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ABSTRACT

Apoptotic defects occur in oncogenesis and contribute to drug resistance. We have
shown that Bcl-2, Akt, and the translational regulator elF4E cooperate with Myc during
lymphomagenesis and are potent inducers of drug resistance. Interestingly, lymphomas
expressing Akt, but not those expressing Bcl-2 are sensitized to chemotherapy-induced
apoptosis by the mTOR inhibitor rapamycin, an effect that is countered by elF4E. These
results provide in vivo validation for a strategy to reverse drug resistance in human cancers
and highlight the potential role of translational deregulation in oncogenesis and resistance.
They also illustrate the importance of tailoring cancer therapy based on tumor genotype.

Apoptotic defects are a common event in oncogenesis, as disruption of apoptotic
programs is required to counteract the pro-apoptotic effects of oncogene signaling and
other stresses encountered during tumorigenesis.! Since chemotherapeutic drugs also
engage these apoptotic pathways, their disruption frequently causes drug resistance.? In
many cancers, apoptosis is disabled through mutations that ultimately produce hyperacti-
vation of survival signaling molecules such as Bcl-2 or Akt. As a consequence, there are
now intense efforts to understand and short-circuit the effects of deregulated survival
signaling in cancer.

Our laboratory examines how oncogene and tumor suppressor networks that control
cell survival are disrupted during the course of tumor evolution and how mutations in
these networks impact tumor cell responses to conventional and targeted therapeutics in
vivo. To this end, we have used the Ep-myc mouse model of B-cell lymphomagenesis—
not to study lymphomagenesis and lymphoma therapy per se—but to exploit an extremely
powerful system for studying genetic interactions relevant to tumorigenesis and treatment
responses in vivo. To facilitate these efforts, we developed stem cell manipulation/trans-
plantation protocols to rapidly produce lymphomas with compound genotypes, and
employed methods to study treatment responses using real endpoints such as remission
and survival in a manner that parallels human clinical trials. Using this system, we have
previously shown that disruption of apoptosis, for example through loss of p53 or overex-
pression of Bcl-2, dramatically accelerates myc-induced lymphomagenesis and promotes
drug resistance. Moreover, despite the fact that lymphomas are initiated with the same
oncogene and treated in the same way, we note an enormous heterogeneity in response,
which is dependent on other genetic alterations in the tumor.

We recently examined the consequences of deregulated Akt signaling on lymphomage-
nesis and treatment responses in the Ep-myc model. The PI3K/Akt pathway is activated in
many tumors through loss of the tumor suppressors PTEN, TSC1/2 or via amplification
of Akt or constitutive activation of 7as (reviewed in ref. 3). Normally the PI3K/Akt path-
way transmits growth and survival signals from surface receptors to affect cellular physiology
in multiple ways. However, when we directly compared overexpression of Akt to the strictly
anti-apoptotic bc/-2, we found that both oncogenes had an identical effect on myc-induced
lymphomagenesis. Both caused the rapid onset of aggressive, multidrug resistant lymphomas
of a primordial B cell type. Therefore, despite the myriad of effects Akt has on cellular
physiology, its antiapoptotic function appears critical for oncogenesis and drug resistance.

In principle, reversing apoptotic defects through pharmacological or genetic approaches
should sensitize drug resistant tumors to cytotoxic therapy. Akt has been proposed to
mediate cell survival by phosphorylating proteins directly involved in apoptosis (Caspase
9, Bad, Mdm-2, reviewed in ref. 3), but it also signals transcriptional and translational
changes that may indirectly promote survival. However, the relevant contributions of each
effector process to oncogenesis and drug resistance, and hence the best molecular targets,
remain unclear. Pharmacologically, the choices are currently limited, since Akt inhibitors
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are not yet available and drugs targeting the PI3K are toxic. However,
one drug—rapamycin —has been widely used as an immunosup-
pressant in the clinic and is a potent inhibitor of the Akt effector
mTOR. Although not typically associated with the Akt-mediated
survival signal, mTOR inhibitors are being developed as anti-cancer
drugs and have shown some activity towards tumors with defects in
the PI3Kinase pathway both in vitro and in vivo.*” Therefore, we
tested whether rapamycin could reverse the Akt mediated apoptotic
block in our system.

While rapamycin alone had little effect on lymphomas of any
genotype, it markedly sensitized Akt overexpressing tumors to cyto-
toxic chemotherapy.® In combination with chemotherapy, rapamycin
induced massive apoptosis and lasting remissions without causing
increased toxicity. Therefore, targeting a survival pathway can indeed
reverse drug resistance in tumors.

