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SUMMARY

Mad2 is an essential component of the spindle checkpoint that blocks activation of Separase and
dissolution of sister chromatids until microtubule attachment to kinetochores is complete. We
show here that overexpression of Mad2 in transgenic mice leads to a wide variety of neoplasias,
appearance of broken chromosomes, anaphase bridges, and whole-chromosome gains and losses,
as well as acceleration of myc-induced lymphomagenesis. Moreover, continued overexpression of
Mad2 is not required for tumor maintenance, unlike the majority of oncogenes studied to date. These
results demonstrate that transient Mad2 overexpression and chromosome instability can be an
important stimulus in the initiation and progression of different cancer subtypes.
INTRODUCTION

The spindle assembly checkpoint is a signal transduction

pathway that ensures that sister chromatids aligned at the

metaphase plate do not separate prior to the bipolar

attachment of all duplicated chromosomes to the mitotic

spindle (Bharadwaj and Yu, 2004; Kops et al., 2005; Wass-

mann and Benezra, 2001). This pathway serves to restrain

the protease Separase, which cleaves the Cohesin pro-

teins holding the sisters together at the metaphase-

to-anaphase transition. Cyclin B/cdk1 phosphorylation

of Separase also negatively regulates its activity (Stem-

mann et al., 2001). Mad2 is a central component of this

pathway, since it is essential for inhibiting the E3 ubiquitin

ligase cdc20-APC (or anaphase-promoting complex)

(Fang et al., 1998; Li et al., 1997), which itself targets

Securin (Visintin et al., 1997), a negative regulator of

Separase (Ciosk et al., 1998; Cohen-Fix et al., 1996), as

well as Cyclin B for degradation (Wasch and Cross,
2002; Yamamoto et al., 2005; Taieb et al., 2001). Unoccu-

pied kinetochores serve as loading machines for Mad2

onto cdc20-APC. This loading is thought to involve the

association of a closed conformer of Mad2 (bound to

Mad1 anchored at the kinetochore) with an open con-

former capable of binding cdc20 and inhibiting APC activ-

ity (De Antoni et al., 2005). Once the last kinetochore is

occupied with microtubules and the Mad1/Mad2 complex

is displaced, closed conformers are capped by the pres-

ence of p31comet (Habu et al., 2002; Xia et al., 2004),

and cdc20-APC is liberated. Securin is then ubiquitinated

and degraded, and after the loss of the inhibitory phos-

phorylation, Separase is free to cleave the Cohesins.

As anticipated from such a model, partial loss of Mad2

function by genetic manipulation leads to premature deg-

radation of Securin and separation of the sister chroma-

tids (Michel et al., 2001). In cell lines and in animal models,

this leads to a high rate of aneuploidy and polyploidy.

Mad2 heterozygous animals develop lung tumors with
SIGNIFICANCE

Genetic instability and aneuploidy are classical features of adult tumors that are usually associated with poor
patient prognosis. Their actual contribution to oncogenic transformation, however, remains unclear. Elevated ex-
pression of the mitotic checkpoint gene mad2, observed in a number of human cancers, promotes aneuploidy
in vitro, but its role in tumor initiation or progression in mammals has not been established. We demonstrate
here that overexpression of Mad2 in mice leads to tumor initiation, most likely through the acquisition of a chromo-
somal instability (CIN) phenotype. In addition, once neoplastic transformation has occurred, Mad2 overexpression
is no longer required to promote tumor progression, indicating that CIN could be an early and transient oncogenic
event.
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very long latencies. Similar tumor predisposition or accel-

eration occurs in animal models in which other compo-

nents of the mitotic checkpoint are partially inactivated

and the animals exposed to chemical tumor promoters

or other oncogenic stimuli (Babu et al., 2003; Baker

et al., 2004; Dai et al., 2004; Rao et al., 2005). Complete

loss of Mad2 or other mitotic checkpoint components,

on the other hand, leads to early embryonic lethality and

associated chromosome missegregation events (Babu

et al., 2003; Dobles et al., 2000; Wang et al., 2004). In

siRNA knockdown experiments in normal human fibro-

blasts and cell lines, near complete loss of Mad2 activity

leads to massive chromosome missegregation and cata-

strophic cell death (Kops et al., 2004; Michel et al.,

2004). The severity of this phenotype may be attributable

to the concomitant loss of Securin and Cyclin B (Michel

et al., 2004) and thereby complete loss of restraint on

Separase as well as reported microtubule disorganization.

Indeed, to date tumor cells displaying complete loss of

Mad2 function have not been found.

Mad2 overexpression, on the other hand, is a common

event seen in many human cancers (Alizadeh et al., 2000;

Chen et al., 2002; Garber et al., 2001) and is associated

with poor prognosis (Hernando et al., 2004; Li et al.,

2003; Tanaka et al., 2001; van ’t Veer et al., 2002). Mad2

is an E2F target gene and is therefore expressed at high

levels in tumors that are functionally or explicitly null for

Rb activity (Hernando et al., 2004). Mad2 overexpression

in human fibroblasts and cell lines can stabilize Securin

and Cyclin B, delay exit from mitosis, and increase nondis-

junction events and aneuploidy. Whether such events

contribute to tumorigenesis has not yet been explored.

In the present study we conditionally overexpressed the

Mad2 protein in mice using tetracycline-inducible and -re-

pressible systems (Ewald et al., 1996) in which both high

and intermediate levels of Mad2 overexpression are

achieved. In addition, Mad2 was constitutively expressed

in the Em-myc model of lymphomagenesis. Our results

suggest that a hyperactive mitotic checkpoint plays a

causal role in cancer initiation and progression and sup-

port the notion that enhanced chromosome instability,

perhaps even transiently, contributes to the transforma-

tion process.

