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ABSTRACT

Motivation: Many heuristic algorithms have been designed to

approximate P-values of DNA motifs described by position weight

matrices, for evaluating their statistical significance. They often

significantly deviate from the true P-value by orders of magnitude.

Exact P-value computation is needed for ranking the motifs.

Furthermore, surprisingly, the complexity of the problem is unknown.

Results: We show the problem to be NP-hard, and present

MotifRank, software based on dynamic programming, to calculate

exact P-values of motifs. We define the exact P-value on a general

and more precise model. Asymptotically, MotifRank is faster than the

best exact P-value computing algorithm, and is in fact practical.

Our experiments clearly demonstrate that MotifRank significantly

improves the accuracy of existing approximation algorithms.

Availability: MotifRank is available from http://bio.dlg.cn

Contact: mzhang@cshl.edu, mli@uwaterloo.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Transcription factors (TFs) play a prominent role in gene

regulation; identifying and characterizing their binding sites is

central to annotating genomic regulatory regions and under-

standing gene-regulatory networks. An important aspect of this

is to determine the statistical significance of the occurrences of

transcription factor binding site (TFBS), also called motifs,

in a DNA sequence. Statistical measures used for evaluating

overabundance of patterns in sequences have been studied

extensively, among which the z-score and P-value are most

popular. Between them, the P-value is more reliable in

statistical significance evaluation (Denise et al., 2001).

In previous studies, statisticians and computational biologists

have devoted considerable efforts to solving these problems.

Some are concerned with theoretical asymptotic word

count distributions using either Gaussian (Brendel et al., 1986;

Leung et al., 1996; Waterman, 1995), (Compound) Poisson

(Chryssaphinou and Papastavridis, 1988; Godbole, 1991; Schbath,

1995) or large deviation approximations (Denise et al., 2001). The

problem of pattern autocorrelation has been well studied

theoretically, beginning with its introduction by Guibas

and Odlyzko (1981). Other works concerned with the exact

distribution of word counts using generating functions

(Gentleman and Mullin, 1989; Goulden and Jackson, 1983;

Hertzberg et al., 2005; Kleffe and Langbecker, 1990; Régnier,

2001) or other methods (Beckstette et al., 2006; Bejerano et al.,

2004; Staden, 1998) soon followed. However, these methods are

too theoretical to be of practical use, especially when dealing

with motifs described by a position weight matrix (PWM)

(Stormo, 2000). In practice, a variety of motif discovery tools

evaluates results based on various approximate statistic criteria,

such as Ahab (Rajewsky et al., 2002), Clover (Frith et al.,

2004), MotifScanner (Thijs et al., 2001), MEME (Bailey and

Gribskov, 1998; Bailey and Elkan, 1994), Consensus (Hertz and

Stormo, 1999) and more recently the elegant approximate

P-value calculation for multiple alignment (Nagarajan et al.,

2005). These tools take less time to compute but give less

accuracy in varying degrees or on different models.

Inspite of all these efforts over many years, it is surprising

that we do not even know the complexity of this problem. Is it

really difficult? Neither approximation approaches nor the

current inefficient exact P-value algorithms can be justified if

there exists an efficient algorithm for computing exact P-values.

This article answers all these questions.
It turns out that the answers can be derived from a

different field of bioinformatics: optimal spaced seeds for

homology search introduced by Ma et al. (2002). By connecting

the two fields, we not only obtain a proof that the P-value

calculation problem is NP-hard, but also a practical algorithm,

based on dynamic programming, to calculate the exact

P-value of a PWM motif given in the most general form as

a PWM. We use first-order Markov model to characterize

the promoter region instead of i.i.d model. It is more

general and contains more information. Its time complexity

is good enough to provide a real-time calculation on typical

biological data.
We have implemented the algorithm as the program

MotifRank, to calculate exact P-values and to rank*To whom correspondence should be addressed.
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candidate motifs. The ability of MotifRank in discriminating
known TFBSs from their backgrounds is validated on a
simulated data set. Moreover, MotifRank compares favorably

withMotifScanner, which estimates P-values, on a data set from
Saccharomyces cerevisiae (yeast) Promoter Database (SCPD)
(Zhu and Zhang, 1999). Our extensive tests show that, as

expected, ranking of motifs according to exact P-values is better
than using the approximate values given by MotifScanner.

