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Psychiatric and neurologic disorders take an enormous toll on society. Alleviating the devastating symptoms and consequences of
neuropsychiatric disorders such as addiction, depression, epilepsy, and schizophrenia is a main force driving clinical and basic research-
ers alike. By elucidating these disease neuromechanisms, researchers hope to better define treatments and preventive therapies. Research
suggests that regulation of adult hippocampal neurogenesis represents a promising approach to treating and perhaps preventing mental
illness. Here we appraise the role of adult hippocampal neurogenesis in major psychiatric and neurologic disorders within the essential
framework of recent progress made in understanding “normal” adult neurogenesis. Topics addressed include the following: the life cycle
of an adult hippocampal stem cell and the implications for aging; links between learning and hippocampal neurogenesis; the reciprocal
relationship between cocaine self-administration and adult hippocampal neurogenesis; the role of adult neurogenesis in an animal model
of depression and response to antidepressant exposure; the impact of neonatal seizures on dentate gyrus neurogenesis; and the contri-
bution of a schizophrenia-susceptibility gene to adult hippocampal neurogenesis. These topics are discussed in light of the regulation of
adult neurogenesis, the relationship to normal neurogenesis in adulthood and aging, and, importantly, the manipulation of neurogenesis
to promote mental health and treat mental illness.
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Introduction
Arguably one of the most exciting scientific findings of the past 50
years is the discovery that discrete brain regions make new neu-
rons throughout life. The hippocampus is a major site of adult
neurogenesis, a process in which hippocampal stem cells (HSCs)
in the subgranular zone (SGZ) and their offspring give rise to
mature, functionally integrated granule cell neurons (Kemper-
mann et al., 2004; Abrous et al., 2005) (Fig. 1). Research on the
mechanisms that control progression through these dynamic
stages, HSC to mature granule cell, as well as the electrophysio-
logical development of cells in each stage indicates the impor-

tance of both intrinsic properties of the cell as well as the SGZ
microenvironment.

Several lines of evidence suggest that adult hippocampal neu-
rogenesis is important in psychiatric and neurologic disorders,
such as addiction, depression, epilepsy, and schizophrenia. For
example, the hippocampus is important in memory and mood
regulation and can have major influence over the reward pathway
of the brain (Kelley et al., 1982; Groenewegen et al., 1987; Amaral
and Witter, 1989; Totterdell and Smith, 1989; Floresco et al.,
2001b). Hippocampal structure and function are dysregulated in
the brains of patients with schizophrenia, addiction, epilepsy, and
mood disorders (Sapolsky, 2000; Antonova et al., 2004; Geuze et
al., 2005; Lucassen et al., 2006; Keller and Roberts, 2008). More-
over, adult neurogenesis is altered in animal models of these dis-
orders, and effective therapies often normalize these changes
(Chen et al., 2000; Malberg et al., 2000; Eisch, 2002; Abrous et al.,
2005; Pittenger and Duman, 2008). Although current findings in
the field suggest that adult hippocampal neurogenesis is not a sole
cause of these illnesses or the sole mechanism of treatment efficacy, it
is likely an important contributor to these complex disorders.

As exciting as the putative links between hippocampal neuro-
genesis and neuropsychiatric disorders appear, there exist major
gaps in our understanding. Here six young investigators use a
variety of approaches to identify and address key questions in the
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field. In an attempt to desegregate discussion of normal and
pathological neurogenesis, the first two sections explore ques-
tions relevant to normal aging and learning, and the last four
sections explore, in turn, the relationship between adult neuro-
genesis and addiction, depression, seizure disorders, and
schizophrenia.

