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Towards interpretable prediction of
recurrence risk in breast cancer using
pathology foundation models
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Melissa A. Troester4,5,6, Katherine A. Hoadley4,7,8 & Joel H. Saltz1,8

Transcriptomic assays such as the PAM50-based ROR-P score guide recurrence risk stratification in
non-metastatic, ER-positive, HER2-negative breast cancer but are not universally accessible.
Histopathology is routinely available and may offer a scalable alternative. We introduce MAKO, a
benchmarking framework evaluating 12 pathology foundation models and two non-pathology
baselines for predicting ROR-P scores from H&E-stained whole-slide images using attention-based
multiple instance learning. Foundation models, large neural networks pre-trained on millions of
pathology images and adaptable to diverse downstream tasks, were trained and validated on the
Carolina Breast Cancer Study and externally tested on TCGA BRCA. Several foundation models
outperformed baselinemodels across classification, regression, and survival tasks. CONCHachieved
the highest ROC AUC, while H-optimus-0 and Virchow2 showed the top correlation with continuous
ROR-P scores. All pathology models stratified CBCS participants by recurrence similarly to
transcriptomic ROR-P. Using the HIPPO interpretability method, we found that tumor regions were
necessary and sufficient for high-risk predictions, and we identified candidate tissue biomarkers of
recurrence. These results highlight the promise of interpretable, histology-based risk models in
precision oncology.

Hormone receptor (HR)-positive, HER2-negative breast cancers account
for over 70% of all breast cancer cases and carry a substantial risk of long-
term recurrence1–3. A meta-analysis of 62,923 estrogen receptor (ER)-
positive women reported 20-year recurrence risks ranging from 10% to
41%4, and a Danish cohort study with over 30 years of follow-up found
recurrence rates of 13.5–34.3% among ER-positive patients5.While patients
at high risk of recurrence benefit most from adjuvant chemotherapy,
accurately identifying those at low risk is equally important to avoid
unnecessary treatment and its associated side effects6–11.

To address this clinical need, transcriptomic assays like the PAM50-
based risk of recurrence (ROR-P) score have been clinically validated for the
prediction of recurrence risk in ER-positive, HER2-negative patients12–20.
However, these assays are not universally available and may potentially
delay decision-making due to turnaround times of several days to weeks21.

Given the increasing digitization of histopathology, artificial intelligence
(AI) applied to hematoxylin-and-eosin (H&E)-stained whole slide images
(WSIs) offers a promising and scalable alternative for biomarker inference,
particularly in settingswhere transcriptomic testing is inaccessible. Previous
studies have demonstrated that AI models can infer HR status22–25, PAM50
molecular subtypes23,26, and even ROR-P23,27,28 directly from H&E-
stained WSIs.

While encouraging,most prior work has relied on task-specificmodels
or feature extractors pretrained on natural images, such as those from
ImageNet23,27–29. These models may not optimally capture the morpholo-
gical complexity of histopathology. In contrast, recent advances in general-
purpose, pretrained pathology foundation models have demonstrated
strong performance across diverse WSI-level tasks30–36. Foundation models
are large neural networks pretrained on millions of pathology images,
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enabling them to learn broadly useful morphological representations that
canbe adapted tomanydownstream tasks.However, their utility forROR-P
prediction and ability to predict long-term recurrence in breast cancer have
not been systematically evaluated. Benchmarking these pathology founda-
tion models for risk prediction could accelerate progress in tissue-based
prognostics37.

Moreover, despite the widespread use of attention-based multiple
instance learning (ABMIL) for WSI-level prediction tasks38,39, the inter-
pretability of theseABMILmodels remains poorly understood40. For clinical
deployment, it is essential not only to assess predictive performance but also
to understand how models arrive at their predictions. Interpretability
methods can help determine whether reliance is on histologically mean-
ingful features or spurious correlations, andmay aid in identifying potential
biases, failure models, or novel biomarkers. While attention weights from
ABMIL are widely used for interpretation, they are best considered as tools
for generating hypotheses about which tissue regions may be informative.
Attention weights highlight areas themodel may be focusing on, but do not
necessarily reveal its true decision-making process41. In practice, attention
can be unreliable, especially in the presence of redundant or correlated
features. To move from hypothesis generation to hypothesis testing,
perturbation-based methods offer a more rigorous framework by system-
atically evaluating how altering specific tissue regions affects model
outputs40. Despite their potential, no prior studies to our knowledge have
applied such virtual experiments to assess the interpretability of foundation
models for breast cancer recurrence risk stratification.

To address these gaps, we developed Mammary Analysis for Knowl-
edge of Outcomes (MAKO), a comprehensive benchmarking framework
for inferring recurrence risk fromH&E-stainedWSIs in early breast cancer
(Fig. 1). MAKO evaluates 14 pretrained feature extractors using ABMIL,
including 12 pathology-specific foundation models and two general-
purpose vision encoders. Models were trained using data from the Carolina
Breast Cancer Study (CBCS), a large, diverse cohort with long-term
recurrence follow-up, and externally validated on The Cancer Genome
Atlas Invasive Breast Carcinoma dataset (TCGA BRCA)42. We focused
specifically on predicting the PAM50-based ROR-P score, comparing
models trained for classificationof risk categories (i.e., low/mediumvs. high)
with those trained to regress the continuousROR-P score, the latter ofwhich
may better preserve underlying biological variation43. In addition to
benchmarking predictive performance, we assessed model interpretability
by examining the contribution of tumor epithelium versus surrounding
tissue to the predictions.We conducted further virtual experiments in tissue
to identify histologic features associated with high recurrence risk, advan-
cing efforts toward biologically grounded and clinically actionable AI in
computational pathology. Together, these efforts provide a comprehensive
evaluation of pathology foundation models for breast cancer risk stratifi-
cation and establishMAKO as a resource for benchmarking and discovery.