RESULTS

Generation of Mice Carrying an Inducible mad2 Gene

To generate transgenic mice containing a regulatable

mouse mad2 coding sequence, we constructed a 1.5 kb

fragment of DNA (Figure 1A) consisting of seven direct re-

peats of the tet operator sequence (tetO7), a murine mad2

cDNA, and the SV40 polyadenylation site. To facilitate

transgene detection, this construct encodes an HA epi-

tope tag upstream of the mad2 coding sequences (Fig-

ure 1A). Such a tag does not interfere with Mad2 activity

(Wassmann et al., 2003). Injection of this construct into

fertilized F2 eggs obtained from mating of C57BL/6J 3

CBA/J F1 mice produced 95 pups that were analyzed

for the presence of the transgene by Southern blot analy-
10 Cancer Cell 11, 9–23, January 2007 ª2007 Elsevier Inc.
sis using a probe of 446 base pairs specific for the exog-

enous mad2 (Figure 1A). In order to regulate the expres-

sion of murine mad2, we took advantage of two lines of

transgenic mice, CMV-tTA (Tet-Off) (Furth et al., 1994)

and CMV-rtTA (Tet-On) (kindly provided by H. Varmus

and F. Cong). In the tTA (Tet-Off) system, the tetracycline

analog doxycycline inhibits the activity of the transactiva-

tor (TA), and in the rtTA (Tet-On) system doxycycline

stimulates the TA. In both systems the expression of the

mad2-responsive transgene is regulated in all tissues

due to the expression of the TA from the human early

cytomegalovirus promoter (PhCMV). The CMV-tTA (Furth

et al., 1994) and CMV-rtTA mice (F. Cong, personal

communication) are viable and fertile and display no overt

phenotype.

Five TetO-Mad2-positive founders (10, 16, 19, 21, and

25 from Figure 1A) were crossed with both the CMV-tTA

and CMV-rtTA mice. To induce Mad2 expression, we

placed bitransgenic offspring from the rtTA system on

a diet containing doxycycline after weaning, whereas in

the tTA system food without doxycycline was adminis-

tered at all times. After 4 weeks, progeny were assayed

for transgene expression using a reverse transcriptase

PCR (RT-PCR) assay specific for the transgene. As shown

in Figure 1B, bitransgenic mice derived from TetO-Mad2

founder #25 expressed the transgene in both the Tet-On

and Tet-Off system in all tissues tested. Similar results

were observed with founder #10 (data not shown), and

both strains were used in subsequent analyses. Next, to

determine whether expression of the transgene could be

turned off, we performed quantitative RT-PCR on RNA

samples derived from different tissues of TetO-Mad2/

CMV-rtTA (Tet-On) bitransgenic mice fed doxycycline

and after doxycycline withdrawal. Transgene expression

was upregulated 500- to 10,000-fold in tissues of TetO-

Mad2/CMV-rtTA mice upon administration of doxycycline

for 2 weeks and was reduced to 5- to 50-fold above back-

ground upon doxycycline withdrawal for 1 week (Fig-

ure 1C). Similar repressibility was observed with TetO-

Mad2/CMV-tTA mice using the reverse doxycycline

administration protocol (data not shown).

To measure induction of Mad2 protein encoded by the

transgene, we performed western blots on cell extracts

of murine embryonic fibroblasts (MEFs) maintained in nor-

mal media or in media containing doxycycline. We used

antibodies against the HA tag (exogenous Mad2) as well

as total Mad2 protein. As shown in Figure 1D, the level

of expression of exogenous Mad2 relative to endogenous

in the Tet-Off system (left panel) was lower than that in the

Tet-On system (right panel) when doxycycline was added

to the media. We also confirmed Mad2 protein overex-

pression by western blot analysis on tissues derived

from TetO-Mad2/CMV-tTA mice maintained in normal

food as well as on tissues from TetO-Mad2/CMV-rtTA

mice on both normal diet and doxycycline-containing

food (Figure 1E). Overall, these results demonstrate that

we have generated transgenic lines in which we can

achieve Mad2 overexpression in different tissues and

that this can be turned on and off both in vivo and in vitro.
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Figure 1. Mad2 Transgene and Expression Pattern

(A) Construct used to generate the tetracycline operator-regulated Mad2 (TetO-Mad2) responder mice. TetO, tetracycline operator; HA, hemaglutinin;

SV40 pA, SV40 gene polyadenylation sequence (upper panel). Southern blot of genomic DNA from different founders (lower panel).

(B) RT-PCR from different tissues of nontransgenic, TetO-Mad2/CMV-tTA, and TetO-Mad2/CMV-rtTA mice, the last ones exposed to doxycycline in

the feed from 4 weeks to harvest at 8 weeks. PCR reactions were carried out in the presence (top) and absence (middle) of RT and products were

visualized after electrophoresis in a 2% agarose gel. Amplification of actin mRNA by RT-PCR confirmed the presence of RNA in all samples.

(C) Quantitative RT-PCR analysis of transgene expression in bitransgenic (Tet-On) mice on doxycycline and after doxycycline withdrawal (C, control;

Kd, kidney; Sp, spleen; Li, liver; Lg, lung; Ts, testis; Int, intestine).

(D) Western blot analysis for HA tag and Mad2 of nontransgenic (N Tg) and TetO-Mad2/CMV-tTA MEFs (left panel) and TetO-Mad2/CMV-rtTA MEFs

(right panel). Cells were maintained with (+) or without (�) doxycycline for 24 hr.

(E) Western blot analysis showing Mad2 levels in different tissues from TetO-Mad2/CMV-tTA mice (lung and spleen) and TetO-Mad2/CMV-rtTA

mice with and without doxycycline treatment (lung, spleen, intestine, and liver). N Tg, nontransgenic mice, tTA, TetO-Mad2/CMV-tTA mice; rtTA,

TetO-Mad2/CMV-rtTA mice. Anti-actin blots are shown as a loading control.
High Level of Mad2 Overexpression in MEFs Leads

to Accumulation of Mitotic Cells and Tetraploidy

Mouse embryonic fibroblasts (MEFs) obtained from TetO-

Mad2/CMV-tTA (Tet-Off) mice express moderate levels of

exogenous Mad2 compared to the endogenous levels of

the protein (Figure 1D). Primary (P2) TetO-Mad2/CMV-

tTA MEFs grow well in culture and do not display sig-

nificant proliferative differences when compared to non-

transgenic embryos (data not shown). In contrast, MEFs

obtained from TetO-Mad2/CMV-rtTA (Tet-On) mice ex-

press higher levels of exogenous Mad2 compared to the

endogenous levels of the protein when exposed to doxy-

cycline. When maintained in culture in the presence of

doxycycline, these cells proliferate much more slowly
than nontransgenic cells or cells maintained in normal

media (Figure 2A). These Mad2-overexpressing cells

also form very few colonies when seeded at low density

in the presence of doxycycline (Figure 2B).

