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Abstract

Transcriptional regulation of the galactose metabolizing genes in Saccharomyces cerevisiae depends
on three core proteins - Gal4p, the transcriptional activator that binds to upstream activating DNA
sequences (UASga1 ), Gal80p, a repressor that binds to the C-terminus of Gal4p and inhibits
transcription, and Gal3p, a cytoplasmic transducer which upon binding galactose and ATP, relieves
Gal80p repression. The current model of induction relies on Gal3p sequestering Gal80p in the
cytoplasm. However, the rapid induction of this system implies that there is a missing factor. Our
structure of Gal80p in complex with a peptide from the C-terminal activation domain of Gal4p reveals
the existence of a dinucleotide that mediates the interaction between the two. Biochemical and in
vivo experiments suggests that NADP plays a key role in the initial induction event.

Saccharomyces cerevisiae senses galactose/melibiose in the surrounding medium and shuttles
it into the cytoplasm. Galactose is enzymatically converted by the GAL enzymes, Gallp,
Gal5p, Gal7p and Gal10p to glucose-1-phosphate (1). The regulatory control of this pathway
is governed by ‘the galactose regulon’ (Fig S1). The very short induction time for GAL genes
presents a quandary because Gal3p is localized in the cytoplasm and does not appear to enter
the nucleus to physically disrupt Gal80p binding to Gal4p (2). Gal80p, localized to the nucleus
and the cytoplasm (2), might therefore be sequestered in the cytoplasm upon induction but this
would require rapid shuttling of the repressor out of the nucleus, or rapid turnover of the Gal4p/
Gal80p complex. It therefore appears that there is a missing link to initiate rapid induction and
switch the system on. In order to understand the molecular mechanism of the GAL regulatory
system, we determined the structure of S. cerevisiae Gal80p (ScGal80p) with the activation
domain of ScGal4p.

Gal4p has a C-terminal (768-881) acidic activation domain (AD), a region that is also required
to bind its repressor, Gal80p (3-5). We determined the structures of Gal80pS2:P20 and
Gal8030:p21 (Gal80pS2 and Gal80pSY are two super-repressor mutants of ScGal80p). P21 is
a 21 amino acid peptide that contains the conserved region of the C-terminal AD of Gal4p (aa
854-874). P20 is a peptide that was identified from a phage-display screen selected for Gal80p
binding and was also shown to activate transcription (6).

The crystal structures of ScGal80p reveal a three-domain architecture with an N-terminal
domain consisting of a Rossmann fold, normally associated with binding of NAD(P) co-factors.
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ScGal80p does not possess a classic NAD(P) binding sequence motif, GXGXX(G/A), but a
slightly altered motif, GFVGLNAA, spanning amino acids 21-28. The C-terminal domain
consists of a large 3-sheet that forms an extensive dimer interface with another monomer (Fig.
1A, Fig. S2). A large cleft is apparent between these two domains. A smaller third domain,
located between the N and C-terminal domains, consists of three small B -strands and a helix
that resemble a set of fingers at the entrance of the cleft. ScGal80p dimers form tetramers in
both crystal forms (see SOM text, Fig S3). The structure is similar to that of Gal80p from K.
lactis (KIGal80) (7) and closely resembles structures of several oxidoreductases.

In the ScGal80pS2:P20 structure, we identified electron density indicating an NAD
dinucleotide bound to the Rossmann fold. We therefore soaked the ScGal80pS9:P21 crystals,
which diffracted to higher resolution, with NAD. Not only did the density of this dinucleotide
become even more apparent than in the unsoaked crystals (Fig. S4), but we were then able to
locate a portion of the Gal4p AD peptide, which we were unable to observe previously, bound
to the cleft in each monomer of Gal80p (Fig. S5). We have modeled a segment of the peptide
consisting of 9 residues for one monomer and 5 residues for the other. Although the backbone
electron density is clear, most side chains seem to be somewhat disordered and could not be
unequivocally assigned. Nevertheless the peptide appears to interact with the nicotinamide
portion of the dinucleotide (Fig. 1). NAD nestles between Gal80p and P21 making several key
interactions with ScGal80p (Fig. 1B). The crystal structure of KIGal80p did not show any
bound dinucleotide (7).

To test the role of NAD as a possible cofactor of the ScGal80p-ScGal4p interaction, we
performed pull-down assays (8) of Gal80p with purified recombinant GST-Gal4p(768-881),
containing the acidic AD, in the presence of NAD and NADH (Fig. 2A). As Gal80p also
interacts with the transducer, Gal3p, we used GST-Gal3p as a control. There was no change
in binding for either of these two dinucleotides. We then tested binding in the presence of
increasing concentrations of NADP and NADPH (Fig. 2A). A clear reduction in binding is
observed at 5 uM NADP, more substantial at 500 uM. NADPH also shows some reduction in
Gal80p binding at 500 uM, though this could be due to the presence of NADP impurities,
which are on the order of 1-3%. There is no effect of Gal80p binding to GST-Gal3p with any
of the four dinucleotides (Fig. 3A), indicating that this dinucleotide-regulated binding is
specific to the Gal80p-Gal4p interaction. Modeling of NADP in the place of NAD in the
structure does not show any clashes with either the Gal80p protein or with the Gal4p peptide.