The life cycle of an adult hippocampus neural stem cell:
implications for aging
As noted, adult hippocampal neurogenesis is a process consisting
of many stages (Kempermann et al., 2004) (Fig. 1). Translational
hope for neurogenesis will require detailed knowledge about fac-
tors that drive or slow this process. Several novel transgenic
mouse lines have been used to specifically visualize discrete stages
of neurogenesis from stem cell, to proliferation, differentiation,
and eventual maturation (Yamaguchi et al., 2000; Mignone et al.,
2004; Encinas et al., 2006; Lagace et al., 2007). Specifically, Type 1
HSCs are radial glia-like progenitors that divide at a low rate.
Current research suggests that Type 1 cells divide asymmetrically
to produce Type 2 cells, rapidly dividing (transient amplifying)
progenitors that expand the precursor population and whose
progeny differentiate into neuroblasts. These neuroblasts slowly
maturate into granule cells, fully integrated into the hippocampal
circuitry (Duan et al., 2008). Intriguingly, research suggests that
discrete stages of the neurogenic process are a common target for
regulation of neurogenesis by pharmacological and environmen-
tal stimuli. For example, a number of antidepressant-related
stimuli, including fluoxetine, deep brain stimulation, and run-
ning, all enhance SGZ proliferation of the Type 2 cell (Kronen-
berg et al., 2003; Encinas et al., 2006; Toda et al., 2008). Although
the convergence at this common stage of adult neurogenesis by
such diverse manipulations is heartening for future efforts to
independently manipulate neurogenesis, it is notable that major

questions remain about the putative source of neurogenesis: the
Type 1 HSC.

The main reason little is known about HSC regulation in vivo
is that there are few tools to directly study or manipulate HSCs;
being relatively quiescent, they cannot be thoroughly studied us-
ing standard methods such as the S-phase marker bromode-
oxyuridine (Eisch and Mandyam, 2007). The lack of specific
markers further complicates analysis, because HSC cells share
markers with astroglial cells and neuronal precursor cells. How-
ever, using a transgenic mouse in which HSCs and precursors
have nuclear labeling and thus are easily colabeled with other
antibodies (Encinas et al., 2006), Encinas and colleagues have
recently shown that Type 1 cell number is decreased by robust
stimuli, such as cosmic radiation (Encinas et al., 2008). More
recently they have tackled the question of what happens to HSCs
during aging. Aging is among the most robust negative regulator
of hippocampal neurogenesis. Based on the successful stimula-
tion of neurogenesis in aged animals with environmental and
pharmacological manipulations (Cameron and McKay, 1999), it
has been postulated that age-mediated decline in neurogenesis is
the result of a decline in the mitotic capabilities of HSCs (Hatti-
angady and Shetty, 2008). Using their mouse as shown previously
(Encinas et al., 2006), Encinas and colleagues are now attempting
to unveil the mechanism of the age-dependent decline in hip-
pocampal neurogenesis.

This work by Encinas and colleagues is important because
identification of the specific cell class responsible for the gradual
loss of the ability to generate new neurons will allow researchers
to cleanly restore or boost neurogenesis in the aged brain by
means of particular stimuli with known specific cell targets. For
instance, if Type 2 cells lose their mitotic capability with aging,
perhaps antidepressants such as fluoxetine would allow restora-
tion of neurogenesis in the aged dentate gyrus. Left unanswered

Figure 1. Stages of adult hippocampal neurogenesis. A, The SGZ straddles the border of the hippocampal dentate gyrus granule cell layer (GCL) and hilus. The neurogenic SGZ contains cells at
various stages of neurogenesis, which are individually shown in B. C, Cells in discrete stages of maturation are differentially influenced by pharmacological and physiological stimuli. This list is not
meant to be comprehensive but rather highlight stimuli discussed in this review. Figure by Jessica L. Ables.
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for now is whether loss of hippocampal neurogenesis underlies
age-induced cognitive decline, whether restoring neurogenesis
translates into a beneficial cognitive and behavioral outcome, and
whether the Type 1 cell is in fact a “true” stem cell. However, these
findings are an important step toward understanding the poten-
tial link between neurogenesis, aging, and cognitive decline.

