD finger protein 20- like 1.

CASC1 1.09e-05 12 25152489 Lung adenoma susceptibility 1-like protein.

NDRG1 8.11e-05 8 134318595 N-myc downstream-regulated gene 1 protein.

MYC 1.23e-03 8 128817496 Myc proto-oncogene protein, transcription factor.

MTSS1 1.91e-02 8 125632208 Metastasis suppressor protein 1.

MSKCC Data Set

POP4 4.16e-04 19 34789009 Component of ribonuclease P.

CCNE1 1.97e-03 19 34995400 Cyclin E1, ovarian cancer marker.

FOXJ3 5.88e-03 1 42414796 Forkhead box protein.

CEBPG 1.03e-02 19 38556448 CCAAT enhancer binding protein.

C19orf2 2.29e-02 19 35125264 RPB5 binding protein.

UQCRB 2.42e-02 8 97398479 Ubiquinol-cytochrome c reductase binding protein.

MYCBP 2.73e-02 1 39101222 c-MYC binding protein.

MLL4 2.82e-02 19 40900760 Histone-lysine N-methyltransferase.

STK3 3.33e-02 8 99536036 Serine/threonine-protein kinase 3.

PHF20L1 3.57e-02 8 133856785 PHD finger protein 20- like 1.

EBAG9 4.73e-02 8 110621104 Estrogen receptor-binding fragment-cancer associated protein.

OXR1 4.76e-02 8 107739211 Oxidation resistance protein.

*Results of Wilcoxon Rank test with BH correction of selected genes in ovarian cancer tumor samples. Italics indicate genes captured from both data sets.
doi:10.1371/journal.pone.0028503.t002
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predicts the tumor suppressor RB1. We were therefore curious to

understand how all known functional cancer genes were affected

by genomic and epigenetic disturbances in ovarian cancer. We

analyzed the CNV, methylation and expression data of known

tumor suppressors, oncogenes and ovarian cancer biomarkers or

cancer related genes. We curated from literature a list of known

genes implicated in ovarian cancer or shown to be significant in

cancer pathogenesis [3,4,7,16,23,31,49]. We then compiled the

methylation and expression properties per copy number variation

for each of these genes (Table 3 presents MSKCC data, Tables

S2A, S2B and S6 show all data). As suspected, many genes exhibit

varying expression values among the three states of copy number

variation (amplified, deleted or no change which we term neutral –

Table 3, Table S6). Correlating changes of CNV and expression

can be seen in genes of the ovarian cancer 19q amplicon [50]

CCNE1 (r = 0.73) and AKT2 (r = 0.66), suggesting functional

variation within the ovarian cancer sample population. Again,

significant deletion frequency of RB1 (67%–83%) is observed in

both the TCGA and MSKCC data set, respectively. Furthermore,

the tumor suppressors PTEN, TP53, DAB2, CDKN2A, PLAGL1,

PEG3, RPS6KA2, NF1, BRCA1, BRCA2 and WWOX, all show

$50% deletion among primary ovarian tumor samples. Amplifi-

Figure 5. Oncogenic and tumor suppressor features in ovarian cancer. We isolated genes (all points) with extreme copy number variation
from the TCGA (A and C) and MSKCC (B and D) data sets. Methylation and tumor to normal expression ratio was then compared for genes at low
CNV (A and B) and high CNV (C and D). Genes with oncogenic features (blue ovals; high expression and low methylation) and tumor suppressor
features (red ovals; low expression and high methylation) were identified (Table 3).
doi:10.1371/journal.pone.0028503.g005
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cation of known oncogenes was less profound however MYC,

PIK3CA, ETV6, AURKA, EIF5A2, NOTCH3, and KRAS

exhibit $20% sample frequency. BRCA1 and BRCA2 show

unvarying methylation and expression results at all copy number

variation thresholds, plus methylation and expression levels are

consistent with normal tissue samples. CDC25A shows approxi-

mately 30% deletion among ovarian tumor samples with

unvarying methylation levels and expression correlation with

deletion. Methylation and expression for the tumor suppressor

CDKN2A is highly correlated (r = 0.79) and exhibits significant p-

values (,1.0610215) over the range of copy number variation. A

concomitant loss of expression with both methylation and copy

number variation is also observed for CDKN2A. When examining

oncogenes we see the methylation/expression correlation with

CNV for NOTCH3 (p-value,7.561026; the p-values are

determined from Euclidean distance values of methylation and

expression between normal and tumor as described in methods)

RAB25 (p-value ,5.461023), and AURKA (p-val-

ue,1.2610210). For all three genes methylation decreases and

expression increases with increased copy number. Finally, looking

at cancer related genes, we find a distinct correlation between copy

number variation and expression for MLH1 (r = 0.563) and

separately the isocitrate dehydrogenase genes. MLH1, a compo-

nent of the DNA mismatch repair complex, is hypomethylated in

samples with deleted CNV suggesting an epigenetic regulation

mechanism to increase expression within a loss in gene copy.

