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ABSTRACT

We describe a method to make physical maps of genomes using correlative hybridization
patterns of probes to random pools of BACs. We derive thereby an estimated distance
between probes, and then use this estimated distance to order probes. To test the method,
we used BAC libraries from Schizzosaccharomyces pombe. We compared our data to the
known sequence assembly, in order to assess accuracy. We demonstrate a small number of
significant discrepancies between our method and the map derived by sequence assembly.
Some of these discrepancies may arise because genome order within a population is not
stable; imposing a linear order on a population may not be biologically meaningful.
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1. INTRODUCTION

In theory, a genome can be sequenced and assembled into a linear map without resorting to any
outside physical mapping information (Weber et al., 1997; Venter et al., 2001). In the absence of any

other physical location information, these methods depend upon the recognition of sequence overlaps.
In practice, deriving a complete and accurate map this way is not achievable for any complex genome
when the sequence reads are shorter than long repeats. By combining a pure shotgun approach with some
distance information obtained from “mated-pairs” from end-sequenced clones, sequence-reads have been
“contiged” and these contigs, phased, oriented, and ordered along a scaffold. Furthermore, even with a
fairly large number of end-sequenced clones of various lengths and sequence reads as well as detailed
knowledge of the genome structure, the sequence reads may not sufficiently cover the entire genome. In
that case, sequencing cannot bridge the gaps, and a complete map cannot be made. Finally, if the genome
is itself variable, containing polymorphic rearrangements within a population or between strains, there is
no single true linear structure that will be valid for the organism.

Typically, physical mapping is used to facilitate sequence assembly, offering a large-scale map into
which the local sequence assembly fits, bridging gaps and aiding in the organization of the sequencing
tasks. And in principle, a high-resolution physical map could also aid in validating a sequence assembly
and indicating where errors need correction.

1Cold Spring Harbor Laboratory, 1 Bungtown Road, P.O. Box 100, Cold Spring Harbor, NY 11724.
2Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012.
3Department of Cell Biology, NYU School of Medicine, New York, NY 10016.

1
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In this paper, we explore the feasibility of making high-resolution genome maps using microarray
hybridization, and using this data for sequence validation. We published a theoretical treatment of many
of the ideas used here (Casey et al., 2001; Mishra, 2002), which also contained the results of computer
simulations. The basic idea is straightforward. Given that the genome is contained in a vector library of
sufficient coverage, we hybridize many independent random pools of the library to arrays of probes, dense
in the genome. When each pool from the library has a small depth of coverage, a sufficient informative
“binary output” on the probes (hybridizes to the pool or not) allows the establishment of a distance function
between probes. Using this distance function, we can infer the relative order and position of the probes in
a linear map, within an experimental error. For example, if two probes, a and b, are within less than about
a third of a BAC length of each other, more often than not a and b will both hybridize to the same set of
BAC pools. More formally, when the distance between a and b is roughly one-third (1/3 + (2/9 + o(1))c,
where c = coverage in a pool) of a BAC length, the two probabilities of hybridization of “exactly one of a

and b” or “both a and b” to a randomly selected small BAC pool become roughly equal, and the latter event
dominates the former as a and b get closer. Thus, the degree of coincidence of their hybridization signals
over a large series of hybridization experiments is statistically related to their actual distance between any
two probes in base pairs. Extending this reasoning, if in many experiments one observes that among three
probes a, b, and z, a and z as well as b and z hybridize together more often than do a and b, then it is
reasonable to assume that the probe z is “between” a and b.

In our computer simulations and analytical formulation of this process, we modeled a library of BAC
clones and tested different densities of probes and different pool sizes. The assembly process obeys
“0–1 laws,” in which long continuous and relatively error free assembly occurs only when a sharp threshold
is exceeded by the available experimental data. We found in these studies that a probe density of about
five probes per BAC length, a BAC library of about seven fold in depth, and hybridization with about 80
independently derived pools of BACs, each with about 25% coverage of the genome, produced contiguous
maps of probes on the order of several megabases in length. Below, we briefly describe the rationale for
the choices of these parameters.

Let L = 166 Kb be the length of a BAC. If β is the number of probes per BAC, then µ(α) = L/β is
the expected interprobe distance and is chosen based on one’s desired map resolution. In this example, a
desired resolution of 33 Kb gives us a β = 5 and is otherwise arbitrary.

If c denotes the BAC-coverage in each pool, in an ideal situation, it takes an optimal value of c∗ =
2β/(2β − 1), where it maximizes a probability ph that determines the accuracy of interprobe distance
estimation (see Lemma 1: ph ∝ c exp(−c)(1−exp(−c/β)). However, cross-hybridization error probability
is minimized by making c arbitrarily close to zero. (It takes the form 1 − exp(−γ (1 − exp(−c))), with
γ depending on thermodynamics of hybridization.) We chose a value of c = 1/4 ∈ (0, 10/9]. Also, in
Lemma 1, we see that the number of experiments N determines the variance σ 2(α) = L2/(2βNc). If we
wish the probes to be at least six sigma apart, then µ(α)/σ(α) = 3, and N = (9/2)β/c = 90. Finally,
we can compute the necessary BAC-library coverage C, by noting that as C increases, the number of
uncovered gaps between our final set of contigs also decreases. We can compute that any chromosomal
location belongs to a gap with probability (1 − C/L)L(1−1/β) ≈ e−C(1−1/β), where we may desire this
probability to be bounded from above by ε0.

We decided to test these ideas with actual experiments. The experiments themselves are expensive and
so pilot experiments with a small model organism is highly desirable. We based our studies on the yeast
S. pombe,1 because both good BAC libraries2 and a good sequence assembly were already available. The
genome length for S. Pombe is 14 Mb and with an interprobe distance of 33 Kb on average, the total
number of probes is 14 Mb/33 Kb = 424. Thus, a satisfactory choice of ε0 = 1/424 leads to a value of
C = β/(β − 1) ln(1/ε0) = 7.562.

In the experiments described below, we confirmed the computer and analytical predictions. A comparison
of our data and inferred probe maps to the S. pombe sequence assembly map provides some insights into
the difficulties of establishing a canonical and accurate sequence or physical map and suggests ways that
the two types of data can be combined to render increased confidence levels of the assembly.

1Pombe sequence assembly was obtained from www.sanger.ac.uk/Projects/S_ pombe.
2A full description of how the BAC library was constructed, including the vectors used and other relevant details

can be found at http://bacpac.chori.org/publications.htm.
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The raw and processed data from the entirety of our experiments, as well as inferred pairwise distances,
is available on-line for further computational analysis.

The paper is organized as follows. We begin with an extensive discussions of the main results: experi-
mental design, especially of complexity reduction (Subsection 2.1), and processing of raw data (Subsec-
tion 2.2). Once the data is converted into a binary form, we show how interprobe distances can be inferred
(Subsection 2.3), with detailed statistics of our estimator. We next discuss the complexity of organizing
the data in various graph structures (complete graph, tree structure, or linear structure), and discuss the
results, when organized in a minimum spanning tree (MST) structure (Subsection 2.4). Equipped with
this information, we show how our physical-mapping data can be compared with the sequence data, both
analytically and visually (Subsection 2.5). In Section 3, we discuss the implications of our results and their
possible applications to sequence assembly, finishing, validation, and correction; we also discuss how our
approach is related to other physical mapping approaches (e.g., optical mapping, RH mapping and HAPPY
mapping). In an appendix, we provide the details of the materials (microarrays and BAC pools), methods
(representation, hybridization, data collection, data processing), and data availability.