2 PROBLEM DESCRIPTION

Given a set of genomic DNA sequences and a set of candidate

motifs, the general problem of evaluating statistical significance
of DNA motifs is to rank such motifs according to a underlying

model. From a theoretical point of view, regulatory regions
can be divided into two parts: the binding sites which play an
important role in regulating gene expression, and the back-

ground which is not bound by TFs of interest. The key point
for discriminating the signals from the background is to
estimate if the motif is over-represented under the null

hypothesis. We use a Markov chain to model the background
and PWMs with appropriate thresholds to describe motifs; we
take P-value as our statistic to rank the potential biological

relevance of different motifs. Assuming the observed number
of occurrences of motif m is k, its P-value is defined to be the
probability that m hits (matches) the Markov chain at least

k times. The central problem here is how to calculate the exact
P-value efficiently.
Without loss of generality, we will use first-order Markov

chains in this article to model the genetic sequences.
Generalization to higher order is straightforward. For any

string (or Markov chain) S, we use S ½i � to denote the ith
position of S, and S ½i, j � to denote the substring of S from S ½i �
to S ½ j � inclusive, i.e. S ½i �S ½iþ 1� . . . S ½ j �. Consider a first-

order Markov chain R of length n. In the basic problem, let us
consider word motif fA,C,G,T g. A motif m is considered to hit
a string if the string contains the motif as a substring. That is,

there 9i, j, such that m ¼ R½i, j �. The number of hits is the
number of such different i, regardless of overlaps. Now we give
the formal definition of the basic problem.

Input: A word m over alphabet � ¼ fA,C,G,Tg, an integer

k� 1, the stationary probability and transition probability of a
first-order Markov region R
Output: Prðm hits region R at least k timesÞ

We next consider the multiple-word motif, which hits a string
if any of its words does. This gives the following intermediate

problem:

Input: A set of words M ¼ fm1,m2, . . . ,mtg over alphabet �, an

integer k, the stationary probability and transition probability
of a first-order Markov region R
Output: PrðM hits region R at least k timesÞ

When we use a PWM to describe a motif, not only is the
sequence region probabilistic, but the motif itself is as well. The

PWM representation of a motif m of length l is a 4� l PWM
matrix P, in which Pi, j is the frequency for the ith character at
the jth position of m. For a string s of the same length l, we

define the score of s as the product of corresponding frequency

scores in P (alternatively, we will sometimes use log odds
ratios, the logarithm of the ratio of a letter’s frequency

at a position in the motif to its average frequency in the

entire background). The meaning of ‘hit’ here is different from

the word motif model. We say a motif m hits a string s when

there is a substring s0 of length l whose score is at least some

threshold c0. In biological applications, there are different
methods to define c0 and here it is regarded as an input

parameter. Now, we define our third and central problem.

Input: A motif m with PWM P over alphabet � ¼ fA,C,G,Tg,

a threshold c0, an integer k, the stationary probability and

transition probability of a first-order Markov region R
Output: Prðm hits region R at least k timesÞ

We will give a linear time DP algorithm to calculate the
P-value for a word motif in Section 3.1. We will adapt the DP

algorithm to solve the word set problem in Section 3.2. The time

and space complexity analysis will be given in Section 4.2.

Calculating the P-value of a matrix motif is the main problem of

this article. In Section 4.1, we will prove that it is an NP-hard

problem and give an efficient algorithm for it by reducing it to

the second problem in Section 3.3.

3 ALGORITHMS

3.1 Calculating the P-value for a word motif

We first give a simple algorithm for the case of k¼ 1

(i.e. the motif hits the region at least once) and then sketch

an algorithm for the general k. The algorithms and ideas for

computing the optimal spaced seeds (Keich et al., 2004;
Ma et al., 2002) can be readily borrowed and generalized to

our situation.

