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Uncertainty-aware genomic deep learning
with knowledge distillation
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Deep neural networks (DNNs) have advanced predictive modeling for regulatory genomics, but
challenges remain in ensuring the reliability of their predictions and understanding the key factors
behind their decision making. Here we introduce DEGU (Distilling Ensembles for Genomic
Uncertainty-awaremodels), a method that integrates ensemble learning and knowledge distillation to
improve the robustness and explainability of DNN predictions. DEGU distills the predictions of an
ensemble of DNNs into a single model, capturing both the average of the ensemble’s predictions and
the variability across them, with the latter representing epistemic (or model-based) uncertainty. DEGU
also includes an optional auxiliary task to estimate aleatoric, or data-based, uncertainty by modeling
variability across experimental replicates. By applying DEGU across various functional genomic
prediction tasks, we demonstrate that DEGU-trained models inherit the performance benefits of
ensembles in a single model, with improved generalization to out-of-distribution sequences andmore
consistent explanations of cis-regulatorymechanisms through attribution analysis. Moreover, DEGU-
trained models provide calibrated uncertainty estimates, with conformal prediction offering coverage
guarantees under minimal assumptions. Overall, DEGU paves the way for robust and trustworthy
applications of deep learning in genomics research.

Deep neural networks (DNNs) have demonstrated strong performance in
predicting the outputs of functional genomics experiments directly from
DNA sequences1–3. By approximating experimental assays, these DNNs
enable virtual experiments that explore the functional effects of genomic
sequence perturbations. Applications include predicting the impact of
genetic variants1,4,5, simulating CRISPR-like perturbation experiments that
uncover regulatory rules of sequence motif syntax6–8, and designing novel
DNA sequences9–14. In these applications, high-performing DNNs serve as
black-box in silico oracles or scoring functions, mapping DNA sequence
inputs to a target molecular phenotype, such as gene expression or chro-
matin accessibility. These models have the potential to improve hypothesis
generation and guide more optimal experimental design, setting the stage
for efficient AI-guided biological discovery.

However, these downstream applications assume thatDNNsmaintain
their predictiveperformance evenwhen the statistical properties of the input
data differ from those seen during training, a phenomenon known as a
covariate shift15.Model generalization is often assessed using in-distribution
held-out sequences from the same experiment that generated the training
data.While these held-out sequences come from different genomic regions,
they are typically similar in genomic composition to the training data due to
evolutionary constraints. Consequently, this assessmentmay not accurately

reflect themodel’s ability to predict sequenceswith greater genetic variation,
beyond the natural genome.

Recent work has shown that state-of-the-art genomic DNNs, such as
Enformer1, generalize well to predicting single-nucleotide variant effects
within cis-regulatory elements16,17. However, these predictions are typically
provided without calibrated measures of uncertainty, making it difficult to
determine when a prediction can be trusted. The lack of reliable uncertainty
estimates limits the utility of genomic DNNs in downstream applications
such as disease variant interpretation. Thus, developingmethods toquantify
and improve uncertainty calibration represents a critical challenge for
advancing variant effect prediction18,19.

One approach to quantifying uncertainty involves training an
ensemble ofDNNs,where eachmodel typically shares the same architecture
but differs in its randomly initialized parameters, allowing the variation
across their predictions to serve as an empirical measure of confidence20.
These so-called deep ensembles21 improve performance by averaging pre-
dictions across diversemodels, where eachmodel captures a different aspect
of the data. Averaging reduces individual model errors and balances biases,
leading to more accurate and robust predictions than any single model
alone. Ensembling has indeed proven to be an effective strategy to improve
predictive performance for genomic DNNs22–25.
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In addition to improving prediction accuracy, deep ensembles are
valuable for quantifying epistemic uncertainty, or model uncertainty due to
limited data, through the variability across the ensemble predictions21. For
example, a recent study leveraged deep ensembles of genomic DNNs to
investigate relationships between small sequence perturbations (e.g.,
expression quantitative-trait loci) and uncertainty in predictions26. Deep
ensembles also providemore reliable post hoc explanations when averaging
the attribution maps from each model in the ensemble. These attribution
maps assign importance scores to nucleotides in a given sequence, revealing
sequence motifs that are functionally relevant for the model’s
predictions17,27–29.

Despite these advantages, deep ensembles face several challenges that
limit their practicality in genomics applications. One major issue is the
increased computational overhead required to train and deploy multiple
models, making large-scale inference tasks such as genome-wide variant
effect predictions or extensive in silico experiments computationally
expensive. Additionally, while deep ensembles capture epistemic uncer-
tainty, they fail to account for aleatoric uncertainty30,31, the irreducible noise
stemming from technical and biological variability inherent in biological
data. Consequently, deep ensemblesmay provide an incompletemeasure of
total predictive uncertainty. Furthermore, the need tomanage andmaintain
multiple models adds substantial complexity to implementation, creating
scalability challenges, especially as model architectures continue to trend
towards greater size and complexity1,24,32–36.

To address these limitations, we introduce DEGU (Distilling
Ensembles for Genomic Uncertainty-aware models), a method that
combines ensemble learning and knowledge distillation37 to improve the
robustness and explainability of DNN predictions. DEGU leverages
ensemble distribution distillation38, a variant of knowledge distillation
that focuses on learning the distribution of predictions from the
ensemble rather than individual point estimates. This is accomplished
by training a single student model in a multitask fashion to perform two
primary tasks: 1) predict the mean of the ensemble’s predictions, and 2)
estimate the corresponding epistemic uncertainty based on the varia-
bility across the ensemble’s predictions. Additionally, DEGU can
incorporate an optional auxiliary task for the student model to predict
the aleatoric uncertainty, estimated from the variability observed across
experimental replicates.

By applying DEGU to different DNNs across various functional
genomics prediction tasks, we found that distilled models exhibit improved
generalization and enhanced robustness in their attributionmaps compared
to standard training methods. Furthermore, DEGU-distilled models accu-
rately predict epistemic uncertainty. Together, DEGU provides the effi-
ciency of a single model during inference while preserving the performance
and robustness of deep ensembles, with the added benefit of generating
calibrated uncertainty estimates.

Results
DEGU: distilling the knowledge of ensembles into a singlemodel
DEGU employs ensemble distribution distillation38 to transfer the collective
knowledge from an ensemble of models, which we refer to as teacher
models, to a single, student model (Fig. 1). The process begins with the
creation of a teacher ensemble, where multiple DNNs are trained inde-
pendently with different random initializations. Through knowledge dis-
tillation, the student model learns the distribution of predictions from the
teacher ensemble by performing multiple tasks concurrently: 1) predicting
the mean of the ensemble’s predictions and 2) predicting the variability
across the ensemble’s predictions. This assumes the predictions across the
teacher ensemble follow a normal distribution, characterized by a mean,
which is the standard quantity used to distill an ensemble’s predictions, and
standard deviation, which reflects epistemic uncertainty. Additionally,
when at least three experimental replicates are available, the student model
can optionally be trained to predict the aleatoric uncertainty39, which is
approximated by the variability observed across replicates in the training
data. Our multitask learning approach ensures that DEGU captures the
distribution of predictions from the ensemble along with the variability
inherent in the data. This enables DEGU to retain the performance and
robustness advantages of deep ensembles while reducing computational
overhead that scalesproportionally to the ensemble size (by 90% inour case)
during downstream inference tasks (Supplementary Table 1).