2. RESULTS

2.1. Design of microarray hybridizations

DNA from BAC pools were made from a BAC library obtained from Pieter de Jong.3 This library
consisted of 3,072 individual elements, with an average insert size of 166 Kb. A library of this size has
an expected depth of coverage of about 40 fold. The library was gridded in random order, and we picked
128 pools of 24 BACs each, covering the entire library. Each pool was expected to cover approximately
30% of the genome. To minimize unevenness of growth, each BAC was grown overnight in a 5 ml culture
to saturation and then pooled in groups of 24 to inoculate a one-liter culture, from which highly purified
BAC DNA was prepared. To obtain enough DNA for hybridization, these DNAs were amplified by making
Sau3A1 high complexity representations (Lucito et al., 1998).

Probes were designed to be relatively unique and to hybridize to high complexity representations. These
representations are underrepresented for the genome sequences in Sau3A1 fragments smaller than 200 bp
or larger than 1,200 bp, and hence we designed 70-mer length oligonucleotide probes to reside within 200
to 1,200 bp Sau3A1 fragments. We also required our probes to be unique sequences and used exact mer-
matching methods (Healy et al., 2003) to minimize the substrings of lengths 12 and 18 bases that matched
elsewhere within the remainder of the S. pombe genome. Finally, although the physical mapping method
works with randomly placed probes, to minimize the problems caused by the exponential distribution of
the interprobe distances, we chose probes distributed roughly every 10 Kb in the genome. This resulted
in a probe to BAC ratio of about 16 to 1, with approximately 1,224 probes in total, far in excess of
the sufficient number (424) predicted by theory. Later, we “omitted” data to simulate the quality of the
resulting physical map assembly with fewer probes and to test theory further.

It can be shown analytically that despite using representations that reduce genome complexity, a sufficient
probe resolution is almost always possible. Note that when a genome is cleaved by a restriction enzyme with
a cutting probability of pr , the resulting restriction fragments have lengths distributed as ∼ Exponential(µr),
where µr = [log(1/(1 − pr))]−1 ≈ 1/pr . Now suppose that a complexity reduction has been obtained
by selecting only the restriction fragments of length w ∈ [l, u]. Then, in any genomic region of length
L, the number, F , of reduced-complexity restriction fragments has a Poisson distribution with parameter
λr,L = Lpr [e−l/µr − e−u/µr ]. Using a Chernoff bound, one can bound the probability that the number, F ,
of such reduced-complexity restriction fragments is less than (1 − δ)λr,L:

P[F < (1 − δ)λr,L] < e−λr,Lδ2/2, for 0 < δ < 1.

A simple computation then shows that, in a reduced-complexity representation with a four-cutter enzyme
(e.g., Sau3a1), a single BAC contains 100 or more reduced complexity restriction fragments (of length
between 200 and 1,200 bp) with a very high probability (higher than 1 − 1.25 × 10−25).

3See http://bacpac.chori.org/pombe104.htm.
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With low complexity representations, such as obtained by six-cutter enzymes, there can be an insufficient
number of probes per BAC, and they will not contig well unless there is extremely high BAC coverage.

The set of 1,224 probes, resulting from above analysis, were synthesized (Dataset C; see Materials and
Methods) and printed in randomized order, in quintuplicate, along with various controls, on glass slides.
Hybridizations were performed as “two-color” experiments, with Cy5 and Cy3 labels, in which DNA from
pools were labeled in one color and DNA from the entire BAC library was labeled in the other. To prepare
DNA from the entire library, we pooled all the BACs from individual cultures, extracted DNA, and made
Sau3A1 representations. We performed a limited number of experiments in color reversal (Shoemaker et al.,
2001) to identify probes with color bias. Color bias was not a significant problem, and we thus collected
data in which the entire BAC library was labeled with Cy5 and all the BAC pools were labeled with Cy3.

2.2. Processing of raw data

The raw data consisted of 145 hybridizations because some of the 128 BAC pools were analyzed twice.
We used only 128 of these hybridizations, because some of the data was judged to be of poor quality.

After normalizing each of the hybridizations (Dataset A; see Materials and Methods), we averaged the
five quintuplicate log ratio values for each probe. The results from a typical hybridization are shown in
Fig. 1, in which all probes are listed in genome order on the X-axis and their averaged log ratios on
the Y -axis. The probe ratios clearly divide into two classes. The majority of probes are “nulls” (blue),
meaning they do not hybridize to the BAC pool, while some are clearly “hits” (red), meaning that they do
hybridize to the BAC pool. A few ambiguous probes have intermediate log ratios. Note that the hits tend
to occur in clusters of adjacent probes, as we would expect since the probes are plotted in genome order,
the assembly must be mostly correct, and a BAC would be expected to cover a contiguous set of probes
along the genome. Since we know that the median BAC length is 166 Kb, and our probes are spaced every
10 Kb on average, we would expect that a typical BAC should cover approximately 16 contiguous probes.
In some cases, there may be overlapping BACs in the same pool, and we would see longer contigs of
probe hits as a result. Since our pool size of 24 BACs correspond to c = 0.285, we expect to find about
c · exp[−2c] = 3.9 (on average) singleton BAC contigs out of a total of c · exp[−c] = 5.1 (on average)
BAC contigs. In other words, after hybridization with a pool of randomly chosen 24 BACs, typically, we
will see about four clusters of 16 contiguous probes, and one (or infrequently, two) more contig covering
more than 16 contiguous probes.

To convert the averaged log ratio data into “probabilistic” form, we used an expectation maximization
(EM) algorithm and assumed that that the log ratios from each experiment fell into two normal distributions,
the “hits” and the “nulls.” The EM finds the best fit of means and standard deviations of each population,
enabling us to assign to each probe a probability that it is a hit or a null. Using this algorithm, the majority
of probes can be unambiguously assigned to one group or the other. Very few probes have significant
memberships in both groups. The outcomes of all hybridizations were thus compressed into a set of 1,224
hit vectors, one for each probe, each vector 128 long, consisting of the probabilistic weights of the probes
being hit by a BAC in a pool (Dataset B, see Materials and Methods). Note that the computation of the
hit vectors requires no knowledge of the genome order inferred by sequence assembly.

2.3. Computing the physical distance matrix

From the hit vectors, we can compute an estimate of the physical distance between each pair of probes.
Given two hit vectors A and B of equal length, we define the Hamming distance h(A, B) as the sum of
the absolute value of the differences between identical positions in each of the two vectors,

h(A, B) =
N∑

i=1

|Ai − Bi |.

Tabulating these values, we obtain the 1,224 × 1,224 Hamming distance matrix, HDM. We also compute
the number of “hits” of each probe, which is the sum of the weights of its hit vector:

hits(A) =
∑

i

IAi>1/2.

Note that this number corresponds to the coverage of the probe in the BAC library.
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FIG. 1. Representative data from a single hybridization. Figure 1 illustrates the results of a typical hybridization (to
BAC pool 75). The log intensity ratios for each probe, in sequence assembly order on the X-axis, are plotted on the
Y -axis. See text for details.

