

1

2 **A developmental timer coordinates organism-wide microRNA transcription**

3

4

5 Peipei Wu¹, Jing Wang¹, Brett Pryor², Isabella Valentino², David F. Ritter³, Kaiser Loel⁴, Justin Kinney⁴,
6 Sevinc Ercan³, Leemor Joshua-Tor^{1,5}, Christopher M. Hammell^{1,6,*}

7

8

9 ¹Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724

10 ²Cold Spring Harbor Laboratory School of Biological Sciences, One Bungtown Road, Cold Spring
11 Harbor, NY 11724

12 ³New York University, 100 Washington Square East, New York, NY 10003

13 ⁴Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, One Bungtown Road, Cold
14 Spring Harbor, NY 11724

15 ⁵Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory, Cold Spring Harbor
16 Laboratory, Cold Spring Harbor, NY 11724, USA

17 ⁶Lead contact

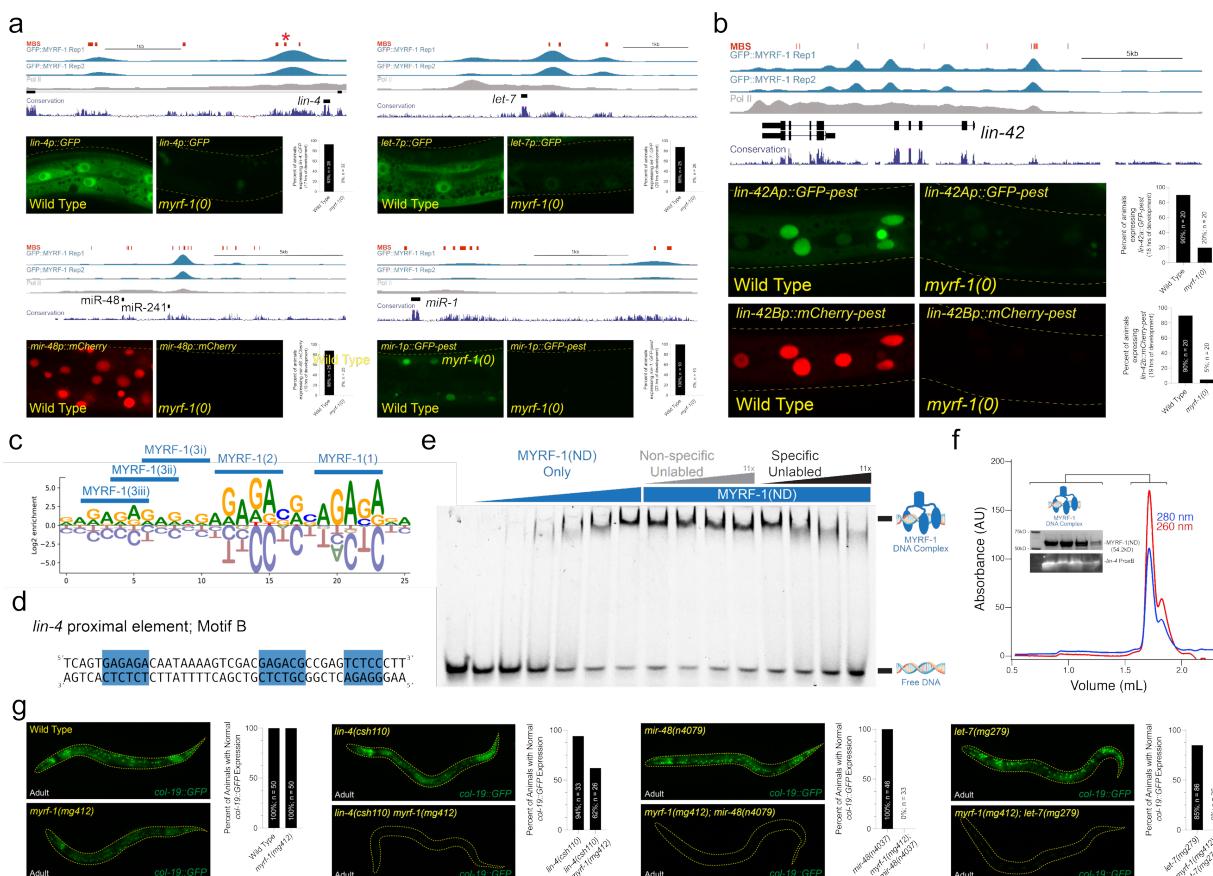
18 *Correspondence: chammell@cshl.edu

19 **ABSTRACT**

20
21 The development of distinct tissues must be precisely coordinated to ensure that growth and cell fate
22 transitions occur in the correct temporal order across the organism, yet the mechanisms that
23 coordinate these timing events remain unclear. In *Caenorhabditis elegans*, stage-specific cell fate
24 transitions are driven by pulsatile transcription of heterochronic microRNAs, but the source of these
25 rhythms has been unknown. Here, we identify a developmental timer composed of the transcription
26 factor MYRF-1 and the PERIOD-like repressor LIN-42 that operates in all somatic cells. MYRF-1 binds
27 conserved regulatory elements upstream of heterochronic microRNA genes and drives synchronized,
28 once-per-stage transcriptional pulses across tissues, while concurrently activating *lin-42* expression.
29 Newly synthesized LIN-42 directly associates with MYRF-1, limiting its nuclear residence and
30 transcriptional activity to constrain the amplitude and duration of each transcriptional burst. This
31 reciprocal transcriptional/translational feedback loop generates organism-wide, phase-locked
32 microRNA expression, coupling tissue-specific development to organismal growth through a shared
33 timing mechanism.

34
35
36

37 INTRODUCTION


38 During animal development, various cell types must acquire specialized identities while remaining
39 coordinated with organismal growth. Such coordination depends not only on correct fate specification
40 but also on the alignment of fate transitions across tissues, ensuring that proliferation, differentiation,
41 and morphogenesis unfold in the proper relative sequence. Yet the mechanisms that generate this
42 organism-wide temporal coherence remain unclear. It is unknown whether distinct cell lineages share
43 a unified temporal program for measuring developmental time, or whether timing instead emerges
44 from lineage-intrinsic regulatory architectures that independently encode the timing of fate transitions.

45 In *C. elegans*, the sequence of temporal patterning is controlled by a conserved heterochronic gene
46 network, centered on key microRNAs (miRNAs) that enforce synchronous, stage-specific cell-fate
47 transitions across tissues (1-7). These miRNAs repress transcription factors and RNA-binding proteins
48 that normally coordinate stage-specific proliferation, differentiation, and morphogenesis, and block
49 the precocious onset of later developmental programs (8, 9). Mutations in heterochronic miRNAs
50 disrupt the progression of temporal events throughout the organism, highlighting their global role in
51 developmental transitions(1, 2, 5). Interestingly, heterochronic miRNAs are transcribed in sharp, once-
52 per-larval-stage bursts in proliferating blast cells, differentiating epithelia, intestinal cells, glia, and
53 post-mitotic neurons(10-13). Although their rhythmic expression parallels the oscillatory transcription
54 of many protein-coding genes, the two processes operate on distinct organizational scales: oscillatory
55 mRNAs display a wide range of tissue-specific expression windows within each larval stage(14, 15),
56 whereas heterochronic miRNAs are transcribed in a shared phase of each larval stage across most
57 somatic tissues(12, 16).

58 This synchrony raises a central question: are heterochronic miRNAs regulated across somatic cells by
59 lineage-specific transcriptional programs that require unique transcription factor networks to
60 repeatedly converge on a common timing, or does a shared molecular mechanism enforce organism-
61 wide coherence? Several cell-type-specific transcription factors modulate miRNA dynamics in
62 individual tissues(13, 17, 18), yet none have been shown to drive the global, once-per-stage
63 transcriptional bursts necessary for system-wide coordination. In contrast, both genetic analyses and
64 direct measurements of miRNA transcriptional dynamics in animals harboring mutations in *lin-42*,
65 encoding the nematode ortholog of the circadian regulator *Period*, suggest that LIN-42 acts as a
66 widespread transcriptional repressor of miRNA genes whose own expression is pulsatile and phase-
67 coherent across somatic tissues(12, 13, 19-22). These properties indicate that LIN-42 acts as a key
68 regulator of organism-wide timing and heterochronic miRNA transcription, even though *C. elegans*
69 does not encode orthologs of the transcription factors that are usually repressed by *Period* in other
70 systems (such as *Clock* and *Bmal* in mice and humans, or *Clock* and *Cycle* in *Drosophila*). Together,
71 these observations highlight a critical gap in understanding: although LIN-42 clearly imposes soma-
72 wide temporal coordination of heterochronic miRNA transcription, the underlying mechanism—and
73 the transcription factors whose activities LIN-42 antagonizes to generate these organism-wide
74 transcriptional pulses—remain unknown.