The basic idea is to calculate a series of conditional
probabilities instead of the target probability. The conditional

probabilities can be calculated by DP and the number of

such probabilities is polynomial to n. We will give the formal

definition of the conditional probability first and then

constrain the domain of the parameters of the conditional

probability.
For a string w over alphabet� ¼ fA,C,G,Tg and jwj � n� i,

the conditional probability is defined to be

f ði,wÞ ¼ Prðm hits R½i, n� jw is a prefix of R½i, n�Þ ð1Þ

In other words, the conditional probability is the

hit probability of motif word m in a subregion of R under

the condition that the prefix of the subregion is w. We can see

that the target hit probability ofm in region R equals f ð1, �Þ. We
will try to compute f (i,w) in terms of other f ði0,w0 Þ computed

earlier and limit the set of w we need to consider in the process.

For any f (i,w), we decompose it according to the character
following w in region R½i, n�, and then the following relation

holds:

f ði,wÞ ¼
X
c2�

f ði,wcÞ � PrðR½iþ jwj�ð

¼ c jw is a prefix of R½i, n�ÞÞ

PrðR½iþ jwj� ¼ c jw is a prefix of R½i, n�Þ expresses the prob-

ability that the character following w in region R½i, n� is c.
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It can be easily derived from the transition matrix of the
first-order Markov chain when |w |40. The case jwj ¼ 0
requires additional information about the last character
before the region. Similar to Equation (1), for any i � n, we

define

Fði, qÞ ¼ Prðm hits R½i, n� jR½i� 1� ¼ qÞ ð2Þ

We have, for i40,

Fði, qÞ ¼
X
c2�

f ði, cÞ � PrðR½i� ¼ c jR½i� 1� ¼ qÞ ð3Þ

We next determine the domain of w. Clearly, if w is
not a prefix of m, Prðm ¼ R½i, iþ jmj � 1� jw is a prefix of
R½i, n�Þ ¼ 0, which means that m cannot start at R½i�. We can

see that, when w½ j, jwj � 1� is not a prefix of m, m cannot start
at R½ j� which has a prefix w½ j, jwj � 1�. So we have to find the
longest suffix of w which is also a prefix of m. This leads us to
the following definition.

DEFINITION 1. Let P(m) be the set of all prefixes of a word m.

For any string w, let Sm(w) denote the longest suffix of w
which is in P(m).

For example, if m¼ACCAC and w¼CCAC, then
SmðwÞ ¼ AC which is a suffix of w and a prefix of m. It is
the longest string that satisfies the two requirements
simultaneously.

The following observation helps to constrain the domain of w
in P(m). For w does not belong to P(m),

f ði,wÞ ¼
Fði 0,w�1Þ if SmðwÞ ¼ �

f ði 0,SmðwÞÞ otherwise

(
ð4Þ

where i 0 ¼ iþ jwj � jSmðwÞj and w�1 denotes the last letter
of w. Thus, we only have to compute w which is a prefix of m.
Algorithm 1 shows that f (i,w) and F(i, q) can be computed by

DP in polynomial time.

We show how to calculate f (i,w) in Algorithm 2. F(i, q) can

be calculted similarly

We generalize Algorithms 1 and 2 to arbitrary k by defining a

series of probabilities f f ð1Þði,wÞ, f ð2Þði,wÞ, . . . , f ðkÞði,wÞg where

f ð jÞði,wÞ ¼ Prðm hits R½i, n� at least j times j

w is a prefix of R½i, n�Þ

for 1 � j � k. f ðkÞð1, "Þ is exactly the P-value we want to

calculate. F ð jÞði, qÞ is defined similarly.

The recursion formulae here are

� When w¼m, f ð j Þði,wÞ ¼
P

c2�ð f
ð j�1Þði,wcÞ � PrðR½iþ

jw j � ¼ c jw is a prefix of R½i, n�ÞÞ

� When w 6¼ m, f ð jÞði, wÞ ¼
P

c2�ð f
ð jÞ ði,wcÞ � PrðR½iþ

jw j � ¼ c jw is a prefix of R½i, n�ÞÞ

In other words, we use the conditional probabilities in a

smaller subregion with fewer hits and a prefix constructed from

w to calculate f ð jÞði,wÞ.