From the Hamming distances and number of hits of two probes, we compute an estimate of the distance
x between the respective probes a and b using the formula

x = D̂(a, b) ≡ h(A, B)

Hits(A, B)
e

(
Hits(A,B)

4N

)
L (1)

where “Hits” are the combined number of hits of A and B, L is the mean BAC length, and N is the length
of the hit vector (the number of hybridization experiments used).

We tabulate each pairwise estimate into a 1,224 × 1,224 matrix of distances, the “BDM” (BAC distance
matrix). The derivation of the formula is as follows: Assume that the physical distance between two probes
a and b is x < L. In addition to the Hamming distance h(A, B), one also has a coincidence value c(A, B)

that measures the number of experiments in which both A and B get hit. Note that

Hits(A, B) = hits(A) + hits(B)

≈ h(A, B) + 2
∑

i

I(Ai>1/2)∧(Bi>1/2) ≈ h(A, B) + 2c(A, B).

By a simple intuitive argument, the following approximate estimates can be derived, (when x < L):

h(A, B) ∝ 2x, and

c(A, B) ∝ L − x,

with the same constant of proportionality. The intuitive argument is as follows: position(a) = position(b)−
x, where “position” denotes a linear coordinate position along the genome and position(a) ≤ position(b).
Note that only in experiments where BACs from the pools have their left ends either in the interval,
[position(a)−L, position(b)−L], of length x (denoted “LEFT”), or in the interval, [position(a), position(b)]
(denoted “RIGHT” interval), also of length x, do we have a contribution to the function h(A, B). Further,
note that only in experiments where BACs from the pools have their left ends in the interval, [position(b)−
L, position(a)], of length L − x (denoted “MIDDLE”), do we get a contribution to the function c(A, B).

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.13.1&iName=master.img-000.jpg&w=286&h=225
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Thus,

h(A, B)

Hits(A, B)
= h(A, B)

h(A, B) + 2c(A, B)
≈ x

L
,

or

x = h(A, B)

Hits(A, B)
· L.

This formula is a good approximation and is correct if in a given BAC pool, no more than one BAC covers
a or b (in the limit limc→0).

However, a BAC may hit a without hitting b, and another may hit b without hitting a. With a better
model of Poisson distribution for the terminals of the BACs, we can allow for these multiple hits as follows.

Lemma 2.1. For two probes a and b, x = D(a, b) distance apart, let A and B denote the N -
dimensional vectors of hits and nulls obtained with N hybridizations with BAC pools, each of coverage
0 < c. Assume that the BAC pools are randomly derived from a sufficiently large BAC library. Let L be
the length of a BAC and x∗ denote x∗ ≡ min(x, L).

The estimator for x∗ is

D̂(a, b) ≡ h(A, B)

Hits(A, B)
e

(
Hits(A,B)

4N

)
L ≈ x∗ +

√
x∗L
2Nc

N(0, 1),

if c is small.

Proof. As before, assume that position(a) = position(b) − x, where “position” denotes a linear coor-
dinate position along the genome, and position(a) ≤ position(b).

Recall the notations

“LEFT” interval ≡ [position(a) − L, min(position(b) − L, position(a))],
|“LEFT” interval| = x∗,

“MIDDLE” interval ≡ [position(b) − L, position(a)],
|“MIDDLE” interval| = L − x∗,

“RIGHT” interval ≡ [max(position(a), position(b) − L), position(b)],
|“RIGHT” interval| = x∗.

Case 1, x < L.
After hybridizing the probes with a BAC pool of coverage c, we need to compute the following proba-

bilities: Let q and s simply be the probabilities that no left end of any BAC appears in an interval of size
x (e.g., LEFT or RIGHT intervals) and in an interval of size L − x (e.g., MIDDLE interval), respectively.

q = e−cx/L and s = e−c(L−x)/L = e−cecx/L = e−c/q

Also, write p ≡ (1 − q) and r ≡ (1 − s), respectively, the probabilities that one or more BACs have their
left ends in an interval of size x and L − x, respectively.

Now, it is straightforward to see that

pb = q2s, ph = 2psq, and pc = 1 − (pb + ph) = 1 − s(1 + p)q

are the probabilities that (1) neither a nor b was hit (they are blank), (2) exactly one of a and b was hit
(they contributed to Hamming distance), and (3) both a and b were hit (they contributed to coincidence
measure, and hence local variations in coverage).
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Note that

ph = 2sq(1 − q) = 2e−c(1 − e−cx/L) and

pc = 1 − sq(2 − q) = 1 − e−c(2 − e−cx/L).

Also

ph + 2pc = 2 − 2sq = 2(1 − e−c) = 2c − c2 + o(c3), and

c ≈ (ph + 2pc)/2.

Thus,

ph

ph + 2pc

= (1 − e−cx/L)
e−c

(1 − e−c)
= (1 − e−cx/L)

e−c/2

(ec/2 − e−c/2)
.

Simplifying, we have

L
ph

ph + 2pc

ec/2 = L
(1 − e−cx/L)

(ec/2 − e−c/2)

= (1 − c2/24 + o(c4))x − (c/2L + o(c3))x2 + o(c2(x/L)2).

Thus, we have

h(A, B) ∼ Binomial(N, ph) and c(A, B) ∼ Binomial(N, pc).

Note that

c ≈ h(A, B) + 2c(A, B)

2N

L
ph

ph + 2pc

ec/2 ≈ L
h(A, B)

h(A, B) + 2c(A, B)
exp

[
h(A, B) + 2c(A, B)

4N

]
∼ x + σ(x)N(0, 1) + o(c2x + cx2/L).

We can estimate σ 2 by a normal approximation to binomial distributions:

σ(x) = α
√

2Npsq, where α is a scaling factor, α =
(

L

N

)
ec/2

2c
.

Thus,

σ(x) ≈ (L/N)
ec/2

2c

√
2N(cx/L)e−c = √

xL/2Nc.

Case 2, x ≥ L.
When x ≥ L, essentially the same arguments work out, except that now s = 0 and q = e−c. Thus

ph = 2pq = 2e−c(1 − e−c) and pc = 1 − 2pq − q2 = 1 − e−c(2 − e−c).

Also,

ph + 2pc = 2 − 2q = 2(1 − e−c).
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Thus,

ph

ph + 2pc

= e−c,

L
ph

ph + 2pc

ec/2 = Le−c/2 = (1 − c/2 + c2/8 + o(c3))L.

After simplifying in the manner similar to above, we have

L
h(A, B)

h(A, B) + 2c(A, B)
exp

[
h(A, B) + 2c(A, B)

4N

]
∼ L + L

√
1/2NcN(0, 1)

Our formula uses a local estimation of c as Hits/(2N) and hence is immune to local variations in the
BAC library coverage, a very satisfying solution to the problem of uneven BAC coverage. For small c

(e.g., c = 1/4) and x < L (e.g., x ≈ L/16), all but the most dominant term of the estimator formula can
be safely ignored; thus, making our expression a good estimate of the interprobe distance, x, especially
when it is sufficiently small with respect to the BAC length. Experimental validation of this formula can
be seen in Fig. 2. Given the estimates of distances from our hybridization data alone, we can begin to
derive a physical map and compare it to the map inferred from the sequence assembly. We will need the
following corollary in order to carry out these comparisons.