Results
Using attention-basedmultiple instance learning (ABMIL), we evaluated 12
foundation models pretrained on histopathology and compared their

Fig. 1 | Overview of MAKO. a Gene expression assays, such as the ROR-P score,
provide recurrence risk estimates in ER-positive, HER2-negative breast cancer, but
there are limitations to their universal use. In contrast, H&E-stained slides are
collected routinely for every patient with breast cancer and offer an accessible,
underused data source for AI-based risk prediction. Recent pathology foundation
models have not been benchmarked for recurrence risk prediction. We explore this
in the present study. bTheCarolina Breast Cancer Study (CBCS) was used formodel
development and internal validation. CBCS is a cohort with high-fidelity long-
itudinal follow-up, enabling robust evaluation of recurrence prediction. External
validation was performed using The Cancer Genome Atlas Invasive Breast Cancer
Study (TCGA BRCA), which includes H&E whole-slide images (WSIs) and gene
expression data; however, recurrence tracking is less complete. cWSIs were divided
into fixed-size image patches, which were then embedded using one of 14 pretrained
encoders, including 12 pathology foundationmodels and two baselinemodels. Patch

embeddings were aggregated using attention-based multiple instance learning
(ABMIL) to produce a WSI-level prediction. For each pretrained encoder, two
models were evaluated: a classification model discriminating between low/medium
and high ROR-P, as well as a regression model directly predicting the continuous
ROR-P score. d ROC AUC was used to evaluate the classification of ROR-P risk
groups, while the Pearson correlation coefficient (r) was used to measure the per-
formance of regression models. Concordance index (C-index) was used to assess
time-to-recurrence prediction in survival analysis, using model predictions. e We
applied HIPPO to perform virtual experiments on WSIs to determine whether
tumor regions were necessary and sufficient for high-risk predictions. To discover
candidate tissue biomarkers of recurrence risk, we used HIPPO to identify the
smallest regions of tissue capable of converting a low-risk prediction into a high-risk
prediction when inserted into a different slide. Created in BioRender.
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performance to two non-pathology baselines: ResNet50 pretrained on
ImageNet and ViT-DINOv2, a vision transformer trained on 142 million
natural images using self-supervised learning. This design enabled assess-
ment of the added value of pathology-specific pretraining. Models were
evaluated on three tasks: classification of ROR-P risk categories (low/
mediumvs. high), predictionof continuousROR-P scores, and stratification
by time to recurrence. Training and internal validation were performed on
the Carolina Breast Cancer Study (CBCS) using 10-fold cross-validation,
with external validation onTCGABRCA (Table 1).Models were trained on
all available CBCSWSIs with matched ROR-P and recurrence information
(n = 1339 participants, 1384 WSIs). All reported performance metrics and
interpretability analyses were restricted to ER-positive, HER2-negative
tumors, the target population for clinical ROR-P testing. In CBCS, this
included 883WSIs from 847 participants, and in TCGA BRCA, it included
613 WSIs from 613 participants.

In addition to benchmarking performance, we applied the HIPPO
framework to identify histologic features used by the models. HIPPO sys-
tematically adds or removes tissue patches from WSIs to generate

hypothetical slides. By comparing model predictions on these hypothetical
slides to the originals, HIPPO quantifies the necessity (whether removing a
region reduces performance) and sufficiency (whether a region alone drives
predictions) of specific tissue regions. Using HIPPO, we evaluated whether
tumor regions were necessary and sufficient for accurate ROR-P prediction,
and we identified regions sufficient to predict high-risk scores. These ana-
lyses offer insight into the spatial patterns driving model predictions and
their potential relevance as interpretable biomarkers.

Benchmarking ROR-P group classification
Pathology foundationmodels consistently achievedhigherROCAUCs than
the ResNet50 baseline for classifying ROR-P risk groups in ER-positive,
HER2-negative, stage I–III specimens of the CBCS dataset. The top-
performing model, CONCH, achieved an AUC of 0.809, representing an
8.6% relative improvement (P < 0:001, DeLong’s test). Six additional
encoders also had statistically significant improvements overResNet50 after
multiple testing correction, including UNI, Phikon, CTransPath, Phikon-
v2, Virchow, and DiRLv2 (P < 0:05, DeLong’s test). CONCH was the only
model to reach a significantly higher ROC AUC than ViT-DINOv2
(P < 0:05, DeLong’s test) (Fig. 2a, b, Supplementary Table 1).

In the TCGA BRCA cohort of patients with non-metastatic ER-posi-
tive, HER2-negative tumors, four categorical models demonstrated statis-
tically significant improvements in ROC AUC over the ResNet50 baseline.
The CONCHmodel achieved the highest AUC at 0.850, corresponding to a
10.4% relative improvement (P < 0:05, DeLong’s test). H-optimus-0 and
Virchow2 achieved ROCAUCs of 0.840, whichwere 9%higher than that of
ResNet50 (P < 0:05, DeLong’s test). CTransPath also achieved a sig-
nificantly higher ROC AUC of 0.829 (P < 0:05, DeLong’s test). Three
additional models (i.e., UNI, Phikon, and Prov-GigaPath) showed
numerically higher ROC AUCs compared to ResNet50, but these did not
reach statistical significance after adjustment formultiple comparisons (Fig.
2c, d, Supplementary Table 1).