To better understand why MEFs overexpressing high

levels of Mad2 stop proliferating, we performed FACS

analysis on asynchronously growing cultures with and

without the addition of doxycycline. As shown in Figure 2C,

cells arrest in G2/M when Mad2 is overexpressed. MPM2

staining reveals that this is indeed a partial mitotic block

(Figure 2D), a result consistent with our previously pub-

lished data on IMR90 primary fibroblasts (Hernando

et al., 2004). It was also shown previously that Mad2 over-

expression does not lead to a permanent block but rather
Cancer Cell 11, 9–23, January 2007 ª2007 Elsevier Inc. 11
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Figure 2. Growth Properties of TetO-Mad2/CMV-rtTA MEFs

(A) Proliferation of early-passage MEFs with or without the addition of doxycycline. Error bars indicate standard deviation.

(B) Plating efficiency of Mad2 wild-type and TetO-Mad2/CMV-rtTA MEFs with and without doxycycline treatment. Error bars indicate standard

deviation.

(C) Cell-cycle profile of asynchronous cultures at passage 2.

(D) Percentage of cells positive for MPM2 as a marker of mitosis.

(E) FACS analysis of DNA content profile of asynchronously growing nontransgenic and TetO-Mad2/CMV-rtTA MEFs on doxycycline media.

(F) FISH analysis on MEFs using centromeric probes for chromosomes 12 (red), 16 (green), and 17 (blue) showing a nontransgenic cell (left panel),

a binucleated cell (middle panel), and a mononucleated cell with more than 4 N (right panel).

(G) TUNEL assay of TetO-Mad2/CMV-rtTA MEFs with and without doxycycline for 48 hr.
‘‘escape’’ into the next cycle, generating cells with >4 N

DNA content. In order to determine if this was also true

in the tetracycline-inducible system, FACS analysis was

performed on growing populations 48 hr after Mad2

induction. Indeed, there were significantly more cells with

>4 N DNA content in Mad2-overexpressing MEFs than in

nontransgenic controls (12% versus 4.8%; Figure 2E).

Analogous results were obtained using fluorescent in

situ hybridization (FISH) to track specific chromosomes.

We observed that overexpression of Mad2 in MEFs leads

to both generation of binucleated cells and mononuclear

cells with abnormal chromosome numbers (Figure 2F).

Next, to determine the fate of these cells we performed

a TUNEL assay and observed that 8.5% of the Mad2-

overexpressing cells underwent apoptotic cell death as

compared to 0.3% in the nontransgenic controls (Fig-

ure 2G) after 48 hr of transgene activation. Thus, high
12 Cancer Cell 11, 9–23, January 2007 ª2007 Elsevier Inc.
levels of Mad2 overexpression delay the exit from mitosis

but allow the generation of polyploid/aneuploid cells with

very low viability.

Mad2 Overexpression Leads to Chromosomal

Instability

In order to further assess the chromosomal instability in-

duced by Mad2 overexpression, we performed karyotype

analyses of metaphase spreads generated from early-

passage primary MEFs overexpressing moderate (tTA)

or high (rtTA) levels of Mad2 for short durations. In these

cells, upon transgene activation for 24 hr, we observed

both aneuploid (2n ± x) and tetraploid cells with accompa-

nying aneuploidy (4n ± x) (Figure 3A). Comparable albeit

slightly lower rates of aneuploidy were observed in the

rtTA MEFs despite higher levels of Mad2, perhaps

due to some cell death as described above. Indeed, in
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all subsequent analyses of CIN in which Mad2 is overex-

pressed for short durations, comparable effects are ob-

served in tTA and rtTA systems, and we do not distinguish

between the two. Primary wild-type MEFs, under normal

culture conditions, spontaneously become tetraploid.

However, we found that the percentage of binucleated

cells was significantly higher in the Mad2-overexpressing

MEFs (75%) than in the nontransgenic controls (7.7%)

(representative example in Figure 3C). In addition, overex-

pression of Mad2 led to a significant increase in the num-

ber of chromosomal breaks and fragments, end-to-end

fusions (dicentric and acentric chromosomes), as well as

chromatid breaks and gaps as compared to wild-type

(Figures 3B and 3D and Figure S1 in the Supplemental

Data available with this article online) or uninduced popu-

lations (data not shown). MEFs that overexpressed high

levels of Mad2 also showed evidence of heterochromatin

separation at the centromeres, possibly as a result of

prolonged microtubule tension generated during the

metaphase arrest (see Figure S1B).

To further examine the abnormal mitoses observed by

karyotype analysis, we used live cell imaging of MEFs

infected with a retrovirus expressing histone 2B (H2B)-

GFP. Cells were monitored by phase and fluorescent

microscopy and mitotic timing scored setting time T =

0 min at the point when nuclear envelope breakdown

(NBD) was observed (as judged by loss of nuclear integrity

and chromosome condensation). Whereas nontransgenic

or uninduced MEFs underwent a normal and rapid mitosis

(59 ± 1.6 min), cells overexpressing Mad2 (in both back-

grounds, tTA and rtTA), took an unusually long time to

finish the process (89 ± 5 min), displaying marked difficul-

ties in completing cytokinesis and frequent defects in

chromosome segregation, as previously reported (Her-

nando et al., 2004). The frequency of abnormal mitoses

was increased in cells with elevated levels of Mad2 com-

pared to wild-type (Figure 3E) or uninduced populations

(Figure S1C). We observed cells in which lagging chromo-

somes and/or chromosome bridges gave way to two pre-

sumably aneuploid daughters and others in which furrow

regression took place, giving rise to a binucleate cell, con-

firming our findings of both aneuploid and tetraploid cells

by karyotype analysis (Figure 3G). We interpret the images

of lagging chromosomes and chromosome bridges (Fig-

ures 3F and 3G) as an attempt by the cell to bypass the

mitotic block imposed by Mad2 overexpression prior to

complete dissolution of the Cohesins holding sister chro-

matids together. Overall, these data indicate that Mad2

overexpression can acutely produce genomic instability,

a hallmark of human cancer.