Do our studies predict that rapamycin combinations should be
universally beneficial? Clearly, they reveal that rapamycin combined
with conventional chemotherapy can be synergistic in eliminating
tumor cells with mutational activation of the Akt pathway and,
indeed, others have observed similar results using targeted drugs.”
Our results also raise the possibility that rapamycin may enhance
drug sensitivity when Akt is activated by growth or survival factors
that would otherwise create local sanctuaries of drug resistant cells.
Unfortunately, our experiments do not support a broad use of
rapamycin to combat drug resistance, since its beneficial effects did
not extend to tumors with other apoptotic defects. Furthermore, in
chemosensitive control tumors lacking the ARF tumor suppressor
but retaining p53, the combination of rapamycin and doxorubicin
was antagonistic. This effect occurred only if rapamycin preceded
doxorubicin treatment (unpublished observations), and may be the
consequence of a rapamycin induced cell cycle arrest.!? Clearly, these
findings imply that rapamycin/chemotherapy combinations are not
a ‘one-size-fits-all’ tumor therapy, but require careful, molecular
identification of patients who would benefit from a therapy targeting
the PI3K/Akt pathway.

The fact that rapamycin—a specific inhibitor of the translational
regulator mMTOR—potently reverses the Akt survival signal suggests
that control of translation may be important for Akt-mediated cell
survival. Consistent with this idea, el[F4E—a translation factor
downstream of mTOR—-can co-operate in the transformation of
primary cells and block apoptosis induced by #zyc or 7as in vitro.!1-13
Also, in a glioblastoma model, expression of Akt induced translational
effects, evident as the rapamycin-sensitive recruitment of certain
capped mRNAs into the polyribosome fraction.'4 However, it is also
possible that Akt driven lymphomas become “addicted” to the
mTOR signal and undergo catastrophic death in its absence. Such a
possibility implies that the increased chemosensitivity of the Akt
tumors in the presence of rapamycin does not reflect actual reversal
of an apoptotic defect, but rather a hypersensitivity to the loss of
mTOR signaling.

To further investigate the role of translational deregulation in
oncogenesis, we tested the translation initiation factor eIF4E
(reviewed in ref. 15) directly in our system. Indeed, we found that
elF4E co-operates with 7zyc in a manner that is comparable to Ak,
leading to the rapid development of lymphomas. Furthermore,
expression of elF4E was sufficient to confer rapamycin resistance to
Akt tumors. This effect was mediated by elF4E’s ability to block
apoptosis and compensate for loss of p53 in tumorigenesis.?
Consistent with our results, ubiquitous expression of eIF4E in
transgenic mice promotes tumorigenesis in the lung, liver and
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hematopoietic compartment, and co-operates with 7zyc in lymphoma-
genesis.16 Clearly, the translation factor eIF4E is oncogenic in vivo
and sufficient to replace either Akt or p53 loss in myc-driven tumors,
and implies that translational regulation can mediate—or at least
compensate for—the Akt survival signal.

Do these results mean that only the elF4E-mediated translational
effects are important for Ake’s function? Not necessarily. Indeed, it
will be interesting to see whether eIF4E can co-operate in oncogen-
esis with, e.g., S6-kinase, inactivation of caspases or Bad, or how
elF4E’s effects on translation intersect with the metabolic alterations
that distinguish the survival activities of Akt and Bel-x; in FL5-12
cells.!” Conversely, non-Akt mediated signals may also intersect at
the level of eIF4E regulation. For example, the PIM-2 kinase produces
a rapamycin/mTOR independent signal that can activate elF4E.18
Presumably, the relevant contribution of different survival pathways
and their effectors may depend on the cellular context. Yet, together
with recent evidence implying defects in mRNA processing in
dyskeratosis'? (reviewed in ref. 20) and amplification of eIF4E in
several cancers,?123 the surprising ability of eIF4E to impact lym-
phomagenesis in our model hints at a broader role for translational
deregulation in cancer.

OUTLOOK

Although our study provides a compelling example of how revers-
ing apoptotic defects can also reverse drug resistance, several impor-
tant questions remain. To what extent do Ep-myc lymphomas reflect
the behavior of human tumors? If clinical studies recapitulate our
results, this will validate genetically controlled tumor models, for
uncovering drug resistance mechanisms and as preclinical models for
testing new therapeutic approaches. Which patients will benefit
from an mTOR-based therapy and how can they be identified? In
our study, lymphomas could have virtually identical pathology yet
respond very differently to rapamycin—presumably molecular
markers that reflect tumor genotype will be required. Are there better
drug targets in the Akt pathway? Based on our model, mTOR is a
good target, but others may be better. For example direct inhibition
of Akt would target a broader range of effectors while, conversely,
inhibiting translational initiation downstream of mTOR may provide
less opportunities for resistance. However, it is also possible that
interfering with upstream and downstream targets may increase
toxicity. Finally, can other survival pathways be targeted? Presumably
yes, as Bcl-2 antisense oligonucleotides have shown promise in pre-
clinical and clinical studies (reviewed in ref. 24). Clearly, targeted
therapeutics hold great promise in cancer therapy and genetically
controlled tumor models, like the Ept-myc model, may prove to be
particularly valuable in their perclinical development.
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