75 MYRF-1 regulates the expression of heterochronic miRNAs and *lin-42*

76 The *myrf-1* gene encodes an essential homotrimeric transcription factor that accumulates
 77 rhythmically, once per larval stage, in all somatic tissues (fig. S1)(10, 14, 15, 23, 24). Similar to its
 78 mammalian ortholog, MYRF-1 is synthesized as a full-length membrane-associated precursor that
 79 undergoes self-cleavage to release an N-terminal nuclear domain (MYRF-1(ND))(23). Genetic analysis
 80 places MYRF-1 in early larval development and upstream of the transcriptional activation of the
 81 heterochronic miRNA *lin-4*: loss of *myrf-1* function strongly reduces activity of a *lin-4* transcriptional
 82 reporter and decreases mature *lin-4* RNA levels(24). Notably, the onset of MYRF-1 nuclear
 83 accumulation coincides with the initiation of *lin-4* transcription, suggesting direct transcriptional
 84 control(24).

Figure 1 | MYRF-1 controls temporal patterning by binding to sequences upstream of heterochronic miRNAs and the *lin-42* gene. **a** and **b**, MYRF-1 binding sites are found in the putative regulatory regions of cyclically expressed miRNAs and the *lin-42*. Transcriptional reporters of these MYRF-1 target genes require *myrf-1* for expression. **c** and **d**, Motif analysis of sequences found within MYRF-1 binding sites identifies a consensus motif harboring a repetitive GA-rich sequence. Sequences that conform to this consensus are indicated in panels a and b. An example of one of these binding sites from the *lin-4* regulatory region, *lin-4* proximal element motif B, is shown in panel d. The location of this putative MYRF-1 binding site is indicated with an asterisk in panel a. **e**, Recombinant MYRF-1(ND) binds specifically to the *lin-4* proximal element motif B DNA fragment. **f**, Recombinant MYRF-1(ND) forms a trimeric complex that co-purifies with a *lin-4* proximal element motif B DNA (ProxB) during size exclusion chromatography. **g**, A hypomorphic allele of *myrf-1*, *myrf-1(mg412)*, does not exhibit defects in the expression of an adult-specific transcriptional reporter (*col-19::GFP*), but strongly enhances the temporal patterning defects associated with mutations in heterochronic miRNAs.

85 To define the genomic targets of MYRF-1, we performed ChIP-seq on staged animals expressing an
 86 endogenously tagged GFP::MYRF-1 fusion at peak nuclear abundance during the L1 stage. This
 87 analysis identified ~1,000 high-confidence MYRF-1 binding sites, predominantly located within 3 kb
 88 of transcription start sites of potential MYRF-1 target genes (Table S1; fig. S1e). Target genes were

89 significantly enriched for regulators of temporal patterning, larval development, and ribosome
 90 biogenesis (fig. S1f). Strikingly, MYRF-1 binding was strongly enriched at conserved regulatory regions
 91 upstream of all heterochronic miRNA genes (Fig. 1a), as well as at promoters of key oscillatory
 92 regulators, including *lin-42*, (Fig. 1b), *myrf-1* itself, and multiple genes required for molting (*nhr-23*,
 93 *grh-1*, and *mab-10*) (fig. S1x). Motif analysis of sequences over-represented in MYRF-1 peaks revealed
 94 a conserved GA-rich sequence composed of three elements with defined orientation and spacing (Fig.
 95 1c), consistent with multimeric DNA binding. In agreement with this model, a recombinant MYRF-1
 96 protein fragment (residues 1-483) that corresponds to the MYRF-1(ND) binds specifically to a 44-bp
 97 element within the proximal *lin-4* regulatory region (proxB) that conforms to the MYRF-1 consensus
 98 motif (Figure 1a, c, d, and e). This MYRF-1:proxB binary complex forms stably *in vitro* and elutes at a
 99 volume consistent with a trimer on DNA according to size exclusion chromatography and mass
 100 photometry (Fig. 1 f and fig. S2).

101 To define the requirement for MYRF-1 in developmental gene activation, we analyzed transcriptional
 102 reporters in *myrf-1* null mutants that arrest during the L1 molt (25). In wild-type L1 larvae,
 103 heterochronic miRNA transcriptional reporters—including *lin-4* and *let-7* family members—were
 104 robustly expressed, whereas all were completely silent in *myrf-1(0)* animals (Fig. 1a). In contrast,
 105 among oscillatory protein-coding targets examined, only *lin-42* expression depended on MYRF-1,
 106 while other molting regulators remained active (Fig. 1b; fig. S1d). These results establish MYRF-1 as a
 107 direct transcriptional activator of heterochronic miRNAs and *lin-42* and reveal that rhythmic gene
 108 expression during larval
 109 development is generated by
 110 at least two mechanistically
 111 distinct regulatory systems.

112 We reasoned that if MYRF-1
 113 controls heterochronic
 114 miRNA expression at larval
 115 stages after the L1, then
 116 partial loss of MYRF-1
 117 activity should enhance
 118 phenotypes associated with
 119 miRNA mutants that function
 120 in the L2-adult stages of
 121 development. This type of
 122 genetic interaction would
 123 lead to the reiteration of
 124 distinct cell-fate specification
 125 events at later larval stages.
 126 The *myrf-1(mg412)* allele
 127 alters amino acids near the
 128 predicted DNA-binding
 129 domain of MYRF-1, leading

Table 1 *C. elegans* *myrf* genes genetically interacts with multiple heterochronic mutants to control temporal patterning.

Genotype ^b	Percent of animals with Adult-specific alae formation ^a				Adult stage			
	none	gapped	full	n =	none	gapped	full	n =
wild type @20°C	100	0	0	20	0	0	100	20
wild type @15°C	100	0	0	20	0	0	100	20
<i>myrf-1(mg412)</i> @20°C	100	0	0	20	0	0	100	22
<i>myrf-1(mg412)</i> @15°C	100	0	0	20	0	0	100	22
<i>myrf-2(gk669)</i>	100	0	0	20	0	0	100	20
<i>myrf-1(mg412); myrf-2(gk669)</i>	100	0	0	20	0	0	100	20
<i>lin-42(n1089)</i>	9	30	61	23	0	35	65	20
<i>lin-42(n1089) myrf-1(mg412)</i>	100	0	0	20	0	5	95	21
<i>lin-42(n1089); myrf-2(gk669)</i>	30	65	5	20	0	59	41	22
<i>lin-42(n1089) myrf-1(mg412); myrf-2(gk669)</i>	100	0	0	22	0	0	100	20
<i>lin-42(ok2385)</i>	29	38	33	24	0	33	67	21
<i>lin-42(ok2385) myrf-1(mg412)</i>	90	0	10	20	0	0	100	25
<i>lin-46(ma164)</i> @20°C	-	-	-	-	0	0	100	21
<i>lin-46(ma164)</i> @15°C	-	-	-	-	0	70	30	20
<i>myrf-1(mg412); lin-46(ma164)</i> @20°C	-	-	-	-	0	0	100	20
<i>myrf-1(mg412); lin-46(ma164)</i> @15°C	-	-	-	-	9	91	0	22
<i>lin-4(csh104)</i>	-	-	-	-	100	0	0	21
<i>lin-4(csh110)</i>	-	-	-	-	4	50	46	24
<i>lin-4(csh111)</i>	-	-	-	-	0	29	71	21
<i>lin-4(csh110 csh111)</i>	-	-	-	-	90	10	0	21
<i>myrf-1(mg412) lin-4(csh110)</i>	-	-	-	-	61	26	13	23
<i>mir-48(n4097)</i>	-	-	-	-	0	0	100	20
<i>myrf-1(mg412); mir-48(n4097)</i>	-	-	-	-	77	23	0	22
<i>let-7(mg285)</i>	-	-	-	-	0	0	100	20
<i>myrf-1(mg412); let-7(mg285)</i>	-	-	-	-	42	58	0	24
<i>lin-42(csh86 (ΔMBD1))</i>	100	0	0	20	0	0	100	24
<i>lin-42(csh83 (ΔMBD2))</i>	100	0	0	21	0	0	100	20
<i>lin-42(csh83 csh86 (ΔMBD1+2))</i>	22	46	32	22	0	55	45	20

^aPresence and quality (Gapped or Complete) of cuticular alae structures were assayed by Normarski DIC optics. Only one side of each animal was scored.

^bAnimals contain *maIs105*, which expresses an adult-specific, *col-19p::GFP* reporter integrated on chromosome V.

130 to an inappropriate reiteration of larval molting cycles in adults(25). Importantly, *myrf-1(mg412)*
131 mutant animals do not exhibit heterochronic phenotypes and properly express an adult-specific *col-*
132 *19p::GFP* reporter (Fig.1g; Table 1). However, combining *myrf-1(mg412)* with a hypomorphic *lin-*
133 *4* allele (*lin-4(csh110)*) produced highly penetrant synthetic retarded phenotypes, including reduced
134 *col-19p::GFP* expression in adult-stage animals and loss of alae structures on adult cuticles (Fig. 1g;
135 Table 1). *myrf-1(mg412)* also strongly enhanced defects in a *mir-48* deletion mutant, *mir-48(n4097)*,
136 resulting in the failure of adult epidermal differentiation, reiteration of L2-stage cell division programs
137 during L3 stage, and defective production of adult-specific alae structures (Fig. 1g; Table 1 fig. Sx).

