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Abstract
Because natural selection must optimise multiple traits at once, previous work has suggested that
phenotypic dimensionality can substantially worsen the equilibrium fitness defect of a population
relative to the phenotypic optimum. However, it remains unclear how conclusions drawn from clas-
sical theoretical phenotype–fitnessmaps extend tomodels grounded in explicit biological mechan-
isms. Here we introduce weakest-link epistasis (WLE), a framework in which fitness is determined
by the least-fit phenotypic component, an extreme form of diminishing returns epistasis. We show
that in this framework, increasing dimensionality amplifies the load in a manner comparable to,
but surprisingly not more than, Fisher’s geometric model (FGM). Building on this similarity, we
demonstrate why genetic load is often invariant across different rules for combining trait-specific
fitness components into an overall organismal fitness. We explore these ideas by considering the
family of models where the organismal fitness is determined based on the 𝓁𝑝-norm of the vector
of trait-specific fitness defects, a framework that includes both FGM and WLE, but also captures
a continuum of genetic architectures, ranging from generalist to specialist regimes. Altogether,
our approach proposes a new perspective on the geometry of adaptive landscapes, and may help
provide quantitative insight into the cost of complexity.

1 Introduction
The difference between the stationary mean fitness of a population and the fittest possible geno-
type is called the genetic load [1–4]. Since alleles are effectively neutral when their selection coef-
ficient 𝑠 << 1∕𝑁𝑒, where 𝑁𝑒 denotes the long-term (effective) population size of a species, the
genetic load in a single-trait model is classically predicted to scale as 1∕𝑁𝑒 [4–7]. However, this
apparent predictability of the genetic load is complicated by the genetic architecture underlying
fitness (e.g. supply of deleterious mutations [3], degree of epistasis [8]). Notably, increasing the
number of fitness-contributing traits can dramatically amplify the supply of deleterious mutations
and hence the genetic load [2, 9–11], thereby creating a mutational burden that scales with the
complexity of organisms [12–14].

This burden of complexity has most often been studied through the lens of Fisher’s geomet-
ric model (FGM), under which the fitness landscape contains a single optimum in the phenotypic
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space. In this model, the genotypic load carried by an organism increases with the distance to the
optimumof its phenotypemapped into the fitness space [10, 14, 15]. In FGM, complexity is thus tra-
ditionally captured by the dimensionality of the fitness landscape, with the assumption that each
dimension could potentially represent a component (eg., a gene, a trait) contributing to fitness [14].
In this scenario, the genetic load was shown to be substantially exacerbated (relative to the single-
trait case), to the extent that it can become proportional to the number of fitness-contributing
components [2, 9].

Yet, if FGM has received some theoretical support [14, 16], it remains unknown how accurate
and broad a description it is of in vivo fitness landscapes [17–20]. Indeed, FGM relies on a very spe-
cific assumption about how phenotypic traits combine to produce fitness—namely, that fitness
depends on the Euclidean distance to the peak of their respective deviation from their optimum
value— which calls into question the universality of its predictions, including those about the ge-
netic load. Accordingly, FGM was extended to demonstrate the genetic load invariance across a
much broader range of theoretical fitness models [12]. A central limitation of this finding, how-
ever, is that neither fitness nor the underlying definition of complexity is grounded with a clear
biological rationale, raising questions about how complexity should be measured [12, 13, 21].

By contrast, a relevant yet unexplored principle governing the combined effect of traits on fit-
ness is Liebig’s law of the minimum [22–24]. According to this law, an organism’s growth is simply
dictated by the most limiting nutrient in its environment, that is its "weakest link", much like the
capacity of a barrel composed of staves of unequal length would be limited by its shortest stave.
Though originally proposed (and criticised) for the response of organisms to resources [22], this
concept conceals a significant potential for generalisation, especially at the cellular scale [24]. In
particular, because biosynthetic molecules can either be taken up in the environment or produced
through de novo synthesis, it is natural to extend this weakest link logic to themapping ofmetabolic
traits to fitness such that fitness would be dictated by the least-fit trait [25]. Imagine a two-enzyme
pathway, for instance, where one enzyme would be inefficient. In this scenario, the other enzyme
would have little influence on the metabolic flux (and hence on fitness, provided fitness is posit-
ively correlated with the flux), because it has virtually no control on the flux. This epistasis-driven
diminishing returns is the classical expectation from metabolic control theory [26, 27], where the
flux increase due to enhancing an enzyme’s efficiency gets inescapably limited by the presence of
other enzymes in the pathway [19, 28–31]. Notably, a similarmapping of traits onto fitness recently
helped explain why somemetabolic featuresmay be far off their optimum [32]. It is also consistent
with the existence of lethal mutations that make fitness equal zero regardless of how fit most of
an organism’s genes are [33].

Based on this "law of the minimum", we first describe the population genetics consequences
of weakest link epistasis (WLE) in terms of fitness landscapes and mutant selection coefficients
[25]. We then determine the genetic load under WLE and show that phenotypic dimensionality
𝑛 amplifies the bias toward maladaptive traits 𝑏, which reflects the tendency of mutations to pro-
duce deleterious trait changes, yielding an effective maladaptive trait bias 𝑛𝑏. To demonstrate the
generality of this finding, we prove that a broad class of models for combining trait-specific fitness
defects into an overall organismal fitness defect lead to the same genetic load, which we show is
a consequence of the geometric relationships between equal fitness contours. We explore these
results by considering a class of models where the organismal fitness defect is equal to the 𝓁𝑝

norm of the vector of trait-specific fitness defects, and discuss the extent to which these models
can capture different phenotypic strategies (e.g. generalists versus specialists) despite the genetic
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load being identical.

2 Model & Results
Consider a haploid population of individuals that have a number 𝑛 of traits (or phenotypic dimen-
sions). For a genotype 𝑔, let 𝐅𝐠 = (𝐹𝑔,1,… , 𝐹𝑔,𝑑 ,… , 𝐹𝑔,𝑛), be the vector of corresponding fitness
components where 𝐹𝑔,𝑑 denotes the trait-dependent fitness component associated with the value
for the 𝑑-th phenotypic trait of genotype 𝑔. Each such fitness component captures the contribution
of a trait to fitness (e.g. the fitness contribution brought by ametabolic reaction, by the shape of an
organism, etc.). These fitness components are then combined through a function 𝑓𝑜𝑟𝑔(𝐅𝐠) to yield
the fitness 𝑓𝑔 of an organism with genotype 𝑔:

𝐅𝐠 = (𝐹𝑔,1,… , 𝐹𝑔,𝑛)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

phenotype

𝑓org(𝐅𝐠)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑓𝑔

⏟⏟⏟
fitness

We consider the fitness components 𝐹𝑔,𝑑 to range from 0 to 1 so that values are easily comparable
across traits and can be interpreted as a mapping of trait values into a bounded fitness space.
Specifically, we define 𝐹𝑔,𝑑 = 𝑓𝑜𝑟𝑔(1, 1, ..., 𝐹𝑔,𝑑 , ..., 1) when all but component 𝑑 of genotype 𝑔 has
been set equal to 1, i.e. the fitness component 𝐹𝑔,𝑑 has the interpretation that it is the fitness that
would be conferred by the 𝑑-th trait of genotype 𝑔 if all its other traits were set to their optimal
values.

Based on these premises, we now provide a mathematical formalisation of weakest link epi-
stasis and its direct population genetics consequences.

2.1 Weakest link epistasis from a population genetics perspective
In order to formalize the weakest link logic, we can define the fitness of a genotype 𝑓𝑔 = 𝑓𝑜𝑟𝑔(𝐅𝐠) as
the minimum of the trait-dependent fitness components (see Figure 1):

𝑓WLE(𝐅𝐠) = min
𝑑∈[1,𝑛]

[𝐹𝑔,𝑑] (1)

Because 𝐹𝑔,𝑑 only prescribes fitness when it is the minimum, or limiting factor, it represents the
maximum fitness possible given that trait value (e.g., the maximum growth rate that ATP produc-
tion or nucleotides synthesis can sustain).

2.1.1 Selection coefficients under weakest link epistasis
If mutations are rare enough, a new mutant with genotype 𝑔′ is either fixed or lost before the
next new mutation arises, which implies the absence of clonal interference [5, 7, 34]. We can thus
drop genotype indexes and focus on a mutant with trait-dependent fitness components 𝐅′ and
a resident with trait-dependent fitness components 𝐅. Hence, the selection coefficient (such that
𝑓𝑔′ = 𝑓𝑔(1 + 𝑠)) reads:

𝑠 = 𝑓𝑜𝑟𝑔(𝐅′)∕𝑓𝑜𝑟𝑔(𝐅) − 1 (2)

Under WLE, this implies that the selection coefficient of a mutant 𝐅′ is thus:

𝑠
WLE

= min𝐅′

min𝐅
− 1 (3)

Whether mutations are deleterious (𝑠
WLE

< 0), neutral (𝑠
WLE

= 0) or advantageous (𝑠
WLE

> 0) there-
fore simply depends on the sign of the difference between the weakest link of the mutant min (𝐅′)
and the weakest link of the resident min (𝐅).
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Yet, becausemanymutations aremasked by theweakest link effect on fitness, selection ismore
complex and counterintuitive than it would be in the absence of epistasis. Crucially, this fitness
model tends to inflate the supply of purely neutral mutations, since any mutation that preserves
min (𝐅′) = min (𝐅) leads to 𝑠