Mad2 Overexpression Leads to a Wide Spectrum

of Tumors

Mad2 overexpression has been found in a wide spectrum

of human tumors, but whether such overexpression can

causally initiate tumorigenesis is unexplored. We followed

a cohort of 40 CMV-tTA mice overexpressing Mad2 in

order to detect spontaneous tumor initiation. Fifty percent

of Mad2-overexpressing mice were dead by 75 weeks, as
compared to no deaths in their nontransgenic littermates

(p value < 0.001) (Figure 4F). Necropsy analysis of these

mice that spontaneously died between 45 and 85 weeks

showed a wide spectrum of tumors, including hepatoma

and hepatocellular carcinoma, lung adenomas, fibrosar-

comas, and lymphomas (Table 1 and Figures 4A–4D).

Other nontumor lesions observed included fallopian tube

dysplasia (Figure 4E), testicular atrophy, hepatocellular

regeneration, hepatomegaly, and splenomegaly due to

extramedullary hematopoiesis (data not shown). Most

tumors observed developed with latencies greater than

12 months. Only in the case of an endometrial fibrosar-

coma (by histological examination), an intestinal tumor,

and two lung tumors (by MRI) did we observe tumors

arising before 12 months of transgene activation.

We also followed a cohort of 28 mice on the CMV-rtTA

background maintained on normal diet or on food contain-

ing doxycycline. Fifty percent (9 out of 18) of the TetO-

Mad2/CMV-rtTA mice maintained on a doxycycline diet

developed tumors between 4 and 18 months of age, while

0 out of 10 (0%) TetO-Mad2/CMV-rtTA mice fed a normal

diet developed tumors at similar ages. The tumors found

in the rtTA system were of the same histological origin

and spectrum as the ones described for the tTA system

(data not shown).

In light of the chromosomal alterations seen by karyo-

type analysis of MEFs, we performed comparative geno-

mic hybridization in three liver tumors from Mad2 trans-

genic mice as well as in three liver samples that did not

show obvious tumor development but overexpressed

Mad2 (Figure 4G). In all cases of liver tissue analyzed

(tumor and nontumor), we confirmed large chromosomal

abnormalities such as whole-chromosome gains and

arm deletions and amplifications. Thus, Mad2 overexpres-

sion leads to extensive chromosome instability in vivo,

which may take place prior to overt transformation.

Mad2 Overexpression Is Not Required

for Tumor Maintenance

One of the advantages of the tetracycline-inducible

system is the ability to temporally modulate the expres-

sion of the transgene. In order to test whether sustained

Mad2 overexpression is required for tumor progression

and maintenance, we monitored tumor growth in live

bitransgenic mice by serial MRI scans. Twelve TetO-

Mad2/CMV-tTA mice had significant masses evident by

MRI after 13–16 months (Figure 5A). These mice were

fed doxycycline, and a second scan was performed after

2 weeks. In all cases, the tumors persisted and continued

to grow after Mad2 downregulation. We confirmed that

the lesions observed in the MR images were in fact tumors

by sacrificing the mice 13 weeks after the second MRI

scan (maintained on doxycycline) followed by histological

analyses. Turning off Mad2 has little effect on tumor pro-

gression, as hepatomas harvested 15 weeks after addition

of doxycycline to the feed were of the same size and

histopathology as the untreated controls (Figure 5B).

Ki67 staining also demonstrated that downregulation of

the Mad2 transgene did not affect the proliferative index
Cancer Cell 11, 9–23, January 2007 ª2007 Elsevier Inc. 13
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Figure 3. Overexpression of Mad2 Leads to Chromosomal Instability

(A) Percentage of aneuploidy in the 2n and 4n population in TetO-Mad2-overexpressing MEFs in the Tet-On and Tet-Off systems.

(B) Karyotype of a Tet-On cell with an extra chromosome (2) (white triangle) and a chromatid break (6) (ctb) (left panel), and karyotype of another cell

with an extra chromosome 7 (white triangle), a ctb (X), ctb (15), and chromatid gap (ctg) (12) (right panel).
14 Cancer Cell 11, 9–23, January 2007 ª2007 Elsevier Inc.
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Figure 4. Tumor Susceptibility in TetO-Mad2/CMV-tTA Mice

Micrography of H&E stainings of a lung adenoma (A); a metastatic lymphoma in the colon (B); a hepatocellular carcinoma (C); a fibrosarcoma in the

skin (D); and a dysplasia of the fallopian tubes (E). Insets in (A)–(C): Macroscopic pictures of the corresponding tissues. Insets in (B) and (C), lower

panels: Detail of abnormal mitoses; blue bar, 1 cm; red bar, 80 mm; black bar, 100 mm. (F) Survival curve of TetO-Mad2/CMV-tTA mice where

blue line represents TetO-Mad2/CMV-tTA mice (n = 40) and green line is nontransgenic littermates (n = 15). (G) Chromosomal abnormalities detected

by comparative genomic hybridization array analysis of TetO-Mad2/CMV-tTA normal livers and liver tumors compared to a wild-type liver showing

amplification and deletion of specific regions as well as a whole-chromosome gain (X).
of the tumor (Figure 5B). QRT-PCR analysis showed that

the levels of the transgene were indeed downregulated

in the tumors (Figure 5C).

Similarly, tumors that developed in TetO-Mad2/CMV-

rtTA mice on a doxycycline diet and then placed on a doxy-

cycline-free diet showed no evidence of tumor regression

(Figure S2). Importantly, in this case, the levels of Mad2 af-

ter doxycycline withdrawal were near background levels

and are clearly not able to support tumorigenesis as de-

scribed above.

Mad2 Expression Is Significantly Upregulated

in a Subset of Human Cancers

We decided to confirm the involvement of Mad2 deregula-

tion in cancer initiation or progression by searching for
aberrant Mad2 expression in human tumors. To this end,

we used the ONCOMINE database, which contains gene

expression data compiled from multiple microarray analy-

ses (http://www.oncomine.org/) (Rhodes et al., 2004). In-

terestingly, the spectrum of human tumors in which

Mad2 was found transcriptionally overexpressed largely

overlapped with the cancer types found in the Mad2 trans-

genic mice. Thus, hepatocellular (Chen et al., 2002; p = 1.5

exp-17) and lung carcinomas (Garber et al., 2001; p = 1.9

exp-6), showed a significant upregulation of Mad2 as

compared to the corresponding normal tissues. More-

over, analyzing data derived from a comparative multilym-

phoma study (Alizadeh et al., 2000), we noted that Mad2

was expressed at significantly higher levels in diffuse large

B cell lymphomas (DLBCL) compared to chronic
(C) Representative picture of Tet-On P2 MEFs in culture showing binucleated cells (white arrows).