IDH1 and IDH2, as well as the IDH3 isoforms show positive

correlations between expression and copy number variation,

ranging from r = 0.732 for IDH2 to r = 0.504 for IDH1. We also

see differences in methylation (p-values,6.3161027) between

tumor and normal samples for all IDH genes, as previously

reported in glioblastoma [33]. However only IDH3B shows

significant differences (p-values,7.2610210) for methylation and

expression at varying copy number. We suggest that expression

changes in the IDH genes in ovarian cancer can result from a

contribution by copy number variation rather than strictly

promoter methylation changes.

Discussion

DNA copy number alterations are a common occurrence in all

cancers. Specific chromosomal regions and focal points favor

either gains or losses in DNA among cancer types [4,7]. These

amplifications and deletions are shown to include tumor

suppressors and oncogenes. In addition, DNA methylation

exhibits redistribution within a cancer genome [20,22,29]. Often

times the copy number and DNA methylation profiles are

generated as a static representation of a particular cancer’s whole

genome aberrations. However, the amplitude of specific gene

function within ovarian cancer is often highly variable between

tumor samples [3]. It is therefore essential to accurately determine

each gene’s individual functional state within its cancer environ-

ment. Here, we not only looked at whole genome patterns of copy

number aberrations and methylation but also focus on sample

specific CNV and methylation properties for altered genes to

provide a better understanding of ovarian cancer gene function-

ality. We first separately present data of DNA structural variation

and DNA methylation changes in ovarian tumors and then

combine the two modalities with expression data to identify how

these aberrations may affect individual gene function within the

tumor population.

We first analyzed the DNA copy number variation of primary

ovarian tumors from 42 individuals and compared our findings to

The Cancer Genome Atlas data set for ovarian cancer [31]. In

analysis of CNV segmentation changes in our 42 tumor samples,

DNA variability is shown to be most prevalent in chromosomes 1,

2, 4, 8, 9 and 19. We have shown a large variability in

amplification and deletion breakpoint loci in ovarian tumors and

identified chromosomal areas of frequent copy number variations.

We see a high level of amplification frequency in known oncogenic

regions containing MYC (chromosome 8), CCNE1 (chromosome

19) and frequent deletions are found in chromosome arms 4q, 16q,

and 17p [16,51]. Similarly to the TCGA data analysis ROMA

detected high frequency copy losses in PTEN, RB1, and NF1. We

also show the known but previously unreported in primary ovarian

tumors amplification of the MCL region of chromosome 1q21.1-

q21.2 [4,31] and previously unreported deletions in the IDH2 and

IDH3 region of chromosome 15. A total of 983 genes are included

in amplified and deleted regions. A strong correlation of

expression with copy number variation has been reported in

ovarian cancer [52]. Here, we primarily focused on quantifying

this correlation at varying CNV levels for the purposes of

functional annotation. Most significant changes of expression

occur at extreme CNV. We show that copy number variation has

a strong effect on expression in primary ovarian tumors for 156

genes. Notable genes with correlated CNV and expression include

MYC, CCNE1, KRAS, NDRG1, MLL4, MTSS1, C11orf30,

MLH1 and CEPBG. Genes identified in the MSKCC data set

were from similar genomic loci as those found in the TCGA data

set. Five genes were predicted from both data sets: CCNE1,

POP4, UQCRB, PHF20L1 and C19orf2. In addition isocitrate

dehydrogenase isoforms IDH2 (chr15), IDH3A (chr15), and

Figure 6. Ranking of significantly expressed and methylated genes with copy number variation. Predicted MSKCC data set genes (green
circle) with changes in methylation and expression are overlayed a genome wide stair-plot of ROMA probe sample frequencies per deletion and
amplification (blue line). Each predicted gene is percentile ranked according to its FDR p-values (,0.05) between normal and tumor samples.
doi:10.1371/journal.pone.0028503.g006

Genomic and Epigenetic Features in Ovarian Cancer

PLoS ONE | www.plosone.org 9 December 2011 | Volume 6 | Issue 12 | e28503



IDH3B (chr20) show correlated expression to CNV. The IDH1

and IDH2 genes are mutated in glioblastoma and AML cancer

patients. IDH1 has been implicated as a prognosis positive

biomarker in glioblastoma and AML IDH1/2 mutants show

hypermethylation in comparison to other AML subtypes [53,54].