WLE
= 0. This happens whenever the weakest link component remains

intact after mutation. The resulting extended range of neutral mutations includes any mutation
that does not decrease any of the mutant’s fitness contributions below the weakest link value of
the resident.
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Figure 1. Explanation of the mechanism of weakest-link epistasis (WLE) and its population-genetic consequences
when each trait 𝑑 produces a fitness component 𝐹𝑑 . A–B. Panels A and B illustrate how WLE operates in a two-
dimensional trait space where fitness is bounded (e.g, between 0 and 1) and reaches its optimum at the upper-right corner
(black circle). In B, the contours of equal fitness are represented in shades of grey, with their values indicated above each
contour. Under WLE, fitness equals the minimum of the fitness components, min(𝐗): it thus remains equal to 𝐹1 as long as
𝐹2 > 𝐹1, and symmetrically for 𝐹1. Fitness increases by 𝛿𝐹 only when both fitness components increase by at least 𝛿𝐹 . In
A., the resulting fitness landscape is composed of quarter-square contours centered on the optimum (in grey). C–D. Panels
C and D illustrate why WLE produces an excess of neutral and deleterious mutations for the WLE fitness model when pleio-
tropic mutations affect two traits at a time. As an illustration, the mutational neighbourhood is delimited by circles (with
orange-dotted boundaries). In C, when one of the mutated trait is the resident’s weakest link (trait 1 in this example), the
resident genotype (grey cross-in-circle) lies on the equal-fitness contour (grey line). A range of mutations increasing this
least-fit trait are advantageous (blue region, upper-right), yet comparatively more mutations are deleterious (red region).
The exact balance of advantageous vs. deleterious mutations depends on the exact position of the other trait. In D, when
mutations affect two traits that are not the resident’s weakest link, their effect is either neutral because the weakest link
remains unchanged (grey region above the fitness contour) or deleterious otherwise (red region); no mutation can be ad-
vantageous in this case. E–F. Selective coefficients of non-pleiotropic mutations affecting only trait 𝑚. In E, for a mutation
affecting the weakest link, the selection coefficient 𝑠WLE increases (up to 𝑠𝑚𝑎𝑥) until 𝐹 ′

𝑚 = min(𝐅−𝐦), above which trait 𝑚 is no
longer the weakest link. In F, as in panel D, no mutation can be advantageous since the mutated trait 𝑚 is not the weakest
link.
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To further understand the selective effect of mutations, we can focus on the non-pleiotropic scen-
ario where mutations only affect one trait at a time. Any mutant genotype 𝑔′ thus differs from its
resident progenitor 𝑔 by only one phenotypic trait value. We denote this mutant trait value 𝐹 ′

𝑚 (in
the fitness components space) when it affects trait 𝑚, so that 𝐹 ′

𝑚 ≠ 𝐹𝑚. As mutants and residents
share the same genotypic (and phenotypic) background 𝐅−𝐦, the trait-dependent fitness compon-
ents are all equal but for the mutant trait:

𝐅−𝐦 = 𝐅𝐠∖{𝐹𝑚} = 𝐅𝐠′∖{𝐹 ′
𝑚} (4)

Weakest link epistasis creates a selective asymmetry between traits that becomes striking in the
absence of pleiotropy. In particular, advantageous mutations are fully restricted to cases in which
the mutated trait 𝑚 is the resident’s weakest link, that is 𝐹𝑚 = min(𝐗). Provided that 𝐹 ′

𝑚 remains the
mutant’s weakest link (𝑓𝑜𝑟𝑔(𝐅′) = 𝐹 ′

𝑚), the selection coefficient reduces to:

𝑠𝑚 =
𝐹 ′
𝑚

min(𝐅)
− 1. (5)

Otherwise, the (unchanged) second-worst trait becomes the mutant’s new weakest link. The
mutant’s selective advantage thereby reaches an upper bound dictated by the second worst trait
min(𝐅−𝐦), above which 𝑓𝑜𝑟𝑔(𝐅′) = min(𝐅−𝐦), despite 𝐹 ′

𝑚 > min(𝐅−𝐦). In such cases:

𝑠𝑚𝑎𝑥 =
min(𝐅−𝐦)
min(𝐅)

− 1,with 𝑠𝑚𝑎𝑥 ≥ 0 (6)

By contrast, many mutations reducing fitness components are latent and thus invisible to selec-
tion (𝑠

WLE
= 0); this can happen for any trait except the resident’s weakest link, provided that the

decrease is small enough to leave the weakest link unchanged—that is, when 𝐹𝑚 > 𝐹 ′
𝑚 > min(𝐅).

Otherwise, if the mutated trait becomes the new weakest link with min(𝐅′) = 𝐹 ′
𝑚, the mutation is

deleterious, with a selection coefficient given by Eq. (5).
Altogether, the adaptive potential of𝐹 ′

𝑚 canbe captured through a selection coefficient 𝑠
WLE

(𝐹 ′
𝑚;𝐅)

that only depends on itself and the resident set of trait-dependent fitness components 𝐅. Based
on Eq. (3), this can be formally written as:

𝑠
WLE

(𝐹 ′
𝑚;𝐅) =

{

min(𝑠𝑚, 𝑠𝑚𝑎𝑥), if 𝐹𝑚 = min(𝐅) is the weakest link,
min(𝑠𝑚, 0), otherwise.

(7)

This expression captures both the mutational asymmetry between traits and the intrinsic limita-
tion on advantageous mutations.

As pleiotropy increases, the mutational logic becomes progressively shifted away from pure
neutrality. We can illustrate this phenomenon with a simple combinatorial scenario in which muta-
tions affect subsets of traits. In particular, consider a mutation that affects 𝑘 out of 𝑛 traits of an
organism (𝑘 ≤ 𝑛), where the subset of mutated traits is drawn at random from all

(𝑛
𝑘

)

subsets (i.e.
no modular pleiotropy). The degree of pleiotropy can thus be characterised as the proportion 𝑘∕𝑛
of traits affected by a mutation. If each trait experiences the same mutation rate, the fraction of
mutations affecting the weakest-link is simply given by

(𝑛−1
𝑘−1

)

∕
(𝑛
𝑘

)

= 𝑘∕𝑛, since mutations affecting
the weakest-link trait can be combined with any 𝑘−1 of the remaining 𝑛−1 traits. With three traits,
for example, two-dimensional mutations can either involve the weakest link together with one of
the other traits (which occurs twice), or involve the two fittest traits (which occurs only once).

Because mutations evolving under pure neutrality rely on the weakest link remaining intact,
the fraction of such mutations decreases proportionately with increasing pleiotropy, according to
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1− 𝑘∕𝑛. Under more universally pleiotropic scenarios, what instead becomes inflated is the supply
of deleterious mutations: indeed, any pleiotropic mutation that brings at least one trait below the
resident’s weakest-link value will be deleterious (the occurrence of cases D. in Figure 1 decreases
in favour of cases C.).

Overall, the weakest-link effect (WLE) imposes a sharp limitation on the supply of advantageous
mutations, and we now turn to its implications for the genetic load.

2.1.2 Genetic load under weakest link epistasis
By removing unfit genotypes, natural selection biases the observed distribution of fitness, theoret-
ically driving it to the optimum. However, mutations recurrently introduce deleterious genotypes
that can segregate and evenfix through randomdrift—despite being disfavoured—thereby limiting
fitness improvement. This mutation–selection–drift balance leads to an evolutionarily stationary
state for the distribution of fitness 𝜌∗(𝑓 ) whose mean deviates from the optimum. The resulting
extent to which the evolutionary process is suboptimal can be quantified through the stationary ge-
netic load 𝐿∗, which corresponds to the relative difference 𝐿∗ = 𝑓𝑜𝑝𝑡−⟨𝑓⟩

∗

𝑓𝑜𝑝𝑡
between mean stationary

fitness ⟨𝑓⟩∗ and the fitness optimum 𝑓𝑜𝑝𝑡.
One key determinant of the genetic load is the distribution of fitness over all possible genotypes

(in the absence of selection), whose density we write as 𝜌(𝑓 ). To investigate the impact of WLE on
the genetic load, we thus need to evaluate first how it influences 𝜌(𝑓 ). For that purpose, we as-
sume trait-dependent fitness components to be independent and identically distributed random
variables so that the genotypic density 𝜌(𝐹𝑑) is known for each 𝐹𝑑 . The genotypic density of fit-
ness 𝜌(𝑓 ) can then directly be obtained by combining the respective densities 𝜌(𝐹𝑑)with the fitness
model 𝑓𝑜𝑟𝑔(𝐅). Under WLE, 𝑓𝑜𝑟𝑔(𝐅) = min(𝐅) such that 𝜌

WLE
(𝑓 ) is given by the distribution of the min-

imum of the set 𝐅. For analytical tractability, we thus choose a distribution for fitness components
whose first order statistic 𝐹(1) = min

{

𝐹1, 𝐹2, ..., 𝐹𝑛
}

is tractable. The Beta distribution, when applied
uniformly across traits such that each 𝐹𝑑 obeys 𝜌(𝐹𝑑) ∼ Beta(𝑎, 𝑏), matches this requirement when
its first parameter is set to 𝑎 = 1, which we discuss in more depth in Appendix B.1.1 in relation to
the Kumaraswamy distribution (see also [35, 36]). Hence, the density of fitness components reads:

𝜌(𝐹𝑑) =
(1 − 𝐹𝑑)𝑏−1

∫ 1
0 (1 − 𝐹𝑑)𝑏−1 d𝐹𝑑

(8)

Here, the parameter 𝑏 creates a bias toward maladaptive phenotypes on each trait by increasing
the number of genotypes leading to low-fitness values. From now on, we refer to this as themalad-
aptive bias. Since Beta(1, 1) 𝑑

= Uniform(0, 1), the unbiased case occurs when 𝑎 = 𝑏 = 1, and we can
capture the strength of this per-trait maladaptive bias using log(𝑏) (see Figure 2-A, assuming 𝑛 = 1).
Because we regard fitness as being the minimum of the 𝑛 fitness components, the distribution of
the first order statistics 𝜌(𝐹(1)) for a sample of 𝑛 independent draws from this distribution directly
gives the genotypic fitness density under WLE (see Appendix B.1.1 for a proof):

𝜌
WLE

(𝑓 ) =
(1 − 𝑓 )𝑛𝑏−1

∫ 1
0 (1 − 𝑓 )𝑛𝑏−1 d𝑓

∼ Beta(1, 𝑛𝑏) (9)

Remarkably, this expression highlights how dimensionality 𝑛 mirrors the role of the maladaptive
bias 𝑏, which motivates defining 𝑛𝑏 as an effective maladaptive bias (see Figure 2-A).