Links between learning and adult hippocampal neurogenesis
The function of adult-generated hippocampal neurons has been
vigorously researched (and debated) in the past decade. Data
primarily from correlational or ablation studies have given rise to
controversial and sometimes inconsistent findings across labora-
tories and animal species (Shors et al., 2002; Zhao et al., 2008),
but it appears that neurogenesis is important for at least some
hippocampal-dependent memory tasks. More recent studies on
the functional role of these cells have used immediate-early gene
expression as a readout of activation of adult-generated neurons
(Kee et al., 2007; Tashiro et al., 2007) or analysis of stabilization
and removal of new neurons of different ages after a
hippocampal-dependent learning task (Dupret et al., 2007). By
showing the different responses of young cells as they mature,
these recent studies highlight the power that can emerge from
careful characterization studies. However, much remains un-
known about the responses of new neurons to hippocampal-
dependent learning tasks and their contribution to hippocampal
function.

To determine how learning activates young granule cells,
Cameron and colleagues trained adult rats in a hippocampal-
dependent task, the Morris water maze, and examined the ex-
pression of immediate-early genes in adult-generated hippocam-
pal neurons. They find that adult-generated neurons are
activated during learning, and that this activation depends on the
amount or strength of training as well as the variations in events
during training. The data of Cameron and colleague data also add
to the growing appreciation for regional differences in hip-
pocampal function, showing, for example, that, after a single
learning experience, the proportion of activated adult-generated
granule cells is higher in the ventral dentate gyrus than in the
dorsal dentate gyrus. Because the ventral hippocampus is closely
linked to emotional memory and the dorsal hippocampus with
spatial memory (Sahay and Hen, 2007), these data may suggest
that adult-generated granule cells may be more involved in the
more emotional, nonspatial aspects of hippocampal behaviors.
Finally, Cameron and colleagues find that functional maturation
of adult-generated granule cells occurs significantly faster in rats
than in mice. This could be a key finding in explaining why elec-
trophysiological data from mice and behavioral data from rats
have sometimes appeared inconsistent.

The data from Cameron and colleagues showing the effects of
hippocampus-dependent learning on the survival and matura-
tion of adult-generated granule cells emphasize the complex re-
lationship between learning, cell activation, and cell death. These
data also urge additional consideration of the longitudinal or
septotemporal axis, particularly because studies relevant to psy-
chiatric disorders often reveal a septotemporal dependence in
regulation of neurogenesis (Kim et al., 2005; Lagace et al., 2006).

Addicted to neurogenesis: do new hippocampal neurons
regulate cocaine self-administration?
Adult hippocampal neurogenesis appears important for learning
and memory, but its distinct contribution to memory formation,
recall, or extinction remains to be clarified. The lack of studies on
adult hippocampal neurogenesis and motivation is particularly

notable, because neurogenesis is regulated by drugs of abuse
(Eisch et al., 2000; Abrous et al., 2002; Nixon and Crews, 2002;
Noonan et al., 2008) and the hippocampus influences both drug-
taking and drug-seeking behaviors via its projections to limbic
regions involved in reward (Taepavarapruk et al., 2000; Floresco
et al., 2001a; Lodge and Grace, 2006).

To explore the relationship between neurogenesis and reward,
Eisch and colleagues trained rats on a clinically relevant model of
drug addiction, cocaine self-administration (CSA), and sup-
pressed neurogenesis either before or after CSA via cranial irra-
diation (Snyder et al., 2005). Rats irradiated after CSA showed
significantly increased drug-seeking behaviors in the context in
which drug was previously taken and took more trials to extin-
guish responding than control rats. This suggests that adult neu-
rogenesis may function to suppress the drug seeking elicited by
drug-context memory. Rats irradiated before CSA took more
cocaine compared with control rats and presented a vertical shift
in the cocaine dose–response curve relative to controls, suggest-
ing that they are more sensitized to cocaine. Interestingly, rats
irradiated before CSA also had higher breakpoints on a progres-
sive ratio schedule, suggesting that cocaine was more rewarding
for them. Parallel experiments with a natural reward, sucrose
pellet self-administration, found no differences between irradi-
ated and control rats, suggesting that ablation of adult neurogen-
esis specifically influenced drug reward.