(D) Number of chromosomal breaks on primary MEFs.

(E) Left panel: Time of mitosis of nontransgenic (n = 98) and TetO-Mad2 (n = 90) MEFs was followed by time-lapse microscopy. Mean time of total

mitosis is shown. Right panel: Percentage of cells with normal or abnormal mitosis (binucleated cells, furrow regression, chromosome bridges, and

mitotic catastrophe) as assessed by time-lapse microscopy. Error bars indicate standard deviation.

(F) Evidence of lagging chromosomes and chromosome bridges.

(G) Time-lapse micrography of nontransgenic and TetO-Mad2 MEFs. Upper: N Tg cell entering mitosis at T = 0 min and completing cytokinesis by 1 hr.

Middle: Representative cell overexpressing Mad2 with a chromosome bridge (white arrow) stays longer in mitosis and exits at 1 hr 25 min with a

missegregated chromosome (arrow). Lower: Example of a cell with a chromosome bridge that suffers furrow regression and exits mitosis as a

binucleated cell.
Cancer Cell 11, 9–23, January 2007 ª2007 Elsevier Inc. 15
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lymphocytic leukemia/small lymphocytic lymphoma or

follicular lymphoma (FL) (p = 2.9 exp-10).

As the microarray data described above suggested an

involvement of Mad2 in DLBCL, we decided to validate

this observation by performing an immunohistochemistry

analysis of tissue microarrays (TMAs) with a monoclonal

antibody specific for Mad2. These TMAs contain tissue

from 85 cases of DLBCL, 105 cases of FL (Hedvat et al.,

2002) (Figure 6A), 35 cases of small lymphocytic lym-

phoma/chronic lymphocytic leukemia (SLL/CLL), and 35

mantle cell lymphomas (MCL), as well as a variety of T

cell lymphomas, lymphomas with plasmacytic differentia-

tion, and plasma cell myelomas. We observed that numer-

ous DLBCL (55.3%) presented strong or moderate levels

of Mad2 staining (Figure 6A). A survey of Mad2 expression

in other subtypes (e.g., MCL, SLL/CLL, etc.) did not show

Mad2 upregulation in these other lymphomas, with the ex-

ception of a subset of grade 3 follicular lymphomas (FL)

(Figure 6A), Burkitt’s lymphomas, and T cell lymphoblastic

lymphomas (Figure 6B).

Mad2 Overexpression Accelerates

Lymphomagenesis in the Em-myc Model

The fact that Mad2 is overexpressed in certain human B

cell lymphomas prompted us to investigate whether

Mad2 could be oncogenic in the B cell lineage. To do

this, we took advantage of a well-characterized system

of lymphomagenesis involving c-myc, an oncogene that

contributes to DLBCL and other lymphomas. Thus, we

infected hematopoietic stem cells (HSCs) derived from

Em-myc transgenic animals (Adams et al., 1985) with retro-

viruses containing the Mad2 cDNA coexpressing GFP and

used them to reconstitute sublethally irradiated recipient

mice. Adoptive transfer of Em-myc fetal liver cells from

these animals gives rise to lymphomas in irradiated wild-

type recipients between 3 and 6 months of age (Schmitt

et al., 2002). Mad2 overexpression accelerated Em-myc

lymphomagenesis, with a marked reduction in tumor

latency to 6–9 weeks (Figure 6C). Only 40% of mice recon-

stituted with fetal liver cells infected with control vector

(MSCV) developed lymphomas by 400 days, whereas

100% of mice reconstituted with Em-myc fetal livers

Table 1. Tumor Incidence in TetO-Mad2/CMV-tTA Mice

Tumor Type Incidence

Lung adenoma 14 35%

Hepatoma 9 22.5%

Hepatocellular carcinoma 1 2.5%

Intestinal tumor 5 12.5%

Lymphoma 3 7.5%

Fibrosarcoma 2 5%

Prostate tumor 2 5%

Angiomyolipoma 1 2.5%

Mammary adenocarcinoma 1 2.5%

Testicular atrophy 3 7.5%
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infected with Mad2 retrovirus developed lymphoma (me-

dian tumor-free survival = 85 days) (p < 0.01; n = 17 versus

n = 10). Overall survival of mice was similarly affected.

Importantly, all Em-myc/Mad2 lymphomas analyzed were

positive for GFP expression and overexpressed Mad2

by western blotting (data not shown). Whole-body imaging

(data not shown) and pathological examination revealed

that the Em-myc/Mad2 lymphomas were reminiscent

of large-cell lymphomas, were highly aggressive, and in-

volved all major lymph node groups, causing splenomeg-

aly and thymic enlargement (data not shown).

Immunological analysis showed that all the Em-myc/

Mad2 lymphomas were of B cell origin (B220+) and had

a proliferative index similar to that observed for Em-myc

alone (Figure 6D). However, in contrast to Em-myc, the

more accelerated Em-myc/Mad2 tumors tested displayed

an immature B cell phenotype (B220+ IgM�) (data not

shown). Tumor infiltration was commonly found in the liver

(Figure 6D), lungs, and kidneys (data not shown). Thus,

Mad2 efficiently cooperated with Myc to produce aggres-

sive lymphomas. The fact that TetO-Mad2/CMV-rtTA mice

overexpress Mad2 in HSCs (Figure S3) and developed

lymphomas at low penetrance and only after 12 months la-

tency argues that indeed the effects we are seeing are due

to cooperation between Em-myc and Mad2 and not simply

a consequence of Mad2 overexpression alone.

Mad2 Overexpression Leads to Securin and Cyclin B

Stabilization

Lymphocytes isolated from TetO-Mad2/CMV-rtTA mouse

spleens were stimulated in vitro upon addition of ionomy-

cine and PMA, and cells were collected at different time

points. Doxycycline was also added to TetO-Mad2 lym-

phocytes in culture to stimulate the expression of the

transgene. Mouse splenocytes enter the cell cycle syn-

chronously, allowing us to monitor Cyclin B and Securin

levels as cells progress through S phase and mitosis. No

significant differences in MPM2 kinetics were observed

between nontransgenic and TetO-Mad2 cells (Figure 7A),

suggesting an attempt by the Mad2-overexpressing cells

to exit mitosis on schedule. Expression of Securin and

Cyclin B was detected in both cell types from t = 24 hr;

however, protein degradation was remarkably delayed in

Mad2 overexpressing cells as compared to nontransgenic

(Figures 7B and 7C) lymphocytes. These results confirm

in vivo previous data on Mad2-retrovirally transduced

human fibroblasts and tumor cell lines (Hernando et al.,

2004) and support the hypothesis that Mad2 overexpres-

sion causes a hyperactive spindle checkpoint, which

could account for the mitotic defects and chromosomal

instability underlying tumorigenesis in this model.