All the isocitrate dehydrogenase genes exhibit deleted CNV in

ovarian cancer samples (ranging from 14%–52%, Table 3). Here,

we show for both the IDH2 and IDH3A/IDH3B genes expression

is mainly correlated in tumor samples exhibiting deleted copy

number to normal copy number.

Next, we examined genome wide DNA methylation in ovarian

tumors. DNA methylation alterations are a significant feature of

Table 3. Copy number variation derived methylation and expression of tumor suppressors and oncogenes in ovarian cancer*.

MSKCC Data Set

Gene Copy Number Variation CNV Frequency Seg.mean Methylation Expression

Tumor Suppressors

RB1 Amplified 0.00 0.00 0.00 0.00

RB1 Neutral 0.17 0.03 0.98 5.04

RB1 Deleted 0.83 20.12 0.99 4.66

PTEN Amplified 0.00 0.00 0.00 0.00

PTEN Neutral 0.42 0.03 1.03 5.43

PTEN Deleted 0.58 20.04 1.04 5.32

TP53 Amplified 0.00 0.00 0.00 0.00

TP53 Neutral 0.07 0.06 0.97 5.33

TP53 Deleted 0.93 20.10 0.90 4.89

PLAGL1 Amplified 0.03 1.06 1.13 10.36

PLAGL1 Neutral 0.20 0.04 1.14 5.73

PLAGL1 Deleted 0.77 20.05 1.14 4.94

Oncogenes

MYC Amplified 0.13 0.69 0.96 8.28

MYC Neutral 0.80 0.16 0.98 7.61

MYC Deleted 0.07 20.04 0.98 8.26

AKT2 Amplified 0.03 0.56 1.09 4.93

AKT2 Neutral 0.45 0.06 1.09 4.51

AKT2 Deleted 0.52 20.09 1.07 4.50

FGFR1 Amplified 0.02 0.60 1.25 6.83

FGFR1 Neutral 0.60 0.09 1.12 6.44

FGFR1 Deleted 0.38 20.12 1.13 6.09

CCNE1 Amplified 0.12 0.68 1.17 8.44

CCNE1 Neutral 0.42 0.09 1.14 7.59

CCNE1 Deleted 0.45 20.05 1.11 6.72

Biomarkers/Cancer-Related

WFDC2 Amplified 0.05 0.56 0.94 10.30

WFDC2 Neutral 0.70 0.11 0.97 11.21

WFDC2 Deleted 0.25 20.03 0.98 9.55

PIAS3 Amplified 0.03 0.86 1.08 6.75

PIAS3 Neutral 0.76 0.07 1.11 5.95

PIAS3 Deleted 0.21 20.02 1.17 5.72

IDH3B Amplified 0.00 0.00 0.00 0.00

IDH3B Neutral 0.72 0.08 0.99 7.10

IDH3B Deleted 0.28 20.04 1.01 6.91

IDH3G Amplified 0.03 0.50 0.97 6.83

IDH3G Neutral 0.82 0.16 0.97 6.98

IDH3G Deleted 0.15 20.03 1.00 6.51

*Selected ovarian cancer related tumor suppressor and oncogene epigenetic data is presented from the MSKCC data set. The frequency of each gene found in an
amplified, neutral or deleted state based on CNV thresholds is provided. The seg.mean threshold for amplified was set at $0.50 and for deleted at ,0.00. Neutral was
defined as not within the amplified or deleted thresholds. And the average seg.mean, methylation and expression values for those CNV states is shown. A complete
table with the full summary from both data sets is present in Table S6.
doi:10.1371/journal.pone.0028503.t003
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the cancer genome [1,23]. The protocadherin gene cluster of