Corollary 2.2. Let a, b, D(a, b), D̂(a, b), L, and σ = √
L/2Nc be as before. Then we can write

down the following conditional distribution functions:

f (D̂|D) = ID<Lφ
σ
√

D
(D̂ − D) + ID≥Lφ

σ
√

L
(D̂ − L),

f (D|D̂) ≈ ID̂<Lφ
σ
√

D̂
(D̂ − D) + ID̂≥LID∈[L,G]

1

G − L

where φτ (y) = (1/
√

2πτ) exp(−y2/2τ 2).

Proof. The first part is simply a restatement of the earlier lemma. The second part follows from Bayes’
Rule:

f (D|D̂) = f (D̂|D)f (D)

f (D̂)
(2)

≈
1

G

(
ID<Lφ

σ
√

D
(D̂ − D) + ID≥Lφ

σ
√

L
(D̂ − L)

)
((

1

G

)
ID̂<L +

(
1 − L

G

)
δD̂=L

) . (3)

We have estimated f (D̂) using the following approximation when σ 2 is relatively small:

f (D̂) =
∫ G

0
f (D̂|D)f (D) dD.

The rest follows from appropriate algebraic simplifications.

Using this corollary, we now have the following way of measuring the goodness of an assembled
sequence. Imagine that the locations of the unique probes a1, . . . , an along the genomic sequence are

y1 < y2 < · · · < yk−1 < yk < yk+1 < · · · < yn.
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FIG. 2. Computed physical distance compared to sequence assembly distance. In all panels, the distances (in base
pairs) between pairs of probes are plotted, with the physical distance (BAC distance measure, BDM) computed from
Equation (1) on the Y -axis and the sequence assembly distance measure (ADM) plotted on the X-axis. The panels
show different scales and slightly different sets of probe pairs. In Panels A and C, we use the full scale on the X-axis,
and in Panels B and D, a smaller section on the X-axis where linearity from the physical distance is most apparent.
Panels A and B are for all probe pairs, while Panels B and D are for all probe pairs less those edited out because of
poor BAC coverage or aberrant pattern of BAC hybridization (see text and Fig. 5).

Then a reasonable measure of goodness of this assembly can be given as〈− ln f (D̂(ai, aj )|D(ai, aj ) = |yi − yj |)
〉
1≤i,j≤n

.

Thus, it can be measured by a global distance function:

d2 =
⎛⎝ 1

|{i, j : 0 < |yi − yj | < L}|
∑

i,j :0<|yi−yj |<L

(D̂(ai, aj ) − |yi − yj |)2

|yi − yj |

⎞⎠
=
〈

(D̂(ai, aj ) − |yi − yj |)2

|yi − yj |

〉
i,j :0<|yi−yj |<L

.

Other asymmetric and local but more informative distances, which are better at localizing sequencing and
assembly errors, can be given as follows:

d2
left,i =

〈
(D̂(ai, aj ) − |yi − yj |)2

|yi − yj |

〉
j :yi−L<yj <yi

and

d2
right,i =

〈
(D̂(ai, aj ) − |yi − yj |)2

|yi − yj |

〉
j :yi<yj <yi+L

.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.13.1&iName=master.img-001.jpg&w=360&h=280
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A symmetric situation arises when we have the measured distances D̂(ai, aj ) and we wish to orga-
nize the probes by embedding them on a real-line, which induces a linear order and a consistent set of
pairwise distances:

x̃1 < x̃2 < · · · < x̃k−1 < x̃k < x̃k+1 < · · · < x̃n,

such that we minimize the following negative log likelihood function (under a mild independence assump-
tion): 〈

− ln f (D̃(ai, aj ) = |x̃i − x̃j | |D̂(ai, aj ))
〉
1≤i,j≤n

.

Thus, our problem reduces to the following optimization problem:

minimize
∑

1≤i,j≤n

Wij (|x̃i − x̃j | − Dij )
2,

where

Wij =

⎧⎪⎨⎪⎩
1

2σ 2Dij

, if Dij < L;

ε, otherwise,

with ε = O(G−2) and Dij = D̂(ai, aj ).
We will say more about this problem in the next subsection.

2.4. Assembling the probes into a graph

Given a matrix of pairwise distances between points (i.e., probes) on a line, there are several algorithms
that can be used to derive a linear ordering of the points, or a map. If in fact the points lie on a line, if
the distance matrix has no errors, and if there is no missing data, then there is always a single correct
mapping. However, these assumptions do not necessarily hold in the present case, and even in “errorless”
computer simulations we do not derive unambiguous orderings of our probes (West, 2003; Casey, 2002).
Additionally, the experimental data is “noisy,” and, as we shall see, even the assumption that our probes
have a true linear ordering may not be correct. In fact, with real data we could not derive an unambiguously
correct linear ordering, and hence we have explored other geometric structures into which we embed the
distance relationship of our probes.

Note that, in theory, using an optimization criteria (e.g., negative log likelihood function, mentioned
earlier), one could attempt to embed the probes on a line in such a manner that the desired criteria are
satisfied. However, the structures of any reasonable optimality criteria are somewhat unruly and are rather
closely related to difficult (NP-hard) combinatorial problems, as illustrated by the following problem.

Input: An n×n positive real-valued matrix D with O(n) of the entries taking values in [1−1/n, 1+1/n]
(mean µg = 1 and variance σ 2

g = 1/n2) and the remaining O(n2) entries taking values in [1, 2] (mean

µb = 3/2 and variance σ 2
b = 1/2n). Constant k is an arbitrary positive constant, and n > 2 + 2

√
k + 1

is sufficiently large. A threshold � is given.
Cost: Given a permutation π ∈ Sn, assume a mapping of {1, . . . , n}, xπ(i) = i, and a cost CD(π):∑

i,j :|i−j |=1

W(1)(|xi − xj | − D[i, j ])2 +
∑

i,j :|i−j |�=1

W(2)(µb − D[i, j ])2,

with W(1) = 1/2σ 2
g = n2/2 and W(2) = ε = k/n2.

Output: Find a permutation π ∈ Sn such that CD(π) < �.

This problem can be shown to be NP-complete. Since it is polynomially verifiable if a particular
permutation π satisfies CD(π) < �, the problem is in NP. To see that the problem is NP-hard, consider a
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cubic graph G = (V , E) with vertices 1, . . . , n and |E| = ∑
v∈V deg(v)/2 = 3n/2, for which we wish to

determine if the graph is Hamiltonian. Construct an instance of our problem with a matrix D as follows:
D[i, j ] = 1, if 〈i, j〉 ∈ E(G). Of the remaining

(
n
2

)− n + 1 entries, make exactly n/2 + 1 entries = 2 and
the other = 3/2. Let � = (n + k)/2. If π(1), π(2), . . . , π(n) is a Hamiltonian path in G, then for D, it
generates a cost bounded from above by

< W(1) × 0 + W(2) × 1/4

[(
n

2

)
− n + 1

]
<

k

2
[1 + 2/n2] < (n + k)/2 = �.