The details of calculating f ð jÞði,wÞ are the same as

Algorithm 1 and 2 with appropriate modification of the

Algorithm 1 Dynamic programming for k¼ 1

Input: A motif word m over � ¼ fA,C,G,Tg, the stationary

probability I1�4 and transition matrix T4�4 of a first-order Markov

region R.

Output: Probability that m hits R at least once.

1: Calculate map g : PðmÞ �� ��!PðmÞ, 8w 2 PðmÞ and c 2 �,

gðw, cÞ ¼ SmðwcÞ using suffix tree

2: for i ¼ n! 1 do

3: for w 2 PðmÞ from longest to shortest do

4: if jwj ¼ 0 then

5: calculate Fði, qÞ,8q 2 �

6: else

7: calculate f (i,w)

8: end if

9: end for

10: end for

11: output
P

q2� IðqÞFð1, qÞ

Algorithm 2 Calculate f (i,w)

1: if |m|4nþ1�i then

2: f ði,wÞ ¼ 0

3: else if w¼m then

4: f ði,wÞ ¼ 1

5: else

6: for c 2 � do

7: rc ¼ T ½w�1�½c� which is the transition probability from w�1
to c, where w�1 denotes the last character of w

8: i 0 ¼ iþ jwcj � jSmðwcÞj

9: if jSmðwcÞj ¼ 0 then

10: fc ¼ Fði 0, cÞ

11: else

12: fc ¼ f ði 0,SmðwcÞÞ

13: end if

14: end for

15: f ði,wÞ ¼
P

c2� fc � rc
16: end if

Algorithm 3 Computing P-value of a motif word

1: Calculate the map g using suffix tree

2: for i ¼ n! 1 do

3: for j ¼ 1! k do

4: for w 2 PðmÞ from longest to shortest do

5: Calculate f ð j Þði,wÞ

6: end for

7: end for

8: end for

Computing exact P-values for DNA motifs
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recursion formulae. The complete time complexity analysis will

be given in Section 4.2.

3.2 Calculating P-value for multiple-word motif

The basic idea is similar to Algorithm 1. We just extend all the

definitions in Section 3.1 from a single word to a set of words.

Two main definitions are conditional probability and prefix set.
The conditional probability for multiple-word motif M is

f ð j Þði,wÞ ¼ PrðM hits region R½i, n� at least j times j

b is a prefix of R½i, n�Þ

The definition of F ð j Þði, qÞ is similar and we omit it here. The

prefix set of M is the union of the prefix sets of all the motif

words in M, that is PðMÞ ¼
St

s¼1 PðmsÞ. The recursion

formulae for multiple-word motif are

� if w matches any word in M,

fð j Þði,wÞ ¼
P

c2� ðf
ð j�1Þ
ði,wcÞ � PrðR½iþ jwj� ¼ c jw is a

prefix of R½i, n�ÞÞ

� otherwise,

fð j Þði,wÞ ¼
P

c2�ðf
ð j Þ
ði,wcÞ � PrðR½iþ jwj � ¼ c jw is a

prefix of R½i, n�ÞÞ

Replacing P(m), f ð j Þði,wÞ and F ð j Þði, qÞ by P(M), fð j Þði, qÞ and

F
ð j Þði, qÞ in algorithms in Section 3.1, we can get the

DP algorithm to calculate P-value for multiple-word motif.

We will analyze time and space complexity of the algorithm in

Section 4.2.

3.3 Computing one PWM motif hit probability

We will prove that calculating P-value for a PWM motif over

a Markov region is NP-hard in Section 4.1. This explains the

prevalence of approximation and exponential algorithms in the

field. We present a DP algorithm by constructing a multiple-

words motif from a matrix motif with threshold c0 and then use

the algorithms described in Section 3.2.