chromosome 5 has been shown to be frequently hypermethylated

and silenced in various forms of cancer [55,56]. We see broad

hypermethylation for both the PCDHa and PCDHb loci in

ovarian cancer as well. We also observe increased levels of

methylation in other cancer related genes e.g. ALX3 and

PHOX2B both implicated in neuroblastoma [57,58]. Decreased

levels of methylation are seen in genes such as calcyphosin which

exhibits oncogenic properties in endometrial cancer [59], lactate

dehydrogenase which when inhibited impairs cell proliferation via

the Warburg effect of aerobic glycolysis in cancer cells [60] and

DUB3, the CDC25A stabilizing protein ubiquitin hyrdolase [61]

which has been shown to rescue CDC25A from proteasomal

degradation and promote an oncogenic induction response [62].

Hypomethylation with subsequent cellular rise of DUB3 can

therefore be a candidate for the cellular regulation of CDC25A

protein levels and CDC25A linked oncogenesis.

Finally, to identify genes with a more direct genomic and

epigenetic effect on the function of the cancer cell, we directed our

focus on the combined gene features of copy number, methylation

and expression. Tumor suppressors and oncogenes are often

implicated by their transcriptional abnormalities in the cancer cell.

It is of interest to understand which tumor suppressors and

oncogenes play a direct role in a particular cancer among all genes

affected by genomic aberrations. A certain tumor suppressor or

oncogene function may be gained or silenced at varying

frequencies by different epigenetic and genomic conditions within

the tumor sample population. Examining these properties and

their affects on gene expression can provide better insight into

identifying which genes are most responsible to the pathology of

the tumor. We therefore formulate a set of predictive features

based on genomic and epigenetic properties of the tumor that can

be indicative of altered function for tumor suppressors and

oncogenes in the cancer genome (Figure 1). Low expression of

various tumor suppressors in cancer cells can be a result of deleted

copy number or silencing by promoter hypermethylation. While

amplification and promoter hypomethylation can play a role in the

over expression of oncogenes. Conversely, a particular known

oncogene may be deleted in a particular cancer lessening its

pathogenic role within that cancer or an individual sample.

Interestingly, for highly amplified genes, a high level of

methylation accompanied by low expression could indicate altered

tumor suppressor function in the cancer cell. In highly amplified

genes, low level methylation and high expression would indicate

oncogenic features in a cancer cell. We therefore utilized samples

with extreme copy number variations and examined the

methylation and expression changes of genes within these aberrant

loci to identify potential tumor suppressors and oncogenes.

Examining both our primary MSKCC tumor sample data set

and the TCGA data set, we discovered 180 genes with tumor

suppressor features of low expression with copy number deletion

and high methylation. These features are characteristic of known

classic tumor suppressors among which the established tumor

suppressor RB1 (retinoblastoma protein) was captured. Addition-

ally we find another 48 genes with elevated copy number but low

expression and high methylation. For oncogenic epigenetic gene

features we discover 318 genes within amplified loci and 65 within

deleted copy number loci between the two data sets. Several genes

discovered in ovarian cancer tumors with these specific tumor

suppressor and oncogenic features have been previously implicat-

ed in other cancers and are now shown to have additional

methylation and copy number variation properties. Furthermore,

25% of the genes captured with tumor suppressor and oncogenic

gene features were represented in 941 MSKCC data set genes

(Figure 6) with significant changes in methylation and expression

per CNV. Seven genes were identified from both the MSKCC and

TCGA data sets that contained strong correlations for methylation

dependent expression exhibited at varying copy number aberra-

tions; CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and

EIF2C3. Four of these seven genes (CDCA8, ATAD2, CDKN2A,

AURKA) have direct functional relationships of binding and

regulation with other experimentally established oncogenes and

tumor suppressors such as TP53, RB1, MYC and E2F1

[63,64,65,66]. Thereby indicating a potential functional cancer

module (Figure S8) that can be further computationally and

experimentally targeted. Using genomic features specific to

aberrations found in tumor sample data captures previously

identified tumor suppressors and oncogenes in addition to genes

associated with these biomarkers. This genomic and epigenetic

function-based feature approach identified genes in cancer

pathways such as endometrial cancer, ErbB signaling pathways,

epithelial cell signaling and actin cytoskeleton regulation. This type

of primary gene function identification approach can provide a

base feature set for further machine-learning cancer network

prediction protocols.