If, on the other hand, π(1), π(2), . . . , π(n) is not a Hamiltonian path in G, then for D, it generates a cost
bounded from below by

> W(1) × (1 − 3/2)2 > n2/8 > (n + k)/2 = �.

In spite of these computational complexity issues, there are several heuristics that can be shown to perform
reasonably well.

For instance, in a greedy algorithm one can assume that the first (i − 1) probes (where i > 3)
aπ(1), . . . , aπ(i−1) have already been embedded at

x̃1 < x̃2 < · · · < x̃i−2 < x̃i−1,

and the next probe can be found by finding an aj such that D̂(aπ(i−1), aj ) is the shortest among all probes
satisfying the following constraint:

D̂(aπ(i−2), aj ) > D̂(aπ(i−2), aπ(i−1)).

The probe aj found this way is labeled aπ(i), and x̃i is computed as follows:

x̃i = W1[x̃i−1 + D̂(aπ(i−1), aπ(i))] + W2[x̃i−2 + D̂(aπ(i−2), aπ(i))]
W1 + W2

,

where Wp = (D̂(aπ(i−p), aπ(i)))
−1, p = 1, 2. The algorithm can be further generalized so that we may

consult more than p > 2 many probes aπ(i−p), aπ(i−p+1), . . . , aπ(i−2), and aπ(i−1) to choose the next
probe, and also to assign it a location (West, 2003). An even stronger generalization can be achieved by
creating many “contigs” in parallel and combining them in a union-find-like structure, by always selecting
probe-pair distances from the shortest-to-longest order. The details of a variant of this algorithm is given
by Casey et al. (2003) (also see Appendix B).

The other algorithmic choices can be based on (1) finding an optimal traveling salesman tour on the
underlying graph, (2) finding a minimum spanning tree and linearizing it with some local heuristics,
(3) successive-edge pruning from the underlying graph by eliminating edges that are unlikely to connect
two adjacent probes, or (4) perturbing distance metrics to “linearize” the graph (Casey, 2002, Chap. 2).

For the current paper, we kept the matter simple by selecting one of the simplest ordering algorithms in
order that the underlying data (e.g., experimental data and available sequence data) will be the easiest to
interpret and debug. This algorithm involves constructing the minimum spanning tree of the weighted graph,
induced by the estimated distances among probes. Our implementation uses Prim’s algorithm (Cormen
et al., 2001) directly to the complete graph on probes with edge-weights chosen by the experimental data.
Our implementation starts at a random probe, adjoins the nearest probe to the growing tree, and then halts
when there is no probe left that, assuming a Gaussian distribution of probe distances among unrelated
probes, would be expected to be a true neighbor.

The result of this method, applied to probes from the S. pombe chromosome 1, is shown in Fig. 3, in
which the output of our algorithm is plotted using GraphViz, a set of graph drawing tools.4 There is one
long “contig” that is nearly linear, but not quite, having short branches (panel A). The branching structure is
seen more clearly in panels B and C, successive blowups. The three isolated probes, which form their own

4Available at www.research.att.com/sw/tools/graphviz/.
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FIG. 3. Graph of minimal spanning tree, S. pombe, chromosome 1. A graphical representation of the minimal
spanning tree generated from the BDM for all probes of chromosome 1 is shown full scale in Panel A, a blow up of
the first quarter of the chromosome in Panel B, and the first eighth in Panel C. The beginning of the graph shows
four branches, one for each telomere, one for the centromere, and the main long branch.

contigs of one (see the start of the graph, in panel C) and are not computed to be neighbors of any other
probes, correspond to the centromeric and telomeric probes. They are either sparsely covered by BACs,
having very low numbers of “hits,” or behave anomalously in hybridization and have very high numbers
of “hits”. We obtain similar results with each of the other two S. pombe chromosomes. However, when our
program is run on the entirety of S. pombe probes together, we obtain a single tree that, while still mainly
linear, contains significantly long branches. The individual chromosomes are not recognized as separate
contigs, and in contrast to the computation performed on the individual chromosomes, the telomeres and
centromeres are joined to statistically significant neighbors. Some of the anomalies we observe may result
from actual variation in the genomic structure of the S. pombe genome, and some from repetitive structure
that is not apparent in the published sequence. We explore these aspects further in the next section.

2.5. Comparison of the hybridization map to the sequence map

Note that if the estimated distance between every consecutive pair of probes is small and has small
relative error, then locally the distances satisfy a “triangle-like” inequality, i.e., one of the form

a < b < c ⇔ ab + bc = min(ab + bc, ab + ac, ac + bc).

In this case, the minimum spanning tree is a single contig with all the probes in correct order.5 However,
in real experiments, these conditions are not met throughout: for instance, if we choose three probes
a, b, and c that are separated from each other by distances longer than a BAC length, then all pairwise
measured distances will be rather similar with values sampled from the distribution L+(L/

√
2NC)N(0, 1).

Consequently, the resulting minimum spanning tree is found to be mainly linear, with short branches. Within
the longest linear path, the order of the probes closely matches the sequence assembly, and the branches
contain nearby probes.

To see an overview of the minimal spanning tree and how it compares to the sequence assembly, we
plot in Fig. 4 panel A all the “joins” of the minimal spanning trees for the entire S. pombe genome. In this
display, for every edge of the spanning tree we plot “x” and “y,” where x and y are the indices of the joined
probes in the sequence assembly order (from 1 to 1,224). We note that probes from the telomeres of different

5This statement has a rather trivial proof. Consider a sequence of probes a1 < a2 < · · · < an with the measured
distances satisfying triangle-like inequalities. Assume further that its minimum spanning tree is not a single contig.
Thus, there exists an i such that the MST contains all edges along the path a1, . . . , ai−1, but misses 〈ai−1, ai〉. Let
S = {a1, . . . , ai−1}, A = the set of edges along the path. Let (S, V − S) be a cut of G that respects A. By our
triangle-like inequalities, 〈ai−1, ai〉 is the only light edge crossing (S, V − S). Since it is also the only safe edge, we
have a contradiction. See Cormen et al. (2001).

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.13.1&iName=master.img-002.png&w=335&h=146
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FIG. 4. Edge coordinate pairs from minimal spanning trees. The (sequence assembly) order of the probes that are
joined by edges from the minimal spanning tree of the entire S. pombe genome is plotted in Panel A (see text). A
higher resolution from a portion of chromosome 1 is shown in Panel C. The spanning tree of the “well behaved”
probes (removing probes that show aberrant behavior in the BAC hybridization patterns, see text and Fig. 5) was
recomputed, and the edge connections are shown in Panel B.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.13.1&iName=master.img-003.jpg&w=260&h=575


14 WEST ET AL.

chromosomes are joined as neighbors and some centromeric probes are joined to essentially random
probes within another chromosome. Of course, these associations disrupt a linear ordering of the genome.

At the resolution of panel A, the fine detail of the orderings is not apparent, so we show in Fig. 4 panel C
a blow up of a randomly chosen region of chromosome 1. It is clear that at the fine level, the precise
physical ordering of the probes is not coherent with the sequence ordering, but this is predicted from theory
and results from statistical sampling noise and the paucity of BACs in the library with boundaries that fall
between nearby probes.