To gain insight into the genetic load, we can focus on the stationary state reached under the
weak mutation regime, where a mutant genotype either gets fixed or lost [4, 12, 37, 38]. In this
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Figure 2. Distribution of fitness and evolution of maladaptation under weakest-link epistasis. Results are shown
for varying levels of effectivemaladaptive biases, ranging from no bias (𝑙𝑜𝑔(𝑛𝑏) = 0, dark blue) to strong bias (𝑙𝑜𝑔(𝑛𝑏) = 6, red).
A.Distribution of genotypic fitness 𝜌

WLE
(𝑓 ) expected in the absence of selection. When each of the 𝑛 trait-dependent fitness

components follows Beta(1, 𝑏), genotypic fitness is distributed as Beta(1, 𝑛𝑏). In this scenario, the per-trait maladaptive bias 𝑏
and the number of traits 𝑛 combine symmetrically to push the distribution toward lower fitness values. B. Evolutionarily sta-
tionary distribution of fitness 𝜌∗

WLE
(𝑓 ) after selection (illustrated for N=10). Fitness still obeys a Beta distribution, Beta(𝑁, 𝑛𝑏),

but compared to panel A, the distribution is shifted toward higher fitness by selection. C. Evolutionarily stationary load
𝐿∗ for different effective population sizes 𝑁 , plotted on log-log scales. The classical population genetics prediction for the
genetic load of a single trait scales as 1∕𝑁 and appears as a straight decreasing line with slope −1. Increasing the effective
maladaptive bias, either through a larger number of traits 𝑛 or through a stronger intrinsic bias 𝑏, causes substantial mal-
adaptation (𝑙𝑜𝑔𝐿∗ ≈ 0 so that 𝐿∗ → 1) even for large population sizes.

scenario, the evolutionary dynamics can be captured by a Markov chain where the transition rates
from genotypic state 𝑔 to 𝑔′ is simply given by the product of themutation rate 𝜇𝑔𝑔′ and the probab-
ility of fixation 𝑃fix(𝑔′; 𝑔) of 𝑔′ in a population where 𝑔 is the resident. Since this Markov chain can be
shown to be reversible, it obeys detailed balance at stationarity, meaning forward and backward
substitutions between two mutationally connected genotypes (from 𝑔 to 𝑔′, and in reverse) occur
at the same rate [4, 37]. Extending this detailed balance principle to all mutational neighbours (ac-
cessible through 1mutational step), there exists a tractable solution for the stationary density 𝜌∗(𝑓 )
of theMarkov chain owing to the link between 𝑃fix(𝑔′; 𝑔), and the resident andmutant fitness values
𝑓𝑔 and 𝑓𝑔′ . Under the haploid Moran scenario and pairwise symmetrical mutations 𝜇𝑔𝑔′ = 𝜇𝑔′𝑔 , this
stationary fitness distribution has density [4]:

𝜌∗(𝑓 ) =
𝑓𝑁−1 𝜌(𝑓 )

∫ 1
0 𝑓𝑁−1 𝜌(𝑓 ) d𝑓

, (10)

where 𝑁 denotes the effective population size, which controls how strongly selection favours
higher-fitness genotypes.

Using the density function of beta distributions, we can now plug Eq. (9) into Eq. (10) to ob-
tain the stationary distribution for fitness under WLE. The resulting stationary distribution of 𝑓 is
distributed as Beta(𝑁, 𝑛𝑏):

𝜌∗
WLE

(𝑓 ) = 𝑓𝑁−1 (1−𝑓 )𝑛𝑏−1

∫ 1
0 𝑓𝑁−1 (1−𝑓 )𝑛𝑏−1 d𝑓

. (11)

This expression also clearly shows the intuitive antagonistic effect between 𝑁 and the effective
bias 𝑛𝑏 (see Figure 2-B). This can be further formalised by deriving mean stationary fitness ⟨𝑓⟩∗ as
the first moment of the stationary distribution, which also coincides with the ratio between the
𝑁th and (𝑁 −1)th moments of the distribution of genotypic fitness implied by Eq. (9). In our fitness
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space with upper bound 1, the stationary genetic load reduces to 𝐿∗ = 1 − ⟨𝑓⟩∗, and hence WLE
leads to:

𝐿∗
WLE

= 1 −
⟨

𝑓
WLE

⟩∗
= 𝑛𝑏

𝑁 + 𝑛𝑏
(12)

The saturating function in Eq. (12) shows that the genetic load scales linearly with 𝑛𝑏∕𝑁 when
𝑁 ≫ 𝑛𝑏, while otherwise the expression indicates significant maladaptation, especially in the hy-
pothetical case where 𝑛𝑏 would be greater than 𝑁 (see Figure 2-C). Note that, when 𝑛𝑏 and 𝑁 are
comparable, the stationary fitness distribution is akin to a Gaussian distribution (see Figure 2-B).

Of particular importance is the independence of the genetic load and the mutational scheme
(provided that mutation rates are pairwise symmetric; [4, 37]). Consequently, the load of Eq. (12)
holds irrespectively of anorganism’s degree of pleiotropy [37]: for instance, in a purely non-pleiotropic
scenario wheremutationswould always affect one trait (and hence its fitness component) at a time,
the genetic load is exactly the same than for any arbitrary complex pleiotropic scenario.

2.2 Unifying invariances in complexity-driven genetic load
In the special case of a uniform distribution of trait-dependent fitness components (𝑎 = 𝑏 = 1) the
WLE stationary genetic load obtained in Eq. (12) is:

𝐿∗
WLE, unbiased = 𝑛∕(𝑛 +𝑁) = 𝐿∗ (13)

If we again assume a uniform distribution of fitness components and instead let organismal fitness
be defined as 𝑓𝑜𝑟𝑔(𝑟) = 1 − 𝑟, we recover a version of Fisher’s geometric model that has previously
appeared in the literature when 𝑟 is given by the n-dimensional Euclidean distance 𝑟

FGM
(𝐗) between

the phenotype 𝐗 and the optimum [2, 4, 39]—albeit with a more explicit mutational scheme. In-
terestingly, the load for this version of Fisher’s geometric model is identical to the one we obtain
here [2, 37]. This echoes previous results showing the invariance of the genetic load in modified
versions of FGM with ellipsoidal rather than spherical fitness contours [12]. Together, these find-
ings seem to suggest a broader unifying principle whereby the genetic load is invariant across a
wide range of fitness landscape geometries.

2.2.1 A sufficient condition for genetic load invariance
To elucidate why seemingly different fitness models yield the same evolutionary outcome, we can
return to Eq. (10), in which the only factor that may differ from one fitness model to another is the
density of genotypic fitness 𝜌(𝑓 ). Consequently, the genetic load obtained in Eq. (13), and indeed
the entire stationary fitness distribution 𝜌∗(𝑓 ), remains invariant for all scenarios in which:

𝜌(𝑓 ) ∝ (1 − 𝑓 )𝑛−1. (14)

To see how this scaling arises in both WLE and FGM, it is helpful to work with fitness defects
rather than fitness components (Figure 3A). To that end, we define the fitness defect associated
with trait 𝑑 as𝑋𝑑 = 1−𝐹𝑑 . Since fitness components cannot exceed their optimum 𝐹𝑑 = 1, each de-
fect satisfies 0 ≤ 𝑋𝑑 ≤ 1, and the optimal phenotype corresponds to (0,… , 0) in the space of defects.
We then combine the trait-dependent fitness defects𝐗 =

(

𝑋1, ..., 𝑋𝑛
)

into the organismal fitness de-
fect 𝑟 through a rule 𝑟𝑜𝑟𝑔(𝐗), which in turn relates to fitness as 𝑓𝑜𝑟𝑔 (𝐗) = 1− 𝑟𝑜𝑟𝑔(𝐗). Accordingly, the
density of fitness defects 𝜌(𝑟) is simply related to the density of fitnesses 𝜌(𝑓 ) by 𝜌(𝑟) = 𝜌(1 − 𝑓 ).
Through this lens, WLE can be naturally reinterpreted: fitness is fully dictated by the distance
between the optimum and the most deleterious fitness component, so that 𝑟

WLE
(𝐗) = max(𝐗), re-

covering 𝑓
WLE

(𝐗) = 1 − 𝑟
WLE

(𝐗) = 1 − max(𝐗) = min(𝐅).
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Our goal is now to identify a broad class of rules 𝑟𝑜𝑟𝑔(𝐗), which, when combined with 𝑓𝑜𝑟𝑔 =
1 − 𝑟𝑜𝑟𝑔(𝐗), result in 𝜌(𝑓 ) ∝ (1 − 𝑓 )𝑛−1. Working in fitness defects, the corresponding condition is:

𝜌(𝑟) ∝ 𝑟𝑛−1. (15)

Figure 3 shows several rules 𝑟org that satisfy this scaling (when 𝑏 = 1). These include the additive
rule 𝑟org(𝐗) =

∑𝑛
𝑑=1𝑋𝑑 shown in panel B with diagonal equal-fitness contours, as well as Fisher’s

geometric model 𝑟FGM and weakest-link epistasis 𝑟WLE, shown in panels C and D, respectively, with
circular and “L”-shaped equal-fitness contours. What all of these rules have in common is that they
produce contours (i.e. level sets) that are rescaled versions of each other, expanding uniformly
away from the optimum in what is known as a homothetic transformation (see Figure 3-B). Intu-
itively, this explains the 𝑛 − 1 power scaling of the density, since 𝜌(𝑓 ) is proportional to the (𝑛 − 1
dimensional) surface area of the corresponding contour and, in 𝑛-dimensions, surface area scales
as the (𝑛 − 1)-th–power of length.