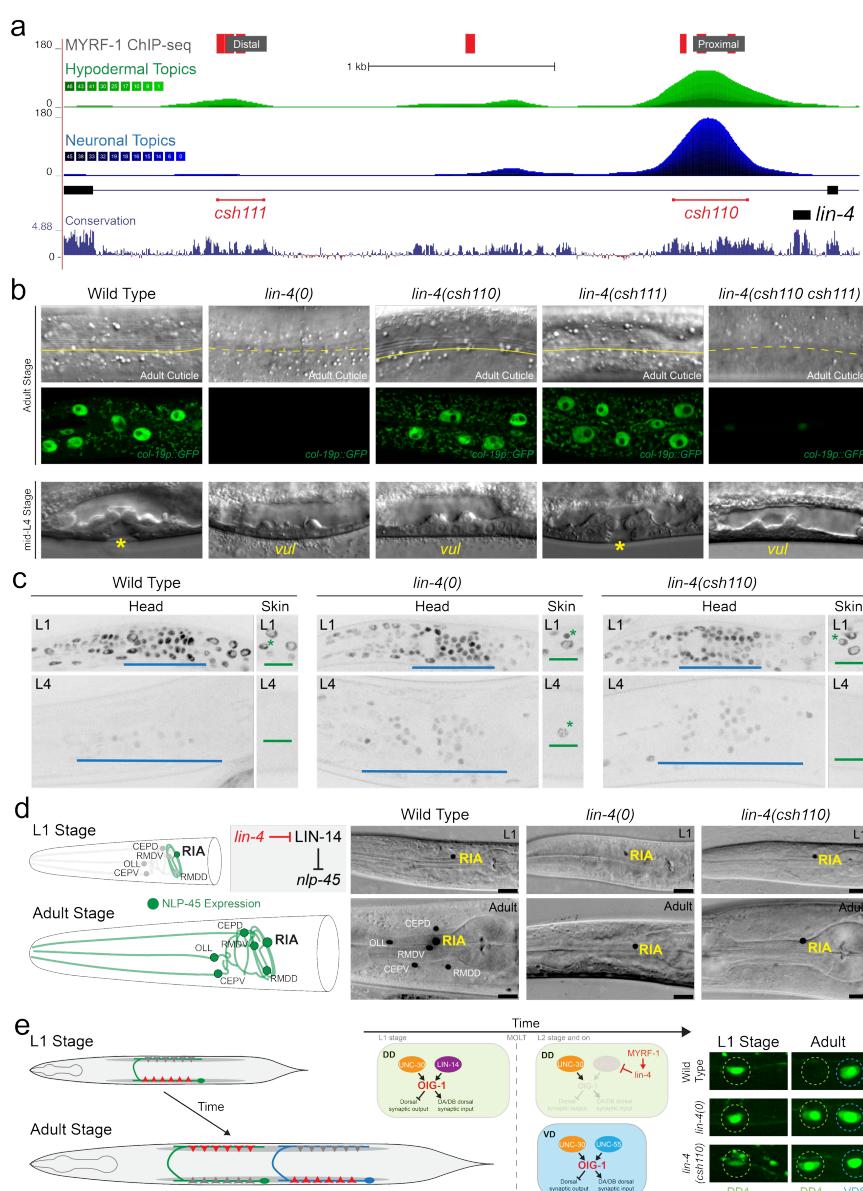
138 Consistent with a broad role in temporal progression, even in late temporal cell fate transitions, *myrf-*
139 *1(mg412)* enhanced defects in a *let-7* hypomorphic mutant (*let-7(mg279)*) (Figure 1g; Table 1) and
140 exhibited stage-specific synthetic phenotypes when combined with mutations in factors that prime
141 heterochronic miRNA transcription (*blmp-1*) or modulate post-translational repression of HBL-1 (*lin-*
142 *46*) (fig. S1h–j). Importantly, RNAi-mediated depletion of *hbl-1* fully suppressed these late-stage
143 synthetic phenotypes, indicating that MYRF-1 promotes temporal progression primarily by enabling
144 heterochronic miRNA-mediated repression of temporal identity genes (fig. S1x). Together, these
145 results demonstrate that MYRF-1 acts broadly and cooperatively within the heterochronic pathway to
146 ensure correct temporal progression, principally by driving transcription of heterochronic miRNAs.

147 **Chromatin accessibility dictates MYRF-1 functionality in diverse cell lineages**

148 To determine whether MYRF-1 binding upstream of *lin-4* is necessary for correct temporal patterning
149 amongst diverse cell lineages, we integrated our ChIP-seq-defined MYRF-1 binding site data with cell-
150 type–resolved chromatin accessibility maps derived from single-cell ATAC-seq experiments(26). Both
151 MYRF-1 binding regions upstream of *lin-4* are within accessible chromatin in hypodermal lineages at
152 the L2 stage (Fig. 2a). In contrast, only the proximal MYRF-1 binding region is accessible in neuronal
153 lineages (Fig. 2a), indicating that MYRF-1-dependent regulation of *lin-4* may be limited by lineage-
154 specific chromatin structure. The functional contribution of these elements was then probed
155 genetically by using CRISPR/Cas-9 genome editing to delete either the distal or proximal MYRF-1
156 binding regions individually or in combination in the endogenous context (Fig. 2a). Deletion of either
157 element alone produced minimal developmental defects and regular expression of temporal patterning
158 reporters in hypodermal tissues (Fig. 2b; Table 1). By contrast, simultaneous deletion of both regions
159 resulted in highly penetrant heterochronic phenotypes that closely phenocopied *lin-4(0)* mutants (Fig.
160 2b; Table 1; Table S2), demonstrating that MYRF-1 binding to either site is sufficient to support normal
161 hypodermal temporal patterning and that both accessible enhancers bound by MYRF-1 are
162 functionally redundant in developing nematode skin cells.

163 Despite this redundancy in the skin, deletion of the proximal element (*lin-4(csh110)*) caused a fully
164 penetrant egg-laying defective phenotype (n = 120) that was absent in wild-type (n = 60) or in animals
165 lacking the distal enhancer element, *lin-4(csh111)* (n = 100), revealing a lineage-specific requirement
166 for MYRF-1 input. This defect correlated with failure of vulval precursor cell (VPC) maturation (Fig.
167 2b; Table S3). Moreover, even in *csh110* animals with grossly normal VPC cell lineages, axons of the
168 Hermaphrodite-Specific Neuron (HSN) that promote egg laying in adulthood failed to extend and
169 innervate adult vulval structures, closely resembling the neuronal defects observed in *lin-4(0)* mutants

170 (fig. SX)(27). These findings suggest that neuronal and vulval lineages are more sensitive to loss of the
 171 proximal MYRF-1 binding region than hypodermal tissues.


Figure 2 | Differential requirements for

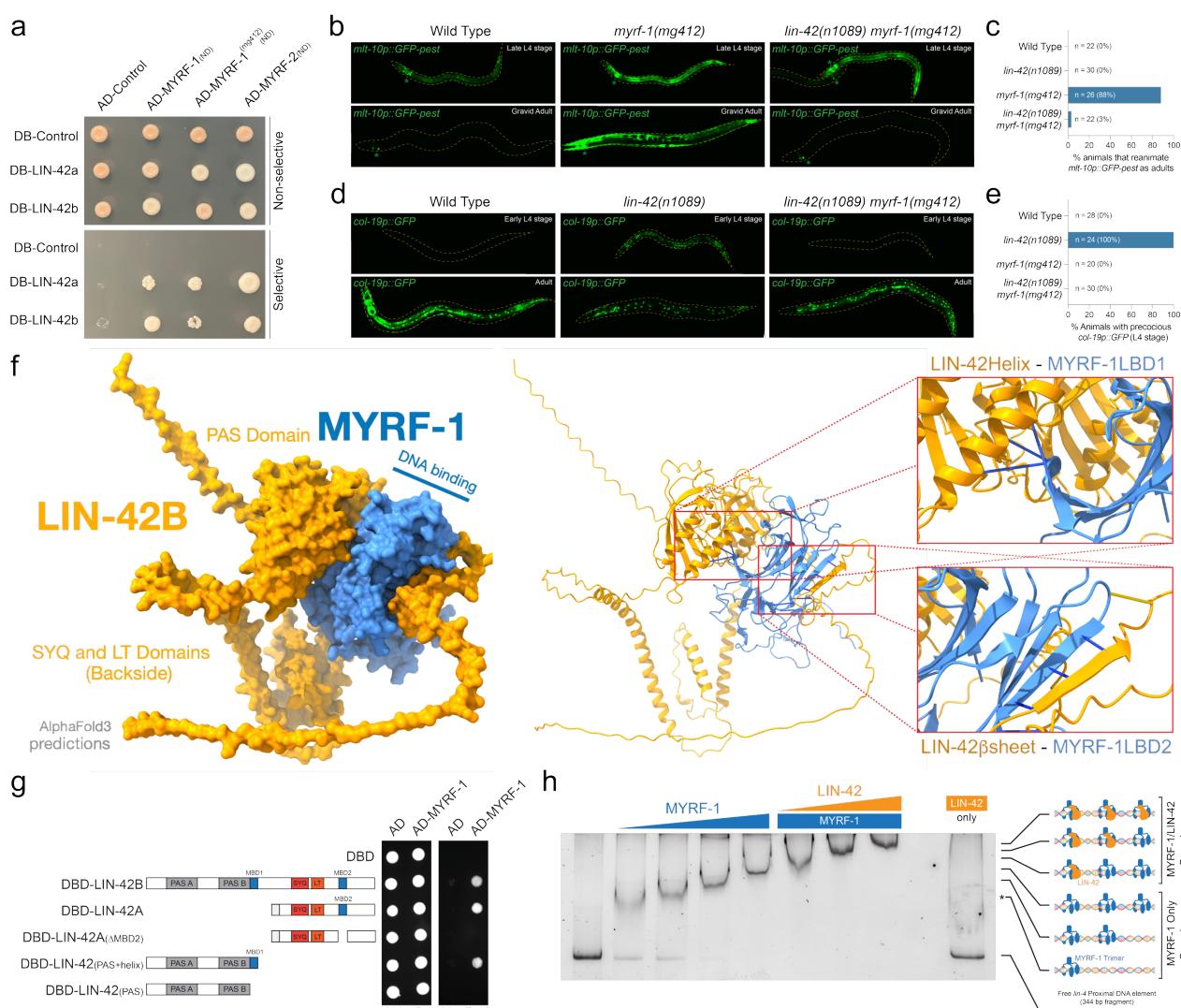
MYRF-1 binding sites at the *lin-4* locus across tissues. a, Schematic of the *lin-4* locus showing GFP::MYRF-1 binding sites (grey) and predicted MYRF-1 consensus motifs (red). Genome browser tracks display chromatin accessibility in hypodermal (green) and neuronal (blue) cell types from L2-stage scATAC-seq data. Conservation of the *lin-4* locus across nematode species is shown below, along with the positions of the *lin-4(csh111)* and *lin-4(csh110)* alleles, which delete clusters of MYRF-1 binding sites.