The data from Eisch and colleagues are the first to suggest that
adult neurogenesis mediates aspects of drug addiction, such as
the desire or memory for drug in drug-taking context, and the
sensitivity to and reward received from cocaine taking. These
data fit well both basic and clinical data, such as the altered pro-
liferation and neurogenesis seen after many drugs of abuse, in-
cluding nicotine, ethanol, opiates, and cannabinoids, and the
strong propensity to relapse to drug taking in a drug-paired con-
text (Eisch, 2002; Gould, 2006; Canales, 2007). In showing a pos-
sible function of adult neurogenesis in drug reward and drug-
context memory, these data urge continued consideration of the
role of contextual cues in the treatment of addiction.

The neurogenesis hypothesis of depression revisited: distinct
roles for newborn neurons in the neurophysiology of
depression and its treatment
Of all psychiatric and neurologic disorders linked to adult hip-
pocampal neurogenesis, mood disorders such as depression have
received the most attention, as well as the most scrutiny. The
initial excitement emerged from multiple lines of converging ev-
idence connecting neurogenesis to mood disorders, most notably
that stress (a precipitating factor in depression) decreases neuro-
genesis, whereas antidepressant treatment increases neurogenesis
(Gould et al., 1997; Malberg et al., 2000). This led to the hypoth-
esis that modulation of hippocampal neurogenesis is crucial to
both the onset and treatment of depression, formalized as the
“neurogenesis hypothesis of depression” (Drew and Hen, 2007).
A corollary to this hypothesis is that hippocampal physiological
and circuit dynamics somehow underlie affective behavior
(Meltzer et al., 2005). The importance of adult-generated neu-
rons to hippocampal circuit dynamics underlying depression and
antidepressant efficacy is presumed but not well understood.

To address whether altered neurogenesis is important in de-
pression and its treatment, Meltzer and colleagues used voltage-
sensitive dye imaging to probe hippocampal activity in a rodent
model of depression and specifically the role of neurogenesis in
depression-relevant neurophysiology and behavior (Airan et al.,
2007b). Depression was modeled by exposing adult rats to the
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chronic mild stress paradigm (CMS), which over a period of 3
weeks induced a depression-like state characterized by increased
immobility on the forced swim test. As with previous work using
CMS (West and Weiss, 2005), the CMS-induced increase in im-
mobility was reversed by treatment with the antidepressant flu-
oxetine. In acute brain slices from animals treated with CMS or
antidepressant, Meltzer and colleagues identified dentate gyrus
activity as a network-level endophenotype for depression-like be-
havior: evoked activity in the neurogenic dentate gyrus relative to
the non-neurogenic area CA1 was downregulated by CMS and
upregulated by antidepressant treatment. By quantifying neuro-
genesis in these rats, Meltzer and colleagues further explored the
potential link between depression and neurogenesis. Intrigu-
ingly, and against the neurogenesis hypothesis of depression,
CMS was not associated with a downregulation in neurogenesis,
and ablation of neurogenesis did not induce a depression-like
state. Conversely, and in support of the neurogenesis hypothesis
of depression, antidepressant treatment increased neurogenesis.
Using irradiation to ablate neurogenesis, Meltzer and colleagues
also found that antidepressant behavioral efficacy required intact
neurogenesis. Indeed, brief antidepressant treatment that was
sufficient to transiently increase neurogenesis was also sufficient to
exert behavioral effects long after drug clearance from the system,
and this effect was absent in animals lacking neurogenesis.

The results presented by Meltzer and colleagues suggest that
dentate gyrus activity predicts affective behavior in animal mod-
els of depression, a finding that may play an important part of the
future of personalized diagnosis and treatment for depression
(Holsboer, 2008). They further suggest that depression induction
and treatment occur through distinct physiological mechanisms,
with adult hippocampal neurogenesis required for the action of
antidepressants in behaviors relevant to depression and anxiety
(Santarelli et al., 2003) but apparently not involved in baseline
mood determination.