Benchmarking ROR-P score regression
In patients with non-metastatic, ER-positive, HER2-negative breast cancer
in the CBCS cohort, eleven of twelve pathology foundation models sig-
nificantly outperformed the ResNet50 baseline in predicting continuous
ROR-P scores, as measured by Pearson correlation with the true ROR-P.
The ResNet50 model achieved a baseline correlation of 0.541, and the H-
optimus-0 encoder achieved the strongest performance, with a correlation
of 0.638 (Fig. 3a, b, Supplementary Table 2).

Despite being the highest performer in CBCS, H-optimus-0 did not
generalize as well in the TCGA cohort of patients with ER-positive, HER2-
negative breast cancer, achieving a lower correlationwith trueROR-P scores
compared to ResNet50. None of the models evaluated in TCGA demon-
strated statistically significant improvements in Pearson correlation relative
to ResNet50 after multiple testing correction. Virchow2 and CTransPath
showed the greatest numerical improvements, but their adjusted p-values
narrowly exceeded the significance threshold. Several encoders that per-
formed well in CBCS, including CONCH, Prov-GigaPath, and UNI,
exhibited modest gains in correlation, while others, such as Phikon, Kaiko-
L/14, and H-optimus-0 showed decreased performance (Fig. 3c, d, Sup-
plementary Table 2). These results suggest limited cross-cohort general-
izability of continuous ROR-P models trained on digital histopathology.

Benchmarking prediction of recurrence events
We evaluated histology-based models for their ability to predict actual
recurrence events using the concordance index (C-index,C) as the primary
performance metric. Among 847 participants with ER-positive, HER2-
negative breast cancer participants in the CBCS cohort, 107 experienced a
recurrence event within 10 years of study enrollment. We first evaluated
models trained to classify binarized ROR-P risk groups by comparing their
prognostic performance to that of the transcriptomic ROR-P assay. All
ABMIL-based univariate Cox models demonstrated statistically significant
stratification of patients based on recurrence (all Padj < 0:05, log-rank test,

Table 1 | Characteristics of cohorts

CBCS (N = 1339) TCGA BRCA (N = 1050)

Age (years)

Mean (SD) 51.5 (11.2) 58.6 (13.2)

Median [Min, Max] 49.0 [24.0, 74.0] 59.0 [26.0, 89.0]

Missing 0 (0%) 15 (1.4%)

Race

Black 696 (52.0%) 167 (15.9%)

Non-Black 643 (48.0%) 787 (75.0%)

Missing 0 (0%) 96 (9.1%)

Receptor status

ER+/HER2– 868 (64.8%) 642 (61.1%)

Not ER+/HER2– 471 (35.2%) 372 (35.4%)

Missing 0 (0%) 36 (3.4%)

Tumor size (mm)

Mean (SD) 26.7 (22.0) —

Median [Min, Max] 21.0 [2.00, 200] —

Missing 1 (0.1%) 1050 (100%)

Node status

Negative 766 (57.2%) 499 (47.5%)

Positive 570 (42.6%) 530 (50.5%)

Missing 3 (0.2%) 21 (2.0%)

TNM stage

Stage I 506 (37.8%) 173 (16.5%)

Stage II 592 (44.2%) 597 (56.9%)

Stage III 205 (15.3%) 236 (22.5%)

Stage IV 36 (2.7%) 19 (1.8%)

Missing 0 (0%) 25 (2.4%)

Intrinsic subtype

Luminal A 519 (38.8%) 566 (53.9%)

Luminal B 274 (20.5%) 215 (20.5%)

HER2-enriched 149 (11.1%) 81 (7.7%)

Basal 397 (29.6%) 188 (17.9%)

ROR-P group

Low 242 (18.1%) 278 (26.5%)

Medium 657 (49.1%) 554 (52.8%)

High 440 (32.9%) 218 (20.8%)
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FDR corrected), except for the H-optimus-0 model (P ¼ 8:66 × 10�2, log-
rank test, FDR corrected). In addition, the C indices from ABMIL model
predictions were compared to the C index from the transcriptomic assay
using the statistical method proposed by Kang et al. 44. None of the ABMIL
models achievedC indices that were inferior to the transcriptomic assay (all
Padj > 0:05, Kang et al. test, FDR corrected), indicating comparable per-
formance in risk stratification within this cohort (Fig. 4a,d). None of the
ABMILmodels demonstrated statistically significant differences inC-index
compared to the ResNet50 baseline (all Padj > 0:05, Kang et al. test, FDR
corrected).

Next, we benchmarked models trained to predict continuous ROR-P
scores using theC-index. The continuous prediction scores from all ABMIL
models were significantly associated with recurrence-free survival (all
Padj < 0:05, Wald test, FDR corrected), indicating that higher scores corre-
sponded to increased risk of recurrence. Similar to the categorical models,
no continuous ABMIL-based Cox model differed significantly from the
transcriptomic ROR-P assay (all Padj > 0:05, Kang et al. test, FDR corrected)
or from the ResNet50 baseline model (all Padj > 0:05, Kang et al. test, FDR
corrected) (Fig. 4b).

We observed that C indices were generally higher formodels trained to
predict continuousROR-P scores than for those trained to classify binarized
ROR-P risk groups (Fig. 4a, b). To determine whether this performance gap
reflected genuine model differences or was instead due to differences in
resolution, we applied the same threshold used by the transcriptomic ROR-
P assay to the predicted continuous scores. When evaluated in a directly
comparable classification framework, the categorical models consistently
achieved higher C indices than their thresholded continuous counterparts
(Fig. 4c), but after correction for multiple comparisons, only CONCH
achieved a significantly higher C index in the categorical setting
(P ¼ 1:61 × 10�2, Kang et al. test, FDR corrected). These findings suggest
that while continuous models benefit from finer granularity in survival

modeling, categorical models trained explicitly to align with clinical
thresholds may better capture risk group distinctions relevant to treatment
decision-making.