b, Representative micrographs showing adult cuticle and *col-19p::GFP* expression, and L4-stage vulval morphology, in animals of the indicated genotypes. **c**, Expression dynamics of LIN-14::GFP in wild-type and *lin-4* mutant animals. Blue bars denote LIN-14::GFP expression in head neuronal ganglia; green bars denote expression in hypodermal tissues. Green asterisks mark lateral seam cells expressing LIN-14::GFP at the indicated stages. **d**, Schematic and representative images of *nlp-45* expression in head ganglion neurons. Following LIN-14 downregulation at the end of L1, *nlp-45* expression expands to additional sensory and motor neurons. Images show *nlp-45::T2A::GFP::H2B* reporter expression in staged animals of the indicated genotypes. Phenotypes are fully penetrant in late L4 (0% of wild type ($n = 25$), 100% of *lin-4(0)* ($n = 25$), and 100% of *lin-4(csh110)* ($n = 22$)). **e**, Persistent expression of an *oig-1::GFP* transcriptional reporter in DD neurons of *lin-4* mutants. In *lin-4(0)* and *lin-4(csh110)* mutants, an *oig-1p::GFP* transcriptional reporter expression persists into late L4 (0/25 wild type, 20/20 *lin-4(0)*, 22/23 *lin-4(csh110)*).

1/6

177 expected, *lin-4(0)* mutants fail to repress LIN-14, resulting in persistent LIN-14::GFP expression in
 178 both hypodermal and neuronal lineages (Fig. 2c)(29). In *lin-4(csh110)* animals, LIN-14::GFP was
 179 properly downregulated in hypodermal cells by the end of L1, but persisted at high levels in neurons,
 180 closely resembling the neuronal levels of LIN-14::GFP in *lin-4(0)* mutant neurons (Fig. 2c). By contrast,
 181 LIN-14 regulation in *lin-4(csh111)* mutants was indistinguishable from wild type.

To directly examine the consequences of these cis-regulatory perturbations on *lin-4* function, we monitored the temporal expression dynamics of its direct target, the transcription factor LIN-14. In wild-type animals, *lin-4* expression during mid-L1 leads to repression of LIN-14 across somatic tissues (Fig. 2c)(2, 3, 28). As


182 Consistent with these lineage-specific defects in LIN-14 regulation, *lin-4(csh110)* animals showed
183 pronounced temporal mosaicism: hypodermal cells executed normal temporal programs and matured
184 to nearly normal adult tissues, whereas multiple neuronal cell types displayed fully penetrant juvenile
185 phenotypes (Fig. 2d and e). These phenotypes include alterations in neuropeptide expression patterns
186 (e.g., NLP-45::T2A::GFP::H2B) that are directly regulated by LIN-14 and *lin-4* expression(29), as well
187 as the perdurance of L1-stage expression programs (e.g., *oig-1* expression(30)) in later larval stages that
188 antagonize the stage-specific rewiring of motor neuron synapses in the ventral nerve chord. Together,
189 these results show that MYRF-1 binding sites upstream of *lin-4* are required across somatic lineages,
190 and lineage-specific differences in miRNA transcriptional regulation reflect chromatin accessibility
191 patterns rather than distinct timing mechanisms. Thus, organism-wide temporal coherence of
192 heterochronic microRNA expression arises from global coordination of MYRF-1 acting on shared cis-
193 regulatory elements, rather than from repeated convergence of tissue-restricted transcriptional
194 programs.

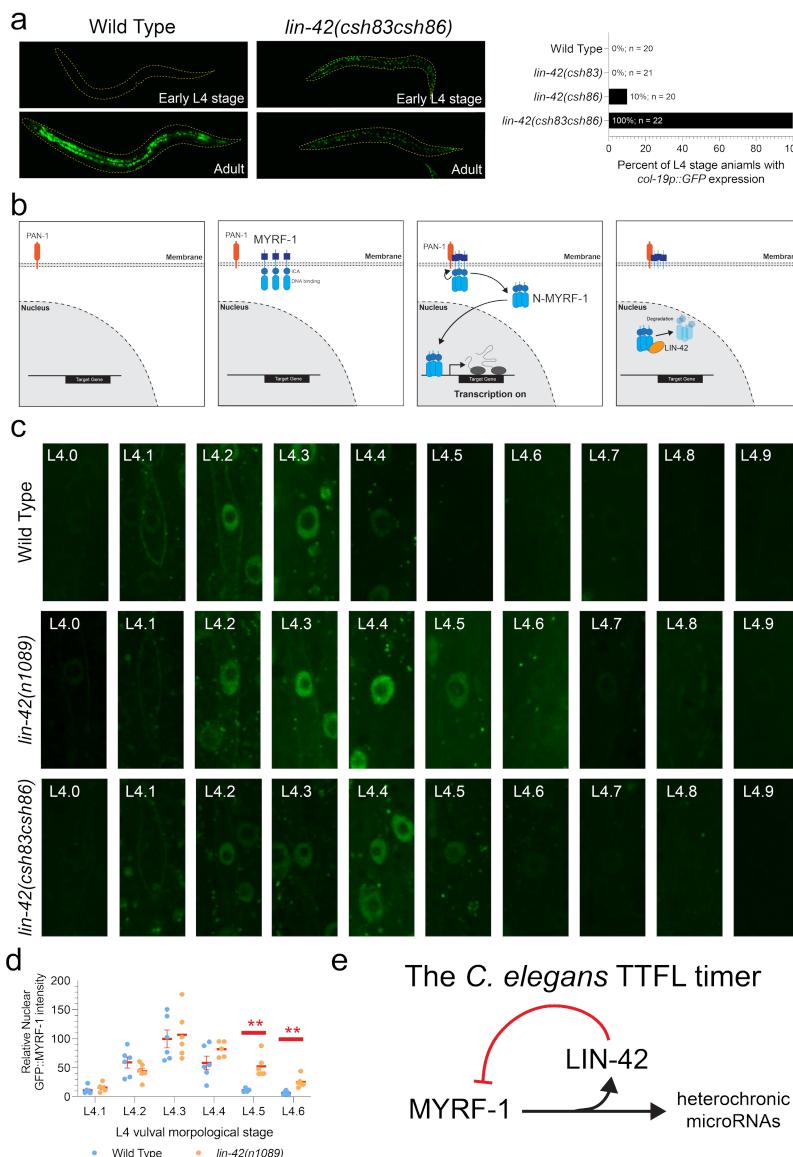
195 **LIN-42 physically binds to MYRF-1**