DEGU approximates the predictive performance of deep
ensembles
To demonstrate DEGU’s utility, we applied it to various DNNs trained on
diverse datasets: fly enhancer activity measured via STARR-seq for devel-
opmental (Dev) and housekeeping (Hk) promoters40, human cis-regulatory
sequence activity quantified through lentiMPRA for K562 and HepG2
cells23, and base-resolution ATAC-seq profiles from a human cell line41. For
each application,we constructed a teacher ensemble consisting of 10models
using established architectures suited to each task:multi-taskDeepSTARR40

for fly enhancers, single-task ResidualBind6,42 for lentiMPRA23, and a
standard convolutional neural network (CNN) for base-resolution ATAC-
seq profiles8. Student DNNs were then trained with DEGU’s ensemble
distribution distillation procedure, using the same architecture as their
respective teacher models (see Methods).

To simulate scenarios with limited data, we compared different data
size regimes by randomly downsampling the original training data while
retaining the full validation and test sets formodel evaluation. Strikingly, the
distilled DNNs (i.e., the student models) outperformed DNNs with stan-
dard training (Fig. 2), approaching theperformanceof the teacher ensemble.
Although the student models shared the same architecture as the teacher,
training with ensemble-generated target labels consistently improved pre-
dictive performance and often matched the performance of ensembles

Fig. 1 | Schematic of ensemble distribution dis-
tillation with DEGU. For a given input, the pre-
dictions from an ensemble of teacher models are
used to generate target labels for training a distilled
student model. The student model is trained to
predict both the average and variability of the pre-
dictions from the teacher ensemble.
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consisting of 10 models, particularly in low-data regimes. For example,
distilling DeepSTARR with only 25% of the STARR-seq training data
yielded performance comparable to standard training on the full dataset for
both developmental and housekeeping promoters (Fig. 2a, b). Similar gains
were observed on lentiMPRA data, with stronger improvements in K562
and more modest but noticeable effects in HepG2. For base-resolution
ATAC-seq profiles, distilled models achieved performance comparable to
standard training, with only a slight reduction relative to teachers (Sup-
plementary Fig. 1a). Next, we extended DEGU to DREAM-RNNmodels43,
which have previously demonstrated state-of-the-art accuracy on the
DeepSTARR and lentiMPRA datasets (Supplementary Fig. 2). Distilled
DREAM-RNN models trained on lentiMPRA data closely tracked the
ensemble, while improvements on DeepSTARR were more modest and
most evident as training data increased.

We also observed additional performance gainswhen the performance
of individual models within the teacher ensemble were improved (Supple-
mentary Fig. 3). In this scenario, every model (including the teacher and
student) was trained with evolution-inspired data augmentations provided
by EvoAug44,45. This resulted in higher performance gains for the individual
models, the ensemble, as well as the distilledmodels (Supplementary Fig. 3).
Moreover, as the number of models in the teacher ensemble increased, the
ensemble’s predictive performance improved and plateaued around n = 10
models. The performance of the distilled models also plateaued but with
smaller ensembles of around n= 5models (Supplementary Fig. 4). Notably,
the performance gap between the ensemble and the distilled models
widened as the ensemble size increased beyond this range.

DEGU improves generalization under covariate shifts
Most downstream applications require genomic DNNs to generalize well
under covariate shifts, especially when making predictions for sequence
perturbations that were not represented in the training data. Ensembles are

typically expected to improve out-of-distribution (OOD) generalization21,46

because they aggregate variable predictions, thereby smoothing out arbi-
trary behavior in regions with limited or no data (Fig. 3a). Therefore, we
hypothesized that DEGU-distilled models, which approximate the ensem-
ble’s function, would also generalize better to OOD sequences. However,
systematically assessing OOD generalization is challenging due to the lim-
ited availability of appropriate OOD data; that is, experimental measure-
ments in the same biological system for sequences with matched levels of
genetic variability as the downstream application task. To circumvent this
issue, we instead used a proxy for OOD generalization by evaluating how
closely the distilled models approximated the teacher ensemble’s behavior
under varying levels of simulated covariate shift. Specifically, we created
three new sets of test sequences based on the original STARR-seq test
sequences, each simulating a different degree of distribution shift: (1) partial
random mutagenesis at a rate of 0.05 at each position of the sequence to
introduce a small shift, (2) evolution-inspired mutagenesis provided by
EvoAug44,45 to create an intermediate shift, and (3) randomly shuffled
sequences to represent a large shift (see Methods). The small shift intro-
duced by partial random mutagenesis likely preserved most key motifs. In
contrast, the intermediate shift, generated through evolution-inspired
mutagenesis created more substantial compositional rearrangements in
regulatory sequences. The large shift, created by randomly shuffling the
sequences, likely disrupted and inactivated many functional regions,
resulting in lower predicted regulatory activity overall (Supplementary
Fig. 5).

We then calculated the mean-squared error (MSE) between each
model’s predictions and an ensemble average of n = 10 EvoAug-trained
DeepSTARR models, which we treat as an in silico oracle. As expected, the
distilled DeepSTARR models provided consistently better approximations
of the teacher ensemble compared to standard-trainedDeepSTARRmodels
(Fig. 3b, c). Interestingly, applying a large covariate shift via randomly

Fig. 2 | Comparison of model performance with
downsampled training data. Predictive perfor-
mance of DeepSTARR models trained on different
subsets of randomly downsampled STARR-seq data
for a developmental (Dev) and b housekeeping (Hk)
promoters. Predictive performance of ResidualBind
models trained on subsets of randomly down-
sampled lentiMPRA data for c K562 and d HepG2
cell lines. a–d Plots include models with standard
training (blue; n = 10), DEGU-distillation (orange; n
= 10); and the ensemble average of the teacher
models with standard training (green). Shaded
regions indicate 95% confidence intervals. Red
dashed lines in (c, d) correspond to MPRAnn per-
formance trained on the full lentiMPRA dataset for
corresponding cell type.

a
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d
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shuffling the sequences resulted in lower MSE values, possibly due to the
lower overall activity levels in these sequences (Supplementary Fig. 5).

Next, we explored whether exposure to OOD data during training
could improve model generalization47–49. Specifically, we hypothesized that
introducingOODsequenceswithensemble-generated labelswouldhelp the
model better approximate the ensemble function in regions where training
data is sparse. Without these additional samples, the model’s behavior in
such regions could be arbitrary due to lack of training data. To test this, we
applied the same transformations used to simulate covariate shifts in the
previous analysis to each minibatch of sequences during training and used
the teacher ensemble to generate corresponding labels for these transformed

sequences. The augmented sequences and their new target values replaced
the original STARR-seq training data, allowing us to train distilled Deep-
STARR models with a more diverse set of training data.