Given a threshold c0 and a motif m represented by PWM P,

we say a string of length jmj is compatible with P if its motif

score is at least c0. The main idea of the algorithm is to rank

the letters in each position of the motif in decreasing order

of score.
In position i of motif m, call the highest score letter mi, 0, the

second most mi, 1, the third most mi, 2 and the lowest score

letter mi, 3. So each position independently ranks the letters

from 0 through 3. We enumerate sequences of length l ¼ jmj in

rank-lexicographic order, skipping incompatible strings when-

ever possible. In particular, if a string s ¼ m1, s1m2, s2 . . .ml, sl is

compatible with m, then its successor, the next string to be

considered, is simply the rank-lexicographically next string

m1, s1 . . .mi�1, si�1 mi, siþ1 miþ1, 0 . . .ml, 0, where i is the largest

position with letter rank less than 3. If, on the other hand,

s is not compatible with m, then, letting j be the largest position

with non-zero letter rank, we skip all 4l�j sequences of the form

m1, s1 . . .mj, sj mjþ1, � . . . ml, �. These sequences can obviously

score no better than s and are therefore also incompatible.

The successor of s is then m1, s1 . . .mi�1, si�1 mi, siþ1 miþ1, 0 . . .ml, s0 ,

with i the largest position before j with letter rank less than 3.

Since no l ¼ jmj consecutive successors can be incompatible,

we can enumerate the set of compatible strings in time
OðK� jmjÞ, where K is the size of the set of all strings

compatible with m. If we consider the double-stranded
structure of DNA, we have to add the sequences reserve-

complementary to those found.
Then we can use the algorithm for multiple-word motifs to

calculate the P-value. Although it is an exponential time

algorithm, in real biological applications c0 is often large
enough for MotifRank to be practical.

4 COMPLEXITY

4.1 The complexity of computing one PWM motif

hit probability

In this section, we will prove that calculating P-value for a

PWM motif over a Markov region is NP-hard by reducing the
spaced seed problem to it. It indicates there does not exist a

polynomial time complexity algorithm to calculate one PWM
motif hit probability unless P¼NP.

THEOREM 1. Calculating the probability that a given PWM

motif m over a constant size alphabet hits a first-order Markov
region at least once at a given threshold is NP-hard.

PROOF. Consider the simple case of a binary alphabet and an
i.i.d. region. We reduce the spaced seed problem to this case.

We describe the spaced seed problem here briefly. A spaced
seed is a string over f0, 1g. There is an i.i.d. sequence R, each bit

with probability P (similarity level) to be 0, and 1� P to 1.
A spaced seed s hits a string r when r has a substring r 0 of the

same length as s that is ‘implied’ by s, i.e. wherever s has a 1,
r 0 also has a 1. The spaced seed sensitivity problem is to

calculate the hit probability of a spaced seed on a binary i.i.d.

sequence R of a given similarity level. It has been recently
shown to be NP-hard for similarity 1=2 in (Li et al., 2006).
We reduce the spaced seed problem to our problem. Given

a spaced seed s of length l with z 0s, we construct a motif m
of length l over alphabet f0, 1g as follows: for 1 � i � l, if si¼ 1,

we let Prðmi ¼ 1Þ ¼ 1 and Prðmi ¼ 0Þ ¼ 0, otherwise
Prðmi ¼ 1Þ ¼ Prðmi ¼ 0Þ ¼ 1=2.
Then a string r of length l is implied by s iff r has a non-zero

motif score with respect to m. Thus, with a sufficiently small

threshold like 2�z, the probability of m passing the threshold
in a random region is precisely the hit probability of spaced

seed s. œ

4.2 Complexity of algorithms in Section 3

We will give the time and space complexity analysis for the

algorithms described in Section 3. Lemma 1 and Theorem 2
are about Algorithm 3 for calculating the P-value for a word

motif given in Section 3.1. Theorem 3 is about the algorithm
for calculating the P-value for multiple-word motif given in

Section 3.3.
The line 1 of Algorithm 3 is to calculate the mapping

g : PðmÞ �� ��!PðmÞ, which means to find the longest suffix of
the string composed of a prefix string in the prefix set P(m)

appending a character c and the suffix must be a prefix in P(m),
too. We have the following lemma about the time to calculate

Sm(w) for arbitrary string w.
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LEMMA 1. Given a word m and a string w over a constant
alphabet, Sm(w) can be calculated in O(m).