196 Gene regulatory networks that generate pulsatile transcriptional patterns typically rely on coupled
197 negative feedback and delay mechanisms in which transcription factors activate their own repressors,
198 producing periodic bursts of gene expression with defined phase, amplitude, and duration(31).
199 Because MYRF-1 directly activates *lin-42* (Fig. 1A) and LIN-42 is predicted to dampen transcriptional
200 pulses (12, 13), we asked whether LIN-42 physically associates with MYRF-1. Yeast two-hybrid (Y2H)
201 assays showed that both major LIN-42 isoforms (LIN-42A and LIN-42B) robustly interact with the NDs
202 of MYRF-1 and MYRF-2 (Fig. 3a), suggesting that these interactions may be part of a
203 transcription/translational feedback loop (TTFL) mechanism. A hallmark feature of TTFL circuits is
204 reciprocal buffering, in which an asymmetry in regulatory interactions caused by a loss-of-function
205 mutation in one component can be suppressed by a loss-of-function mutation in the other (32). We
206 therefore tested whether *myrf-1(lf)* and *lin-42(lf)* mutations modulate each other's developmental timing
207 phenotypes. The hypomorphic allele *myrf-1(mg412)* induces a supernumerary adult molting
208 phenotype marked by aberrant *mlt-10p::GFP-pest* reactivation in adult animals (Fig. 3b)(25).
209 Combining a *lin-42(lf)* allele with *myrf-1(mg412)* fully suppressed these defects (Fig. 3b and c).
210 Conversely, the precocious heterochronic phenotypes associated with multiple *lin-42(lf)* alleles were
211 eliminated when combined with *myrf-1(mg412)* (Fig. 3d and e; Table 1). *myrf-2(0)* mutations, which
212 alone do not elicit detectable molting or temporal patterning phenotypes, also partially suppress
213 precocious adult-alae formation observed in *lin-42(lf)* animals (Table 1). These reciprocal genetic
214 interactions indicate that MYRF-1 and LIN-42 mutually regulate each other's activity *in vivo* and
215 support their placement in a shared feedback loop.

216 To define the molecular basis of this interaction, we used AlphaFold 3(33) to model complexes of
217 MYRF-1(ND) and LIN-42. The predicted structures revealed two distinct LIN-42B domains that bind
218 separate sites of MYRF-1(ND) (Fig. 3f). The first interface is mediated by a conserved α -helical
219 extension immediately C-terminal to the LIN-42B PAS domain (MBD1), whereas the second involves
220 a LIN-42B β -strand segment (MBD2) that intercalates into a β -fold domain of MYRF-1. To test these
221 predictions, we generated LIN-42 deletion constructs lacking either the PAS-adjacent α -helix or the β -
222 strand-forming segment and retested Y2H interactions between these proteins. Deletion of either

223 segment from LIN-42 fragments abolished MYRF-1–LIN-42 association in yeast, whereas constructs
 224 retaining either motif preserved robust binding (Fig. 3g). These results support features of the structural
 225 predictions for this complex and indicate that specific LIN-42 domains are required for interaction
 226 with MYRF-1.

Figure 3 | LIN-42 and MYRF-1 interact physically and genetically. **a**, Two-hybrid assays demonstrate that both isoforms of LIN-42 physically associate with the N-terminal nuclear fragment of the *C. elegans* MYRF proteins. Both LIN-42 isoforms also interact with MYRF-1(mg412). **b and c**, a hypomorphic allele of *myr-1*, *myr-1(mg412)*, exhibits a highly penetrant supernumerary molting phenotype and reactivation of a *mlt-10p::GFP-pest* transcriptional reporter in adulthood. Combining a *lin-42(lf)* mutation with the *myr-1(mg412)* allele suppresses these defects. **d and e**, Precocious expression of the *col-19p::GFP* transcriptional reporter in *lin-42(lf)* mutants is suppressed when combined with a *myr-1(lf)* mutation. **f**, AlphaFold3 predictions of LIN-42 and MYRF-1 polypeptides predict that LIN-42 binds to two separate surfaces of a MYRF-1 monomer. The first AlphaFold3-predicted LIN-42 MYRF-1-binding Domain 1 (MBD1) comprises a conserved α -helical structure immediately C-terminal to the PAS domains. The second predicted interaction surface, MYRF-1-binding Domain 2 (MBD2), involves a β -strand of LIN-42 that extends an existing β -fold element in the predicted MYRF-1 structure. **g**, Two-hybrid experiments using LIN-42 constructs lacking amino acids implicated in MBD1 or MBD2 indicate that these regions of LIN-42 mediate the two-hybrid interactions. **h**, Increasing concentrations of a recombinant MYRF-1 result in a stepwise series of binding interactions with a proximal DNA region upstream of the *lin-4* gene, which harbors three predicted MYRF-1 consensus binding sites (Fig. 1a). This is the same DNA element, deleted in the *csh110* allele of *lin-4* outlined in Figure 2a, that harbors three predicted MYRF-1 trimer-binding sites. The addition of recombinant LIN-42B protein into the binding reactions results in three additional super shifts of the 3xMYRF-1/DNA complexes. LIN-42B alone exhibits no DNA-binding activity.


227 We next tested whether LIN-42 affects the ability of MYRF-1 to bind DNA by performing
228 electrophoretic mobility shift assays with a long *lin-4* proximal DNA fragment deleted in the *csh110*
229 allele of *lin-4*. This region harbors three predicted MYRF-1 consensus binding sites, which we
230 speculate to each be bound by MYRF-1 homotrimers (Fig. 1a, 1e, and 2a). MYRF-1 titration revealed
231 three discrete protein–DNA complexes consistent with sequential site occupancy of each predicted
232 MYRF-1 binding site (Fig. 3h). We then titrated recombinant LIN-42B into these reactions and found
233 that increasing LIN-42 concentrations led to a stepwise series of three additional super-shifts.
234 Recombinant LIN-42B alone does not bind the *lin-4* proximal element (Fig. 3h), indicating that the
235 super-shifts of the *lin-4* proximal element in these conditions result from LIN-42 binding to the three
236 DNA-bound MYRF-1 complexes. This was supported by LIN-42B titration experiments with a single
237 MYRF-1 binding site, which showed a single super-shifted species consistent with a 1:1 binding
238 stoichiometry, as determined by mass photometry (Fig2 X).

239 **LIN-42 post-translationally controls the duration of MYRF-1 expression**

240
241 To assess the functional importance of the LIN-42/MYRF-1 interaction domains *in vivo*, we used
242 CRISPR/Cas9 editing to delete the two LIN-42 domains suspected to mediate direct MYRF-1 binding:
243 the PAS-adjacent α -helical region (*lin-42(csh86)*) and the predicted, C-terminal β -strand segment (*lin-*
244 *42(csh83)*). Animals lacking these individual domains showed normal larval cell division patterns,
245 expressed *col-19p::GFP* only in adulthood, and developed adult alae at the correct time (Fig. 4a; Table
246 1). Strikingly, simultaneous deletion of both domains, *lin-42(csh83 csh86)*, caused strong precocious
247 phenotypes characteristic of significant *lin-42* loss of function, including early *col-*
248 *19p::GFP* expression in L4-stage animals and the premature formation of adult-specific alae after the
249 L3 molt (Fig. 4a; Table 1) (13, 19). These findings demonstrate that the two LIN-42 structural motifs
250 function together *in vivo* and that most LIN-42 functions required for temporal cell-fate specification
251 depend on its ability to interact with MYRF-1.

252
253 Given the dynamic, once-per-larval-stage expression pattern of *myrf-1* (fig. S1a) and LIN-42's role in
254 repressing the transcription of MYRF-1 targets (Fig. 1a) (12, 13, 21, 34), we hypothesized that LIN-42
255 might post-translationally regulate MYRF-1 dynamics. To test this, we tracked GFP::MYRF-1
256 expression in L4-staged hypodermal cells, where GFP::MYRF-1 levels could be directly correlated
257 with specific developmental milestones(13, 35). GFP::MYRF-1 was first observed on the outer
258 membranes of lateral seam cells in early L4 animals (L4.0 stage) (Fig. 4c). Soon after initial detection
259 in the membrane, cleaved GFP::MYRF-1(ND) started transitioning to the nucleus and was fully nuclear
260 by the L4.3 stage (Fig. 4c). GFP::MYRF-1 levels then decreased starting at L4.4 and were absent from
261 lateral seam cell nuclei by L4.6 stage. These dynamic expression patterns were also seen in other
262 somatic cells (Fig. Sx). We examined GFP::MYRF-1 in animals with a large *lin-42* deletion allele, *lin-*
263 *42(n1089)*, or animals expressing the LIN-42 variant (LIN-42(*csh83 csh86*)) that cannot bind MYRF-
264 1. In both *lin-42* mutant strains, early L4 GFP::MYRF-1 expression dynamics (membrane localization
265 followed by nuclear import) remained unchanged (Fig. 4c). However, nuclear MYRF-1 expression
266 dynamics are significantly altered in *lin-42* loss-of-function mutants, with nuclear MYRF-1 expression
267 persisting in somatic cells for up to 1.5-2 extra hours (Fig. 4c; Fig. Sx)(35). The prolonged nuclear
268 accumulation of MYRF-1 in *lin-42* mutants coincides with an extended period of *lin-4* transcriptional

269 bursting in *lin-42* mutants(13), indicating that the timing of MYRF-1 nuclear activity determines the
 270 length—and likely the amplitude of *lin-4* transcriptional output.

