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Abstract

The extent to which human adaptations have persisted throughout history despite strong eroding
demographic events such as admixture, genetic drift, and fluctuations in selection pressures
remains unknown. Understanding which loci are particularly resilient to such forces may shed light
on the traits that were important for humans throughout multiple time periods. Yet, detecting
ancient selection events is challenging from modern and ancient DNA due to the data and/or signal
being severely degraded. Here we use a domain-adaptive neural network (DANN) trained on
simulated data and applied to ancient and modern DNA for sweep detection. We show that the
DANN can account for simulation misspecification, or discrepancies between the simulations and
real aDNA, thereby improving the ability to detect sweeps in real data. Application of the DANN
to more than 800 ancient and modern human genomes spanning the last 7000 years recovered 16
known sweeps at loci including LCT, HLA, KITLG, and OCA2/HERC?2, and revealed 32 novel
sweeps. All identified sweeps were classified as hard, consistent with historically low population
sizes. While some sweeps were lost over time, 14 sweeps at loci involved in a range of functions
including neuronal, reproductive, pigmentation, and signaling traits were found to persist from the
most ancient time periods into the most recent time periods. Notably, the same top haplotype
remained at high frequency across time at 9 of these 14 sweeps. Together, these results indicate
that hard sweeps predominated in ancient human history and that several ancient selective events

were resilient to strong admixture events and experienced sustained selective pressures.
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Introduction

The growing availability of ancient DNA (aDNA) has revolutionized our ability to study
how evolution has shaped human populations over the past ~12,000 years. The transition from
mobile hunter-gatherer groups to sedentary, agriculture-based societies introduced profound
selective pressures including shifts in diet, sustained contact with domesticated animals, and
heightened pathogen exposure’?. During this same period, repeated waves of migration and
admixture among Western Hunter-Gatherers, Anatolian early farmers, and Steppe pastoralists
continually reshaped the genetic landscape of Eurasia. These demographic events may have diluted
or masked historical selective sweeps in present-day genomes®, leaving the prevalence,
persistence, and modes of selective sweeps across Eurasian populations largely unresolved.

Characterizing the targets as well as the mode and tempo of positive selection in aDNA
can reveal the mechanisms and rate of human evolutionary change. However, the ability to detect
adaptation in aDNA can be challenging for a number of reasons, including low read coverage,
short read lengths, high levels of missing data, and the complex, often poorly characterized
demographic history of human populations. Despite these challenges, several studies have shown
that directional selection in humans may have been widespread®>®. However, these studies have
largely been powered to detect classic ‘hard’ sweeps, in which a single adaptive variant rising to
high frequency leaves behind a characteristic dip in diversity with a single dominant haplotype. In
addition to hard sweeps, there may have been ‘soft’ sweeps, whereby multiple adaptive variants
rise to high frequency simultaneously given large mutational inputs or abundant standing genetic
variation (SGV) at the onset of selection®’. Soft sweeps are more challenging to detect given that
they leave behind more subtle signatures in the data due to there being multiple haplotypes rather
than a single haplotype at high frequency®®. Given the combination of data challenges, which can
generate misleading signals that appear adaptive but actually stem from demographic forces or

10-13

data artifacts'>"°, and the difficulty in detecting soft sweeps, it remains unknown how many

historical sweeps have been missed and whether they were hard or soft.

Deep learning methods have emerged as a powerful tool in population genetics to address

a wide variety of inference problems from genomic data including demographic inference"° ,

16,17 16,18-21

estimating recombination rates and detecting selection . In particular, convolutional

neural networks (CNNs) have proven particularly effective in detecting selective sweeps, largely
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90  due to their ability to extract complex patterns from noisy, high-dimensional population genetic
91  data. Notably, CNNs can natively handle multi-dimensional input, leveraging the full richness of
92  raw genotype matrices without reducing it to a small set of summary statistics'®'®. Despite their
93 flexibility and strong performance on modern data and other organisms'®*?, deep learning methods
94  have not yet been applied to aDNA to detect selection.
95 A key limitation to current approaches is that they rely on large amounts of labeled training
96  data, which are typically generated through simulations based on simplified models that are
97  restricted in their ability to fully capture the complexities of real genomic data. Discrepancies
98  between simulated and real datasets can arise from inaccurate assumptions about demography,
99  mutation and recombination rates, or from data artifacts. Additionally, modeling features such as
100 large effective population sizes (N.), heterogeneous recombination landscapes, or complex

101 demographic histories can be computationally intensive'”#?