PROOF. Let m
 

denote the reverse of string m. Construct suffix

tree for m
 

and search w
 

on it. The result path is Sm(w). The time

complexity of constructing a suffix tree is O(m) and searching is
O(m), so the total time complexity is O(m). œ

We have the following theorem about the time and space

complexity of Algorithm 3.

THEOREM 2. The probability that a word motif m over alphabet
� ¼ fA,C,G,Tg hits a first-order Markov region R for at least k

times can be calculated in polynomial time. The time complexity

is Oðk� n� jmjÞ and the space complexity is Oðk� jmj2Þ, where

n is the length of R.

PROOF. According to Lemma 1, line 1 takes time Oðjmj2Þ.

Consider how many f ð j Þði,wÞ will be calculated in Algorithm 3

(this will also bound the number of F ð j Þði, qÞ computed). The

three nested loops in Algorithm 3 produce Oðk� n� jmjÞ

iterations. Each iteration calculates a f ð j Þði,wÞ in constant time.
So the time to calculate all f is Oðk� n� jmjÞ. The space

complexity is Oðk� jmj2Þ since when calculating f ð j Þði,wÞ, we

only have to maintain f ð j Þð j,wÞ for i � j � iþm of size at most

Oðk� jmj2Þ. œ

The algorithm for multiple-word motif is an extension to

Algorithm 3, so the time and space analysis are similar to

Theorem 2. We give the results directly.

THEOREM 3. The probability that a set of word motifs
M ¼ fm1,m2, . . . ,mtg over alphabet � ¼ fA,C,G,Tg hits a

first-order Markov region R at least k times can be calculated

in polynomial time. Let jjMjj ¼
Pt

i¼1 jmij. The time complexity

is Oðk� n� jjMjjÞ and the space complexity is

Oðk� jjMjj � ðmaxi jmijÞÞ.

Now we analyze the time complexity of the algorithms

described in Section 3.3. The algorithm to extract multiple

words from PWM motif has time complexity OðK� jmjÞ

as already shown in the algorithm. Adding the time to
calculate the P-value for multiple words, the total time

complexity of our exact P-value calculating algorithm

is OðK� jmj þ k� n� jjMjjÞ, in which M ¼ fm1,m2, . . . ,mKg

is the set of compatible strings, jjMjj ¼
PK

i¼1 jmij and k is the
hit time of M in the region of length n.

5 EXPERIMENTS AND RESULTS

5.1 Experiment methods

We apply our algorithm given in Section 3.3 to the statistical

significance evaluation of PWM motifs and rank them

according to their exact P-values.
Consider a first-order Markov model whose elements in

transition matrix � are estimated from a promoter region. The
initial probability of the Markov model is chosen to be the

stationary distribution � defined by � ¼ ��.
There are many strategies for choosing the threshold of

a PWM motif on a specific sequence. Here we adopt a simple

way by allowing a user-defined multiplying factor, which was

introduced in Tronche et al. (1997). We then multiply the

maximum of scores of all jmj long strings on PWM motif m by

the factor to define the threshold c0. This factor allows the user

to define the type of motif to search for. It controls the balance

between specificity and sensitivity. When the factor is reduced,

more degeneracy in the extraction of motif words will be

allowed, so sensitivity will increase but specificity will decrease.

Besides, we remove the words which are not substrings of

the promoter sequence from the word set extracted from m

according to c0. Furthermore, since DNA is double stranded,

we need to look for binding sites on both strands.
We use the algorithm introduced in Section 3.3 to calculate

the exact P-values for motifs in promoter regions.

5.2 Comparison with MotifScanner on SCPD data

The SCPD contains 130 promoter regions of different genes

with known binding sites coming from 21 PWM motifs. We

extract upstream (of ATG) sequences, of length 1001 bp, for all

130 genes from SCPD as our experimental data set. For each

promoter region, we estimate the parameters of Markov model,

and calculate the exact P-values for each of the 21 PWM motifs

by using MotifRank on double strands and with specific factor.
We compare our results on SCPD data with a similar tool,

MotifScanner (Thijs et al., 2001), which estimates P-values.