In addition, cancer genes exhibiting contradictory tumor

suppressor or oncogenic epigenetic features in ovarian cancer

may provide clues into the regulatory pathways within ovarian

cancer. Of note, predicted within the MSKCC data set tumor

suppressor features is the established oncogenic transcription

factor STAT3 [67,68,69]. Here we see significant STAT3 deletion

($73% sample frequency) contributing to a potential heterozygous

gene copy loss in both the TCGA and MSKCC data sets.

Furthermore, within samples containing a low copy number of

STAT3 gene, slightly higher methylation and lower expression

values are observed. This may suggest a decreased role for STAT3

in the oncogenic function within ovarian tumors. Therefore,

epigenetic and genomic specific gene features are at the strength of

our predictions and can be used to i) predict novel gene functions

in ovarian cancer and ii) elucidate or verify the direct cancer

functioning role for previously implicated tumor suppressors or

oncogenes. We therefore decided to examine many known cancer

oncogenes and tumor suppressors for varying levels of regulation

among tumor samples. For instance, the ovarian cancer oncogenes

CCNE1 and RAB25 [3,70] show significant methylation and

expression correlation for both amplified and deleted copy number

aberrations. The expression levels of these cancer functioning

genes differs between samples and the modes of epigenetic

regulation exhibit different levels of frequency [3]. Each gene

affecting the growth of the tumor is not evenly implicated in all

samples. We therefore attempted to illustrate these genomic and

epigenetic sample irregularities (such as observed in PLAGL1,

CCNE1 and PIAS3) for many of the known ovarian cancer genes

(Table 3, Tables S2 and S6). Sample specific feature analysis of

identical gene combinations and modules at amplified, neutral or

deleted copy number with corresponding epigenetic regulatory

features can be used to identify ovarian cancer heterogeneity and

the driving genes contributing it. Application of this gene function

diversity can be further studied using clinical information for each

sample, thereby combining cancer gene modules with each

samples’ clinical features. The development of this type of

knowledge base of gene features in a cancer population will better

help identify subtype specific tumor function.

The continuing increase of experimental epigenetic data from

various tumor samples offers the ability to computationally search

for putative genes with properties in the proliferation of cancer

cells. Here we performed a coarse-grained bioinformatics whole

genome evaluation of epigenetic features in ovarian cancer tumor
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cell from two separate platforms covering over 11,500 genes. We

demonstrate ovarian cancer specific epigenetic regulation of

previously identified cancer genes and cancer biomarkers.

Furthermore, we were also able to implicate genes with tumor

suppressor and oncogenic epigenetic properties specific to ovarian

cancer tumors that have not been previously reported. Examina-

tion of multiple cancer epigenetic modalities will help segregate

cancer specific genes from randomly altered cancer genes and can

possibly elucidate the genetic mediators of ovarian tumorigenesis.

The focus on gene combinations with specific copy number

aberrations per individual tumor sample plus their methylation

and expression properties within those samples allows for the

better understanding and eventual identification of tumor type

specific cancer pathways.

Supporting Information

Figure S1 Copy number variability in ovarian cancer
tumor samples. A) Variability per chromosome of all ROMA

derived CBS segmentation values for 42 tumor samples in the

MSKCC data set is shown. B) The mean value (horizontal straight

bar) of CNV segmentation values per chromosome and standard

deviation (error bars) from 42 tumor samples.

(TIF)

Figure S2 Copy number variation in TCGA and ROMA
samples for ovarian cancer specific genes. Presented are

four examples of copy number variation analyzed per gene (see

methods) from TCGA tumor CNV data (open grey circles) and from

MSKCC data set ROMA array tumor samples (filled black boxes).

CBS segmentation mean (Seg.Mean) values per sample are plotted for

four known ovarian cancer significant genes. Amplification and

deletion sample comparisons between TCGA and ROMA segmen-

tations are shown for A) MYC, B) TP53, C) CCNE1 and D) NCOA3.

(TIF)

Figure S3 Cumulative distribution of gene expression
per copy number variation. The cumulative distribution

function (Fn(x) = P(X#x)) for expression is plotted for genes with

high (red line) and low (green line) copy number variation

discovered from ROMA analysis (A) and found in the TCGA data

set (B). Maximum difference in expression distribution between

low and high copy is 7% in the TCGA data set and 17% in the

MSKCC data set.