Formally, a sufficient condition for this (𝑛 − 1) power scaling (when 𝑏 = 1) is that 𝑟𝑜𝑟𝑔 be a homo-
geneous function of degree one:

𝑟𝑜𝑟𝑔(𝜆𝐗) = 𝜆𝑟𝑜𝑟𝑔(𝐗), (16)

with 𝜆 > 0. This condition makes explicit the uniform scaling: for example, halving each trait-
dependent fitness defect 𝑋𝑑 also halves the organismal fitness defect 𝑟𝑜𝑟𝑔 , moving the system to-
wards the optimum identically regardless of the background configuration 𝐗. More generally, this
implies that the way trait-dependent fitness defects combine is independent of their overall scale
(the effect of the rescaling factor 𝜆 is the same throughout the space of 𝐗). This has specific im-
plications for mutational effects, since 𝑟𝑜𝑟𝑔(𝐗′)∕𝑟𝑜𝑟𝑔(𝐗) = 𝑟𝑜𝑟𝑔(𝜆𝐗′)∕𝑟𝑜𝑟𝑔(𝜆𝐗). If a mutation introduced
in some background 𝐗 reduces 𝑟𝑜𝑟𝑔(𝐗) to a fraction (e.g.1∕3) of its current value, then the same
mutation introduced in a background 𝜆𝐗 also reduces 𝑟𝑜𝑟𝑔(𝜆𝐗) to the same fraction of its previous
value.

Thus far, we have beenworking in the special case 𝑏 = 1, so that genotypes are assumed to have
trait-dependent fitness defects that are jointly uniformly distributed, i.e. 𝜌(𝐗) ∝ 1. We next extend
these results to a broader class of distributions of fitness defects. Notably, points lying on the
same fitness contour may carry different weights determined by 𝜌(𝐗), meaning there is no reason
for the density 𝜌(𝑟) to be strictly proportional to the surface area of the corresponding contour. In
the Appendix B.1.2 we show that this differential weighting of points in the phenotypic space arises
under a wide range of joint probability distributions 𝜌(𝐗). Specifically, suppose that:

𝜌(𝜆𝐗) = 𝜆𝛽𝜌(𝐗) (17)

for all 𝜆 > 0 and some fixed value 𝛽. Technically, this says that we require that the density of fitness
defects 𝜌(𝐗) be a homogeneous function of degree 𝛽. More biologically, what this condition says
is that the supply of lower fitness defect states changes in a consistent manner as the optimum
is approached, so that, for instance, the density at 𝐗∕2 is 2𝛽 times smaller. Similar to the case for
the organismal fitness defect, this means that all of the equal-density contours of the phenotypic
distribution 𝜌(𝐗) are scaled versions of each other, with yet more flexibility in the shape of the
generating contour arising from the exponent 𝛽.

What we show in the Appendix B.1.2 is that for any 𝑟𝑜𝑟𝑔 that is homogeneous of order 1 and any
trait specific defect distribution 𝜌(𝐗) that is homogeneous of degree 𝛽, then we have:

𝜌(𝑟) ∝ 𝑟𝛽+𝑛−1 (18)

F.Labourel et al. 2026 | Geometry of adaptation and the genetic load bioR𝜒 iv | 9 of 24

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2026. ; https://doi.org/10.64898/2025.12.08.693057doi: bioRxiv preprint 

https://doi.org/10.64898/2025.12.08.693057
http://creativecommons.org/licenses/by-nc/4.0/


and hence, at stationarity, fitness is Beta(𝑁, 𝛽 + 𝑛)-distributed and results in a load given by (see
section 2.1.2 for more details on the calculation):

𝐿∗ =
𝛽 + 𝑛

𝑁 + 𝛽 + 𝑛
. (19)

For instance, when the trait-dependent fitness components are independently Beta(1, 𝑏)-distributed,
𝜌(𝐗) is a homogeneous function of degree 𝛽 = 𝑛(𝑏−1) and we recover our previous expressions for
the stationary fitness distribution and load (see supplemental appendix B.1.2).

This result shows that for fixed population size and a fixed degree of homogeneity for 𝜌(𝐗), if
𝑟𝑜𝑟𝑔 is homogeneous of degree 1, then the whole stationary distribution is invariant to the spe-
cific choice of how trait-dependent fitness defects combine and the structure of the neutral joint
distribution of trait-dependent defects.

2.2.2 Genetic load across a continuum of adaptation strategies
To more concretely explore the implications of the invariance in genetic load discussed in the pre-
vious section, we consider a family of choices for 𝑟𝑜𝑟𝑔 that correspond to the 𝓁𝑝-norm of the vector
of fitness defects:

𝑟𝑝(𝐗) = ||𝐗||𝑝 =
(

|𝑋1|
𝑝 +…+ |𝑋𝑛|

𝑝)1∕𝑝,with 𝑝 ≥ 1 (20)

The 𝓁𝑝 norm provides a natural formalism for this purpose, since it satisfies the condition of homo-
geneity of degree 1 and recovers the Euclidean version of FGM (𝑝 = 2), additive trait specific fitness
defects (𝑝 = 1), and also WLE version as a limit, where fitness is fully determined by the maximum
fitness defect as 𝑝 → ∞ (see Figure 3B-D)

Indeed there is an important ecological meaning behind different values of the parameter 𝑝.
First, increasing 𝑝 from the Euclidean version of FGM (𝑝 = 2) makes the model more and more
dependent on the weakest link, which implies that intermediate values reflect a reality in between
FGM and WLE: any trait improvement still enhances adaptiveness, albeit with diminishing returns,
as often observed in biological systems [24]. In other words, higher 𝑝 values reduce the ability to
buffer maladaptive traits by limiting the effect (but not the supply) of compensatory mutations.
Similarly, we can consider the impact of decreasing 𝑝 from FGM (Figure 3E,F). Note that, in the
cases where 𝑝 < 1, ||𝑋||𝑝 is only a quasi-norm, since it fails to satisfy the triangle inequality, but it
is still homogeneous of degree 1 and thereby satisfies the condition of Eq. (17). The case where
𝑝 = 1 (also known as theManhattan distance) represents the "symmetrical" situation, where fitness
components/defects can buffer each other equally (e.g., adding 0.1 to to 𝑋1 and 𝑋2 is identical to
adding 0.2 to 𝑋1, or to 𝑋𝑛). When 𝑝 falls under 1, the fitness contours tend to adopt more star-like
shapes that favours putting all eggs in a single basket. In this "strongest link epistasis" (SLE) scen-
ario, the fitness reward is higher for organisms that focus on improving one specific trait: because
of the diamond shape of contours, the phenotypic distance to the optimum is much lower close to
any given trait axis. Under this perspective, SLE can be seen as a model of specialisation, where all
but specialist phenotypes would be driven out by natural selection.

A subtle but important implication of this model is that smaller values of p increasingly enlarge
the region of trait-dependent fitness component space that results in inviable organisms (𝑟𝑝(𝐗) > 1,
implying negative fitness). For instance, in a two-trait example with 𝑋1 = 0.9 and 𝑋2 = 0.5, the
genotype is inviable under the 𝑟1(𝐗) and 𝑟2(𝐗) rules (because both 𝑟1 > 1 and 𝑟2 > 1), yet retains
viability fitness 𝑓𝑜𝑟𝑔(𝐗) = 0.1 under WLE. In our framework, these inviable combinations are still
described by 𝜌(𝐗) but make no contribution to the stationary distribution, which we consider to
have support only on the biologically relevant interval from 0 to 1.
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Figure 3. Fitness contours in a two-trait space. A. Change of variables used to interpret weakest link epistasis (WLE)
in terms of the vector of fitness defects 𝐗 = 𝟏 − 𝐅. We restrict 𝐅 to the unit cube (components ∈ [0, 1]), where the fitness
optimum 𝑓 = 1 is reached when all the 𝐹𝑑 = 1 (here, 𝐹1 = 𝐹2 = 1). B. Illustration of the homothetic transformation principle
behind the genetic load invariance when the organismal fitness defect is defined as 𝑟𝑜𝑟𝑔(𝐗) = ||𝐗||1 = 𝑋1 + 𝑋2 and fitness
defects are uniformly distributed (𝑏 = 1). A homothety of ratio 𝑘 is a transformation that maps any point at distance 𝑋𝑖
from a choice of center (here 𝐹1 = 𝐹2 = 1) to a new point at distance 𝑘𝑋𝑖 (eg., A is sent to B here), preserving shapes and
scaling all distances proportionally. Under uniform 𝜌(𝐗 (𝑏 = 1), 𝜌(𝑟) is proportional to the 𝑛 − 1-dimensional surface area of
the equal fitness contours and scales as 𝑟𝑛−1, where 𝑛 = 2 traits in this example. C–F. Fitness contours (from 𝑓 = 0 to 𝑓 = 1,
red-black gradient) resulting from fitness defined as 𝑓 = 1 − 𝑟𝑝(𝐗), with 𝑟𝑝(𝐗) = ||𝐗||𝑝 denoting the genotypic fitness defect.
Fitness defects are uniformly distributed (𝑏 = 1). The grey-shaded area represents combinations of fitness defects that are
inviable, and expands as 𝑝 decreases. C–D. Two ’generalist’ strategies are shown, where improving both traits confers a
higher fitness than improving a single one. The limit 𝑝 → ∞ (panel D) recovers WLE (see Figure 1 for more details), while
contours with 𝑝 = 2 retains the weakest-link constraint, albeit in a softened form (panel C, canonical FGM with euclidean
distance). E–F. Two ’specialist’ strategies are shown (panel E: 𝑝 = 2∕3; Panel F: 𝑝 = 1∕2) where concentrating improvement
on one trait is most efficient for increasing fitness.