DISCUSSION

Mad2 overexpression is common in human tumors (Aliza-

deh et al., 2000; Chen et al., 2002; Garber et al., 2001; Her-

nando et al., 2004; Li et al., 2003; Tanaka et al., 2001; van ’t

Veer et al., 2002) and has been shown to promote genomic

instability in cell culture models (Hernando et al., 2004).



Cancer Cell

Mad2 Overexpression Leads to Tumorigenesis In Vivo
Figure 5. Overexpression of Mad2 Is Not Required for Tumor Maintenance

(A) Axial MR images of the abdomen and the lungs of bitransgenic mice on normal diet (Mad2 on) and after 2 weeks on doxycycline food (Mad2 off)

showing the presence of tumors (white arrows).

(B) H&E (top) and Ki67 (bottom) staining of a hepatoma in a bitransgenic TetO-Mad2/CMV-tTA mouse untreated (Mad2 on) (left) and a mouse fed

doxycycline for 15 weeks after the presence of a tumor was confirmed by MRI. Black bar, 100 mm; red bar, 20 mm; blue bar, 1 cm.

(C) QRT-PCR confirming the downregulation of Mad2 in the tumor.
Here we extend this analysis and show that Mad2 over-

expression can initiate tumorigenesis and cooperate

with other oncogenic stimuli. Consistent with a role for

Mad2 in promoting genomic instability, Mad2-induced

tumors have frequent genomic rearrangements whole-

chromosome gains or losses, and sustained Mad2 over-

expression is not required for continued tumor growth.

Although we show that Mad2 overexpression can initi-

ate tumorigenesis, activating mutations have not been

reported in human cancers. However, studies suggest

that Mad2 is under the control of E2F, which is deregu-

lated in many human cancers (Hernando et al., 2004).

Thus, cells suffering mutations in the Rb pathway not

only gain a proliferative advantage, but also, as suggested

in this study, can gain an instability that (again, as shown

here) may contribute to tumorigenesis even if present

only transiently. It should be noted that, while the effect

of Mad2 overexpression on tumor initiation and accelera-
tion is likely to result from the observed chromosome in-

stability, other unknown effects of Mad2 overexpression

cannot be ruled out at this time.

Mad2 overexpression leads to a highly penetrant induc-

tion of a wide range of tumors in mice, including lung

adenomas, hepatomas and hepatocellular carcinomas,

lymphomas, and fibrosarcomas. Other cell types might

also be susceptible to the effects of Mad2 overexpression

but could have been masked by a variety of factors such

as low expression levels from the CMV promoter or early

lethality. This issue can now be addressed by the use of

other tissue-specific Mad2 alleles. As described, Mad2

overexpression was also observed to accelerate tumori-

genesis in a well-established model of lymphoma driven

by the expression of the myc oncogene in the B cell line-

age. In addition, higher levels of Mad2 mRNA have been

reported in DLBCL (Alizadeh et al., 2000) as compared

to most other B cell lymphoma subtypes, confirmed by
Cancer Cell 11, 9–23, January 2007 ª2007 Elsevier Inc. 17
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Figure 6. Mad2 Overexpression, a Common Feature of Certain Human Lymphomas, Accelerates myc-Driven Lymphomagenesis

(A) Immunohistochemical evaluation of Mad2 expression in human FL and DLBCL. Two representative positive cases are shown.

(B) Results of Mad2 immunohistochemistry analysis in multiple human lymphoma subtypes.

(C) Tumor-free survival curve of animals transplanted with Em-myc/vector versus Em-myc/Mad2 HSCs showing statistically significant acceleration of

tumor initiation mediated by Mad2 induction.

(D) Histological and immunohistochemical evaluation of Em-myc and Em-myc/Mad2-derived lymphomas (LN) and liver metastases.
our expression analyses. Interestingly, DLBCL display

a highly aggressive biological behavior and represent the

most aberrant B cell lymphomas in terms of ploidy alter-

ations. These data suggest that, in addition to tumor initi-

ation, Mad2 overexpression may play an important role in

tumor progression and mortality. Indeed, as reported

previously, Mad2 is a poor prognostic marker for neuro-

blastoma (Hernando et al., 2004), consistent with this

hypothesis.

Clearly, in tumors the ‘‘penalty’’ for loss of a whole chro-

mosome induced by Mad2 overexpression is balanced by
18 Cancer Cell 11, 9–23, January 2007 ª2007 Elsevier Inc.
growth advantages that likely result from LOH at tumor-

suppressor loci. Once a cell has acquired the CIN pheno-

type, theoretical considerations suggest that there is an

optimal chromosome loss rate (between 10 exp-2 and

10 exp-3 per chromosome per generation) (Komarova

and Wodarz, 2004) that will maximize the loss of tumor-

suppressor genes and expansion of transformed clones.

Indeed, we and others have observed a threshold for

cell viability in cell culture and animal models, as a high

level of expression of Mad2 (this study), complete loss of

separase in mice (Kumada et al., 2006; Wirth et al.,
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Figure 7. Mitotic Progression of In Vitro Stimulated Lymphocytes

(A) Percentage of lymphocytes positive for MPM2 as a marker of mitosis. Error bars indicate standard deviation.

(B) Western blot analysis of in vitro stimulated lymphocytes isolated from spleen of nontransgenic mice and TetO-Mad2/CMV-rtTA mice in the

presence of doxycycline showing stabilization of Cyclin B1 in the Mad2 overexpressing cells as compared to the nontransgenic cells.