A gross overview of the relationship between the physical map distance and the sequence assembly
distance between probes can be viewed by plotting the two distances between all pairs of probes against
each other: the sequence assembly distance on the X-axis and the physical distance (Equation (1)) on the
Y -axis. This is shown in Fig. 2 panel A on a full scale of all pairwise probe distances and on panel B
for the probe pairs that are closer together from the view of the sequence assembly. The overall shape of
these plots closely resembles our theoretical predictions. Panel B shows the intrinsic limit of our method,
namely, that distances between probes that are more than a BAC’s length apart simply cannot be measured
by this method. It is apparent on the full scale that a few probe pairs predicted in the sequence assembly
to be distant appear close according to our BAC distance measure (BDM). The majority of these are
telomeric and centromeric probes, or probes that fall into regions that have a very low number of BAC
hits (regions of poor coverage in our library), and these are not a surprise. However, it is apparent that a
few probes predicted by the sequence map to be close are mapped as distant by our method. This class is
somewhat more disconcerting, but could in theory be caused by sequences complementary to our probes
that are duplicated at two distant sites in the genome that was used for the library construction, but that
were not duplicated in the genome that was used in the sequence assembly. Other discrepancies could be
due to errors in either method.

There is perhaps a more informative way to examine the same question. We can display data from the
BAC hybridization with probes in their sequence assembly order, and “view” where the BAC hybridization
data and the sequence assembly deviate most radically from expectation. Then we can specifically query
the physical pairwise BAC distance matrix to gather more information. From the BAC hybridization data,
we compute three statistics for each probe in its genome assembly order: the number of experiments in
which the probe and its left and right neighbors all hybridize to a BAC pool (“AllHits,” blue open circles);
the number of experiments in which the probe hybridizes to a BAC pool but its left and right neighbor do
not (“SingleHit”, open red triangles); and the number of experiments in which the left and right neighbor
of a probe hybridize to a BAC pool, but the probe itself does not (“LonelyMiss,” open green squares). In
a noiseless experiment, except for those rare times when a BAC pool contains BACs just to the left and
just to the right of a probe, SingleHits and LonelyMisses should be zero. For most probes, these values
are low, but not zero. For a few probes there is a great variation from expectation.

In Fig. 5 we illustrate the plots of these statistics for a window from probe 560 to 730, all on chromo-
some 2. Three exceptional cases are seen, for probes 611, 639, and 712. Probe 611 has a high value of
SingleHit, the other statistics being zero. In fact, this is a region predicted to derive from the centromere
of chromosome 2, and its neighborhood must have very poor coverage by BACs. Like probe 212 from the
centromere of chromosome 1, probe 611 displays a promiscuous hybridization pattern, and like probe 611,
the neighborhood of probe 212 has poor coverage by BACs. The second probe, 639, has a high value for
SingleHit, equal to its value for AllHits. When we ask which probes 639 maps closest to, it correctly maps
to its closest assembly neighbor probes, although we calculate it as more distant from them than expected
(data not shown). However, we also calculate probe 639 to be close to probe 212, the promiscuous probe
from the centromere of chromosome 1. This fortuitous pattern of hybridization thus increases its apparent
distance to its neighbors, as ascertained by our physical mapping methods.

The third probe is the most interesting of the three. It has high statistics for SingleHit and LonelyMiss,
with a low statistic for AllHits. In fact, we map it to be very close to the neighborhood of probe 1203 on
chromosome 3, which is otherwise close to its sequence assembly neighbors.

Clearly, unexpected behavior is seen in the map assembly, as branches in the minimal spanning tree
(Fig. 3), aberrant edge connections (Fig. 4), discordance between the BAC mapping distance and sequence
assembly distance (Fig. 2), and the pattern of BAC pool hybridization of sequence assembly neighbors
(Fig. 5). These are presumably all related, and to test this, we created a new pairwise BAC distance
matrix by removing the handful of probes that were judged to have distorted BAC hybridization in their
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FIG. 5. BAC hybridization patterns across probes displayed in genome assembly order. The BAC hybridization
parameters of probes 560 through 730, a region around the centromere of chromosome 2, are displayed (along the
X-axis). Along the Y -axis, three statistical parameters for each probe have been plotted. These parameters, “AllHits,”
“SingleHit,” and “LonelyMiss” are explained in the text.

neighborhood (by the criteria illustrated in Fig. 5). We then recomputed the minimal spanning tree, plotted
the resulting edge connections (Fig. 4 panel B), and plotted again the comparison of the BDM (BAC
distance measure) to the sequence assembly distance measures (Fig. 2 panels C and D). Not surprisingly,
the most extreme discordances are thereby removed.

3. DISCUSSION

We have demonstrated empirically that with appropriate experimental conditions, microarray hybridiza-
tion can be used to establish a physical distance between probes, and that this distance can be used to
assemble physical maps and validate sequence assemblies of genomes. The critical conditions include
libraries of genomic inserts of deep coverage, probes that are both reasonably unique in the genome and
reasonably dense with respect to the length of the library insert, and a sufficient number of hybridiza-
tions. Our particular conditions were suggested by a theoretical model, and the empirical outcome in turn
largely supported the theoretical modeling. Even the computer simulations of our method predict noise in
the inferred distance, largely due to Poisson fluctuations in coverage. Theory predicts we cannot expect
the method to give an accurate fine grain ordering because the probes are too dense relative to the BAC
coverage, even with an unlimited number of hybridizations. There is more noise in the real data than we
find in our “noiseless” simulations, causing both fine and coarse grain distortions in inferred distance.
This additional noise can come from many sources: infidelity of the genomic inserts in the library, such
as chimerism, deletions, and duplications; uneven amplification of DNA resources, both in library DNA
preparation and in high complexity representations; poor or spurious hybridization patterns of the microar-
ray probes; cryptic duplications of probe sequences in the genome; networking between library inserts
during the hybridization stage; and even possibly variation in the genomic DNA from a single strain used
for library production.

Despite all these possible sources of error, the method works well, as judged by its match to the S. pombe
sequence assembly. Although we fail to assemble a linear map, the probes can be ordered into a minimal
spanning tree which is largely linear (few long branches). The order between the nodes of this tree largely
matches the order of the probes in the linear genome, especially if certain probes, such as probes from the
telomeres, centromeres, poorly hybridizing probes, or probes with low BAC coverage, are removed.

There are areas where the inferred distance appears distorted, relative to the genome sequence assembly.
These areas include all the probes that map to the telomeres and centromeres. The discrepancy of the

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2006.13.1&iName=master.img-004.jpg&w=275&h=196
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distance measure in these areas perhaps reflects poor BAC coverage, but there may be other factors at play.
For example, we find probes from the centromeres appear to map to specific regions that are not centromeric
or telomeric, despite the fact that our probes, designed from the public sequence assembly, are predicted to
be unique. The public assembly may be in error, or these regions may be prone to rearrangement, or there
may be differences in the strain used to build the library and the strain used to build the sequence assembly.
Also, probes from different telomeres that are predicted to be unique nevertheless show proximity by our
method, and this may be due to networking between repeated regions that are adjacent to our probes, or
it may reflect high frequency recombination between telomeric sequences.