Turning to the issue of genetic load, as in Eq. (8), we assume again the fitness components to be
independently Beta-distributed as 𝐹𝑑 ∼ Beta(1, 𝑏). In this case, regardless of the parameter 𝑝, the
𝓁𝑝 norms are all homogeneous of degree 1, and hence the distribution of fitnesses at stationarity
and corresponding genetic load 𝐿∗ are identical to that for WLE (Eqs. 9-12) (see APPENDIX B.1.2,
as well as APPENDIX B.2.1 and B.2.2 for a more direct proof). The formula for the genetic load can
even be further generalised by considering that fitness defects are not identically distributed and
obey instead separate Beta(𝑏𝑑 , 1) for 𝑑 = 1 to 𝑛. Denoting mean trait-dependent fitness defect as 𝑏̄
and assuming again 𝑓 (𝑟𝑝) = 1 − 𝑟𝑝, this yields (see APPENDIX B.1.2 and APPENDIX B.2.2):

𝐿∗
𝑝 = 𝑛𝑏̄

𝑁 + 𝑛𝑏̄
, (21)
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where 𝑛𝑏̄ quantifies the effective maladaptive bias acting on fitness. This result also extends to
fitness models with hierarchical genetic architecture, where fitness is determined by the 𝓁𝑝-norm
of higher-level traits (e.g., metabolic pathways) and each of these traits is itself given by the 𝓁𝑝𝑚 -
norm of underlying, lower level trait-dependent fitness defects, with 𝑝𝑚 possibly differing across
traits (see APPENDIX B.2.3 for the extension to modular inter-dependencies of traits).

Discussion
Diminishing-returns effects are widespread in biology [19, 24, 26, 28]. They arise when improving
a phenotypic trait (such as enzyme activity) no longer translates into increased performance of a
function (such as metabolic flux) once another component becomes limiting. In some biological
systems, phenotypes depend on the efficiency of every underlying component, as in multi-step
biosynthetic pathways where failure of a single enzyme can fully prevent the formation of the final
product (e.g., synthesis of anthocyanin pigments in plants). From a genetics perspective, such de-
pendencies generate weakest-link epistasis (WLE), which can substantially distort the distribution
of fitness effects.

Motivated by these considerations, we first determined the selection coefficient of mutations
underWLE. Using this selection coefficient, we show how, in this fitnessmodel, trait dimensionality
greatly decreases the supply of advantageous phenotypes, which, in turn, limits the adaptive po-
tential of organisms. Quantitatively, when fitness is determined by theweakest underlying trait, we
establish that the the mean stationary genetic load carried by an organism scales as 𝑛𝑏̄∕(𝑁 + 𝑛𝑏̄),
where 𝑛𝑏̄ represents a compound maladaptive bias. A key feature of this expression is the sym-
metry between 𝑛 and 𝑏̄: phenotypic complexity and intrinsically biased traits (towards low-fitness
values) contribute symmetrically to the reduction of fitness.

Intriguingly, the genetic load underWLE can be shown to equal that of Fisher’s geometric model
(FGM) for unbiased traits (𝑏 = 1), when fitness decays linearly with the Euclidean distance between
the phenotype and the optimum [2, 37]. To elucidate why the complexity scaling of the load is pre-
served across diverse fitness landscapes despite the seemingly unfavourable genetic architecture
imposed by WLE, we show that this arises due to the fact that the equal fitness contours in both
cases consist of scaled copies of the same basic shape. We then generalise this scaling to allow for
non-uniform joint distributions of trait-dependent fitness components.

To understand the effect of maladaptive biases across more interpretable forms of epistasis,
we study the casewhere fitness defects to combine through arbitrary 𝓁𝑝 norms. This generalisation
spans a continuumof architectures, includingWLE (𝑝 → ∞), classical FGM (𝑝 = 2). This also naturally
extends to combinations of 𝓁𝑝-norms that can capture biological modularity and hierarchical trait
structure (eg., enzymes forming pathways that themselves combine to determine cell efficiency).
Within this broader framework, the genetic load retains the 𝑛𝑏 scaling, demonstrating that neither
the architecture of traits (e.g., modularity) nor the nature of epistasis alters the evolutionary sta-
tionary state: what matters is the number of independent phenotypic traits and their average bias
toward low-fitness states.

In this work, we have defined fitness as 𝑓𝑜𝑟𝑔(𝐗) = 1 − 𝑟𝑜𝑟𝑔(𝐗). Earlier work has shown that the
invariance of the genetic load can be further generalised by decoupling the rule that specifies
the phenotypic ’distance to the optimum’ 𝑟𝑜𝑟𝑔(𝐗) from the function 𝑓𝑜𝑟𝑔(𝑟) that maps this distance
onto fitness, as is classically done in FGM [12]. For instance, a broad class of definitions for the
phenotypic distance to the peak yields the same load 1 −

(

(𝑁 − 1)∕𝑁
)𝑛∕𝑄 when fitness is given by

𝑓𝑜𝑟𝑔(𝑟) = exp(−𝑟𝑄).
Building on this invariance principle, these earlier approaches attempted top-down inferences
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of phenotypic dimensionality using the stationary genetic load [12, 21]. However, it remains to be
determined whether biologically grounded fitness landscapes satisfy this homogeneity condition
(even approximately), for instance in systems where fitness components combine multiplicatively
across traits, a situation commonly encountered in the study of life-history traits [40, 41]. No less
importantly, even when this condition holds, we have shown throughout this study that the sym-
metry between phenotypic dimensionality and maladaptive biases obscures the effects of com-
plexity. As a consequence, stationary fitness alone cannot reliably disentangle these two sources
of maladaptation unless maladaptive biases would be negligible.

This raises the question of whether there exists reliable empirical estimates of themagnitude of
this (maladaptive) bias parameter 𝑏. Although the overwhelming predominance of non-functional
proteins in random sequences has long been known [42], a more quantitative characterisation
of biological quantities related to fitness components (eg., protein binding affinities) has only re-
cently begun to emerge. These empirical distributions appear consistent with 𝑏 values spanning
several orders of magnitude [43, 44]. Crucially, this reinforces the idea that organisms may carry
significant genetic loads, and strengthens the paradox of complexity: fitness gains associated with
additional functions should come at the expense of increased maladaptation, that is, a larger dif-
ference between mean fitness and the optimal phenotype’s fitness for a given number of traits.

This perspective may also help clarify otherwise perplexing empirical findings. For instance, the
vastmajority of enzymes are onlymoderately efficient [45, 46], often to the point that their catalytic
rates can be improved by several orders of magnitude [47]. Interpreting such patterns will require
accounting in greater detail for the influence of genotype-phenotype maps on the distribution of
fitnesses that would be realised under neutrality. More broadly, we believe that this framework
paves the way for a more quantitative understanding of the outcome of evolution, such as the
distribution of fitness effects of mutations. Likewise, it should help predict how biological systems
evolve in the face of perturbations, for instance when environmental changes shift the location of
the fitness peak, and how this depends on the underlying phenotype-fitness map.
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Supplementary Materials
Supporting text A: Notation

Definition Parameter, relations & acronyms
Weakest link epistasis WLE

Fisher’s geometric model FGM
Resident genotype 𝑔
Mutant genotype 𝑔′

Trait-dependent fitness component 𝑑 of genotype 𝑔 𝐹𝑔,𝑑

Trait-dependent fitness defect 𝑑 of genotype 𝑔 𝑋𝑔,𝑑

Number of traits 𝑛
Population size 𝑁

Maladaptive trait bias towards low-fitness values 𝑏
Vector of fitness components of genotype 𝑔 𝐅𝐠 =

(

𝐹𝑔,1, ..., 𝐹𝑔,𝑛
)

Vector of fitness defects of genotype 𝑔 𝐗𝐠 =
(

𝑋𝑔,1, ..., 𝑋𝑔,𝑛
)

Organismal fitness defect of 𝐗 𝑟𝑜𝑟𝑔(𝐗)
𝓁𝑝-norm of fitness defects 𝑟𝑝(𝐗) = ||𝐗||𝑝
Organismal fitness of 𝐗 or 𝐅 𝑓𝑜𝑟𝑔 (𝐅) = 1 − 𝑟𝑜𝑟𝑔(𝐗)

Effective selection coefficient of a mutant under WLE 𝑠
WLE

Joint density of fitness defects 𝜌(𝐗)
Joint density of fitness components 𝜌(𝐅)

Genotypic density of organismal fitness defect 𝜌(𝑟)
Genotypic density of fitness 𝜌(𝑓 )
Stationary density of fitness 𝜌∗(𝑓 )