Training distilled student models with dynamic data augmentations
provided consistent, though modest, performance gains on the original
test set (Supplementary Fig. 6). Furthermore, these augmentations
improved the student models’ function approximation to the teacher
ensemble under different levels of covariate shift, with slightly better
performance when the augmentations closely matched the target cov-
ariate shift level (Fig. 3b, c). These findings highlight the importance of
incorporating training data beyond the natural genome to improvemodel

a

b

c

Fig. 3 | DeepSTARROODgeneralization performance. aToy example illustrating
1-dimensional functions fitted by individual models trained with different random
initializations (green lines) on training data (red points), along with the ensemble
average function (black line). Sampling data inOODregions, with labels provided by
the teacher ensemble (red plus signs), stabilizes the distilled model’s function
approximation in OOD regions. Mean squared error (MSE) between the teacher
ensemble (DeepSTARR trained with EvoAug) and individual DeepSTARR models
for b developmental (Dev) and c housekeeping (HK) promoter activity across dif-
ferent model training procedures: standard training (blue), DEGU-distillation

(orange), DEGU-distillation with dynamic EvoAug mutagenesis (green), DEGU-
distillation with dynamic partial randommutagenesis (red), and DEGU-distillation
with dynamic randomly shuffled sequences (purple). Results are shown for
sequences with varying degrees of distribution shift: none (original test set), small
(partial random mutagenesis), intermediate (EvoAug mutagenesis), and large
(random shuffle). Boxplots represent n = 10 models trained with different random
initializations, with the boxes indicating the first and third quartiles, the central line
indicates the median, and whiskers denote the data range.
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reliability in downstream applications that require robust generalization
covariate shifts.

DEGU improves attribution analysis
Attribution methods assign an importance score to each nucleotide in a
sequence, indicating how much that nucleotide contributes to the model’s
prediction (as with DeepSHAP50 and DeepLIFT51) or how sensitive the
model’s output is to changes at that nucleotide (as with gradient-based
SaliencyMaps52).Visualizing attribution scores as a sequence logocan reveal
biologically meaningful patterns, such as transcription factor binding
motifs7,40,53. However, attribution methods can be sensitive to local varia-
tions in themodel’s learned function,which canarisewhenfitting tonoise in
the data. This variability may not affect a model’s ability to generalize to
unseen data (i.e., benign overfitting54), but it can lead to inconsistent
explanations55–57, making it difficult to distinguish biologically relevant
patterns from spurious importance scores caused by non-biological
fluctuations17,58. By averaging attribution maps across an ensemble of
models, some of these fluctuations may be reduced, which can lead tomore
robust explanations27,28. We hypothesized that DEGU-distilled student
models, which better approximate the ensemble function, would produce
more interpretable and robust attribution maps with stronger motif signals
compared to models with standard training.

To test this hypothesis, we generated attribution maps using
DeepSHAP50 and SaliencyMaps52 for models trained with DEGU and with
standard training. A visual comparison revealed that the attribution maps
from the DEGU-distilled student models displayed more identifiable
transcription factor motifs, such as GATA and AP-1 motifs, compared to
the models with standard training (Fig. 4a).

Assuming that ensemble-averaged attribution maps best reflect the
underlying biology, we compared the Euclidean distance between attribu-
tion maps generated by averaging across the ensemble and those from
individual models trained with either standard training or DEGU distilla-
tion.We found that the attributionmaps produced by distilledmodels were
more closely aligned with the ensemble-averaged attribution maps than
those generated bymodels with standard training across all prediction tasks
evaluated (Fig. 4b, Supplementary Figs. 7, 1b).

Additionally, attribution maps generated by different distilled student
models were significantly more consistent across random initializations
compared to models with standard training (Fig. 4c). This consistency was
observed across different models, datasets, and attribution methods (Sup-
plementary Figs. 7, 1b). However, variability across attribution maps from
different models can stem from variability in the magnitude of the attri-
bution scores and/or the sequence content (i.e., distinct cis-regulatory
mechanisms). To control for variability in attribution score magnitude, we
normalized the attribution scores for each sequence.We found that distilled
models remained more consistent than the models with standard training
(Supplementary Fig. 8), suggesting that the distilled models offer more
robust mechanistic insights through their attribution maps.

DEGU provides calibrated estimates of total uncertainty
A key advantage of deep ensembles is their ability to capture model
uncertainty, particularly epistemic uncertainty,which arises fromvariability
in predictions across the ensemble. To evaluate whether DEGU preserves
this property, we compared the teacher ensemble’s prediction variability
(measured as the standard deviation across predictions) with the epistemic
uncertainty estimated by DEGU’s distilled student models. We found that
the student models’ predicted uncertainties were strongly correlated with
the ensemble’s observed variation, suggesting that DEGU distillation suc-
cessfully captures epistemic uncertainty (Fig. 5a, Supplementary Figs. 9a,
10). Repeating this analysis with log-variance as the uncertainty measure
yielded consistent results (Supplementary Fig. 11).

However, relying solely on epistemic uncertainty can lead to over-
confident and potentially incorrect predictions26, as it does not capture the
full spectrum of predictive uncertainty. DEGU addresses this limitation by
training models to also predict aleatoric uncertainty, which is estimated

from the variability (measured as the standard deviation) across experi-
mental replicates (when sufficient replicates are available). We demon-
strated this approachusing the lentiMPRA23 andATAC-seqprofile datasets,
both of which had three experimental replicates. We assessed the perfor-
mance of our models’ aleatoric uncertainty predictions using Pearson’s r
and found that predicting aleatoric uncertainty from sequence data remains
challenging (Fig. 5b, Supplementary Figs. 9b, 1c), which is expected given
that aleatoric uncertainty represents irreducible noise. While accurately
predicting aleatoric uncertainty is inherently challenging, ensuring that the
predicted uncertainties are well-calibrated is more important.

To evaluate the reliability of DEGU’s uncertainty estimates, we per-
formed an uncertainty calibration analysis using the prediction interval
coverage probability. This metric measures how often the true target value
for a given sequence (i.e., experimental values for regulatory activity) falls
within the confidence interval estimated for the corresponding predicted
values for activity and uncertainty. Ideally, a well-calibrated model would
achieve a coverage probability equal to the confidence interval percentage
(95% in this analysis; seeMethods),whileminimizing the size of the interval.

We benchmarked the calibration of uncertainty estimates frommodels
trained with DEGU against various other uncertainty quantification stra-
tegies, including those that capture epistemic uncertainty, such as Monte
Carlo Dropout (MCDropout)59 and deep ensembles, as well as methods for
estimating aleatoric uncertainty, such as deep evidential regression60 and
heteroscedastic regression61,62. Our results showed thatmethods accounting
for aleatoric uncertainty, including DEGU’s aleatoric head and hetero-
scedastic regression, generally achieved better calibration with smaller
average interval sizes. In contrast, methods relying solely on epistemic
uncertainty (e.g., DEGU’s epistemic head or MCDropout) exhibited severe
under-calibration (Fig. 5c, Supplementary Fig. 9c).