Due to limited clinical follow-up data in TCGA45, this cohort was
used for secondary analysis, while CBCS remained the primary dataset for
evaluating recurrence prediction. In the ER-positive, HER2-negative,
non-metastatic cohort of TCGA BRCA (n ¼ 613), 47 participants
experienced a recurrence eventwithin10 years of study enrollment. In this
subset of TCGA BRCA, the transcriptomic ROR-P assay did not sig-
nificantly stratify participants by recurrence when binarized (C ¼ 0:535,
P ¼ 1:07 × 10�1, log-rank test) or used as a continuous score (C ¼ 0:468,
P ¼ 5:00 × 10�1, Wald test). Likewise, none of the ABMIL models
achieved significant stratification in TCGA BRCA (all Padj > 0:05, log-
rank test, FDR corrected).

Attention is insufficient for interpretation
With ABMIL models, each patch is assigned a weight reflecting its con-
tribution to the model’s prediction38. To better understand how these
models inferred recurrence risk, we qualitatively analyzed high-attention
patches across specimens stratified by predicted ROR-P groups. In high
ROR-P predictions, the most attended patches frequently captured nuclear
pleomorphism, disordered architecture, and tumor–stroma interfaces
(Supplementary Fig. 2a), whereas in low/mediumROR-P predictions, high-
attention patches were often localized to stromal regions (Supplementary
Fig. 2b). In general, attention in high-risk cases was concentrated within
tumor epithelial regions, suggesting that the model prioritizes tumor mor-
phology in its high-risk assessments (Supplementary Fig. 2c). However, we
also identified specimens in which attention was diffuse and without clear
focus (Supplementary Fig. 2d). These ambiguous attention maps limited
interpretability and raised questions about which tissue regions were actu-
ally driving model predictions.

Fig. 2 | Benchmarking ROR-P group classifica-
tion. Bar plots of receiver operating characteristic
area under the curve (ROCAUC) for predicting low/
medium versus high ROR-P in ER-positive, HER2-
negative participants, as evaluated in a CBCS
(internal) and c TCGA BRCA (external) cohorts.
High ROR-P was treated as the positive category.
Models are sorted by ROC AUC in CBCS, with
pathology-specific foundation models (purple)
compared against ResNet50 and ViT-DINOv2
baselines (teal). Asterisks indicate a statistically
significant improvement in ROC AUC compared to
ResNet50 within each dataset (DeLong test with
FDR correction; Padj < 0:05 *, Padj < 0:01 **,
Padj < 0:001 ***). ROC curves from the ER-positive,
HER2-negative cohort of b CBCS and d TCGA
BRCA, illustrating the performance of CONCH
(purple) and ResNet50 (teal). Chance performance
is shown as a dashed line.
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Tumor regions are necessary and sufficient for high ROR-P
predictions
To address these limitations and rigorously quantify the contribution of
tumor tissue, we used HIPPO, a perturbation-based explainability frame-
work specifically designed to assess how localized tissue regions influence
predictions inweakly supervisedmodels, like those developed in the present
study40.While attentionmapsoffer indirect insights, they arenot guaranteed
to reflect causal model behavior41. Perturbation-based approaches, by
contrast, enable systematic testing of tissue importance through controlled
input modification. Motivated by the biology of the transcriptomic ROR-P
assay (whichwas developed using genes that were intrinsic to tumors found
in repeated sampling of tumor tissue12,19), we hypothesized that tumor
would be both necessary and sufficient for high ROR-P predictions by our
models. Using HIPPO, we generated synthetic slides by removing tumor
patches and observed the resulting impact onROR-P predictions. Across all
models, removal of tumor regions led to a significant reduction in high-risk
scores (P < 0:05, two-sided paired t-test), with effect sizes ranging from
�1:77 to�0:12 (Cohen’s d) (Fig. 5a), supporting the hypothesis that tumor
regions are necessary for high ROR-P predictions.

To evaluate whether tumor tissue alone was sufficient for high ROR-P
predictions, we applied HIPPO to generate synthetic slides containing only
tumor regions, with all non-tumor tissue patches removed (Fig. 5b). For
seven models (i.e., CTransPath, DiRLv2, H-optimus-0, Kaiko-L/14, Prov-
GigaPath, UNI, Virchow2), thismanipulation did not result in a statistically
significant change in the predicted probability of high ROR-P (P > 0:05,
two-sided paired t-test), indicating that tumor regions alone were sufficient
to reproduce the original high-risk predictions. Among the remaining
models, all except Hibou-L exhibited significant increases in predicted
probability following removal of non-tumor regions. However, effect sizes
for most pathology foundation models were modest (Cohen’s d < 0:23),
further supporting the sufficiency of tumor morphology in driving high

ROR-P predictions. The largest increase in predicted probability was
observed for ResNet50 (Cohen’s d ¼ 0:65) and ViT-ResNet50 (Cohen’s
d < 0:72), suggesting that thesenon-pathologymodelsweremost affectedby
non-tumor tissue. Together, these perturbation-based analyses (Fig. 5a, b)
demonstrate that tumor regions are both necessary and, in most models,
sufficient to drive high ROR-P predictions. These findings strengthen
confidence that high-risk predictions of pathology foundation models
reflect biologically relevant tumor morphology, rather than spurious asso-
ciations with non-tumor components.