Seizing the network: integration of newborn neurons
in epileptogenesis
In addition to psychiatric disorders such as addiction and depres-
sion, neurologic disorders such as epilepsy have strong links to
hippocampal structure and function in general and neurogenesis
in particular (Parent, 2007). For example, seizure activity ro-
bustly enhances SGZ proliferation, leading to more adult-
generated neurons (Parent et al., 2006). In contrast to the adult,
experimentally induced seizure activity in the neonate reduces
SGZ proliferation (McCabe et al., 2001). These findings are par-
ticularly interesting because neonatal seizures appear to be asso-
ciated with long-term effects on seizure sensitivity, cognition,
and hippocampal volume (Holmes et al., 1998).

To address the short- and long-term consequences of neona-
tal seizure activity on dentate gyrus neurogenesis, Overstreet-
Wadiche and colleagues used transgenic reporter mice given brief
hypoxia-induced seizures or prolonged kainic acid-induced sei-
zures at postnatal day 10 (P10). They found that both the brief
and prolonged seizure activity reduced the number of newborn
granule cells when examined 1 week later at P17. They are cur-
rently determining whether this reduced neurogenesis detected
at P17 results in fewer total granule cells in adult mice or whether
homeostatic mechanisms are in place to normalize granule cell
number over time. Neonatal seizures also enhanced dendritic
arborization and altered synaptic input to newborn neurons. In-
hibition of the NKCC1 chloride cotransporter with bumetanide
suggests that depolarizing GABAergic mechanisms (Markwardt

and Overstreet-Wadiche, 2008) play a role in altered neurogen-
esis after neonatal seizures.

These results presented by Overstreet-Wadiche augment our
understanding of how neonatal seizures affect neuronal develop-
ment and circuit formation (Porter, 2008) and thus potentially
contribute to the cognitive deficits and other long-term conse-
quences observed in experimental animals and human patients
after repeated seizure activity. This work adds to the increasing
appreciation of the age-dependent response of neurogenesis to
seizure activity (Porter, 2008), which is highly relevant to the
higher incidence of seizure onset in either childhood or late
adulthood. For example, whereas experimentally induced seizure
activity in adulthood increases SGZ proliferation, seizure activity
in old age is not associated with increased SGZ proliferation (Rao
et al., 2008). Seizures can also produce aberrant migration and
morphology of new neurons that is accompanied by altered syn-
aptic function (Jakubs et al., 2006; Hattiangady and Shetty, 2008;
Parent and Murphy, 2008; Zhao and Overstreet-Wadiche, 2008);
thus neurogenesis is likely one of many hippocampal abnormal-
ities that contribute to epilepsy and/or cognitive dysfunction.

The schizophrenia susceptibility gene DISC1 regulates adult
hippocampal neurogenesis
In recent efforts to identify molecular mechanisms underlying
the progression through stages of neurogenesis, it has become
clear that both intrinsic (cell-autonomous) factors as well as ex-
trinsic (microenvironmental) factors are responsible (Ming and
Song, 2005; Ge et al., 2007a; Duan et al., 2008). Much is known
about factors that regulate early stages of neurogenesis, such as
notch signaling, GABA, and glutamate (Duan et al., 2008), but less is
known about factors that regulate later stages of neurogenesis.

Using a variety of approaches, Ming and colleagues highlight
the first identification of how a known leading candidate gene for
mental illness, DISC1 (Disrupted-In-Schizophrenia 1), can reg-
ulate distinct developmental processes of newborn neurons in the
adult hippocampus. DISC1 is a schizophrenia susceptibility gene
whose translocation-induced disruption cosegregates with major
psychiatric disease in a Scottish family (Millar et al., 2000). The
mouse ortholog is Disc1 (Ma et al., 2002). Although present in
the developing and adult brain (Austin et al., 2004), DISC1 ap-
pears to plays a key role in neural development (Schurov et al.,
2004), influencing cAMP signaling and centrosome and cytoskel-
etal function (Chubb et al., 2008). Ming and colleagues examined
the role of DISC1 in the development of adult-generated hip-
pocampal neurons (Duan et al., 2007; Faulkner et al., 2008) and
showed that downregulation of DISC1 by specific short hairpin
RNA leads to aberrant cell morphology, accelerated axonal and
dendritic development, and mispositioning of new dentate gran-
ule cells. In addition, newborn neurons with low DISC1 expres-
sion exhibit enhanced excitability and accelerated synapse forma-
tion both presynaptically and postsynaptically. Mechanistically,
knockdown of NDEL, a binding partner of DISC, mimics some of
the DISC1 defects in newborn neurons.