Figure 4 | LIN-42 controls the duration of MYRF-1 nuclear residency to control temporal patterning. **a**, Simultaneous deletion of both MYRF-1 binding regions of LIN-42 results in strong heterochronic phenotypes, including the precocious expression of an adult-specific transcriptional reporter. **b**, MYRF-1 is initially translated in the cytoplasm and rapidly inserted into the ER and trafficked to the cytoplasmic membrane. Once concentrated on the membrane, the N-terminal fragment is autocatalytically cleaved and transported into the nucleus. In the nucleus, MYRF-1 binds to its regulatory elements upstream of its target genes to promote their transcription. **c**, Expression dynamics of GFP::MYRF-1 in hypodermal cells of L4-staged animals. **d**, Quantification of the dynamic changes in GFP::MYRF-1 expression in wild-type and *lin-42(n1089)* mutants. The perdurance of GFP::MYRF-1 in *lin-42(n1089)* mutants differs statistically from wild-type expression at the L4.5 and L4.6 stages using the Student's t-test. ** indicates $p = <0.01$. **e**, A model depicting the regulatory interactions between MYRF-1, LIN-42, and miRNA target genes that compose a simple transcriptional/translational feedback loop.

273 **DISCUSSION**

274 Our findings demonstrate that the reciprocal regulation between MYRF-1 and the PERIOD-like
 275 repressor LIN-42 forms a molecular timer that governs once-per-stage oscillations in gene expression.
 276 In this process, MYRF-1 directly activates *lin-42* transcription, while LIN-42 provides feedback to limit
 277 the duration of each MYRF-1 pulse. This transcriptional/translational feedback loop produces rhythmic
 278 MYRF-1 accumulation to precisely regulate the phase, amplitude, and duration of miRNA
 279 transcription. The observation that these pulses occur across somatic tissues and align with key
 280 developmental transitions suggests a mechanism in which the MYRF-1/LIN-42 timer coordinates gene
 281 expression timing with overall organism development. Furthermore, the fact that *myrf-1(0)* animals
 282 arrest immediately after molting indicates that this timer plays an essential role in promoting overall

283 developmental progress, linking gene regulatory programs to the physiological processes necessary
284 for transitioning between stages.

285 A critical feature of the developmental timer is that its activity within each larval stage is embedded
286 in the nested-repression architecture of the heterochronic pathway(9, 36, 37). Each stage is defined
287 by a temporal identity gene that both activates the stage-appropriate transcriptional program and
288 represses the miRNAs expressed in the subsequent stage(8, 38). As the temporal identity gene declines
289 late in the stage, repression of the corresponding miRNA loci is relieved, but transcription does not
290 occur immediately. Derepression licenses transcriptional competence, whereas activation is imposed
291 by the subsequent MYRF-1 pulse, which arrives only after the next cell fate has been specified. This
292 delay ensures that miRNA expression follows, rather than precedes, fate commitment, and the
293 resulting miRNA expression wave in the subsequent stage represses the next temporal identity gene,
294 converting rhythmic MYRF-1/LIN-42 activity into irreversible developmental transitions.

295 These results identify a developmental timing circuit that synchronizes gene expression across tissues
296 by coupling rhythmic transcriptional activity to irreversible fate transitions. Although the MYRF-1/LIN-
297 42 timer shares transcriptional/translational feedback logic with circadian clocks(31, 39), it serves a
298 distinct function by scheduling a finite series of sequential events that occur once and must be
299 executed in the correct order. By interfacing with the nested-repression architecture of the
300 heterochronic pathway, this timer converts oscillatory gene expression into stage-locked miRNA
301 waves that drive unidirectional developmental progression. Together, these findings show how
302 conserved clock components can be repurposed to coordinate organism-wide development and
303 couple gene regulatory dynamics to growth.

304 **Acknowledgments:** ChatGPT v5.1 was used for polishing initial drafts.

305
306 **Funding:**

307
308 National Institutes of Health grant R01GM155806 (CMH)
309 National Institutes of Health grant R01GM117406 (CMH)
310 National Institutes of Health grant R01GM155806 (LJT)
311 National Institutes of Health grant R35GM130311 (SE)
312 National Human Genome Research Institute grant R01HG011787 (JK)
313 National Science Foundation grant 2217560 (CMH)
314

315 **Author contributions:**

316 Methodology: PW, JW, BP, CMH
317 Investigation: PW, JW, BP, IV, DR, KL, JT, CMH
318 Visualization: CMH
319 Funding acquisition: CMH, LJ, JK
320 Project administration: CMH
321 Supervision: CMH, LJ
322 Writing – original draft: CMH
323 Writing – review & editing: PW, BP, IV, JW, LJ, CMH
324

325 **Competing interests:** The authors declare that they have no competing interests.

326 **Data and materials availability:** All data, code, and materials used in the analysis are available to
327 any researcher for purposes of reproducing or extending the analysis.

328
329 **MATERIALS AND METHODS**

330 **C. elegans strains and maintenance**

331 *C. elegans* strains were maintained on standard nematode growth medium (NGM) plates seeded with
332 *E. coli* OP50 at 20 °C or 15°C under standard laboratory conditions. The Bristol N2 isolate was used
333 as the wild-type reference strain. A complete list of strains used in this study is provided in
334 Supplemental Table SX.

335

336 **CRISPR genome deletion and GFP tagging**

337 Genome editing and endogenous GFP tagging were performed by following established CRISPR/Cas9
338 protocols(40, 41). Briefly, Cas9–sgRNA ribonucleoprotein (RNP) complexes were preassembled by
339 combining purified recombinant Cas9 protein with synthetic CRISPR sgRNAs targeting specific
340 genomic loci, together with a *dpy-10* sgRNA used as a co-CRISPR marker to generate Roller
341 phenotypes. The injection mixture, containing the assembled RNP complexes and a PCR-amplified
342 repair template with flanking homology arms, was injected into the germline of hermaphrodites.
343 Broods segregating Roller progeny were screened for genome edits, and putative transgenic animals
344 were subsequently genotyped by PCR to confirm domain deletions within the *lin-42* gene, MYRF-1
345 binding sequences upstream of *lin-4*, or endogenous GFP tagging at the *myrf-1* N terminus.

346

347 **Yeast two-hybrid assays**

348 Plasmids encoding target proteins fused to GAL4 DNA-binding-domain (pBD) and GAL4 Activation
349 Domain (pAD) were co-transformed into the pJ69-4a Y2H yeast strain (42) using the lithium acetate
350 method as previously described in the Matchmaker™ GAL4 Two-Hybrid System 3 User Manual
351 (Takara Bio USA, Inc.). Transformants were selected on SC-TRP-LEU plates for 3 days at 30 °C. Three
352 independent colonies from each transformation were subsequently spotted onto SC-HIS-TRP-LEU
353 plates. Protein-protein interactions were inferred from visible growth on 3-AT conditions with negative
354 growth in empty vector controls after 3 days of incubation at 30 °C.

355

356 **ChIP-seq**

357 Endogenously GFP-tagged MYRF-1 animals were synchronized at the L1 stage by hypochlorite
358 treatment of gravid adults followed by overnight hatching in M9 buffer. Synchronized L1 larvae were
359 plated on 150-mm NGM plates seeded with *E. coli* OP50 and grown for ~11 h, when GFP::MYRF-1
360 is predominantly localized to the nucleus. Approximately 100 µL of packed worms were collected by
361 washing in M9 buffer, crosslinked in 2% formaldehyde, and quenched with 125 mM glycine. Two
362 biological replicates were collected for each ChIP experiment. ChIP-seq was performed as previously
363 described (13). Briefly, crosslinked animals were homogenized in FA buffer (50 mM HEPES-KOH pH
364 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, and 0.1% sarkosyl)
365 supplemented with protease inhibitors, dounce-homogenized on ice, and sonicated at 4 °C to shear
366 DNA and generate 200–800 bp chromatin fragments. Clarified extracts were quantified by Bradford
367 assays, and 1–4 mg of total protein was incubated overnight at 4 °C with anti-GFP antibody (Abcam,
368 #ab290) and anti-RNA polymerase II antibody (Millipore 05-952-I-100UG). Immune complexes were
369 captured with protein A/G Sepharose beads, sequentially washed with buffers of increasing stringency,
370 and eluted in SDS-containing ChIP elution buffer. Crosslinks were reversed overnight at 65 °C,
371 followed by RNase A and Proteinase K treatments. DNA was purified using Qiagen MinElute columns
372 and analyzed for fragment size before library preparation and sequencing with Illumina NextSeq500
373 at NYU Center for Genomics and Systems Biology core facility.