We also observed a trade-off between predictive accuracy and uncer-
tainty calibration across differentmethods (Fig. 5d, Supplementary Fig. 9d).
Models trainedwith heteroscedastic regressionwerewell-calibrated but had
slightly lower predictive accuracy compared to distilledmodels. Conversely,
distilled models achieved high predictive performance but with slightly
worse uncertainty calibration with respect to total uncertainty (Fig. 4c, d,
Supplementary Fig. 9c, d).

Since ResidualBindmodels trainedwith heteroscedastic loss produced
better-calibrated estimates of aleatoric uncertainty compared tomodels that
predicted aleatoric uncertainty based on replicate-level variation but yielded
lower predictive performance for sequence activity, we next investigated
whether applying DEGU distillation to models trained with a hetero-
scedastic regression loss could close this performance gap. However, this
approach did not fully bridge the gap between heteroscedastic regression
and DEGU (Supplementary Fig. 12).

To improve calibration, we applied conformal prediction63–65 to the
uncertainty estimates, which ensures guaranteed coverage under minimal
assumptions of data exchangeability. This resulted in nearly perfect cali-
bration for all uncertainty quantification methods evaluated (Fig. 5c, Sup-
plementary Fig. 13), giving thedistilledmodels the best overall performance,
with high predictive accuracy and well-calibrated uncertainty estimates.

Uncertainty-aware zero-shot variant effect generalization
Uncertainty quantification offers a valuable tool for informed decision
making, particularly in scenarios where the reliability of model predictions is
unclear, such as single-nucleotide variant effect prediction. Previously, we
demonstrated that data augmentations improved function approximation to
the ensemble (Supplementary Fig. 6), suggesting potential for better gen-
eralization.Todirectly test this,we traineddistilledResidualBindmodelswith
dynamic augmentations on lentiMPRA data and evaluated their ability to
predict single-nucleotide variant effects in matched cell types using experi-
mental measurements from massively parallel reporter assays (MPRAs)66,67.

As expected, variant effect predictions from the distilled models gen-
erally showed stronger correlation with experimentally measured variant
effects compared to models with standard training, with additional per-
formance gainswhendistilledmodelswere trainedwithdata augmentations
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(Fig. 6a, Supplementary Fig. 14). Visual analysis indicated that aleatoric
uncertainty predictions were greater in magnitude and more consistent
across nucleotides at a given position, whereas epistemic uncertainty pre-
dictions exhibited greater variability across both nucleotides and positions
(Fig. 6b). Further analysis revealed that aleatoric uncertainty was higher for

variant effects close to zero, while epistemic uncertainty increased as activity
levels moved further from zero (Supplementary Fig. 15).

To investigate the relationship between uncertainty and predictive
accuracy, we stratified model performance based on a total uncertainty
threshold, classifying predictions below this threshold as confident (see

a

b

c
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Methods). We focused on distilled ResidualBind models trained with ran-
dom mutagenesis augmentations, as they yielded the best overall perfor-
mance (Supplementary Fig. 14). This uncertainty-based stratification
revealed that the most confident predictions were associated with higher
performance (Fig. 6c), although the trends varied across different loci
(Supplementary Fig. 16). These findings highlight the potential of uncer-
tainty quantification to enhance the reliability and interpretability of variant
effect predictions, enabling more nuanced analysis and decision making in
genomics research.

Discussion
DEGU presents a simple and effective approach for harnessing the benefits
of deep ensembles with just a single model, providing robust predictions
alongside reliable uncertainty estimates. Our results demonstrate that
DEGU-distilled models generally outperform models with standard train-
ing and provide more reliable post hoc explanations of cis-regulatory
mechanisms through attribution analysis. This makes DEGU particularly
well-suited for large-scale inference tasks, such as genome-wide variant
effect prediction and generating post hoc explanations across a large
number of regulatory sequences.

A major strength of DEGU lies in its dual uncertainty estimation,
addressing a key limitation of current genomic deep learning models. By
simultaneously estimating both epistemic and aleatoric uncertainty, DEGU
offers a comprehensive assessment of prediction reliability – an important
factor in enhancing confidence in model predictions.

DEGU excels in estimating epistemic uncertainty, which was
straightforward to train using prediction variability across the teacher
ensemble. In contrast, estimating aleatoric uncertainty posed greater chal-
lenges due to inherent randomness of data noise. To approximate this, we
created a prediction task based on experimental replicates, yielding aleatoric
estimates with well-calibrated prediction intervals that surpassed those
based on epistemic uncertainty. We also evaluated heteroscedastic regres-
sion as an alternative approach for aleatoric uncertainty, which offers a
simpler method that avoids extra data processing steps and an additional
prediction task. However, heteroscedastic regression yielded slightly
reduced predictive performance on functional activities and proved chal-
lenging to optimize due to an unstable loss function. Overall, aleatoric
uncertainty estimates based on replicate variability combined with epis-
temic uncertainty estimates achieved the best balance between calibration
and predictive accuracy. Nevertheless, heteroscedastic regression loss can
serve as an alternative approach when there are insufficient replicates.

DEGU’s ability to approximate the teacher ensemble’s function sug-
gests that distilledmodels generalizebetter under covariate shifts.Moreover,
training with dynamic data augmentations led to improved approximation
of the ensemble. This proved to be an effective approach to improve zero-
shot predictions of single-nucleotide variant effects. Sincemost downstream
applications of genomic DNNs (i.e. single-nucleotide variant effect pre-
diction, counterfactual in silico perturbation experiments, and synthetic
DNA sequence design) involve varying degrees of covariate shifts, DEGU-
distilled models are well suited to provide robust predictions with uncer-
tainty estimates that reflect its confidence.

An important limitation of our study is that we evaluated DEGU only
on single-nucleotide variant effect prediction tasks; however, prior work has
highlighted that population-level sparse mutations remain especially

challenging for current models18,19. Extending DEGU to effectively capture
uncertainty and improve prediction accuracy in this setting is a promising
avenue for future research, particularly given the relevance of personalized
genetic variation to disease risk and regulatory function.

Our study focused solely on ensembles of models with the same
architecture. There is also great potential in applying DEGU to more
compact student architectures, which could improve the efficiency of
deploying large-scale DNNs such as Enformer1 and Borzoi68, both of which
currently have high computational costs. Making these models more
computationally efficient would reduce the need for extensive GPU
resources, thereby democratizing access to state-of-the-art genomic pre-
diction tools. Further improvements could be achieved by increasing the
diversity of models within the ensemble and experimenting with different
weighting methods for ensemble members.