, making such simulations impractical
102  at the scale required for deep learning.

103 This mismatch between simulated training data and real genomic data, known as a
104  simulation mis-specification®, can reduce model accuracy and lead to inferences from data that
105  are not robust. Several strategies have been proposed to address this issue including adaptive re-
106  weighting of training examples'®?*%, Domain adaptive neural networks (DANNs)**%’  have
107  recently been proposed as another alternative to mitigate simulation mis-specification®.

108 Domain adaptation aims to improve generalization by enabling a model trained on data
109  from a source domain, in this case simulated data, to perform well on a target domain with different
110  properties, such as real population genomic data®®. This technique is widely applied in computer
111 vision; for example, facial recognition models trained on high-quality studio images can be
112  adapted to perform more reliably on lower-quality surveillance footage. It is also used in natural
113  language processing, where models trained on reviews of books may require adaptation to
114  accurately interpret sentiments in reviews of other products. In biology, domain adaptation has
115  been used to predict transcription factor binding across distinct species®. Building on these
116  applications, Mo and Siepel demonstrated that domain adaptation could also be leveraged to
117  improve population genetic predictions, including detecting selective sweeps, inferring selection
118  strength, and estimating recombination rates in the face of demographic misspecification®.

119 Given the unique challenges of aDNA, domain adaptation presents a powerful framework

120  for characterizing selection across different periods of human history. Here we propose a novel
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121  application of a DANN to distinguish between hard sweeps, soft sweeps, and neutrality in aDNA
122  and modern DNA. We find that hard sweeps were common throughout human history, consistent
123  with historically low population sizes, and that several sweeps have persisted over multiple time
124  periods, implying shared selective pressures over human history and resilience to major

125  demographic events.

126
127 Results

128  Data

129 In this work, we train a DANN to detect selective sweeps from 708 aDNA samples from
130  Europe that we analyzed previously®’, dated between ~7000 and 1345 years before present (BP)
131  (Fig. 1A,B). These samples are from populations that underwent major admixture events,
132  including the migration of Anatolian farmers into Europe and their admixture with local Mesolithic
133  hunter-gatherers around 8,500 BP, as well as the mixing of European farmers with steppe
134  pastoralists at the onset of the Bronze Age ~5000 BP*' (Fig. 1C). This transitional period is
135  particularly important for studying adaptation, as it has been hypothesized that admixture has
136  obscured selective sweep signatures in modern humans and as a result the extent of selection has
137  likely been underestimated®.

138

139 Based on direct radiocarbon dates and archaeological context, the samples were grouped
140  into four chronological periods with 177 samples per period as follows (Fig. 1B):

141

142  Neolithic (N): Individuals of European Hunter-Gatherer and Anatolian farmer ancestry dated
143  between 6500 and 5019 BP.

144  Bronze Age (BA): Individuals from the Bell Beaker cultures of Western and Central Europe, dated
145  between 4495 to 3808 BP.

146 Iron Age (IA): Individuals from Iron Age Britain and Western Europe dated between 3995 to 2350
147  BP.

148  Historic period (H): Individuals from Roman and late antique periods between 2300 to 1345 BP.
149

150 To ensure data quality, we only included samples for which a number of criteria could be

151  met (Methods), including requiring hybridization capture on at least 1.2 million positions, having
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152  a minimum of 15,000 SNPs such that robust population genetic inferences could be performed,
153  did not have significant contamination on the mtDNA or X chromosome (in males), were unrelated
154  up to the third degree, and treated with the same Uracil-DNA Glycosylase process during library
155  preparation. The last two bases were trimmed from each read to exclude the most damaged regions
156  of aDNA. After selecting high quality samples, to have similar power to detect sweeps across
157  different time periods, we chose the 177 hosts with highest coverage for each time period for
158 further analysis, resulting in a total of 708 genomes (Table S1). These 177 hosts were subsequently
159  down sampled per analysis window to the 150 individuals with the least amount of missing data.