374

375

376 **ChIP-seq data analysis and MYRF-1 binding motif identification**

377 Single-end 75bp ChIP and input control reads were processed using established computational
378 pipelines. Raw sequences were first assessed for quality with FastQC and FastQ Screen, and low-
379 quality reads were removed using Trimmomatic. Adapter sequences were trimmed with Cutadapt, and
380 the filtered reads were aligned to the *C. elegans* reference genome (ce11) using Bowtie2(43). MACS2
381 (44, 45) was used for peak calling, with input DNA as the control, and significance thresholds of $P <$
382 0.001 and $q < 0.05$ were applied. Reproducible peaks across biological replicates were identified by
383 intersecting using BedTools (46). A random set of genomic regions matched in number and length to
384 the reproducible peaks was generated as background controls. Peak and control sequences were
385 analyzed with the MEME suite in discriminative mode using a first-order (dinucleotide) background
386 model. Two enriched motifs were identified: a predominant GA-repeat motif (dimeric or trimeric)
387 present in most peaks, and a less repetitive secondary motif found in a smaller subset. These motifs
388 were scanned across the peak and control sequences using FIMO(47), and the resulting P-values of

389 the top hits were used to generate ROC curves. The GA-repeat motif achieved an area under the curve
390 (AUC) of 0.78, and the secondary motif, 0.73. Based on these curves, motif significance thresholds
391 were set at $P < 1 \times 10^{-4}$ and $P < 1 \times 10^{-3}$ for the GA-repeat and secondary motifs, respectively.
392 Genome-wide motif scanning was then performed using these thresholds, and the resulting motif
393 distributions were visualized as custom UCSC Genome Browser tracks.
394

395 **Confocal imaging**

396 For confocal imaging, worms at the appropriate developmental stages were mounted on 2% (w/v)
397 agarose pads in 100 mM levamisole (Sigma). Images were acquired using a Hamamatsu Orca EM-
398 CCD camera and a Borealis-modified Yokogawa CSU-10 spinning disk confocal microscope (Nobska
399 Imaging, Inc.) with a Plan-APOCHROMAT x 100/1.4, 63x/1.3, or 40/1.4 oil DIC objective controlled
400 by Visiview Software (version: 7.0). LED illumination at 488 nm and 561 nm was used to excite green
401 and red fluorophores, respectively. Images were processed in ImageJ (Fiji) using identical processing
402 settings for all genotypes and developmental stages within each experiment.
403

404 **Quantification of fluorescent reporter**

405 The average intensity (arbitrary units) of GFP::MYRF-1 in hypodermal cells of L4-stage animals was
406 quantified using ImageJ as previously described (13, 17). For each cell, fluorescence intensity was
407 calculated as the nuclear signal minus the background signal measured from the same image. The
408 mean intensity of three hypodermal cells was used to determine the GFP::MYRF-1 level for each
409 animal. All statistical analyses were performed using GraphPad Prism 9 (GraphPad Software, San
410 Diego, Ca). Mean \pm SEM values were calculated and plotted in Prism. Differences between the two
411 groups were considered statistically significant when $p < 0.05$ (Student's t-test).
412

413 **Recombinant protein expression and purification**

414 *C. elegans* MYRF-1(ND)(amino acids 1-483) and full-length LIN-42B were cloned as N-terminal Strep-
415 SUMO fusion proteins in separate pFL vectors of the MultiBac Baculovirus expression system(48).
416 These proteins were individually expressed in Sf9 cells grown in CCM3 media (Hy-Clone) at 27°C for
417 60 hr. Cells were pelleted by centrifugation at 1800 rpm for 20 min, resuspended in lysis buffer (MYRF-
418 1(ND) = 25 mM Tris pH 8, 200 mM NaCl, 2 mM DTT, 10% glycerol; LIN-42B = 20 mM Tris pH 8,
419 200 mM NaCl, 5 mM BME) and sonicated in the presence of homemade protease inhibitor cocktail
420 and cOmplete mini EDTA-free protease inhibitors (Roche). Lysates were clarified by
421 ultracentrifugation for 1 hr at 4°C. For affinity chromatography, lysate supernatants were batch-bound
422 to Strep-Tactin Superflow resin (IBA) for 1 hr at 4°C with rotation. Affinity beads were harvested by
423 centrifugation at 1000 rpm for 3 min, decanted to 1 column volume (CV), resuspended, and applied
424 to a gravity column. For MYRF-1(ND), the column was washed with 1 CV lysis buffer, 2 CV high salt
425 wash buffer (25 mM Tris pH 8, 500 mM NaCl, 2 mM DTT, 10% glycerol), and 1 CV lysis buffer to
426 remove nucleic acid and protein contaminants. For LIN-42B, the column was washed with 3 CV lysis
427 buffer. Proteins were eluted with 5 mM desthiobiotin in lysis buffer. The strep-SUMO tag was removed
428 from MYRF-1(ND) by TEV protease (1:30 by mass) overnight at 4°C. Proteins were further purified
429 using anion exchange (HiTrap Q at pH 8) and size exclusion chromatography (Superose 6 increase,
430 10/300) in storage buffer (25 mM Tris pH 8, 200 mM NaCl, 2 mM DTT, 10% glycerol). Peak fractions
431 were assessed for purity by SDS-PAGE, pooled, and concentrated to 0.6 mg/mL (MYRF-1(ND)) or 0.9

432 mg/mL (LIN-42B). To reconstitute the MYRF-1(ND) trimer onto DNA, fully purified MYRF-1(ND) was
433 incubated with annealed proxB DNA at a 5-molar excess in MYRF-1(ND) storage buffer on ice for 1
434 hr. The DNA-bound trimer was separated by analytical gel filtration on a Superose 6 increase 3.2/300
435 in MYRF1(ND) storage buffer. Peak fractions were analyzed by SDS-PAGE, and gels were stained with
436 SYBR gold (1:33k in ddH₂O) at room temperature for 10 min to highlight co-purified DNA.
437

438 **Electrophoretic mobility shift assays**

439 For competitive EMSAs, MYRF-1(ND) was incubated with ATTO 680-labeled proxB on ice for 5 min,
440 after which competitor oligos were added. Reactions were incubated with competitors for an
441 additional 15 min at room temperature and run on 5% TBE gels in 0.5x TBE at 135V for 35 min at
442 4°C. For LIN-42B titration experiments, MYRF-1(ND) was incubated with unlabeled proxB (44 bp) or
443 a *lin-4* proximal promoter fragment (344 bp) in the presence of serially diluted strep-SUMO-LIN-42B
444 for 15 min at room temperature. Reactions with proxB were run on 5% TBE gels in 0.5x TBE at 110V
445 for 45 min, while those with promoter *lin-4* proximal were run at 100V for 90 min. All reactions were
446 conducted under conditions similar to those used in Ndt80 EMSAs (10 mM Tris pH 8, 75 mM KCl, 11
447 mM MgCl₂, 50 uM ZnSO₄, 10% glycerol, 1 mM DTT, and 0.02% Tween-20), and all gels were prerun
448 at 100V for 30 min at 4°C. Experiments with unlabeled probes were stained with a 1:100k dilution of
449 SYBR gold in ice-cold 0.5x TBE for 3 min and destained for 5 min prior to imaging.
450

451 **Mass photometry**

452 MYRF-1(ND) was diluted to 1.2 uM in storage buffer and incubated with or without prox B at a 5:1
453 molar ratio in reaction buffer (25 mM Tris pH 8, 150 mM NaCl, 2 mM DTT, 10% glycerol). Reactions
454 with DNA were incubated for 15 min at room temperature prior to taking measurements, while those
455 without were measured immediately after dilution. Reconstitution of the MYRF-1(ND):LIN-42B:DNA
456 ternary complex was performed in a similar way, this time incubating proxB DNA with a 5-molar
457 excess of each of MYRF-1(ND) and strep-SUMO-LIN-42B for 15 min at room temperature. Strep-
458 SUMO-LIN-42B control samples were prepared at 6 nM in storage buffer and immediately analyzed
459 after dilution. Samples were analyzed at 1/10 the indicated prepared concentration in 1xPBS on
460 untreated MassGlass UC slides (Reyfeyn). Movies were recorded for 60 sec in AcquireMP, and data
461 were analyzed in DiscoverMP software (Reyfeyn). Beta-amylase derived from sweet potato was used
462 to create the standard curve.
463
464
465
466