In this study, DEGU primarily focused on approximating the
ensemble’s function, leaving opportunities for further improvement by
incorporating amixed knowledge distillation loss function that balances the
use of real training data with the divergence between the ensemble and
student models37. A related approach to DEGU is self-distillation69, where
the distillation process is carried out sequentially in an online manner.
While self-distillation can offer benefits similar to ensemble distillation70, it
inherently struggles to effectively capture epistemic uncertainty, as it relies
on a single model’s training path rather than the diverse perspectives pro-
vided by an ensemble. In contrast, DEGU explicitly models epistemic
uncertainty (and aleatoric uncertainty) as part of its distillation process. In
the future, we plan to gain deeper insights into the sequence features that
contribute to uncertainty in genomic predictions through a comprehensive
attribution analysis on the uncertainty head.

DEGU’s ability to provide insights into the confidence of each pre-
diction represents an important step toward making deep learning models
more reliable and trustworthy.While our demonstration of DEGU focused
on deep learning models for regulatory genomics, the process of ensemble
distribution distillation is general and can be extended to other models in
other domains of biology. As the field continues to evolve, uncertainty-
aware models like DEGU will likely become essential for guiding research
decisions and clinical applications, highlighting the importance of further
refining and expanding these techniques.

Methods
Datasets
Fly enhancer activity with STARR-seq. We obtained STARR-seq data for
developmental (Dev) and housekeeping (Hk) promoters inD.melanogaster
S2 cells from de Almeida et al.40 Each sequence is 249 base pairs (bp) long.
Enhancer activity for both housekeeping and developmental classes was
predicted simultaneously as a multi-task regression. The data was split into
train, test, and validation sets containing 402,296, 41,186, and 40,570 sam-
ples, respectively.

Human regulatory sequences with lentiMPRA. We used lentiMPRA
data for K562 and HepG2 cell lines from Agarwal et al.23. Each 230 bp cis-
regulatory sequence was associated with a scalar activity measurement for
three biological replicates. The mean and standard deviation across the
replicates was used as target values for regulatory sequence activity and
aleatoric uncertainty, respectively. For each cell type, we performed two
types of regressions: 1) a single-task regression for regulatory activity only,

Fig. 4 | Attribution analysis performance comparison. a Attribution map for the
Dev activity output head of an individual DeepSTARRmodel with standard training
(top) and a DEGU-distilled DeepSTARR model (bottom) for an exemplary test
sequence. Annotated boxes indicate binding sites for AP-1 (blue), GATA (red), and
ETS/Twist (green), with solid lines indicating a strong match and dashed lines
indicating a weak match. b Average root-mean-squared error (RMSE) between
attribution maps generated by individual models with standard training (blue) and
DEGU distillation (orange) compared to the average attribution map across the
teacher ensemble for DeepSTARR (left) and ResidualBind (right). RMSE is calcu-
lated for n = 1000 high-activity test sequences. P-values indicate independent two-

sided t-tests for average RMSE and paired two-sided t-tests for standard deviation.
Box plots represent n = 10models trained with different random initializations, with
the boxes representing the first and third quartiles, the central line indicating the
median, and whiskers denoting the data range. c Scatter plots comparing the stan-
dard deviation of attribution scores across individual models trained with DEGU
distillation (n = 10) and standard training (n = 10) for DeepSTARR (left) and
ResidualBind (right). b, cAttribution scores were calculated with DeepSHAP for the
activity output heads of DeepSTARR and with saliency scores for the activity output
head of ResidualBind models.
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and 2) a multi-task regression for both regulatory activity and aleatoric
uncertainty. We generated a different dataset for each regression task. For
the single-task regression, we removed any samples for which an activity
measurements was provided without corresponding sequence data was not
available. For themulti-task regression, we also removed samples for which

experimental data from at least two replicates was not available, due to the
inability to calculate aleatoric uncertainty. For each dataset, we randomly
split the training, validation, and test sets according to the fractions 0.8, 0.1,
and 0.1, respectively, ensuring that any forward and reverse complement
sequence pairs would be assigned to the same set to avoid data leakage. The

a b

c

d
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HepG2data for single-task regression (activity only)was split into train, test,
and validation sets containing 111,901, 13,988, and 13,988 samples,
respectively. The HepG2 data for the multi-task regression (activity and
aleatoric uncertainty)was split into train, test, and validation sets containing
111,518, 13,939, and 13,942 samples, respectively. The K562 data for single-
task regression (activity only) was split into train, test, and validation sets
containing 181,002, 22,626, and22,626 samples, respectively. TheK562data
for multi-task regression (activity and aleatoric uncertainty) was split into
train, test, and validation sets containing 180,564, 22,571, and 22,570 sam-
ples, respectively.

Profile-based chromatin accessibility with GOPHER. We acquired
hg38-aligned ATAC-seq bigWig files for A549 cells (ENCSR032RGS) from
ENCODE71. We processed the 3 replicate fold change over control bigwig
files into 2 bigWig files: 1) average read coverage across replicates and 2)
standard deviation of read coverage across replicates. Wiggletools72 and
UCSC’s bedGraphToBigWig73 were used to wrangle the data into bigWig
file formats. Following a previously published data processing procedure8,
wedividedeach chromosome into equal, non-overlapping 3072bpbins.We
one-hot encoded each sequence with matched base-resolution coverage
tracks from the average and standard deviation bigWig files. We split the
dataset into a test set comprising chromosome 8, a validation set comprising
chromosome 9, and a training set encompassing the remaining chromo-
somes, with the exclusion of chromosome Y and contigs. Performance was
assessed as the Pearson correlation across the whole chromosome as out-
lined in ref. 8.

Single-nucleotide variant effect with CAGI5. The CAGI5 challenge
dataset66,67, which consists of experimentally measured saturation muta-
genesis of a 230 bp regulatory element via aMPRA, was used to evaluate the
performance of the ResidualBind models on zero-shot single-nucleotide
variant effect generalization. We considered only experiments in HepG2
(LDLR,F9, SORT1) andK562 (PKLR).We extracted 230 bp sequences from
the reference genome (hg19) centered on each single-nucleotide variant in
the CAGI data. We calculated the predicted effect of each allele as:
ŷalt � ŷref , where ŷalt is themodel’s activity prediction for the alternate allele
and ŷref is the model’s activity prediction for the corresponding reference
allele. Performance was evaluated as the Pearson correlation between the
predicted effect and the experimentally measured effect.

Models
DeepSTARR. We implemented DeepSTARR40 as described in ref. 40,
according to:
1. 1D convolution (256 kernels, size 7, batch normalization, ReLU

activation)
1D max-pooling (size 2)

2. 1D convolution (60 kernels, size 3, batch normalization, ReLU
activation)
1D max-pooling (size 2)

3. 1D convolution (60 kernels, size 5, batch normalization, ReLU
activation)
1D max-pooling (size 2)

4. 1D convolution (120 kernels, size 3, batch normalization, ReLU
activation)
1D max-pooling (size 2)

5. flatten
6. linear (256 units, batch normalization, ReLU activation)

dropout(0.4)
7. linear (256 units, batch normalization, ReLU activation)

dropout(0.4)
8. output (2 units, linear)

The 2 units in the output layer represent the Dev and Hk enhancer
activities. For distilled models which predict both activity and epistemic
uncertainty, theoutput layer is increased to4units, representingDevactivity,
Hk activity, Dev epistemic uncertainty, and Hk epistemic uncertainty.