In order to further test the effect of NADP on Gal80p binding to Gal4p-AD, we generated a
panel of Gal80p mutants and Gal4p binding was tested by GST pull-down experiments at
varying NADP concentrations (Fig. 2B, Fig. S6). Disruption of the Gal80p dimer interface
(N230R) by disruption of hydrogen bonding interactions between the monomers, caused
substantial decrease in overall binding to Gal4p-AD and this low-level binding was almost
completely abolished even in the presence of low concentrations of NADP. Several mutants
that should alter NAD(P) binding had lost sensitivity to NADP compared to the wild-type
protein. W31A, designed to disrupt stacking with the nicotinamide ring, exhibits no sensitivity
to NADP over the range of concentrations tested (0-2.5 mM). E122, which forms a hydrogen
bond with the nicotinamide N7, was changed to an alanine and showed a decrease in overall
binding but no sensitivity to NADP. H36F, which should alter positioning of E122, showed a
slight decrease in binding at 2.5 mM NADP. H99A, which likely disrupts interaction of the
histidine with the ribose of the nicotinamide group, behaves similarly to the wild-type protein.
From modeling studies, N26 and K29 might interact with the additional 2’ phosphate of NADP.
N26D showed very similar behavior to the wild-type protein and K29E showed overall weaker
binding.
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In order to test the biological effect of altering the NADP binding site we prepared Gal80p
wild type and mutants with a C-terminal FLAG tag and monitored each mutant’s effect on
GAL1 expression in yeast at different time points following induction with galactose (Fig. 3,
Fig. S7). All mutants predicted to affect dinucleotide binding still repressed normally in the
uninduced state. Several mutants - H36F, K29E, W31A, and E122A showed higher levels of
expression at earlier time points after induction with galactose relative to the wild-type proteins.
H99A was more similar to wild type. All mutants leveled off to wild-type expression levels at
30-45 minutes post induction. This suggests that alterations in the NAD(P) binding site affects
the initial rate of induction, but not overall final expression levels. It appears that NAD might
facilitate Gal80p binding to Gal4p, since we could only identify Gal4p-AD with NAD bound,
and NADP destabilizes this interaction. The mutations, affecting both NAD and NADP
binding, would therefore disrupt both the stabilizing effect of NAD and destabilizing effect of
NADP with a net result of faster induction for the mutants compared to wild type.

The involvement of dinucleotides and metabolic factors in transcriptional regulation is seen in
a few other systems. The coactivator of Oct-1, OCA-S, contains two glycolytic enzymes —
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (9). The
binding of the transcriptional corepressor complex, CtBP, is enhanced by the reduced
dinucleotide NADH compared to the oxidized form (10) and it possesses a NAD-dependant
dehydrogenase activity (11). The DNA-binding activity of the transcription factor neuronal
PAS domain protein 2 (NPAS2) is sensitive to the oxidation state of NAD, with DNA binding
enhanced by the reduced form of the dinucleotide (12). While we do not understand precisely
how this trigger for GAL regulation functions, nor the involvement of NADP versus NAD, we
speculate that switching the cell to a fermentable galactose medium causes a change in NADP/
NADPH or NADP/NAD ratios in the cell, and Gal80p effectively senses the metabolic state
of the cell. NADP might be acting as a “second messenger” in triggering the system.
Alternatively, Gal80p may function as an oxidoreductase, actively converting NADPH to
NADP in the presence of a substrate causing it to disassociate from Gal4p.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1A
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Figure 1B

Figure 1.

(A) Two views of the ScGal80pS0-ScGal4AD-NAD dimer. ScGal80p is depicted as gray
ribbons, the Gal4p AD peptide in purple sticks and the NAD in atom colors in stick (carbon
in yellow, oxygen in red, nitrogen in blue and phosphorus in green). Disordered regions are
shown as a dashed coil. The B-sheet regions of the C-terminal domains form an extensive
dimeric interface.

(B) NAD binding. Hydrogen-bonding interactions involving the NAD dinucleotide are shown
as dashed lines with the corresponding distances indicated (A). The side chain of W31 stacks
on the NAD nicotinamide ring. Atoms are shown in atom colors as in A with Gal80p carbons
in gray, NAD carbons in yellow and the Gal4p-AD peptide carbons in purple.
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Figure 2B
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Figure 2C
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Figure 2. NADP disrupts the GAL4pAD-Gal80p interaction

(A) GST, GST-Gal4pAD or GST-Gal3p were used in GST pull-down experiments with 3°S-
methionine-labeled Gal80p expressed in rabbit reticulocyte in the presence of increasing
concentrations of NAD, NADH, NADP of NADPH (see Materials and Methods). 1% of input
was loaded in the lanes marked “input”.

(B) Representative GST pull-down experiments of GST-Gal4pAD with Gal80p mutants in the
presence of increasing concentrations of NADP (see Material and Methods).

(C) Bands from the pull-down experiments (each carried out at least in triplicate) were
quantified and plotted as a function of NADP concentration. Data are shown as mean and error
bars indicate +/— standard deviations.
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Figure 3. Alterations in the NADP binding site changes the rate of induction in vivo

GAL1 mRNA expression as a function of time after galactose induction. Data are shown for
wild-type Gal80p and for Gal80p point mutants. All data were normalized to RNA levels
measured for a control gene, PMAL. A gal80A mutant has a high expression level even when
uninduced, as high as seen for wild-type Gal80p when fully induced. The dimer mutant,
N230R, also shows expression in the uninduced state (see SOM).
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