Identifying candidate tissue biomarkers of high recurrence risk
The combination of ABMIL models and explainable AI provides an
opportunity not only to interpret model predictions but also to discover
morphology associated with recurrence risk. We developed a data-driven
strategy to identify specific tissue regions that are sufficient to drivehigh-risk
predictions. InformedbyKaelin’s (2017) emphasis onbiomarker sufficiency
as a critical criterion in cancer research46, we leveraged HIPPO to auto-
matically search for minimal regions of tissue that could convert a low- or
medium-risk prediction into a high-risk one. This approach treats the
trained model as a proxy observer, systematically identifying tissue regions
that, when introduced into a low-risk specimen, consistently elevate pre-
dicted risk, revealing patterns that may serve as candidate, interpretable
biomarkers of recurrence risk.

Tooperationalize this idea,weusedHIPPOtoperformamodel-guided
search for tissue patches sufficient to increase ROR-P predictions. Patches
from high-risk WSIs were systematically inserted into low-risk WSIs to
identify the smallest region capable of flipping the model’s prediction (Fig.
5c). This process yielded a set of 120 high-risk patches (~2.0mm2) that
consistently elevated ROR-P scores across models and specimens. The
identified regions exhibited features associated with aggressive tumor
biology, including nuclear pleomorphism, mitotic activity, necrosis, and

Fig. 3 | Benchmarking ROR-P score regression.
Bar plots of Pearson correlation coefficient (PCC, r)
for predicting continuous ROR-P scores in ER-
positive, HER2-negative participants, as evaluated
in a CBCS (n = 883 WSIs, 847 participants) and c
TCGA BRCA (n = 613 WSIs, 613 participants)
cohorts. Models are sorted by PCC in CBCS, with
pathology-specific foundation models (purple)
compared against ResNet50 and ViT-DINOv2
baselines (teal). Asterisks indicate a statistically
significant improvement in PCC compared to
ResNet50 within each dataset (Meng’s Z test with
FDR correction; Padj < 0:05 *, Padj < 0:01 **,
Padj < 0:001 ***). Representative scatter plots of
reference transcriptomic ROR-P predicted ROR-P
in b CBCS and d TCGA BRCA, illustrating the
performance of pathology foundation models
(purple) and baseline models (teal). Each point
represents results from one WSI. The identity
function is shown as a dashed line.
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invasive growth, and therewas a lackof tumor-infiltrating lymphocytes (Fig.
5d, Supplementary Fig. 3). To assess generalizability, these high-risk patches
were introduced into additional low- and medium-risk slides. In all cases,
the manipulated slides showed consistent increases in predicted ROR-P
(Fig. 5e, Supplementary Fig. 4), suggesting that the identified regions are
robust, transferable, and sufficient to drive high-risk predictions. These
results demonstrate the potential of ABMIL models, in combination with
explainable AI, to propose candidate histologic biomarkers of
recurrence risk.

Discussion
In the present study, we demonstrate that computational pathology can
accurately infer recurrence risk in breast cancer and systematically bench-
mark 12 pathology foundation models and two non-pathology baseline
models using a unified framework, MAKO. Our results show that several
foundation models, particularly CONCH, achieve robust performance in
predicting both categorical and continuous PAM50-based ROR-P scores
from H&E-stained WSIs. When evaluated for stratifying patients by
recurrence events, these histology-based models performed comparably to
transcriptomic assays. Beyond prediction, we show that pathology foun-
dation models can be interrogated using perturbation-based methods to
identify minimal tissue regions sufficient to drive high-risk predictions,
suggesting their utility not only for histology-based risk stratification but
also for biomarker discovery. Together, thesefindings highlight the promise
of pathology foundation models as scalable, interpretable tools for the
prediction of recurrence risk in breast cancer.

Our study builds upon a growing body of work demonstrating that
deep learning models can infer molecular phenotypes and recurrence

risk from histology. Couture et al., for example, showed that an
ImageNet-pretrained convolutional neural network could be used to
predict PAM50 molecular subtype, hormone receptor status, and
ROR-PT (a score related to ROR-P that includes tumor size) from
breast cancer tissue microarrays (TMAs)23. We extend this work by
using resections rather than TMAs, evaluating a diverse set of
pathology-specific foundation models rather than a single ImageNet-
based encoder, and introducing perturbation-based interpretation to
assess the role of tumor regions in model predictions. More recently,
Boehm et al. applied deep learning using the CTransPath pathology
encoder to infer OncotypeDX® scores from histology specimens of
early hormone receptor-positive breast cancer47. Our work builds on
this by focusing specifically on the PAM50-based ROR-P score,
benchmarking a broad set of pretrained pathology foundation models
(including CTransPath), and incorporating survival analyses to
directly assess model performance in predicting recurrence events. In
addition, we demonstrate how perturbation-based methods can be
used to identify necessary and sufficient regions for high-risk predic-
tions and to uncover candidate histologic biomarkers of recurrence.
Finally, El Nahhas et al. showed the value of regression-based deep
learning for predicting continuous molecular biomarkers, such as
homologous recombination deficiency43. We build on this by showing
that regression-based ABMIL models can effectively predict con-
tinuous ROR-P scores and that perturbation experiments can be
applied in this setting to quantify how specific tissue regions influence
predicted continuous ROR-P scores. However, we also found that
continuous predicted scores, when thresholded using the same
thresholds as the transcriptomic ROR-P score, resulted in lower