ResidualBind for lentiMPRA. We used a custom ResidualBind
model6,42, a CNNwith dilated residual blocks74,75, tomodel lentiMPRAdata.
The ResidualBind architecture is as follows:
1. 1D convolution (196 kernels, size 19, batch normalization, SiLU

activation)
dropout (0.2)

2. Dilated residual block (5 dilations)
1D convolution (196 kernels, size 3, batch normalization, ReLU
activation)
dropout (0.1)
1D convolution (196 kernels, size 3, dilation rate 1, batch normal-
ization, ReLU activation)
dropout (0.1)
1D convolution (196 kernels, size 3, dilation rate 2, batch normal-
ization, ReLU activation)
dropout (0.1)
1D convolution (196 kernels, size 3, dilation rate 4, batch normal-
ization, ReLU activation)
dropout (0.1)
1D convolution (196 kernels, size 3, dilation rate 8, batch normal-
ization, ReLU activation)
dropout (0.1)
1D convolution (196 kernels, size 3, dilation rate 16, batch normal-
ization, ReLU activation)
dropout (0.1)
skip connection to input
SiLU activation
dropout (0.2)
1D max-pooling (size 5)

3. 1D convolution (256 kernels, size 7, batch normalization, SiLU
activation)
dropout (0.2)
1D max-pooling (size 5)

4. linear (256 units, batch normalization, SiLU activation)
dropout(0.5)

5. 1D global average pooling
6. flatten
7. linear (256 units, batch normalization, SiLU activation)

dropout(0.5)
8. output (1 unit, linear)

For ResidualBind models trained on both the replicate average and
standard deviation, the output layer is increased to 2 units representing
activity and aleatoric uncertainty, respectively. For distilled ResidualBind
models, the output layer is increased to 3 units representing activity, alea-
toric uncertainty, and epistemic uncertainty.

Fig. 5 | Performance comparisonof uncertainty estimates.Predictive performance
for a epistemic and b aleatoric uncertainty output heads of models trained with
standard training (blue), DEGU-distillation (orange), and the teacher ensemble
(green), trained on subsets of randomly downsampled training data. Markers
represent the average Pearson’s r across n = 10 models with different random
initializations and shaded region indicates 95% confidence interval. Results are
shown for the Dev epistemic uncertainty output head of DEGU-distilled Deep-
STARR and the uncertainty output heads of ResidualBind models trained on K562

lentiMPRA data. Scatter plots of c prediction interval coverage probability versus
average interval size, and d predictive accuracy versus interval coverage probability
for different methods for quantifying epistemic uncertainty (left) and aleatoric
uncertainty (right). Uncertainty quantification methods are based on ResidualBind
model trained on K562 lentiMPRA data. Red dashed line indicates calibration with a
95% interval coverage probability. Each uncertainty quantification method is
represented by n = 10 dots, each indicating a model with different initializations,
with the exception of deep ensemble (n = 1).
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Fig. 6 | Single-nucleotide variant effect generalization for PKLR locus CAGI
variants. a Boxplots of zero-shot variant effect predictive performance for models
with standard training, DEGU-distillation, and DEGU-distillation with dynamic
augmentations. Predictive performance was evaluated using Pearson’s r (top) and
Spearman’s rho (bottom). b Heat map showing predicted effect size (top), aleatoric
uncertainty (middle), and epistemic uncertainty (bottom) given by a representative
distilled ResidualBind model trained on K562 lentiMPRA data. c Zero-shot variant

effect prediction for DEGU-distilled ResidualBind models trained with random
mutagenesis augmentations. Predictive performance was evaluated using Pearson’s
r (left) and Spearman’s ρ (right) across n = 10 independently initialized models. For
each model, variants were stratified by predicted uncertainty, and performance was
assessed on subsets of variants below the 25th, 50th, and 75th percentiles of
uncertainty. The green horizontal line indicates ensemble teacher performance
when evaluated across all variants.
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CNN-task-base. A base-resolution CNN from ref. 8 was used to fit the
ATAC-seq profile data. Briefly, CNN-task-base is composed of 3 con-
volutional blocks, which consist of a 1D convolution, batch normalization,
activation, max pooling and dropout, followed by 2 fully-connected blocks,
which includes a dense layer, batch normalization, activation, and dropout.
The first fully connected block scales down the size of the representation,
serving as a bottleneck layer. The second fully-connected block rescales the
bottleneck to the target resolution.This is followedby another convolutional
block. The representations from the outputs of the convolutional block is
then input into task-specific output heads; each head consists of a con-
volutional block followed by a linear output layer with softplus activations.
The activation of all hidden layers are ReLU.

DREAM-RNN. We used a custom DREAM-RNN model, a hybrid
architecture combining convolutional and recurrent layers43. TheDREAM-
RNN architecture is as follows:
1. Parallel 1D convolution block

1D convolution (256 kernels, size 9, ReLU activation)
dropout (0.2)
1D convolution (256 kernels, size 15, ReLU activation)
dropout (0.2)
concatenate outputs along channel dimension

2. Bidirectional LSTM (320 hidden units per direction, concatenated
output of 640 dimensions)
dropout (0.2)

3. Parallel 1D convolution block
1D convolution (256 kernels, size 9, ReLU activation)
dropout (0.2)
1D convolution (256 kernels, size 15, ReLU activation)
dropout (0.2)
concatenate outputs along channel dimension

4. point-wise 1D convolution (256 kernels, size 1, ReLU activation)
dropout (0.2)

5. 1D global average pooling
6. flatten
7. linear (units depending on output task)

SoftMax (for classification) or linear activation (for regression)

For multi-task DREAM-RNNmodels, the output layer is expanded as
needed (e.g., 2 units for activity and aleatoric uncertainty; 3 units for activity,
aleatoric uncertainty, and epistemic uncertainty).

Training models
Standard training of DeepSTARR, ResidualBind and DREAM-RNN. We
uniformly trained each model by minimizing the mean-squared error loss
function with mini-batch stochastic gradient descent (100 sequences) for
100 epochswithAdamupdatesusingdefault parameters76. The learning rate
was initialized to 0.001 and was decayed by a factor of 0.1 when the vali-
dation loss did not improve for 5 epochs. All reported performance metrics
are drawn from the test set using the model parameters from the epoch
which yielded the lowest loss on the validation set. For each model, we
trained 10 different individual models with different random initializations.