Even excluding telomeric and centromeric probes, there still remain a few areas of our map which do
not match the assembly. In one set of cases, a small number of probes appear to map to two regions: one
region that was predicted and one very distant unexpected region. In another case, a probe mapped to an
altogether different region than was predicted. Some of these discrepancies can be explained as errors in
the sequence assembly or differences between strains, such as duplicated or rearranged regions.

In any case, a high throughput method for physical mapping based on array hybridization is feasible and
can serve as an independent method for validating a sequence assembly or as an aid to that assembly (when
the sequence and the library of inserts are made from the same strain). When we initiated these studies, we
used microarrays printed using pin technology from individually synthesized oligonucleotides. Physical
printing using pins makes less than perfectly reliable substrates for hybridization, and oligonucleotide
synthesis is expensive. Now, microarrays with very uniform character and with any desired oligonucleotide
probe design can be fabricated via in situ synthesis. Although still not cheap, reproducibility is increased.
Relative to the costs of assembly, the costs of physical mapping by array hybridization are minor.

A different approach to physical mapping and sequence validation (Mishra, 2003) of genomes comes
from optical mapping, where random pieces of genomic DNA are stretched on a glass surface, cleaved by
a restriction enzyme, photo-labeled with fluorochromes, and imaged by an optical camera. The distance
between two restriction sites is measured by the integrated intensity of the corresponding imaged restriction
fragment. This approach thus leads to a direct and accurate physical mapping technique, but relies on
complex chemistries and algorithms. In contrast, the approach we present here is technologically simpler
and can be adapted by any laboratory with access to microarray technology.

The costs, accuracy, and accessibility of our method compare very favorably to other physical mapping
techniques. Our method is useful for validating a sequence assembly. But physical maps to correctly order
a set of reagents, in the absence of a sequence assembly, are often very useful.

A radiation hybrid (RH) mapping technique (Boehnke et al., 1991) uses high doses of X-rays to ran-
domly fragment the genome to be mapped (genome of the donor cell) and fuses the fragments in to the
chromosomes of a second species (genome of the recipient cell). The distance between two gene markers
on the donor genome is computed from the estimated frequency of how often fragmentation events occurred
at locations between the two markers, which ultimately placed the markers in two distant positions in the
recipient cell’s chromosome. In the case of HAPPY mapping (Dear, 1997), DNA carrying STS markers is
extracted from cells (whose genome is to be mapped) and broken randomly to give a pool of fragments.
Each pool is diluted and then screened by PCR to find the collection of markers in each pool. In a manner
similar to our techniques and RH mapping, the distance between any pair of markers is then estimated
by observing how often two markers co-occur in the same pool. As both of these techniques depend on
estimating distances from the probability distribution of events modulated by relative positions of any pair
of markers, our analysis and algorithm will apply equally well to all such approaches.

APPENDIX A. MATERIALS AND METHODS

A.1. Microarrays

We used the Cartesian PixSys 5500 arrayer to array our probe collection onto commercially prepared
silanated glass slides. Each probe was spotted five times at random locations on the slide. This was done
to control for any geometric or geographic artifacts on the array that were present on the slide itself before
printing or that were induced by the processing of the slide during the hybridization or postprocessing
steps.
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A.2. Probe design

Our probes are 70 base-pair long oligonucleotides (70-mer) derived from short (200–1,200 base pairs)
Sau3A1 restriction endonuclease fragments that were predicted to exist from analysis of the reference
sequence of the S. pombe genome. Additionally, we used algorithms to maximize the uniqueness of the
probe sequences (Healy et al., 2003). The complete genome sequence of Schizosaccharomyces pombe is
available for download from the website of The Wellcome Trust Sanger Institute.6 The genomic DNA
sequence of the S. pombe genome consisting of three chromosomes, each 5.5 million base pairs (Mbp),
4.4 Mbp, and 2.4 Mbp, respectively, were concatenated in silico to yield one large DNA molecule 12.3 Mbp
in length. We then identified every subsequence of the genome that was flanked by a Sau3A1 restriction
enzyme site and that was between 200 and 1,200 base pairs in length. Each of these identified subsequences
was then tested for its constituent overlapping 12-mer and 18-mer frequencies against the entire S. pombe
sequence. Only those subsequences with unique overlapping 18-mer frequencies were considered further.
From the surviving subsequences with unique overlapping 18-mer frequency, we then selected a contiguous
70-mer fragment which had the minimal arithmetic mean of its constituent 12-mer frequency and with a
GC content that was as close as possible to the overall average GC content of the S. pombe genome. Each
of the selected 70-mer fragments was then tested for uniqueness in the S. pombe genome by conducting a
low homology BLAST search. Finally, we selected 1,224 70-mer fragments so that the midpoint of each
fragment was on average 10 Kb from the midpoint of any of its neighbors to the left and to the right.
These 1,224 70-mer fragments are what we refer to as our probes (Dataset C).

A.3. BAC pools

The S. pombe BAC library has 3,072 BACs arrayed in eight 384-well micro-titer plates. The median
clone size was determined to be 166,000 base pairs. Since the clones are unordered and each plate’s
dimensions are 24 wells by 16 wells, we simply chose a row of 24 clones to be a BAC pool. Sixteen rows
per plate ×8 plates = 128 pools of 24 clones each. Each pool is thus a random subset of 24 intervals of
the S. pombe genome with the median length of each interval approximately 166,000 base pairs, and each
pool of 24 clones thus represents approximately one-third of the S. pombe genome. Each clone of a pool
was inoculated into an individual 5 ml culture media and grown to saturation overnight. The 24 saturated
5 ml cultures were then combined, and this 120 ml pooled culture was used to inoculate a larger 1,000 ml
volume of broth. This was grown to saturation, and the bacteria collected by centrifugation. The pellets
were drained and stored at −70◦C until ready for further processing. BAC DNA was recovered from the
frozen pellets by processing with the Qiagen Large Construct Kit protocol.

A.4. Representations

BAC pool representations were prepared as described by Lucito et al. (2000). Briefly, BAC pool DNA was
digested to completion with Sau3A1, and cohesive adapters were ligated to the digested ends. PCR primers
complementary to the ligated adapters were then used for amplification. Representations were cleaned by
phenol:chloroform extraction, precipitated, and resuspended, and the concentration was determined. This
material was then used as template in the PCR reaction.

A.5. Labeling of representations

Ten micrograms of representation was denatured by heating to 50◦C in the presence of 5 mg random
nonamer in a total of 100 ml. After five minutes, the sample was removed from heat and 20 ml of 5×
buffer was added (50 mM tris-HCl [pH 7.5], 25 mM MgCl2, 40 mM DTT, suspended with 33 mM
dNTPs), 10 nmol of either Cy3 or Cy5 was added, and 5 units of Klenow fragment was added. After
incubation of the reaction at 70◦C for two hours, the reactions were combined and the incorporated probe
was separated from the free unbound nucleotide by centrifugation through a Microcon YM-30 column.
The labeled sample was then brought up to 15 ml at a concentration of 3× SSC and 0.3% SDS, denatured,
and then hybridized to the array of probes.