(C) Western blot analysis of in vitro stimulated lymphocytes showing stabilization of Securin in the TetO-Mad2/CMV-rtTA cells compared to the

nontransgenic control.
2006), and complete loss of mitotic checkpoint function all

lead to a profound cell death and early embryonic lethality

(Babu et al., 2003; Dobles et al., 2000; Kops et al., 2004;

Michel et al., 2004; Wang et al., 2004). It is likely for this

reason that no human tumors to date have been identified

that have sustained a complete loss of Mad2 function,

although partial loss of function has been observed (Percy

et al., 2000; Wang et al., 2000, 2002). It will be of interest to

see if separase heterozygous mice will develop tumors

with prolonged latency. Interestingly, Zon and colleagues

have reported recently that in zebrafish heterozygous

loss-of-function mutations in separase lead to tumor

predisposition after exposure to mutagen in a similar

spectrum of tumor types observed in the Mad2-overex-

pressing mice (Shepard et al., 2007). While high levels of

Mad2 overexpression in the rtTA system caused cell

death of MEFs in culture, it is likely that in tumors that de-

velop in the rtTA mice there is selection for levels of Mad2

that allow cell viability but promote cellular transformation.

The simplest explanation for the chromosome instability

observed in the Mad2-overexpressing mice is that the sta-

bilization of Securin and Cyclin B, observed previously in

primary IMR90 cells (Hernando et al., 2004) and now in

Mad2-overexpressing lymphocytes (Figure 7), inhibits

the activity of Separase leading to nondisjunction events

and to cytokinesis inhibition. This is consistent with the on-

cogenic role of Securin (PTTG) overexpression (Pei and

Melmed, 1997). Formal genetic demonstration of this
hypothesis awaits the analysis of the Mad2 transgenics

crossed with the securin knockout animals, which is

currently underway.

The cause of the observed interstitial deletions and

amplifications in the Mad2-overexpressing cells is unclear

at this time. It is possible that, when cohesiveness of sister

chromatids is maintained during the exit from mitosis,

chromosome breakage and rejoining events facilitate this

type of chromosome instability. Indeed, our real-time

microscopy of Mad2-overexpressing cells shows evi-

dence of chromatin trapped in extended cytoplasmic

bridges during cytokinesis followed by a breakage event

(see Movies S1–S3). In addition, karyotype analysis of

MEFs overexpressing Mad2 show clear evidence of chro-

mosome breakage in addition to whole-chromosome

gains and losses.

The rate of acquisition of CIN in tumors must be compa-

rable to spontaneous mutation rates in order to compete

with mutational LOH at tumor-suppressor loci and there-

fore play a role in tumor initiation. The acquisition of

CIN may in fact be the second hit after a mutation at a

TS locus, since whole-chromosome loss is not rate limit-

ing in a CIN cell (see discussion in Nowak et al., 2002).

Interestingly, since Mad2 overexpression induces both

interstitial deletions and amplifications and whole-

chromosome loss, it might induce both the initial loss of

function event at tumor-suppressor loci as well as LOH.

This would serve to minimize the deleterious effects
Cancer Cell 11, 9–23, January 2007 ª2007 Elsevier Inc. 19
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of whole-chromosome loss. Alternatively, spontaneous

mutation of tumor-suppressor genes may be the event

that is selected for in the clonal expansion of the initiat-

ing tumor cell. Further analysis of the tumors that arise in

the Mad2 transgenic mice is required to address this

question.

It has been suggested that lagging and bridging chro-

mosomes in human cells in culture are insufficient to

induce cleavage furrow regression and tetraploidization

(Shi and King, 2005). Rather, these mislocalized chroma-

tids must end up in the wrong daughter cell in order to

induce tetraploidization, and aneuploidy is generally

acquired after the tetraploidization event. However, this

notion is at odds with recently published studies in

S. cerevisiae, in which chromatin in the cleavage furrow

induces an ipl-dependent signaling cascade that results

in furrow regression (Norden et al., 2006). Mad2 overex-

pression would be predicted to induce a high rate of

nondisjunction events due to persistence of cohesion

and tetraploidy prior to the appearance of an aneuploid

cell. However, we observe aneuploidy early after Mad2

induction in murine cells with chromosome numbers in

the 2 N and 4 N range. A similar result has been reported

recently in CENP-E knockout MEFs (Weaver et al., 2006).

This discrepancy is unlikely to be a murine-specific effect

as has been suggested (Shi and King, 2006), since a similar

result has been observed in Mad2-overexpressing human

cells (Hernando et al., 2004) and in human cells that show

high rates of nondisjunction due to the loss of one copy of

Mad2 (Michel et al., 2001). We conclude that in several

different settings aneuploidy can be established indepen-

dently of tetraploidization.

Turning off Mad2 transgene expression in established

tumors has little effect on tumor progression, at least in

the case of the hepatomas examined. This is in contrast

to the oncogene dependence observed in other systems

(for review, see Jonkers and Berns, 2004). We presume

that, in the case of Mad2, the lack of dependence is a

reflection of the early induction of chromosome instability

by Mad2, which would persist after Mad2 levels are nor-

malized. This hit-and-run effect of Mad2 overexpression

may lead to an underestimation of the fraction of human

tumors that have experienced Mad2 overexpression or

overexpression of other mitotic checkpoint components

during the early phases of the oncogenic process. In sum

then, our results suggest that deregulation of mitotic

checkpoint pathways by Rb inactivation or other mecha-

nisms may be an early and transient event in the initiation

and evolution of a wide variety of common cancers.

EXPERIMENTAL PROCEDURES

Generation of Mad2-Inducible Mice

The pTRE vector from Clontech, containing the tetracycline operator

and the SV40 polyadenylation sequence, was linearized with EcoRI

and BamHI. The murine Mad2 cDNA was amplified with specific

primers containing the HA epitope tag and the corresponding restric-

tion enzymes and ligated into the pTRE vector. Restriction digests and

sequencing were used to identify clones in which the Mad2 cDNA had

been inserted into the correct orientation.
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Animal Husbandry and Genotyping

TetO-Mad2 transgenic mice and CMV-tTA and CMV-rtTA mice were

kept in pathogen-free housing under guidelines approved by the

MSKCC Institutional Animal Care and Use Committee and Research

Animal Resource Center. Em-myc mice (Adams et al., 1985) and

CMV-tTA mice (Furth et al., 1994) have been previously described.

CMV-rtTA mice contain an interstitial deletion on chromosome 5 and

will be described elsewhere. Doxycycline was administered by feeding

mice with doxycycline-impregnated food pellets (625 ppm; Harlan-

Teklad). Tail DNA was isolated using Qiaprep Tail DNeasy isolation

kit (QIAGEN) according to the manufacturer’s protocol. TetO-Mad2

transgenic mice were genotyped using the following primers:

Mad2F, 50-CCATCCACGCTGTTTTGACCTC-30; Mad2R, 50-GGCTTT

CTGGGA CTTTTCTCTACG-30. CMV-rtTA mice: rtTAF, 50-GTGAAGTG

GGTCCGCGTACAG-30; rtTAR, 50-GTACTCGTCAATTCCAAGGGC

ATCG-30.