Fig. 4 | Benchmarking pathology foundation models for predicting recurrence
events. a Concordance index (C-index) of models trained to classify ROR-P risk
groups, evaluated using recurrence-free survival in the Carolina Breast Cancer Study
(CBCS). The transcriptomic ROR-P assay is shown in black as the reference stan-
dard. Models are sorted by C-index. b C-index values for models trained to predict
continuous ROR-P scores, with reference standard shown in black. Models are
sorted by C-index. c Dumbbell plot comparing C-indexes achieved by categorical

models (diamonds) and thresholded continuous predictions (squares) for each
model. Categorical models consistently outperformed their thresholded continuous
counterparts. d Cumulative recurrence curves stratified by low/medium (blue) vs.
high risk (red) groups. Predictions from the transcriptomic ROR-P assay and from
the categorical UNI model both showed clear separation, with the UNI model
achieving comparable prognostic stratification.
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concordance indexes than predictions from models trained to directly
predict risk categories. This suggests that the thresholds would have to
be optimized for this image-based approach. Together, our study
advances prior work by providing a standardized benchmarking fra-
mework, evaluating both classification and regression models, and

introducing a rigorous, model-driven approach for biomarker dis-
covery and interpretation.

This study has several notable strengths. We benchmarked 14 models
using a large and diverse training cohort (CBCS) with long-term clinical
follow-up and validated them on an independent external dataset (TCGA

Fig. 5 | Perturbation-based interpretability analyses. aBox plots showing the effect
of loss of tumor patches on the predictions of high ROR-P using the classification
model. Box plots show the first and third quartiles, themedian (central line), and the
range of data. Sample sizes and significance values are shown (*P < 0:05, **P < 0:01,
***P < 0:001, ****P < 0:0001, n.s.: P > 0:05; two-sided paired t-test). Sample sizes
differ across models because only the specimens predicted as high ROR-P were used
for each model. b Box plots showing results of tumor sufficiency tests. The purple
box plots are the same as the purple boxes in a, and the orange boxes represent high
ROR-P probabilities whennon-tumor patcheswere removed. Search for regions that

are sufficient to drive high ROR-P. c Schematic of search strategy. Patches from high
ROR-P specimens (n = 5) were placed into low ROR-P specimens (n = 5), and the
image patch that resulted in the largest increase in predicted ROR-P was kept. This
was continued until a stopping condition was met (see the “Methods” section).
d Examples of the tissue patches sufficient to drive high ROR-P in an originally low-
ROR-P specimen. e Scatter plot of original ROR-P predictions and ROR-P predic-
tions after the addition of 120 patches found viaHIPPO search. The dashed gray line
indicates the function y ¼ x. The full set of 120 patches is shown in Supplementary
Fig. 3, and the effects on other models are shown in Supplementary Fig. 4.
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BRCA). By comparing pathology foundation models to general-purpose
vision encoders,wehighlight the addedvalueof domain-specificpretraining
for histopathology. We also demonstrate how ABMIL can be paired with
perturbation-based interpretability to identify sufficient tissue regions for
high-risk predictions, providing interpretable evidence of biologically
groundedmodel behavior. Among the evaluatedmodels, CONCHemerged
as a consistent top performer, achieving the highest classification perfor-
mance across both datasets and ranking among the best models in regres-
sion tasks, suggesting that it may offer a particularly robust feature
representation for recurrence risk modeling.

The primary limitation of the present study is that models were
trained and evaluated on a cohort in which participants received het-
erogeneous treatments. As a result, we cannot determine whether the
observed stratification of recurrence risk reflects prognostic information
alone or is partially confounded by treatment effects. Unlike randomized
clinical trials or studies with uniform treatment protocols, CBCS does
not allow us to disentangle these factors. Therefore, while the predictions
of our models align well with transcriptomic ROR-P (as measured by
ROCAUC, Pearson r, andC-index), we cannot conclude that theywould
match the assay’s performance in guiding treatment decisions or pre-
dicting outcomes in homogeneously treated populations. This limitation
highlights the importance of evaluating histology-based models in
randomized clinical trials. Additionally, while external validation on
TCGA BRCA supports generalizability, performance was variable,
potentially due to differences in cohort characteristics and slide pre-
paration. An additional limitation is that transcriptomic ROR-P itself is
subject to uncertainty due to tumor heterogeneity, technical variation,
and the derivation of categorical cutoffs. As our models were trained to
predict ROR-P, their performance is inherently bound by the repro-
ducibility of the assay. Finally, although HIPPO enables localized per-
turbation to test model reasoning, it reflects causality as inferred by the
model rather than true biological mechanisms.

Our work opens several avenues for future research. Prospective studies
in clinical settings are essential to assess real-world performance and deter-
mine the clinical utility of histology-based recurrence prediction. Integrating
thesemodels with additional clinical, genomic, or spatial transcriptomic data
may further improve accuracy and interpretability. The perturbation-based
approach presented here could also be extended to other prediction tasks or
used to guide targeted biomarker discovery. As foundation models continue
to evolve, benchmarking efforts like MAKO will be critical for identifying
performant, generalizable models and for ensuring that model outputs are
interpretable, biologically meaningful, and clinically actionable.

Methods
Study population
This study involved data from The Carolina Breast Cancer Study (CBCS),
whichhas beendescribedpreviously48,49. Briefly,CBCS is amultidisciplinary
study of invasive breast cancer that enrolled a total of 2998 female parti-
cipants ages 20–74 years from 44 counties in North Carolina. CBCS over-
sampled self-identified Black/African American women and younger
women (age <50 years). Cases were identified by rapid case ascertainment
via theUNCRapidCaseAscertainmentCore in conjunctionwith theNorth
Carolina Central Cancer Registry (diagnosis years 2008–2013).