6Available at www.sanger.ac.uk/Projects/S_ pombe.
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A.6. Hybridization of representations to microarrays

Hybridization solution for printed slides consisted of 25% formamide, 5× SSC, 0.1% SDS. Then 25 µl
of hybridization solution was added to the 10 µl of labeled sample and mixed. Samples were denatured
in a MJ Research Tetrad at 50◦C for 5 minutes and then incubated at 70◦C for 30 minutes. Samples were
spun down and pipetted onto slides prepared with lifter slip and incubated in a hybridization oven at 60◦C
for 14 to 16 hours. After hybridization, slides were washed, dried, and then scanned.

A.7. Scanning and data collection

An Axon GenePix 4000B scanner was used with a pixel size setting of 10 microns. GenePix Pro 4.0
software was utilized for quantitation of intensity for the arrays. Array data was imported into S-PLUS 6.1
for further analysis. Measured intensities without background subtraction were used to calculate ratios. For
each pool (each hybridization corresponds to a separate pool of 24 BACs), we collected the median Cy3
and Cy5 channel intensities for each feature on the array. The Cy3 channel corresponded to the BAC pool
DNA, and the Cy5 channel corresponded to the total genomic representation of the BAC library. Excluding
controls, we collected intensity data on 6,120 features.

A.8. Data preprocessing

We then calculated the log (Cy5/Cy3) for each of the 6,120 features on the array. We did this for every
pool that was hybridized (a total of 128 hybridizations). This resulted in a data matrix that was 6,120
rows by 128 columns (Dataset A). Since each probe was printed in quintuplicate, we then calculated the
median log ratio over the five replicates for each probe and used this value as the value for that probe
in that particular hybridization. This condensed our data matrix to 1,224 rows (each row representing a
single probe) and 128 columns (each column representing a particular hybridization or BAC pool). The
final step in the preprocessing of the data involved normalizing each column in the matrix so that the log
ratios for each hybridization had a mean of zero and a standard deviation of 1. These values were then
processed using an EM algorithm (see text), yielding a matrix 1,224 by 128, containing values between 0
and 1 (Dataset B). As described in the text, the computation of physical distances (using Equation (1)) is
accomplished using Dataset B.

A.9. Data availability

The Datasets A (raw intensity ratios) , B (EM processed average log ratios, as probabilities), and C (all
probe sequences), as tab delimited text files, are available for downloading as follows:

A: http://cs.nyu.edu/mishra/PUBLICATIONS/05.LinearMapData/DataSetA
B: http://cs.nyu.edu/mishra/PUBLICATIONS/05.LinearMapData/DataSetB
C: http://cs.nyu.edu/mishra/PUBLICATIONS/05.LinearMapData/DataSetC

APPENDIX B. SIMPLE ALGORITHM

The simplest algorithm to place probes proceeds as follows: Initially, every probe occurs in just one
singleton contig, and the relative position of a probe x̃i in contig Ci is at the position 0. At any moment, two
contigs Cp = [x̃p1 , x̃p2 , . . . , x̃pl

] and Cq = [x̃q1 , x̃q2 , . . . , x̃qm ] may be considered for a “join” operation:
the result is either a failure to join the contigs Cp and Cq or a new contig Cr containing the probes from the
constituent contigs. Without loss of generality, assume that |Cp| ≥ |Cq | and that the probe corresponding
to the right end of the first contig (xpl

) is closest to the left end of the other contig (xq1 ). That is, the
estimated distance dpl,q1 is smaller than all other estimated distances: dp1,q1 , dp1,qm , and dpl,qm .

Cp Cq

xp1 xp2xp3
. . . xpl

xq1xq2 xq3
. . . xqm

dpl,q1
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Let 0 < θ ≤ 1 be a parameter that can be selected suitably (see Casey et al. [2001]), and L′ = Lθ ≤ L.
If dpl,q1 ≥ L′, then the join operation fails. Otherwise, the join operation succeeds with the probes of
Cp placed to the left of the probes of Cq , with all the relative positions of the probes of each contig left
undisturbed. We will estimate the distance between the probes in Cp and the probe xq1 by minimizing the
function:

minimize
∑

i∈{p1,...,pl}:di,q1<L′

(x̃q1 − x̃i − di,q1)
2

di,q1

,

where x̃i’s (i ∈ {p1, . . . , pl}) are fixed by the locations assigned in the contig Cp. Thus, taking a derivative
of the expression above with respect to x̃q1 and equating it to zero, we see that the optimal location for
xq1 in Cr is

d∗ = max

⎡⎢⎢⎢⎣x̃pl
,

∑
i∈{p1,...,pl}:di,q1<L′

(
x̃i + di,q1

)
/di,q1∑

i∈{p1,...,pl}:di,q1<L′
1/di,q1

⎤⎥⎥⎥⎦ .

Once the location of xq1 is determined in Cr at d∗, the locations of all other probes of Cq in the new
contig Cr are computed by shifting them by the value d∗. Thus,

Cr = [x̃r1 , . . . , x̃rl , x̃rl+1 , . . . , x̃rl+m
],

where ri = pi and x̃ri = x̃pi
, for 1 ≤ i ≤ l; rl+i = qi and x̃rl+i

= d∗ + x̃qi
, for 1 ≤ i ≤ m. Note that when

the join succeeds, the distance between the pair of consecutive probes x̃rl and x̃rl+1 is

0 ≤ x̃rl+1 − x̃rl ≤ L′,

and the distances between all other consecutive pairs are exactly the same as what they were in the original
constituent contigs. Thus, in any contig, the distance between every pair of consecutive probes takes a value
between 0 and L′. Note that one may further simplify the distance computation by simply considering the
k nearest neighbors of x̃q1 from the contig Cp: namely, x̃pl−k+1 , . . . , x̃pl

.

d∗
k = max

⎡⎢⎢⎢⎣x̃pl
,

∑
i∈{pl−k+1,...,pl}:di,q1<L′

(
x̃i + di,q1

)
/di,q1∑

i∈{pl−k+1,...,pl}:di,q1<L′
1/di,q1

⎤⎥⎥⎥⎦
At any point, we can also improve the distances in a contig by running an “adjust” operation on a contig

Cp with respect to a probe x̃pj
, where

Cp = [x̃p1 , . . . , x̃pj−1 , x̃pj
, x̃pj+1 , . . . , x̃pl

].

We achieve this by minimizing the following cost function:

minimize
∑

i∈{p1,...,pl}\{pj }:di,pj
<L′

(|x̃pj
− x̃i | − di,pj

)2

2di,pj

,

where x̃i’s (i ∈ {p1, . . . , pl} \ {pj }) are fixed by the locations assigned in the contig Cp.
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Let

I1 = {i1 ∈ {p1, . . . , pj−1} : di1,pj
< L′},

I2 = {i2 ∈ {pj+1, . . . , pl} : di2,pj
< L′},

x∗ =

∑
i1∈I1

(
x̃i1 + di1,pj

)
/di1,pj

+
∑
i2∈I2

(
x̃i2 − di2,pj

)
/di2,pj∑

i1∈I1

1/di1,q1 +
∑
i2∈I2

1/di2,pj

.

At this point, if x∗ �= x̃pj
, then the new position of the probe x̃pj

in the contig Cp is x∗. Note that the
“adjust” operation always improves the quadratic cost function of the contig locally and since it is positive
valued and bounded away from zero, the iterative improvement operations terminate.
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