467 REFERENCES

- 468
- 469 1. V. Ambros, H. R. Horvitz, Heterochronic mutants of the nematode *Caenorhabditis elegans*.
470 *Science* **226**, 409–416 (1984).
- 471 2. R. C. Lee, R. L. Feinbaum, V. Ambros, The *C. elegans* heterochronic gene *lin-4* encodes small
472 RNAs with antisense complementarity to *lin-14*. *Cell* **75**, 843–854. (1993).
- 473 3. B. Wightman, I. Ha, G. Ruvkun, Posttranscriptional regulation of the heterochronic gene *lin-*
474 *14* by *lin-4* mediates temporal pattern formation in *C. elegans*. *Cell* **75**, 855–862 (1993).
- 475 4. F. J. Slack *et al.*, The *lin-41* RBCC gene acts in the *C. elegans* heterochronic pathway between
476 the *let-7* regulatory RNA and the *LIN-29* transcription factor. *Mol Cell* **5**, 659–669 (2000).
- 477 5. B. J. Reinhart *et al.*, The 21-nucleotide *let-7* RNA regulates developmental timing in
478 *Caenorhabditis elegans*. *Nature* **403**, 901–906. (2000).
- 479 6. M. Li, M. W. Jones-Rhoades, N. C. Lau, D. P. Bartel, A. E. Rougvie, Regulatory mutations of
480 *mir-48*, a *C. elegans* *let-7* family MicroRNA, cause developmental timing defects.
481 *Developmental cell* **9**, 415–422 (2005).
- 482 7. A. L. Abbott *et al.*, The *let-7* MicroRNA family members *mir-48*, *mir-84*, and *mir-241* function
483 together to regulate developmental timing in *Caenorhabditis elegans*. *Developmental cell* **9**,
484 403–414 (2005).
- 485 8. M. Ivanova, E. G. Moss, A temporal sequence of heterochronic gene activities promotes stage-
486 specific developmental events in *Caenorhabditis elegans*. *G3 (Bethesda)* **14**, (2024).
- 487 9. V. Ambros, A hierarchy of regulatory genes controls a larva-to-adult developmental switch in
488 *C. elegans*. *Cell* **57**, 49–57 (1989).
- 489 10. D. h. Kim, D. Grün, A. van Oudenaarden, Dampening of expression oscillations by
490 synchronous regulation of a microRNA and its target. *Nat Genet* **45**, 1337–1344 (2013).
- 491 11. P. M. Van Wynsberghe *et al.*, *LIN-28* co-transcriptionally binds primary *let-7* to regulate
492 miRNA maturation in *Caenorhabditis elegans*. *Nat Struct Mol Biol* **18**, 302–308 (2011).
- 493 12. R. Perales, D. M. King, C. Aguirre-Chen, C. M. Hammell, *LIN-42*, the *Caenorhabditis elegans*
494 *PERIOD* homolog, Negatively Regulates MicroRNA Transcription. *PLoS genetics* **10**,
495 e1004486 (2014).
- 496 13. B. Kinney *et al.*, A circadian-like gene network programs the timing and dosage of
497 heterochronic miRNA transcription during *C. elegans* development. *Dev Cell*, (2023).
- 498 14. G.-J. Hendriks, D. Gaidatzis, F. Aeschimann, H. Großhans, Extensive Oscillatory Gene
499 Expression during *C. elegans* Larval Development. *Mol Cell* **53**, 380–392 (2014).
- 500 15. M. W. Meeuse *et al.*, Developmental function and state transitions of a gene expression
501 oscillator in *Caenorhabditis elegans*. *Mol Syst Biol* **16**, e9498 (2020).
- 502 16. S. Nahar *et al.*, Dynamics of miRNA accumulation during *C. elegans* larval development.
503 *Nucleic Acids Res* **52**, 5336–5355 (2024).
- 504 17. N. Stec *et al.*, An Epigenetic Priming Mechanism Mediated by Nutrient Sensing Regulates
505 Transcriptional Output during *C. elegans* Development. *Curr Biol* **31**, 809–826 e806 (2021).
- 506 18. S. F. Roush, F. J. Slack, Transcription of the *C. elegans* *let-7* microRNA is temporally regulated
507 by one of its targets, *hbl-1*. *Developmental biology* **334**, 523–534 (2009).
- 508 19. M. Jeon, H. F. Gardner, E. A. Miller, J. Deshler, A. E. Rougvie, Similarity of the *C. elegans*
509 developmental timing protein *LIN-42* to circadian rhythm proteins. *Science* **286**, 1141–1146
510 (1999).
- 511 20. J. M. Tennessen, H. F. Gardner, M. L. Volk, A. E. Rougvie, Novel heterochronic functions of
512 the *Caenorhabditis elegans* period-related protein *LIN-42*. *Developmental biology* **289**, 30–43
513 (2006).

- 514 21. K. A. McCulloch, A. E. Rougvie, *Caenorhabditis elegans* period homolog lin-42 regulates the
515 timing of heterochronic miRNA expression. *Proceedings of the National Academy of Sciences*
516 of the United States of America
- 517 22. P. M. Van Wynsberghe, A. E. Pasquinelli, Period homolog LIN-42 regulates miRNA
518 transcription to impact developmental timing. *Worm* **3**, e974453 (2014).
- 519 23. J. Meng *et al.*, Myrf ER-Bound Transcription Factors Drive *C. elegans* Synaptic Plasticity via
520 Cleavage-Dependent Nuclear Translocation. *Dev Cell* **41**, 180–194 e187 (2017).
- 521 24. Z. Xu, Z. Wang, L. Wang, Y. B. Qi, Essential function of transmembrane transcription factor
522 MYRF in promoting transcription of miRNA lin-4 during *C. elegans* development. *Elife* **12**,
523 (2024).
- 524 25. S. Russel, A. R. Frand, G. Ruvkun, Regulation of the *C. elegans* molt by pgn-47. *Developmental*
525 *biology* **360**, 297–309 (2011).
- 526 26. T. J. Durham *et al.*, Comprehensive characterization of tissue-specific chromatin accessibility
527 in L2 *Caenorhabditis elegans* nematodes. *Genome Res* **31**, 1952–1969 (2021).
- 528 27. K. Olsson-Carter, F. J. Slack, A developmental timing switch promotes axon outgrowth
529 independent of known guidance receptors. *PLoS Genet* **6**, (2010).
- 530 28. P. Arasu, B. Wightman, G. Ruvkun, Temporal regulation of lin-14 by the antagonistic action
531 of two other heterochronic genes, lin-4 and lin-28. *Genes & development* **5**, 1825–1833
532 (1991).
- 533 29. H. Sun, O. Hobert, Temporal transitions in the post-mitotic nervous system of *Caenorhabditis*
534 *elegans*. *Nature* **600**, 93–99 (2021).
- 535 30. K. Howell, J. G. White, O. Hobert, Spatiotemporal control of a novel synaptic organizer
536 molecule. *Nature* **523**, 83–87 (2015).
- 537 31. J. M. Hurley, J. J. Loros, J. C. Dunlap, Circadian Oscillators: Around the Transcription-
538 Translation Feedback Loop and on to Output. *Trends Biochem Sci* **41**, 834–846 (2016).
- 539 32. S. Becker-Weimann, J. Wolf, H. Herz, A. Kramer, Modeling feedback loops of the
540 Mammalian circadian oscillator. *Biophys J* **87**, 3023–3034 (2004).
- 541 33. J. Abramson *et al.*, Accurate structure prediction of biomolecular interactions with AlphaFold
542 3. *Nature* **630**, 493–500 (2024).
- 543 34. P. M. Van Wynsberghe *et al.*, The Period protein homolog LIN-42 negatively regulates
544 microRNA biogenesis in *C. elegans*. *Developmental biology* **390**, 126–135 (2014).
- 545 35. D. Z. L. Mok, P. W. Sternberg, T. Inoue, Morphologically defined sub-stages of *C. elegans*
546 vulval development in the fourth larval stage. *BMC developmental biology* **15**, 26 (2015).
- 547 36. E. G. Moss, Heterochronic genes and the nature of developmental time. *Curr Biol* **17**, R425–
548 434 (2007).
- 549 37. V. Ambros, Control of developmental timing in *Caenorhabditis elegans*. *Current opinion in*
550 *genetics & development* **10**, 428–433 (2000).
- 551 38. J. Tsialikas, M. A. Romens, A. Abbott, E. G. Moss, Stage-Specific Timing of the microRNA
552 Regulation of lin-28 by the Heterochronic Gene lin-14 in *Caenorhabditis elegans*. *Genetics*
553 **205**, 251–262 (2017).
- 554 39. J. C. Dunlap, Molecular bases for circadian clocks. *Cell* **96**, 271–290 (1999).
- 555 40. A. Paix, A. Folkmann, D. Rasoloson, G. Seydoux, High Efficiency, Homology-Directed
556 Genome Editing in *Caenorhabditis elegans* Using CRISPR-Cas9 Ribonucleoprotein
557 Complexes. *Genetics* **201**, 47–54 (2015).
- 558 41. A. Paix, A. Folkmann, G. Seydoux, Precision genome editing using CRISPR-Cas9 and linear
559 repair templates in *C. elegans*. *Methods* **121-122**, 86–93 (2017).
- 560 42. P. James, J. Halladay, E. A. Craig, Genomic libraries and a host strain designed for highly
561 efficient two-hybrid selection in yeast. *Genetics* **144**, 1425–1436 (1996).
- 562 43. B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, Ultrafast and memory-efficient alignment of
563 short DNA sequences to the human genome. *Genome biology* **10**, R25 (2009).

- 564 44. Y. Zhang *et al.*, Model-based analysis of ChIP-Seq (MACS). *Genome biology* **9**, R137–139
565 (2008).
- 566 45. T. Liu, Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by
567 sequencing protein-DNA interactions in embryonic stem cells. *Methods Mol Biol* **1150**, 81–
568 95 (2014).
- 569 46. A. R. Quinlan, I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features.
570 *Bioinformatics* **26**, 841–842 (2010).
- 571 47. C. E. Grant, T. L. Bailey, W. S. Noble, FIMO: scanning for occurrences of a given motif.
572 *Bioinformatics* **27**, 1017–1018 (2011).
- 573 48. S. Trowitzsch, C. Bieniossek, Y. Nie, F. Garzoni, I. Berger, New baculovirus expression tools
574 for recombinant protein complex production. *J Struct Biol* **172**, 45–54 (2010).
- 575