Standard training of CNN-task-base. CNN-task-base models were
trained using a Poisson loss and Adam with default parameters and a
minibatch size of 100. The learning rate was initialized to 0.001 and was
decayed by a factor of 0.3 when the validation loss did not improve for 5
epochs. All reported performance metrics are drawn from the test set using
the model parameters from the epoch which yielded the lowest loss on the
validation set. During training, random shift and stochastic reverse-
complement data augmentations were used8. Random shift is a data aug-
mentation that randomly translates the input sequence (and corresponding
targets) online during training. For each mini-batch, a random sub-
sequence of 2048 bp and its corresponding target profile was selected
separately for each sequence. Reverse-complement data augmentation is
also employed online during training. During each mini-batch, half of
training sequences were randomly selected and replaced by their reverse-

complement sequence. For those sequences that were selected, the training
target was correspondingly replaced by the reverse of original coverage
distribution. For eachmodel, we trained 10 different individualmodels with
different random initializations.

Training DeepSTARR with EvoAug. Models trained with EvoAug-
TF45 use the following augmentation settings:
• random deletions with a size range of 0–20bp (applied per batch)
• random translocation with a size range of 0–20bp (applied per batch)
• randomGaussian noise with μ = 0 and σ = 0.2 added to each variant in

the input sequence (applied per sequence)
• random mutation of 5% of nucleotides in sequence (applied

per sequence)

For each minibatch during training, one of the augmentations is ran-
domly selected from the list of possible augmentations described above and
applied to every sequence in the minibatch. Both teacher and student
models were trained with the same optimizer, learning rate decay, and early
stopping hyperparameters described for standard training.

DEGU: distilling knowledge of ensembles to uncertainty-aware
genomic DNNs
Ensemble Training. For each prediction task, we trained an ensemble ofM
models ff θm g

M
m¼1

with identical architectures but different random initi-
alizations θm. For an input sequencexi (with i=1,…,N), the ensemble yields
predictions f θm ðxiÞ. We summarize the ensemble by its mean and standard
deviation:

μensemble
i ¼ 1

M

XM
m¼1

f θm ðxiÞ;

σensemble
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
m¼1

f θm ðxiÞ � μensemble
i

� �2s
;

where μensemble
i is the ensemble mean prediction and σensemble

i captures
ensemble variability (used as labels for epistemic uncertainty).

Distilled Model Architecture. The distilled model gϕ consists of a
shared trunk T(⋅ ; ϕtrunk) that maps each sequence xi to a latent repre-
sentation:

zi ¼ Tðxi; ϕtrunkÞ:

From this shared representation, we apply two output heads for epis-
temic prediction:

μ̂epistemic
i ¼ hðμÞðziÞ; σ̂epistemic

i ¼ hðσÞðziÞ:

Thus, in the basic setting, the distilled model outputs

gϕðxiÞ ¼ μ̂epistemic
i ; σ̂epistemic

i

� �
:

Each head has its own parameters, distinct from the trunk and from
one another. This formulation is general anddoes not assume anyparticular
functional form for the heads. In this paper, we instantiate all output heads
as linear layers.

Loss Function. We train the distilled model to match the ensemble-
derived labels:

L ¼ 1
N

XN
i¼1

Lmean μ̂epistemic
i ; μensemble

i

� �
þ λLuncertainty σ̂epistemic

i ; σensemble
i

� �� �
;

where both losses are mean squared error terms, and λ = 1 in this study.
Aleatoric Uncertainty (Optional). When experimental replicates are

available (Ri ≥ 3), we can also estimate aleatoric uncertainty directly from
the variability across replicates. Let fyi;rgRi

r¼1
denote replicate measurements
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for input xi. The replicate variance provides a label for aleatoric uncertainty:

σreplicatesi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ri � 1

XRi

r¼1

yi;r �
1
Ri

XRi

r0¼1

yi;r0

 !2
vuut :

To capture this variability, we add an aleatoric uncertainty head:

σ̂aleatorici ¼ hðaleatoricÞðziÞ:

The full model then outputs

gϕðxiÞ ¼ μ̂epistemic
i ; σ̂epistemic

i ; σ̂aleatorici

� �
;

and the loss is augmented as

Ltotal ¼ Lþ γLaleatoric σ̂aleatorici ; σreplicatesi

� �
;

with γ = 1 in this study.
Model Architecture. While the distilled models can be comprised of

any architecture, in this study, the distilled models share the same archi-
tecture as the original ensemblemodels, with the exception of the final layer.
If the original models had Nout output heads, the distilled models will have
2Nout heads to account for both the mean and epistemic uncertainty pre-
dictions. In cases where aleatoric uncertainty is also modeled, the distilled
models will have 3Nout output heads.

Distilling DeepSTARR and DREAM-RNN. We first trained an
ensemble of 10models with different random initializations on STARR-seq
data. We then used each individual model in the ensemble to make pre-
dictions on the training sequences and calculated the average and standard
deviation across the 10 models. These values were used as target values for
activity and epistemic uncertainty, respectively. Then,we trained 10distilled
models with different random initializations following the same procedure
as standard training using the new target labels generated by the teacher
ensemble.

Distilling ResidualBind and DREAM-RNN. For each cell type, we also
trained an ensemble of 10 models with different random initializations on
both themean and standard deviation of experimental activity values across
the biological replicates in the lentiMPRA data, with the latter value
representing aleatoric uncertainty. The averages of the activity and aleatoric
uncertainty predictions from this ensemble were used as new target values
for training the distilled models. Moreover, the standard deviation of the
activity predictions were also used to generate labels for the epistemic
uncertainty. Then, we trained 10 distilled models with different random
initializations following the same procedure as standard training using the
new target labels generated by the teacher ensemble.

Distilling CNN-task-base. We first trained an ensemble of 10 CNN-
task-base models with different random initializations on profile-based
ATAC-seq data. These models were trained to predict the mean and stan-
dard deviation of the profiles across the three biological replicates. We then
used the ensemble of models to generate new bigWig tracks based on the
mean and standard deviation of the profiles across the 10 models, using
wiggletools. We also included the mean of the aleatoric uncertainty head,
resulting in 3 bigWig tracks all generatedby the predictions of the ensemble.
Each bigWig was processed following the same procedure as the original
ATAC-seq profiles. Distilled models used the same architecture and
training procedure as the standard CNN-task-base with the exception of
using ensemble-generated labels and the addition of the epistemic profile
prediction task, resulting in 3 prediction tasks, including the mean profile,
the aleatoric uncertaintyprofile, and the epistemicuncertaintyprofile. Then,
we trained 10 distilled models with different random initializations fol-
lowing the same procedure as standard training using the new target labels
generated by the teacher ensemble.

Distillingmodels with dynamic augmentations. During distillation, we
generated data augmentations following three different augmentation
schemes:
1. EvoAug-TF45, with n augmentations selected from the same

augmentation list described above where n is randomly selected from
0 to 2.