MotifScanner is a program that can be used to screen DNA

sequences with pre-compiled motif models. The input of

MotifScanner consists of four parts: DNA sequences, candidate

motifs represented by position frequency matrices, a prior

probability, which allows the user to specify the degeneracy in

the found instances of motifs and a background model. We

input the same SCPD data set and choose first-order Markov

model on double strands with prior probability 0.2, which is

suggested by MotifScanner for yeast data. MotifScanner

outputs the approximate P-values of PWM motifs which are

regarded to be over-represented in the region. As a result, the

outputs do not always contain the P-values for all the known

motifs reported by biologists.

We rank the PWM motifs in each promoter region in

increasing order of P-values, and compare the ranks of known

motifs annotated in SCPD. As aforementioned, the value of

multiplying factor in MotifRank determines the degeneracy of

instances retrieved from PWM motifs, and so does the prior

probability in MotifScanner. Both tools will fail to report

the instances of some known motifs when a relatively strict

constraint on degeneracy is imposed. To ensure that the

comparison with MotifScanner is under similar degrees of

degeneracy, we adopt a multiplying factor of 0.65 in

MotifRank, with which the instances of known motifs reported

by both tools are nearly the same. To better assess the results,

we divide the promoter regions into different groups. Majority

of promoter regions contain only one known motif, but some

contain more. For example, the CDC2 promoter region only

has MCB motif reported but CDC9 promoter region has

two motifs: MCB and REB1. We thus divide the regions into

several groups according to the reported number of distinct

motifs and compare ranks given by different tools within each

group. We use the average rank of the known motifs within

each region group to evaluate the rank results. As a criterion

reflecting the overall performance, a lower average rank

Computing exact P-values for DNA motifs

535

 at C
old S

pring H
arbor Laboratory on A

ugust 30, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


of reported motifs means that the tool will assign a

comparatively lower P-value to the TFs known to bind in

promoter regions.

The average rank and its standard deviation using different

tools are given in Table 1. Here we only consider the ranks of

known motifs with P-values given by both tools, so there are

totally 108 promoter regions in Table 1. From the average rank

of known motifs, we can demonstrate the advantage of exact

P-values over approximate ones (in the sense of giving a lower

average rank for the motifs which are reported to bind in

corresponding promoter region). Remarkably, our method has

a higher performance on words that tend to have self-overlaps

than MotifScanner does. For example, the motif of RAP1-

binding sites ‘R(A/G)M(C/A)ACCCANACAY(C/T)’ which

has several self-overlaps could be ranked first by MotifRank

when it is within most of its binding promoters, whereas

MotifScanner would give a worse rank for it. More details are

available in the Supplementary Material.
We also use the ranks given by MotifRank and MotifScanner

to predict putative TFs that bind in the promoter region. Given

an integer N, a PWM motif is said to be positive in a specific

promoter region if its rank is among the top N, and the fraction

of true positives and false positives can be calculated according

to the known motifs reported by biologists. Thus we get a

receiver operating characteristic (ROC) curve over a range of

possible Ns. The ROC curves of MotifScanner and MotifRank

with multiplying factors ranging from 0.6 to 0.8, a range that

allows moderate degeneracy in the extraction of motif words,

are illustrated in Figure 1. We can see that the area under the

curves of MotifRank is significantly larger than that of

MotifScanner, which shows the advantage of exact P-values

over approximate ones in predicting the binding of TFs.

5.3 Performance on simulated data

We test our method on simulated data to further validate

its ability to discriminate known TFBSs from backgrounds.

We simulated a data set with 100 sequences according to the

first-order Markov model and parameters extracted from

SCPD. We randomly choose instances of motifs from the

frequency matrix of 20 PWM motifs in SCPD and uniformly

implanted them into foreground sequences. The number of

motifs and their occurrences in each sequence is similar to that

in real data sets. Simultaneously, we generate 100 background

sequences under the same model but without any implanted

motif, and calculate the average P-value of each PWM motif.

The average P-values of implanted PWM motifs on foreground

and background sequences are given in Table 2.
There is a 430-fold difference relative to the background.