The work presented by Ming highlights the role of DISC1 in
orchestrating the tempo of functional neuronal integration in the
adult brain and demonstrates the essential role of a susceptibility
gene for major mental illness in neuronal development. Addi-
tional variants on this approach have also underscored the rela-
tionship between DISC1 and schizophrenia (Koike et al., 2006;
Kvajo et al., 2008; Pletnikov et al., 2008). Currently, DISC1 inter-
acting molecules are actively being examined for their potential as
schizophrenia susceptibility genes (Ikeda et al., 2008) or related
behavioral abnormalities (Sakae et al., 2008) and thus may prove
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to be additional targets for fully understanding these intriguing
links between schizophrenia and neurogenesis. Although likely
no single genetic disruption is responsible for all cases of schizo-
phrenia (Walsh et al., 2008), additional elucidation of how DISC1
and related genes influence neurogenesis and behavior relevant
to schizophrenia may provide a jumpstart in learning how to
translate these findings from basic research to clinical relevance.

Conclusion/perspective
These findings highlight new data in the fast-paced field of neu-
rogenesis and emphasize the active and ongoing dissection of
dynamic processes that control the development of adult-
generated hippocampal neurons and the function of these new
neurons in the adult brain (Fig. 1). The data answer fundamental
questions about stem cell biology (Encinas presentation) and
identify DISC1 as a novel intrinsic factor that controls matura-
tion of newborn neurons (Ming presentation). The data also
highlight work that has identified a new functional role for the
neurons in drug reward (Eisch presentation) and neonatal sei-
zure outcome (Overstreet-Wadiche presentation). Last, and
most controversial, the work fuels the ongoing debate about the
functional role for neurogenesis in learning and depression
(Sapolsky, 2004; Kempermann et al., 2008): Cameron’s presen-
tation shows intriguing correlative links between learning and
neurogenesis, whereas Meltzer’s presentation shows that dis-
rupted neurogenesis does not lead to a depressive phenotype.
These studies also highlight new methodologies that are allowing
more specific questions of hippocampal neurogenesis to be ad-
dressed; hopefully, these will be widely used so that their impli-
cations can be appreciated throughout the entire field of
neuroscience.

When adult-generated neurons were first discovered, it could
not have been predicted that these cells would have so many
associations with mental illnesses and neurological conditions.
The data presented here and elsewhere continue to provide tan-
talizing connections, but we must remain wary as to whether
hippocampal neurogenesis is merely an epiphenomena associ-
ated with these illnesses. Often it is argued that the number of new
cells in relation to the existing neurons in the granule cell layer is
minimal, and thus these cells are likely not important function-
ally. However, it would seem unlikely that an organ as efficient as
the brain would continue to produce these cells if they held no
function. It could be that new and old neurons serve different
purposes (Cecchi et al., 2001; Ge et al., 2007b; Li et al., 2008) and
we are likely just beginning to unravel these differences.

A major caveat of the putative relationship between mental
illness and neurogenesis is that most of the findings emerge from
basic research on laboratory animals, and little is known about
what happens in the human brain. Although technical limitations
have restricted previously study to postmortem tissues (Murrell
et al., 1996; Eriksson et al., 1998), pioneering work is underway to
enable visualization of human neurogenesis in vivo (Manganas et
al., 2007). Notable obstacles still remain in being able to label and
track stem cells and their offspring in human tissues such as the
brain (Schroeder, 2008). However, given recent advances in vi-
sualizing neurogenesis and key components of the neurogenic
niche in the adult brain as well as tracking of brain circuitry
dynamics (Airan et al., 2007a; Lagace et al., 2007; Bulloch et al.,
2008; Couillard-Despres et al., 2008), it is likely only a matter of
time before we can definitively test links between neurogenesis
and brain disorders in the human brain.
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