Expected fitness at stationarity ⟨𝑓⟩∗

Genetic load at stationarity 𝐿∗=1-⟨𝑓⟩∗

Supporting text B: Mathematical appendix
B.1 Genetic load under various fitness models
B.1.1 WLE genetic load for the Kumaraswamy distribution
In this section, we relax the assumption that trait-dependent fitness components 𝐹𝑑 are Beta(1, 𝑏)
distributed. The first order statistics of a set of beta-distributed variables does not generally lead
to a closed-form solution (when 𝑎 ≠ 1), which precludes further analysis. The Kumaraswamy distri-
bution𝑢𝑚𝑎𝑟(𝑎, 𝑏), (with shape parameters 𝑎 and 𝑏) is a Beta-like distribution with compact support
([35]; see Figure 4 for the shape of these distributions) for which the first-order statistic has a closed-
form regardless of parameters 𝑎 and 𝑏: if the vector of fitness components 𝐅 contains 𝑛 random
variables𝐹𝑑 ∼ 𝑢𝑚𝑎𝑟(𝑎, 𝑏), then the distribution of theirminimum is also Kumaraswamy-distributed
[35, 36], such that :

𝐹(1) ∼ 𝑢𝑚𝑎𝑟(𝑎, 𝑛𝑏) (22)

This arises because the influence of the parameter 𝑎 is slightly modified compared to the Beta-
distribution, as reflected by its probability density function. Specifically, the distribution of 𝐹𝑑 when
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𝐹𝑑 ∼ 𝑢𝑚𝑎𝑟(𝑎, 𝑏) is given by:

𝜌(𝐹𝑑) =
(𝐹𝑑)𝑎−1(1 − (𝐹𝑑)𝑎)𝑏−1

∫ 1
0 (𝐹𝑑)𝑎−1(1 − (𝐹𝑑)𝑎)𝑏−1 d𝐹𝑑

(23)

where the difference with the Beta-distribution is in the term (1 − (𝐹𝑑)𝑎), which would simply be
(1 − 𝐹𝑑) in a Beta-distribution.

Under weakest link epistasis, fitness is determined by the minimum of fitness components.
Hence, Eq. (22) corresponds to the genotypic distribution of fitness 𝜌

WLE
(𝑓 ) in the absence of selec-

tion.
Assuming a haploid population and aMoran evolutionary process, we can use Eq. (10) to derive

the distribution of fitness at evolutionary stationarity:

𝜌∗(𝑓 ) =
𝑓𝑁−1𝑛𝑎𝑏𝑓 𝑎−1(1 − 𝑓 𝑎)𝑛𝑏−1

∫ 1
0 𝑓𝑁−1𝑛𝑎𝑏𝑓 𝑎−1(1 − 𝑓 𝑎)𝑛𝑏−1 d𝑓

(24)

Fitness at evolutionary stationarity is thus given by a ratio of raw moments (see main text for ex-
planations) that are analytically tractable for the Kumaraswamy distribution [36]:

⟨𝑓⟩∗
WLE

=
(1 +𝑁∕𝑎, 𝑛𝑏)

(1 + (𝑁 − 1)∕𝑎, 𝑛𝑏)
=

Γ(1 +𝑁∕𝑎)Γ(1 + 𝑛𝑏 + (𝑁 − 1)∕𝑎)
Γ(1 + (𝑁 − 1)∕𝑎)Γ(1 + 𝑛𝑏 +𝑁∕𝑎)

, (25)

where(𝑦) and Γ(𝑦) denote the Beta andGamma functions. From Stirling’s formula, we have the ap-
proximation Γ(𝑦+𝑠) ≃ 𝑦𝑠Γ(𝑦)when 𝑦 is large enough, with which we can rewrite fitness at stationary
state as:

⟨𝑓⟩∗
WLE

≈
(

1 + (𝑁 − 1)∕𝑎
1 + 𝑛𝑏 + (𝑁 − 1)∕𝑎

)1∕𝑎
. (26)

We can rewrite Eq. (26) as (1 − 𝑦)(1∕𝑎), where 𝑦 = 𝑛𝑏∕ (1 + 𝑛𝑏 + (𝑁 − 1)∕𝑎)) is small when 𝑛𝑏𝑎 ≪ 𝑁 .
Using Taylor expansions, we can then simplify Eq. (25) so that in the haploid Moran scenario, we
have:

𝐿∗
WLE

= 1 − ⟨𝑓⟩∗
WLE

(27)

≈ 𝑛𝑏
𝑛𝑎𝑏 + 𝑎 +𝑁

, if 𝑛𝑏𝑎 ≪ 𝑁. (28)

As a first order approximation, we could neglect all terms but𝑁 in the denominator, but keeping
the 𝑛𝑏𝑎+𝑎 termboth improves the approximation andhelps gain a better intuition of the role played
by 𝑛,𝑎 and 𝑏 when their product gets close to 𝑁 .

From this expression, we first recover that population size 𝑁 reduces the genetic load. This
expression then shows that dimensionality 𝑛 and the parameter 𝑏 tend to increase the genetic
load in a purely exchangeable way. In the main document, we use the power version of the Beta
distribution where 𝑎 = 1, such that 𝑏 directly represents an intrinsic bias toward low-fitness traits.
With the Kumaraswamy distribution (or a Beta-distribution where 𝑎 ≠ 1, this bias is better captured
by the ratio 𝑏∕𝑎. Accordingly, while 𝑏 keeps its influence on inflating low fitness genotypes, the
parameter 𝑎 acts as a counter-bias. Hence, it reduces the genetic load by providing evolution with
a large(r) supply of high fitness genotypes. Notably, this result is robust to a broad range of fitness-
component distributions, since the Kumaraswamy distribution can approximate diverse shapes,
including Gaussian- and exponential-like distributions (see Figure 4). Overall, 𝑎 has a compound
influence that is partly akin population size, partly limiting the influence of the maladaptive bias 𝑛𝑏.
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Figure 4. Shape of the genotypic distribution of trait-dependent fitness components when they are
identically Kumaraswamy-distributed, 𝐹𝑑 ∼ 𝑢𝑚𝑎𝑟(𝑎, 𝑏). Fitness components are bounded between 0 and
1 with their contribution to fitness being maximal at 1. Overall, the parameters 𝑎 and 𝑏modify the genotypic
distribution of trait values (i.e., prior to selection), thereby creating a bias toward deleterious traits (when 𝑏 > 𝑎)
or toward advantageous ones (when 𝑎 > 𝑏). A. In the case where 𝑎 = 1, 𝐹𝑑 follows a Beta-distribution 𝐹𝑑 ∼
𝑒𝑡𝑎(1, 𝑏) as modeled in the main document. The special case 𝑎 = 𝑏 = 1 coincides with a uniform distribution,
and thus with the absence of bias at the trait level, whereas 𝑏 = 2 leads to a linear decrease of the density of
fitness component values (higher weight on low-fitness trait values). For larger 𝑏, the density is highly biased
towards deleterious values. B–C. Increasing the parameter 𝑎 relaxes the bias towards deleterious traits (𝑎 = 2,
panel B), to the point where high fitness traits become over-represented (especially when 𝑎 = 5, panel C).

Logically, this formula for the genetic load becomes exact when 𝑎 = 1, as Γ(𝑦+1) = 𝑦Γ(𝑦). Starting
back from Eq. (26), we can thus write the genetic load exactly as the expression of the main docu-
ment, because the Kumaraswamy distribution 𝑢𝑚𝑎𝑟(1, 𝑏) reduces to a Beta-distribution 𝐵𝑒𝑡𝑎(1, 𝑏)
in this case (which also explains why the Beta distribution with parameter 𝑎 = 1 has a tractable first
order statistics, as we claim in the main document):

𝐿∗
WLE

= 1 − ⟨𝑓⟩∗
WLE

= 𝑛𝑏
𝑁 + 𝑛𝑏

. (29)

B.1.2 Invariance of stationary fitness distribution
Here we derive the stationary fitness distribution when both the organismal fitness and the gen-
otypic density are homogeneous functions of the trait specific fitness defects. First, we prove the
following technical lemma.

Lemma 1. Let 𝑔 be a homogeneous function of degree 𝛼 > 0 and let ℎ be a homogeneous function of
degree 𝛽, both defined on the positive orthant of ℝ𝑛. Let

𝐽 (𝑥) = ∫{𝐘>0∶𝑔(𝐘)<𝑥}
ℎ(𝐘)𝑑𝐘. (30)

Then 𝐽 (𝑥) is a homogeneous function of degree

𝛾 =
𝑛 + 𝛽
𝛼

. (31)
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Proof. Consider
𝐽 (𝜆𝑥) = ∫{𝐘>0∶𝑔(𝐘)<𝜆𝑥}

ℎ(𝐘)𝑑𝐘. (32)

We will evaluate this integral by using the change of variables 𝐘 = 𝜆1∕𝛼𝐙. This change of variables
is an invertible linear transformation defined by the matrix 𝜆1∕𝛼𝖨 where 𝖨 is the identity matrix
and hence the determinant of its Jacobian is simply |𝜆1∕𝛼𝖨| = 𝜆𝑛∕𝛼 for all 𝐙. Turning to the region
of integration, 𝑔(𝐘) < 𝜆𝑥 if and only if 𝑔(𝜆1∕𝛼𝐙) < 𝜆𝑥, but 𝑔 is homogeneous of degree 𝛼 and so
𝑔(𝜆1∕𝛼𝐙) = 𝜆 𝑔(𝐙). Thus, 𝑔(𝐘) < 𝜆𝑥 if and only if 𝑔(𝐙) < 𝑥. Likewise, since 𝐘 is a positive multiple 𝜆1∕𝛼𝐙
of 𝐙, 𝐘 > 0 if and only if 𝐙 > 0.