(TIF)

Figure S4 Expression of the MYC gene in ovarian tumor
and normal samples in the TCGA data set. The expression

of the gene MYC in ovarian tumor samples and normal samples as

identified in the TCGA data set. Expression values are shown for

samples with amplified CNV for MYC (left panel), deleted CNV

for MYC (center panel) and for normal tissue (right panel).

Colored bar shows the expression mean for each condition.

(TIF)

Figure S5 Genes captured by Wilcoxon rank test in
ovarian cancer tumor samples. The Wilcoxon Rank test was

performed on the ovarian cancer tumor TCGA data set. The test

ranked expression levels of genes among samples with high and

low copy number gene values. With a low CNV seg.mean

threshold set at 20.50, the total genes captured was dependent on

the high CNV threshold. Shown are the total genes captured (filled

in square, dotted line) and number of genes with a FDR,0.50

(filled in circle, solid line) by the Wilcoxon rank test at CNV values

of 0.80, 1.0 and 1.25. A total of 54 to 1114 genes with FDR,0.50

is identified using CNV threshold values of 0.80 to 1.25.

(TIF)

Figure S6 Expression correlation with copy number
variation or methylation. Correlation value distribution per

gene of expression to copy number variation (CNV-Expression,

green line) and methylation (Methylation-Expression, red line) are

shown as a proportion of total genes analyzed for TCGA (A) and

ROMA-MOMA MSKCC data (B).

(TIF)

Figure S7 KEGG pathway enrichment analysis. A KEGG

pathway enrichment analysis defined by hypergeometric distribu-

tion was performed on the genes predicted in the MSKCC data set

for each genomic and epigenetic feature class for oncogenes and

tumor suppressors. Amp. abbreviation defines the amplified CNV

feature set and Del. abbreviation identifies genes in the deleted

CNV feature set. The significantly identified KEGG pathways are

presented for each feature class.

(TIF)

Figure S8 Network for ovarian cancer identified tumor
suppressors and oncogenes. Genes with a strong correlation

for methylation dependent expression exhibited at varying copy

number aberrations identified in both the MSKCC and TCGA

data sets include CDCA8, ATAD2, CDKN2A, and AURKA

(blue circles). Here are depicted the functional relationships

(regulating and binding) for those four genes with other known

tumor suppressors and oncogenes.

(TIF)

Table S1 MOMA identified hypomethylated and hyper-
methylated genes in ovarian cancer tumor samples for
MSKCC data set. Tumor to Normal methylation ratios are

presented for hypomethylated and hypermethylated genes in 42

MSKCC samples from the MOMA platform. All MOMA data

can be found in the GEO database (http://www.ncbi.nlm.nih.

gov/geo/) for the subseries reference identifier GSE27940.

(XLS)

Table S2 Correlation values per gene for copy number
variation, methylation, and expression. Correlation values

for gene expression with copy number variation and separately

methylation are presented for each gene in the A) MSKCC data set

and B) TCGA data set. Significance values of Euclidean distances

calculated between normal and tumor samples for methylation and

expression data points for all genes in all samples and either in a

deleted or amplified state is provided in the final three columns.

(XLS)

Table S3 Ovarian cancer genes with large expression
deviation within TCGA data set. Genes with high and low

CNV in at least 20% of TCGA data set samples are presented for

expression deviations from normal.

(XLS)

Table S4 All genes captured by Wilcoxon rank test
based on copy number variation and expression data.
Results of Wilcoxon rank test with BH correction of selected genes

in ovarian cancer tumor samples from both MSKCC and TCGA

data sets. Bold indicate genes captured from both data sets.

(XLS)

Table S5 Predicted genes with copy number variation,
methylation and expression for tumor suppressor and
oncogene features in both MSKCC and TCGA data sets.
Genes predicted from tumor suppressor and oncogene genomic

and epigenetic features are shown. Location for each gene and

epigenetic and genomic data values are shown. Thresholds used

for each individual platform are provided per feature set.

(XLS)
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Table S6 Copy number derived methylation and ex-
pression of tumor suppressors and oncogenes. Methyla-

tion and expression properties per copy number variation (from

both the MSKCC and TCGA data sets) a presented for a curated

list of known genes implicated in ovarian cancer or shown to be

significant in cancer pathogenesis.

(XLS)

Analysis S1 Supporting analysis scripts.
(PDF)
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