2. Random mutagenesis using the EvoAug-TF implementation with a
mutation fraction of 5%.

3. Random shuffling.

The augmentation is applied to each minibatch during training,
replacing the original training sequences. The ensemble of teachermodels is
used tomake predictions on the augmented sequences, and the average and
standard deviation of these predictions are used as target values for activity
and uncertainty, respectively. The original validation and test sequences
were used for early stopping and evaluations. Student models were trained
with the same optimizer, learning rate decay, and early stopping hyper-
parameters described for standard training.

OOD generalization analysis
We generated out-of-distribution (OOD) sequences using the following
sampling methods:
1. Small distribution shift: randommutagenesis with amutation fraction

of 5% generated with EvoAug44.
2. Moderate distribution shift: evolution-inspiredmutagenesis generated

with 2 augmentations selected from the same augmentation list
described above using EvoAug44.

3. Large distribution shift: random shuffling of the test sequences.

Activity labels for these OOD sequences were obtained by averaging
the predictions from an in silico oracle comprised of an ensemble of
DeepSTARRmodels trainedwith EvoAug (with the same hyperparameters
as stated above).

Attribution analysis
Saliency Maps52 and DeepSHAP50 scores were employed for attribution
analysis to elucidate the input nucleotides most influential model predic-
tions. For each sequence activity output head of each model, we generated
attribution maps for 1000 sequences from the test set associated with the
largest target values. Eachmethod yielded a 4 × Lmapwhere L is the length
of the input sequence. For DeepSHAP, background sequences were com-
prised of 100 randomly selected sequences from the test set. Gradient cor-
rection was applied to all attribution maps by subtracting the average
attribution score across all channels (nucleotides) at each position28. For
profile-based models, we transformed the predictions to a scalar through a
global average along the length dimension.

Calculating similarity of attribution scores to ensemble average. For
each individual model, we calculated the root mean squared error (RMSE)
of the attribution maps for the 1000 sequences evaluated between the
individualmodels and the average attributionmapsof the teacher ensemble.
Individual models refer to those trained with either DEGU distillation or
standard training from random initializations. The teacher ensemble was
calculated by averaging the attributionmaps across the 10 individualmodels
with standard training.

Calculating variability of attribution scores across different initializa-
tions. For eachof the 1000 sequences evaluated,we calculated the varianceof
their attribution scores for each nucleotide and position in each sequence
across 10 individual models (trained with different random initializations).
These per-nucleotide and per-position variances are then summed across
the sequence to calculate the total variance, followed by a square root
operation to provide a measure of the standard deviation of attribution
scores across different initializations.

Control experimentwithnormalized attribution scores. For the control
experiment that isolated mechanistic variability, we obtained the per-
sequence maximum attribution score magnitude across nucleotides and
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positions for each of the 1000 sequences evaluated and then divided all
attribution scores by this value to obtain an attribution-magnitude nor-
malized set of attribution score.

Evaluation of the size of the teacher ensemble for DeepSTARR
We trained an additional 15 DeepSTARR models using different random
initializations using the entire STARR-seq training set for a total of 25
models.We then performed ensemble distribution distillation for subsets of
2, 3, 4, 5, 15, and 20 of these replicates, as well as for the entire set of 25
replicates. We evaluated the predictive accuracy of the activity predictions
for the individual models in these ensembles, the ensemble average, and the
distilled models derived from the respective teacher ensembles and com-
pared them across different teacher ensemble sizes.

Uncertainty-aware models
Heteroscedastic regression. ResidualBind models trained with hetero-
scedastic regression utilized a Gaussian negative log-likelihood loss func-
tion.Thefinal output layerwasmodified to a linear layerwith2outputheads
representing themean (μ) and log variance (log σ2). The use of log variance
ensures numerical stability during training and guarantees positive variance
predictions. The loss function is defined as:

L ¼ 1
N

XN
i¼1

1
2

logð2πσ2i Þ þ
ðyi � μiÞ2

σ2i

� �
;

where μi and log σ2i are predicted by the model and N is the number of
samples in the batch. The model was trained using mini-batch stochastic
gradient descent with the same optimizer, learning rate decay, and early
stopping settings as used for standard training of the models described
above. The variance predicted by heteroscedastic regression represents
aleatoric uncertainty.

Deep evidential regression. ResidualBind models trained with deep
evidential regression60 weremodified so that their output layer considers the
mean (μ) and log-variance (log σ2), which represents an estimate of the
aleatoric uncertainty. The loss function is defined as:

L ¼ E
1
2

ðμ� yÞ2
σ2

þ logð2πÞ þ log σ2
� �� �

;

where E½�� denotes the expectation (average) over all dimensions and
samples in the batch. The terms μ and log σ2 are predicted by themodel and
y is the true value.

MC Dropout. We implemented Monte Carlo (MC) dropout as
described by Gal and Ghahramani59. This method leverages dropout at
inference time to estimate predictive uncertainty. For each input, we per-
formed 100 stochastic forward passes through the model, with dropout
remaining active during inference. We then calculated the mean and
standard deviation across the predictions for each input. The mean pre-
diction represents the model’s best estimate, while the standard deviation
quantifies the epistemic uncertainty associated with that prediction.

Uncertainty calibration analysis
Interval coverage analysis. For each uncertainty quantification method, we
calculated a 95% confidence interval using the model’s prediction of
sequence activity and uncertainty for the test sequences in model’s corre-
sponding dataset. For uncertainty quantificationmethods that yielded both
aleatoric and epistemic uncertainty estimates, we calculated intervals based
on each of the two different uncertainty estimates as well as the total
uncertainty calculated as the sum of the variances, according to:

σT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2E þ σ2AÞ

q
;

where σT is total uncertainty, σ2E is epistemic uncertainty, and σ2A is aleatoric
uncertainty. For models where the uncertainty prediction was given as log-

variance (i.e. models trained with heteroscedastic regression), the output
was accordingly transformed for compatibility with total uncertainty as a
measure of standard deviation. The interval coverage probability was
calculated as the fraction of cases where the experimental activity value fell
within the 95% confidence interval constructed from the predicted activity
and uncertainty values. Assuming a Gaussian distribution, the 95%
confidence interval was calculated as μ̂± 1:96σ̂, where μ̂ and σ̂ represent
the estimates of activity and uncertainty for the method being evaluated.

Conformal predictions. Conformal predictionwas used to calibrate the
predicted uncertainties, according to:

λ ¼ quantile1�α

jyi � ŷij
σ i

� �
;

where yi are the true target values for the calibration sequence i, ŷi are the
predicted values for the calibration sequence i, σ̂ i are the uncertainty esti-
mates for the calibration sequence i, and α is the desired confidence
threshold, set to 0.05.

Calibration sequences were taken from the validation set. The cali-
bration factor λ is thenmultiplied by the predicted uncertainty estimates for
the test sequences.

Data availability
Processed data and model weights can be found at https://doi.org/10.5281/
zenodo.14145284. Datasets include lentiMPRA, STARR-seq, ATAC-seq
profile data, and zero-shot single-nucleotide variant effect data.

Code availability
Open-source code to reproduce this study is available on GitHub (https://
github.com/zrcjessica/ensemble_distillation).
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