Putting this all together, we have

𝐽 (𝜆𝑥) = ∫{𝐘>0∶𝑔(𝐘)<𝜆𝑥}
ℎ(𝐘)𝑑𝐘 (33)

= ∫{𝐙>0∶𝑔(𝐙)<𝑥}
ℎ(𝜆1∕𝛼 𝐙) 𝜆𝑛∕𝛼𝑑𝐙 (34)

= ∫{𝐙>0∶𝑔(𝐙)<𝑥}
𝜆𝛽∕𝛼ℎ(𝐙) 𝜆𝑛∕𝛼𝑑𝐙 (35)

= 𝜆(𝑛+𝛽)∕𝛼𝐽 (𝑥), (36)

where in line 35 we used the fact that ℎ is homogeneous of degree 𝛽. Thus 𝐽 (𝜆𝑥) = 𝜆(𝑛+𝛽)∕𝛼𝐽 (𝑥)
meaning that 𝐽 is homogeneous of degree (𝑛 + 𝛽)∕𝛼 as required. ■

We can now characterise the genotypic density of organismal fitness defect 𝜌(𝑟) induced by a
homogeneous function 𝑟𝑜𝑟𝑔(𝐗) mapping trait-dependent fitness defects to organismal fitness de-
fects when the genotypic density of trait-dependent fitness defects is itself also a homogeneous
function.

Proposition 1. Suppose the organismal fitness defect 𝑟𝑜𝑟𝑔(𝐗) is homogeneous of degree 1, and 𝜌(𝐗) is
homogeneous of degree 𝛽. Then 𝜌(𝑟) ∝ 𝑟𝑛+𝛽−1.

Proof. Let
𝐶(𝑥) = ∫{𝐗>0∶𝑟(𝐗)<𝑥}

𝜌(𝐗)𝑑𝐗, (37)

so that 𝜌(𝑟) is proportional to 𝐶 ′(𝑥). By Lemma 1, 𝐶(𝑥) is a homogeneous function of degree 𝑛 + 𝛽,
and hence its derivative 𝐶 ′(𝑥) is a homogeneous function of degree 𝑛 + 𝛽 − 1, as required. ■

The stationary distribution of fitness itself, and hence the expected load at stationarity, then follow
as an immediate consequence of Equation 10.

Corollary 1. Suppose the organismal fitness defect function 𝑟𝑜𝑟𝑔(𝐗) is homogeneous of degree 1 and
𝜌(𝐗) is homogeneous of degree 𝛽. Then for a Moran population of size𝑁 (as we used when deriving the
WLE load) the stationary distribution of 𝑓 is 𝑒𝑡𝑎(𝑁, 𝛽 + 𝑛) distributed where 𝑛 is the number of traits.
Moreover, the load is given by:

𝐿∗ =
𝛽 + 𝑛

𝑁 + 𝛽 + 𝑛
. (38)

Proof. By Proposition 1, 𝜌(𝑟) ∝ 𝑟𝑛+𝛽−1 and the density of 𝑓 is simply a reflected version of the density
of 𝑟, since 𝑓 = 1 − 𝑟, so that we have 𝜌(𝑓 ) ∝ (1 − 𝑓 )𝑛+𝛽−1. Plugging these values into Equation 10, we
find that the stationary distribution of 𝑓 has density

𝜌∗(𝑓 ) ∝ 𝑓𝑁−1(1 − 𝑓 )𝑛+𝛽−1, (39)
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which we recognize as the density of a 𝑒𝑡𝑎(𝑁, 𝛽+𝑛) distribution. Since the mean of a 𝑒𝑡𝑎(𝑁, 𝛽+𝑛)
distribution is 𝑁∕(𝑁 + 𝛽 + 𝑛), the stationary load 𝐿∗ is

1 − 𝑁
𝑁 + 𝛽 + 𝑛

=
𝛽 + 𝑛

𝑁 + 𝛽 + 𝑛
. (40)

■

Corollary 2. Suppose each single-trait defect 𝑋𝑑 is homogeneous of degree 𝑏𝑑 −1, with 𝑏𝑑 denoting the
intrinsic maladaptive bias of trait 𝑑. Then for a Moran population of size𝑁 the stationary distribution of
𝑓 is𝑒𝑡𝑎(𝑁, 𝑛𝑏̄) distributed where 𝑛 is the number of traits. Moreover, if 𝑏̄ denotes the meanmaladaptive
bias across traits, the load is given by:

𝐿∗ = 𝑛𝑏̄
𝑁 + 𝑛𝑏̄

. (41)

Proof. If the probability distribution of each trait 𝜌(𝑋𝑑) is homogeneous of degree 𝑏𝑑 − 1, the joint
distribution is given by the product of themarginal distributions. It is thus homogeneous of degree
∑𝑛

𝑑=1(𝑏𝑑 − 1) = 𝑛𝑏̄ − 𝑛. Replacing by 𝑛𝑏̄ − 𝑛 in the previous corollary completes the proof for this
second corollary. ■

In the next section, we use the special case of the 𝓁𝑝 norm to relate this reasoning to a full
probabilistic approach.

B.2 Beta-distributed variables and the 𝓁𝑝 norm
B.2.1 Distribution of the 𝓁𝑝 norm of Beta-distributed variables
Proposition 2. Consider a set of 𝑛 independent variables 𝑋1, 𝑋2, ..., 𝑋𝑑 , ..., 𝑋𝑛 each distributed as 𝑋𝑑 ∼
𝖡𝖾𝗍𝖺(𝑎𝑑 , 1) with 𝑎𝑑 > 0. Conditional on ||𝐗||𝑝 ≤ 1, the distribution obeyed by the 𝓁𝑝 norm follows:

||𝑋||𝑝 ∼ 𝑒𝑡𝑎(𝑛𝑎, 1), (42)

with ||𝑋||𝑝 = (|𝑋1|
𝑝 + ... + |𝑋𝑛|

𝑝)1∕𝑝 and 𝑎 = 1
𝑛
∑𝑛

𝑑=1 𝑎𝑑 .

This result is well established for 𝑋𝑑 that are uniformly distributed [48]. Below, we extend it to
the case of Beta-distributed variables.

Lemma 2. To prove the proposition in Eq. (42), we first need to show the following lemma. If 𝑋𝑑 ∼
𝑒𝑡𝑎(𝑎𝑑 , 1) with 𝑎𝑑 > 0, then :

(𝑋𝑑)𝑝 ∼ 𝑒𝑡𝑎(𝑎𝑑∕𝑝, 1) ∀ 𝑝 ∈ ℝ>0 (43)

Proof. To do so, we need to determine the probability density function 𝑓𝑍𝑑
(𝑧) of 𝑍𝑑 = (𝑋𝑑)𝑝. Using

a simple change of variable and the chain rule (for derivatives), it is possible to write the probab-
ility density function 𝑓𝑍𝑑

(𝑧) = 𝑓𝑋𝑑

(

𝑔(𝑧)
)

𝑔′(𝑧) provided 𝑥 = 𝑔(𝑧) is a strictly increasing differentiable
function. Applying this to the function 𝑥 = 𝑧1∕𝑝 with 𝑋𝑑 ∼ 𝑒𝑡𝑎(𝑎𝑑 , 1), we have 𝑔′(𝑧) = 𝑧1∕𝑝−1∕𝑝. This
implies:

𝑓𝑍𝑑
(𝑧) = 𝑎𝑑 (𝑧1∕𝑝)𝑎𝑑−1 𝑧1∕𝑝−1∕𝑝 (44)

= 𝑎𝑑∕𝑝 × 𝑧𝑎𝑑∕𝑝−1, (45)
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which completes the proof since this expression is exactly the probability density function of a
Beta distribution 𝑒𝑡𝑎(𝑎𝑑∕𝑝, 1). From our premises, it is besides possible to write 𝑞 = 1∕𝑝, which
immediately yields the useful corollary according to which, if 𝑋𝑑 ∼ 𝑒𝑡𝑎(𝑎𝑑∕𝑞, 1) with 𝑎𝑑 > 0:

(𝑋𝑑)1∕𝑞 ∼ 𝑒𝑡𝑎(𝑎𝑑 , 1) ∀ 𝑞 ∈ ℝ>0 (46)

■

The following lemma can be derived from the aggregation property of the Dirichlet distribution
by aggregating the first 𝑛 variables of Dir(𝛼1,… , 𝛼𝑛, 1), however here for completeness we provide
a direct proof.