Our method is indeed powerful to distinguish sites that contain

true motifs from those that do not. Its high performance on the

SCPD data is consistent both in this Section and Section 5.2.

5.4 Time performance

We have proved that the worst-case time complexity of the

algorithm introduced in Section 3.3 is exponential and there is

no polynomial time algorithm for exact P-value calculation of

the PWMmotifs, unless NP ¼ P. The algorithm is implemented

using Cþþ and compiled under Microsoft Visual Studio 6.0.

The test PC is equipped with a Pentium 4 running at 2.8GHz

and 512MB of RAM. The average time to compute the P-value

of one motif with a 1001 bp promoter region is 0.7ms. This

indicates that our DP algorithm is efficient enough for

biological data in practice.

6 CONCLUSION AND FUTURE WORK

Accurate and efficient methods for calculating the P-value of

DNA motifs are critical in aiding the discovery of TFBS in

promoter regions. Although existing tools provide approximate

estimates of P-values, they are not accurate enough sometimes

and there is a need for efficient algorithms to calculate exact

P-values.

Table 1. Average and standard deviation of the rank of known TFs

with P-values reported by different tools

Number of

reported motifs

per region

Number of

promoter

regions

MotifRank MotifScanner

Average

rank

Standard

deviation

Average

rank

Standard

deviation

1 78 2.33 1.46 3.09 1.84

2 22 2.95 1.79 3.34 2.12

3 7 3.24 1.95 3.38 1.64

4 1 5.50 3.42 6.75 1.71

Total 108 2.73 1.78 3.30 2.06

The promoter regions are divided into four groups according to the number of

TFs reported to bind in them. 0 0.05 0.1 0.15 0.2 0.25
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Fig. 1. ROC curvesmanifest the ability ofMotifRank andMotifScanner

to identify TFs that bind in promoter regions. Different points on a ROC

curve correspond to cutoffs on the ranking list varying from 1 to 5.

X-axis denotes false-positive rate, i.e. the number of false positives to the

total number of TFs that are not reported to bind in the promoter, while

y-axis denotes true positive rate, i.e. the number of true positives to the

total number of TFs that are reported to bind in the promoter.
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A rapid algorithm to compute exact P-values for DNA
motifs is presented in this article. We have validated the
performance of the algorithm on both real and simulated

biological data. Comparison with other tools confirms
that the performance of exact P-values is better than
approximate P-values in terms of evaluating the statistical

significance of motifs.
Our algorithm for calculating exact P-values is useful and

feasible wherever the evaluation of statistical significance for
candidate motifs is desired. Furthermore, our method could be

integrated into discovery of TFBSs in given promoter regions.
In future work, we will study the algorithms and experiments

on evaluating statistical significance of synergistic motifs and

TFBSs common to multiple sequences.
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Table 2. Average P-values on foreground and background simulated

sequences

TF name Length Foreground Background

ABF1 12 1.85E�08 0.94

CSRE 13 1.21E�13 1.00

SCB 7 2.38E�06 0.69

GCN4 6 4.42E�03 0.17

GCR1 5 1.86E�01 0.47

MCB 6 1.37E�04 0.59

MCM1 10 6.01E�09 0.74

MATalpha2 9 1.08E�04 0.84

MIG1 12 3.26E�09 0.93

PHO2 7 3.20E�02 0.12

PHO4 10 2.19E�10 0.91

RAP1 12 1.38E�05 0.85

REB1 7 5.65E�05 0.70

ROX1 12 8.34E�02 1.00

SWI5 12 3.82E�05 0.78

STE12 8 9.05E�06 0.69

TBP 7 4.10E�03 0.32

UASPHR 12 1.33E�01 0.79

XBP1 12 1.50E�05 0.96

repressor_of_ CAR1 9 2.79E�03 0.65

The first two columns show the name and length of the TFs whose PWM motifs

are implanted into foreground sequences. The entries in the foreground column

are the average P-values over foreground sequences with corresponding PWM

motifs implanted. In contrast, we have also run 100 sequences as background

without implanting any PWM motifs and calculated the average P-values on

them. The results are shown in the background column.
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