For model development, we used all CBCS participants with WSIs,
matched ROR-P scores, and recurrence information (n = 1339 participants;
1384 WSIs). The samples with WSIs had similar distributions of age, race,
stage, size, and node status as the overall CBCS3 study population. Details
regarding formalin-fixed paraffin-embedded (FFPE) and immunohis-
tochemistry (IHC) preparation have been described previously50. Models
were trained on this full set to maximize sample size and morphological
diversity. However, all reported performance metrics and interpretability
analyses were restricted to the clinically relevant subset of ER-positive,
HER2-negative, stage I–III tumors, the target population for clinical ROR-P
testing. In CBCS, this subset comprised 847 participants (883 WSIs)
(Table 1).

For external validation, we used the invasive breast cancer cohort of
The Cancer Genome Atlas (TCGA BRCA)42. Of 1050 participants with
available WSIs and gene expression data, we restricted evaluation to those
with ER-positive, HER2-negative, stage I–III tumors (n = 613 participants,
613 WSIs).

Molecular scoring
The methods for computing PAM50 centroid correlation coefficients,
intrinsic subtypes, and the risk of recurrence (ROR-P) score have been
described previously48. Briefly, tissue cores 1:0mm in diameter were sam-
pled from tumor-rich regions (these cores contain significantly less tissue
than the full whole slide images used for training neural networks in this
study). Bulk RNA counting via NanoString nCounter was performed to
derive PAM50 centroid correlation coefficients, which quantify the simi-
larity of a tumor’s gene expression profile to each PAM50 subtype51. The
assigned PAM50 subtype corresponds to the subtype with the highest
correlation coefficient. The ROR-P score was computed as a weighted sum
of the PAM50 correlation coefficients and a proliferation-related compo-
nent per the PAM50 algorithm in Parker et al. 12.

Continuous ROR-P scores were stratified into three categories: low
(<11.76471), intermediate (≥11.76471–<52.94118), and high (≥52.94118).
The distribution of ROR-P scores in CBCS and TCGA BRCA was slightly
different, with TCGA BRCA showing lower ROR-P scores on average
(Supplementary Fig. 1).

Whole slide image processing
Formalin-fixed paraffin-embedded (FFPE) tissue specimens in CBCS were
scannedusing anAperio scanner (Leica Biosystems,Nussloch,Germany) at
20 × magnification (approximately 0:50 μm=pixel, MPP). WSIs from
TCGA BRCA were downloaded from the Genomic Data Commons Data
Portal. Seven slides fromTCGABRCAwere excluded because themetadata
specifying the physical size of each pixel (MPP) was missing. Patch coor-
dinates were calculated using the CLAM toolkit39, which was modified to
create patches of a constant physical size. Tissue image patches of size
128 × 128 μm2 were extracted, and the samepatch coordinateswereused for
all models trained in the present report.

Eachpatchwas embeddedusingpre-trained feature extractionmodels.
We evaluated 12 foundation models trained on pathology images:
CONCH32, CTransPath52, DiRLV253, Hibou-L34, H-optimus-033, Kaiko-L/
1454, Phikon55, Phikon-v256, Prov-GigaPath35, UNI31, Virchow36, and
Virchow257. As a comparison, we also embedded patches using ResNet5058,
which was trained on ImageNet, and ViT-DINOv259, which was trained on
over 142 million natural images. For eachWSI, all patches were embedded
using one model at a time, with each patch transformed into a corre-
sponding feature vector. The resulting vectors fromall patcheswithin aWSI
were concatenated to formaWSI-levelmatrix corresponding to that feature
extraction model. This process was repeated separately for each of the 14
feature extractionmodels. The resultingmatriceswere thenusedas inputs to
the WSI-level models.

WSI-level neural network modeling
Attention-based multiple instance learning (ABMIL) was used to learn
WSI-level labels from patch embeddings38. The ABMIL models first enco-
ded patch-level feature vectors using a fully connected layer (L ¼ 512),
rectified linear unit activation, anddropout ofp ¼ 0:25 for regularization.A
gated attention mechanism then computed attention scores by applying
parallel tanh-activated and sigmoid-activated branches (dimensionality
D ¼ 384), followed by element-wise multiplication and a linear projection.
The resulting attention scores were normalized via softmax, and the
attention-weighted sum of patch embeddings formed a WSI-level feature
vector, which was then processed by a final linear layer for classification or
regression. The models output two logits for risk classification and one for
ROR-P regression.

We employed a 10-fold cross-validation procedure to assess the gen-
eralization performance of our models. Specifically, our cohort of 1339
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CBCS participants was divided into 10 equally sized subsets (folds). The
subsets were stratified such that the distribution of ROR-P groups was
similar across folds. Iteratively, each fold served exactly once as the test set,
while the remaining nine folds formed a combined dataset that was sub-
sequently partitioned into separate training and validation subsets. For each
iteration, a model was trained using only the training subset, optimized
using predictions evaluated exclusively on the validation subset, and finally
assessed using predictions generated on the independent test fold. After
completing all 10 iterations, we obtained a complete set of out-of-sample
predictions for the entire dataset. Critically, each participant appeared in
only one partition per iteration, ensuring that the model was never trained
or optimized on data from participants included in the corresponding test
set. This procedure preserved the integrity of the training-validation-testing
separation and prevented data leakage, thus providing an unbiased eva-
luation of model performance.

Model evaluation on TCGA BRCA
Models trainedonCBCSwere applied toTCGABRCAslidesusing the same
pipeline. Patch embeddings from TCGA BRCA served as inputs to ABMIL
models trained on CBCS. Because CBCS models were developed using 10-
fold cross-validation, inference was performed with all 10models. The final
prediction for each TCGA BRCA specimen was obtained by averaging the
softmax-transformed logits across the 10 models.