Lemma 3. Consider a set of 𝑛 variables 𝑌𝑑 ∼ 𝑒𝑡𝑎(𝛼𝑑 , 1) with 𝛼𝑑 > 0. Conditioning on ∑𝑛
𝑑=1 𝑌𝑑 ≤ 1, we

can show that:
𝑛
∑

𝑑=1
𝑌𝑑 ∼ 𝑒𝑡𝑎(

𝑛
∑

𝑑=1
𝛼𝑑 , 1) (47)

Proof. We start with two independent variables 𝑌1 ∼ 𝑒𝑡𝑎(𝛼1, 1) and 𝑌2 ∼ 𝑒𝑡𝑎(𝛼2, 1) that have com-
pact support on [0, 1], with 𝛼1, 𝛼2 > 0. The probability density function for the sum 𝑆 = 𝑌1 + 𝑌2 is
given by the convolution:

𝑓𝑆 (𝑠) = ∫

1

0
𝑓𝑌1 (𝑦1) 𝑓𝑌2 (𝑠 − 𝑦1) 𝟏[0,1](𝑠 − 𝑦1) 𝑑𝑦1, (48)

where 𝟏[0,1] denotes the indicator function that enforces variables to live on their support. Because
both variables 𝑌1 and 𝑌2 take values between 0 and 1, their density vanishes outside this interval.
Consequently, 𝑦2 = 𝑠 − 𝑦1 ∈ [0, 1] has to be positive. This is enforced by the term 𝟏[0,1](𝑠 − 𝑦1), and
implies that the integrand is supported only for 𝑦1 < 𝑠; otherwise, this would require 𝑦2 < 0. We
can thus write:

𝑓𝑆 (𝑠) = ∫

𝑠

0
𝑓𝑌1 (𝑦1) 𝑓𝑌2 (𝑠 − 𝑦1) 𝑑𝑦1 (49)

= ∫

𝑠

0
𝛼1𝑦

𝛼1−1
1 𝛼2(𝑠 − 𝑦1)𝛼2−1 𝑑𝑦1 (50)

Exchanging 𝑦1 for 𝑢𝑠, we have 𝑑𝑦1 = 𝑠𝑑𝑢 and we can rewrite Eq. (50) as:

𝑓𝑆 (𝑠) = ∫

1

0
𝛼1𝛼2𝑢

𝛼1−1𝑠𝛼1−1 (𝑠(1 − 𝑢))𝛼2−1 𝑠 𝑑𝑢 (51)

= ∫

1

0
𝛼1𝛼2𝑢

𝛼1−1(1 − 𝑢)𝛼2−1𝑠𝛼1+𝛼2−1 𝑑𝑢 (52)

We can now include the truncation following which the density of the sum is 𝑓𝑆 (𝑠 > 1) = 0 when
the sum of 𝑌1 and 𝑌2 is greater than 1. The probability density function must thus be renormalised
over the simplex. This can be written as:

𝑓𝑆 (𝑠)𝟏[0,1](𝑠) =
∫ 1
0 𝛼1𝛼2𝑢𝛼1−1(1 − 𝑢)𝛼2−1𝑠𝛼1+𝛼2−1 𝑑𝑢

∫ 1
0 ∫ 1

0 𝛼1𝛼2𝑢𝛼1−1(1 − 𝑢)𝛼2−1𝑠𝛼1+𝛼2−1 𝑑𝑢 𝑑𝑠
(53)

where normalisation occurs via the denominator. Since 𝑢 is not a function of 𝑠, the integration over
𝑢 is independent of 𝑠. Consequently, all terms that depend on 𝑢 cancel out in the expression, which
reduces to:

𝑓𝑆 (𝑠)𝟏[0,1](𝑠) =
𝑠𝛼1+𝛼2−1

∫ 1
0 𝑠𝛼1+𝛼2−1 𝑑𝑠

= (𝛼1 + 𝛼2)𝑠𝛼1+𝛼2−1 (54)
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By definition of the Beta distribution, we have shown through Eq. (54) that the sum of 𝑌1 and 𝑌2
obeys 𝑆 ∼ 𝑒𝑡𝑎(𝛼1 + 𝛼2, 1).

Remarking that the second parameter of the distribution is conserved by the summation, we
can extend this property by combining the sum𝑆 with a third variable 𝑌3, so that (𝑆+𝑌3) ∼ 𝑒𝑡𝑎((𝛼1+
𝛼2) + 𝛼3, 1). Extending it further to 𝑛 variables demonstrates the above lemma. ■

We can now combine Lemmas (2) and (3) to demonstrate the proposition (2).

Proof. First, including Lemma (2) into Lemma (3) yields:
𝑛
∑

𝑑=1
𝑋𝑝

𝑑 ∼ 𝑒𝑡𝑎(
𝑛
∑

𝑑=1
𝑎𝑑∕𝑝, 1) (55)

when we condition on ∑𝑛
𝑑=1(𝑋𝑑)𝑝 ≤ 1. Second, we can notice that this latter requirement is equi-

valent to ||𝐗||𝑝 ≤ 1 because variables 𝑋𝑑 ∈ [0, 1], and hence |𝑋𝑑| = 𝑋𝑑 . Therefore, using Lemma
(2) again on the sum (

∑𝑛
𝑑=1 |𝑋𝑑|

𝑝)1∕𝑝 concludes the proof by canceling out the influence of 𝑝 in the
distribution of Eq. (55) and making it equal to Eq. (42). ■

B.2.2 𝓁𝑝 norm and the distribution of fitness defects
We can now apply the property given by condition in Eq. (42) to the vector of fitness defects. We
have defined this vector as 𝐗, where 𝑋𝑑 ∼ Beta(𝑏𝑑 , 1). From Eq. (42), we have:

||𝐗||𝑝 ∼ 𝑒𝑡𝑎(𝑛𝑏̄, 1) (56)

With 𝑟𝑝 = ||𝐗||𝑝 and 𝑓 = 1 − 𝑟𝑝, we then immediately recover that:

𝑓 ∼ 𝑒𝑡𝑎(1, 𝑛𝑏̄) (57)

owing to reflection symmetry. This is equivalent to Eq. (9) except it now relies on the average
maladaptive bias 𝑏̄ rather than 𝑏. As an immediate consequence, the genetic load takes the form
of Eq. (12), with 𝑏̄ instead of 𝑏.

B.2.3 Distribution of the sum of Beta-distributed 𝓁𝑝-norms conditioning on ||𝐗||𝑝 ≤ 1, and
connection to modularity

Distribution of the sum of 𝓁𝑝-norms conditional on ||𝐗||𝑝 ≤ 1
There is another useful consequence of the fact that the 𝓁𝑝 norm of a vector of independent Beta
distributed variables𝑋𝑑 ∼ 𝑒𝑡𝑎(𝑎𝑑 , 1) remains Beta-distributed when we condition on ||𝐗||𝑝 ≤ 1: we
can now apply this result to determine the distribution followed by the combination of 𝓁𝑝 norms
themselves.

First, consider M subsets of 𝑛𝑚 independent random variables following Beta-distributions:

𝑋(𝑚)
𝑑 ∼ 𝑒𝑡𝑎(𝑎𝑑,𝑚, 1),with 𝑑 = 1,… , 𝑛𝑚,

and the group-level measure of each subset as the 𝓁𝑝𝑚 norm:

𝑟𝑚(𝐗(𝐦)) = ||𝐗(𝐦)
||𝑝𝑚 .

Conditional on ||𝐗(𝑚)
||𝑝𝑚 ≤ 1, our prior results imply that:

||𝐗(𝐦)
||𝑝𝑚 ∼ 𝑒𝑡𝑎(𝑛𝑚𝑎𝑚, 1),with 𝑎𝑚 = 1

𝑎𝑚

𝑛𝑚
∑

𝑖=1
𝑎𝑑,𝑚 (58)

From that point, we can now determine the distribution followed by the sum of several 𝓁𝑝-
norms, and by taking the 𝓁𝑝-norm of underlying 𝓁𝑝-norms.
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Corollary 3. Consider𝑀 subsets of vectors 𝐗(𝐦) where 𝑚 = 1,… ,𝑀 , such that :

||𝐗(𝐦)
||𝑝𝑚 ∼ 𝑒𝑡𝑎(𝑛𝑚𝑎𝑚, 1).

Now, consider the set of these𝑀 𝓁𝑝𝑚 -norms 𝐑 = (||𝐗(𝟏)
||𝑝1 ,… , ||𝐗(𝐌)

||𝑝𝑀 ) of order 𝑝𝑚. If the 𝓁𝑝𝑚 -norms
are combined through a higher-level 𝓁𝑝-norm, the resulting distribution of ||𝐑||𝑝 is still Beta-distributed.
Importantly, this property does not depend on the specific values of the exponents 𝑝𝑚, or the number of
hierarchical layers.

Proof. Consider a vector containing𝑀 group-level norms:

𝐑 = (𝑟1(𝐗(𝟏)),… , 𝑟𝑀 (𝐗(𝐌))),with 𝑟𝑚(𝐗(𝐦)) = ||𝐗(𝐦)
||𝑝𝑚

Conditioning on ||𝐑||𝑝 ≤ 1, we can apply property (2), and the𝓁𝑝 norm ||𝐑||𝑝 is again Beta-distributed
according to:

||𝐑||𝑝 ∼ 𝑒𝑡𝑎(𝑛𝑎, 1) (59)

with:

𝑛 =
𝑀
∑

𝑚=1
𝑛𝑚 and 𝑎 =

𝑀
∑

𝑚=1

𝑛𝑚
∑

𝑑=1
𝑎𝑑,𝑚∕𝑛

Consequently, the distribution of the combined 𝓁𝑝 norm is completely independent of the num-
ber of layers, the choice of the orders 𝑝𝑚 at each layer, and the final order 𝑝. ■

Biological modularity and the genetic load under maladaptive biases
We can use this property to clarify how the genetic load invariance relates to the architecture of
traits. An organism may consist of multiple functional modules, within which lower-level traits
combine in different ways. For example, the size of an organism may arise as the sum of the sizes
of smaller components (eg., bones in a body), which corresponds to the taxicab 𝓁1 norm. con-
versely, a metabolic rate or the synthesis of a pigment may require all lower-level components to
contribute jointly (eg., several glycolytic enzymes are involved to produce ATP), which corresponds
to the maximum 𝓁∞ norm in the space of defects. These higher-level traits may then combine
to prescribe fitness. Eq. (59) demonstrates that neither modular nor hierarchical architectures of
traits modify the genetic load. This latter simply depends on the total number of traits and on the
average maladaptive bias of genotypes toward producing low-fitness trait values.
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