Preparation of MEFs and Lymphocytes and Tissue Culture

MEFs were isolated from E13.5 embryos and cultured in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 2 mM gluta-

mine, 1% penicillin/streptomycin, 10% tetracycline-free fetal bovine

serum (FBS), and 1 mg/ml of doxycycline when indicated. For prolifer-

ation assays, 1 3 105 cells were plated on 6-well plates in duplicate as

described previously (Sotillo et al., 2001). Primary lymphocytes were

isolated from the spleen of 6-month-old mice, cultured in RPMI +

10% FBS, and stimulated with PMA and ionomycine (Sigma) in the

presence or absence of doxycycline, and cell-cycle profiles were

analyzed by cytometry.

Retrovirus-Mediated Gene Transfer and Lymphoma Generation

Em-myc HSCs derived from fetal livers at embryonic days 13–15 were

transduced with retroviruses expressing Mad2 or the MSCV vector

alone and used to reconstitute the hematopoietic compartment of

lethally irradiated C57BL/6 mice (Schmitt et al., 2000, 2002). Mice

were monitored by periodic palpation of peripheral lymph nodes and

by whole-body fluorescence imaging. After the appearance of lympho-

mas, tumors were harvested and either fixed for histological evaluation

or rendered as single-cell suspensions stored frozen in 10% DMSO.

Magnetic Resonance Imaging

Individual mice were subjected to MRI assessment for detection of

tumors. In brief, mice were anesthetized with 2% isofluorane and

images were obtained on a Bruker 4.7T 40 cm bore magnet with

a commercial 7 cm inner diameter birdcage coil in the Animal Imaging

MRCore Facility at MSKCC. Low-resolution axial scout images were

obtained initially, followed by a high-spatial-resolution T2-weighted

axial images (repetition interval [TR] = 3800 ms, effective echo time

[TE] = 35 ms, eight echoes per phase-encoding step, spatial resolu-

tion = 1.0 mm slice thickness 3 112 mm 3 112 mm in plane resolution,

and four repetitions of data acquisition for 8–9 min of imaging time).

FACS, Karyotyping, FISH, and Live Cell Imaging

For FACS analysis, trypsinized cells were washed in PBS, fixed in 70%

ethanol, and stained with propidium iodide (50 mg/ml). Cells (104) were

analyzed by using a FACScalibur (Becton Dickinson). Apoptotic cells

were labeled by fluorescent TUNEL assay (In Situ Cell Death Detection

Kit, Roche) and quantified by FACS. For karyotyping, cells were incu-

bated in medium containing Colcemid (0.05 mg/ml) for 40 min and har-

vested by standard cytogenetic procedures. Metaphase spreads were

stained with DAPI (0.08%) in 23 SSC. For FISH analysis we made

probes using pairs of BAC clones near the centromeres for each chro-

mosome. Additional details are listed in the Supplemental Data. Mitotic

index was quantified by measuring MPM2 expression (anti-MPM2,

Upstate Biotechnology) versus DNA content (PI) by FACS. For live

cell imaging, primary MEFs were infected twice with a retrovirus ex-

pressing H2B-GFP (Yamamoto et al., 2004) and were cultivated in

a glass-bottom culture (Delta TPG) dish. Imaging was performed as

previously described (Michel et al., 2004).
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Array CGH Analysis

Genomic DNA extracted from normal and tumor livers from TetO-

Mad2/CMV-tTA and CMV-rtTA mice was subjected to comparative

genomic hybridization array analysis at the MSKCC Genomics Core

Lab. For each mouse, genomic DNA extracted from the liver of

a wild-type littermate was used as a reference and hybridized into

mouse CGH Agilent arrays (44A version). Results were analyzed using

a special normalization method correcting for the GC content of the

probes (adapted from Tonon et al., 2005).

RNA and Protein Analysis

RNA was isolated using the RNeasy kit (Qiagen, Valencia, CA). RNA

was treated with DNaseI (Ambion) to eliminate any contaminating

DNA. RT-PCR reactions were performed with SuperScript III (Invitro-

gen) according to the manufacturer’s instructions. For quantitative

RT-PCR, reactions were performed using the ABI7900 Sequence

Detection System (Applied Biosystems). Primer sequences and

amplification conditions and protein expression are described in the

Supplemental Data.

TMAs of Human Lymphomas

We analyzed the Oncomine database for expression of Mad2 on differ-

ent sets of microarray data comparing normal versus cancer samples

and established a p < 0.05 cut-off limit. Several TMAs, comprising

105 cases of FL (Hedvat et al., 2002), 85 cases of DLBCL, 35 cases

of small lymphocytic lymphoma/chronic lymphocytic leukemia

(SLL/CLL), 35 mantle cell lymphomas (MCL), 15 T cell lymphoblastic

lymphomas, 10 angioimmunoblastic lymphomas, 40 cases of periph-

eral T cell lymphoma (PTCL), 6 cases of anaplastic large cell lymphoma

(ALCL), 7 Burkitt’s lymphomas, 9 plasmatocytomas, and 4 plasma-

blastic lymphomas, were analyzed for Mad2 expression by immuno-

histochemistry analysis. Patient samples were obtained through insti-

tutionally approved protocols.

Histopathology

For immunohistochemistry analysis, representative sections were

deparaffinized, rehydrated in graded alcohols, and processed using

the avidin-biotin immunoperoxidase method. Sections were subjected

to antigen retrieval by microwave oven treatment using standard

procedures. Diaminobenzidine was used as the chromogen, and

hematoxylin was used to counterstain nuclei. The antibodies used

for immunohistochemistry are listed in the Supplemental Data. TMAs

were scored (by J.T.-F. and E.H.) by evaluating percentage of positivity

of tumor cells and intensity of nuclear staining.

Supplemental Data

The Supplemental Data include Supplemental Experimental Proce-

dures, three supplemental figures, and three supplemental movies

and can be found with this article online at http://www.cancercell.

org/cgi/content/full/11/1/9/DC1/.
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