Statistical analyses
For classification of ROR-P risk categories, we evaluated model perfor-
manceusing the areaunder the receiver operating characteristic curve (ROC
AUC), and DeLong’s test was used to assess statistical significance of dif-
ferences in model performance60. For continuous ROR-P prediction tasks,
model performance was evaluated using Pearson correlation, and the sta-
tistical significance of differences in Pearson correlation coefficients was
evaluated using Meng’s z-test for comparing dependent correlations61.
Pairwise comparisons were performed between each foundationmodel and
the ResNet50 baseline. To correct for multiple hypothesis testing, p-values
were adjusted using the Benjamini–Hochberg procedure (FDR)62. All sta-
tistical tests were two-sided. Analyses were conducted separately for the
CBCS and TCGA BRCA cohorts.

We assessed model performance for recurrence-free survival using
time-to-event data. Survival time was defined as the number of years
from diagnosis to the first recurrence or censoring at 10 years. The
concordance index (C-index) was used to quantify the discriminative
ability of eachmodel.C-indices were computed using the concordance()
function from the “survival” R package. C-index values range from 0.5
(no discrimination) to 1.0 (perfect discrimination). For comparison
between model predictions and the reference transcriptomic score, we
used the “compare” R package, which implements a statistical test for
comparing correlated C-indices44. P values were adjusted for multiple
comparisons using the FDR correction62. To assess whether model
predictions were significantly associated with recurrence-free survival,
we fit univariable Cox proportional hazards models using the coxph()
function from the “survival” R package. The continuous model predic-
tion score was used as the sole predictor. We also applied the log-rank
test using the survdiff() function implemented in the “survminer” R
package.

For categorical predictionmodels, model logits were transformedwith
softmax and then converted to binary risk classifications using optimized
thresholds. Rather than applying a fixed threshold (e.g., 0.5), we determined
an optimal threshold for each encoder by maximizing Youden’s J
(J ¼ sensitivity þ specificity � 1)63. Specifically, we performed 10-fold
cross-validation, and for each model, we concatenated the validation set
predictions for ER-positive, HER2-negative specimens across all folds.
Youden’s J was then computed on this pooled validation set to identify the
optimal threshold, which was subsequently applied to the model’s test set
predictions. This procedure was performed independently for each model.
This approach ensured that threshold selection reflected optimal risk

discrimination rather than arbitrary decision boundaries, thus providing a
more meaningful evaluation of clinical utility.

Interpretation of ABMIL models
Attention maps from ABMIL models were used as a preliminary tool for
qualitative interpretation. Thesemaps were generated in Python, converted
to GeoJSON format (with each patch polygon annotated with its ranked
attention score), and subsequently visualized in QuPath64 for assessment.

HIPPO experiments
To further interpret model predictions, we applied HIPPO, a quantitative,
occlusion-based explainability technique40. As the ROR-P was developed
using tumor-intrinsic genes, we hypothesized that tumor regions are
necessary and sufficient for model predictions of ROR-P. We focused on
ROR-P classification models. Tumor masks were generated using
PenAnnotationExtractor65, which extracted tissue regions based on pen
annotations on the glass slide. These masks defined the tumor-containing
areas within each WSI. To evaluate the effect of tumor removal on high
ROR-P predictions, we excluded all patch embeddings that intersected with
the tumor mask and compared the model’s softmax probabilities between
the original and tumor-removedWSIs. This analysis was restricted to slides
where the model originally predicted high ROR-P with a softmax prob-
ability greater than 0.5.

To assess the sufficiency of tumor regions for ROR-P predictions, we
removed all patches that did not intersect with the tumor mask, retaining
only tumor-containing regions. As in the necessity analysis, we focused on
WSIs where the models originally predicted high ROR-P with a softmax
probability >0.5. We then compared the model’s predictions between the
original WSIs and those containing only tumor regions.

Beyond the hypothesis-driven tests described above, we conducted
data-driven experiments to identify regions sufficient to flip a low ROR-P
specimen to high ROR-P. This approach aimed to uncover robust tissue
biomarkers that themodels associatedwith recurrence risk.We selectedfive
high ROR-P slides and five low ROR-P slides and applied a greedy search
strategy using the ROR-P regression model trained with the h-Optimus-0
features. In each iteration, a single patch from a high ROR-P slide was
inserted into a low ROR-P slide, and the model’s prediction was re-
evaluated. The patch was then replaced with the next patch from the high
ROR-P slide, and this process was repeated for all patches. The patch that
produced the highest increase in ROR-Pwhen inserted into the low ROR-P
slide was retained, and the search continued with the remaining patches.
This iterative process was performed until either a quarter of the patches in
the high ROR-P specimen were used or the manipulated specimen’s pre-
dicted ROR-P reached the high-risk threshold.

To assess the robustness and generalizability of the identified high
ROR-Ppatches, we inserted them into additional low- andmedium-ROR-P
specimens and measured the resulting changes in predicted ROR-P scores.
This analysis was conducted across all foundation models to evaluate the
robustness of learned risk-associated features.

Data availability
CarolinaBreastCancer Study is actively followingparticipants andunder an
IRB-approved protocol that does not permit data sharing on public web-
sites. However, the study shares data through an IRB-approved data use
agreement system as described on its website (https://unclineberger.org/
cbcs/). The results shown here are in whole or part based upon data gen-
erated by the TCGA Research Network: https://www.cancer.gov/tcga.

Code availability
Code to reproduce the analyses presented in this manuscript is available at
https://github.com/kaczmarj/MAKO.
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