160 Additionally, we analyzed 99 modern European individuals (CEU) from the 1000 genomes
161  project®. We restricted the 1000 genomes samples to the 1.2 million positions that were in the

162  aDNA capture array.
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165  Figure 1. Location and age of samples included in study. (A) The locations of the 708 ancient
166  human samples colored by their corresponding time periods. (B) Archeological or radiocarbon
167  dates for each sample in years before present (BP). Each data point represents one sample and the
168  colors indicate broader groupings according to four time periods. (C) Diagram of West Eurasian

169  population history. Modern Europeans are composed of three main ancestries: Western Hunter-
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170  Gatherers, Anatolian early farmers and Steppe pastoralists. The vertical grey segments represent
171  distinct population branches and arrows represent population splits and admixture events. Shown
172  are four main branches: the African (Mbuti) branch, Eurasian branch, West Hunter-Gatherers
173  (WHG), Caucasus Hunter-Gatherers (CHG) and Eastern Hunter-Gatherers (EHG). Highlighted are
174  the time ranges which our samples come from in the Eurasian branch. Also highlighted are the
175  admixture proportions and timing of events. The red arrow depicts a major admixture event
176  overlapping the timeframe during which our samples were collected. The full schematic of the
177  model with all associated parameters can be found in Souilmi et al. 2022 and original studies from

178  which these parameters were estimated®*>°

179

180  Architecture of the DANN for sweep detection

181 Before applying a DANN to aDNA, we tested its ability to (1) unlearn any differences
182  between simulated and real data including underlying demography or missing data rates and (2)
183  simultaneously distinguish between neutrality, hard sweeps, and soft sweeps. Since the goal of the
184  DANN is to both classify sweeps from neutrality and unlearn differences between domains, a
185 DANN differs from a more traditional neural network classifier by including not only a
186  classification branch, but also including a discriminator branch that distinguishes between a source
187  domain (e.g. simulations) and a target domain (e.g. real data) (Figure 2). One strategy for domain
188  adaptation, which we use here, is the addition of a gradient reversal layer (GRL)?’. During
189  backpropagation, the sign of the gradient of the loss of the discriminator is reversed through the
190  GRL, penalizing features that discriminate between domains and promoting domain-invariant
191  features that are essential for sweep classification (Methods).

192 As input to the model, we provide images of haplotypes sorted by the frequency of most to
193  least common haplotype. Because of the low coverage nature of aDNA as well as ascertainment
194  bias in calling ancient SNPs, previous work has shown that heterozygous sites are not always
195  reliably determined. To address this issue, we used our previous approach® to ‘pseudo haploidize’
196  the data by randomly selecting one of the reads mapping to a position and assigning the genotypes
197  of the read as the genotype of the sample at that site (Methods). This data was then used as input
198  to the DANN.

199 The images provided to the DANN are n xS bi-allelic genotypic matrices representing the

200 allelic states at S=201 segregating sites across =150 pseudo haplotypes, downsampled from an
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initial sample of 177 by retaining those with the least missing data (Figure 2B). These parameters
reflect our previous findings®® that a window size of 201 segregating sites, or approximately ~450
kb in aDNA, is adequate for capturing signals of selection in this dataset using haplotype
homozygosity statistics. In addition, sorting haplotype images based on haplotype distances or
frequencies has been shown to be essential for strong performance of CNN models'®'83¢, We

tested three different sorting approaches each designed to emphasize either elevated haplotype

homozygosity typical of hard sweeps, or the presence of multiple high-frequency haplotypes
characteristic of soft sweeps (Methods, Fig. S1, Text S1).
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Figure 2. Domain Adaptive Neural Network (DANN) for detection of selective sweeps. (A)
DANN Architecture. Haplotype images from both the source and target domains are passed

through a series of convolutional layers, with dimensionality reduced by max-pooling steps


https://www.zotero.org/google-docs/?oKD7rV
https://www.zotero.org/google-docs/?1xiIdT
https://doi.org/10.1101/2025.10.14.682443
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.10.14.682443; this version posted October 14, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

214  (green). The output is flattened into a feature vector, which is then processed by two branches of
215  fully connected layers: the classifier, which predicts the sweep class (blue), and the discriminator,
216 which distinguishes between domains (yellow). During backpropagation, the gradient reversal
217  layer (GRL) inverts the loss from the discriminator, discouraging the model from differentiating
218  between the domains and promoting domain-invariant features. The grey arrows indicate the
219  forward pass and black arrows indicate backpropagation. (B) Genomic data representation.
220  Genomic data is represented as images, with rows corresponding to sampled haplotypes and
221  columns to segregating sites (201 SNPs). Each pixel represents the occurrence of a specific allele
222  with major allele shown in red, minor allele in black, and missing data in white, coded as -1,1 and
223  Orespectively. On the left, we show a haplotype image of a simulated partial hard sweep where no
224  sorting was applied. To the right we show the same image but sorting the rows (haplotypes) by
225  frequency. Although the colors are used for visualization, the data is treated as a black and white
226  image, where alleles are biallelic (major vs. minor).

227

228  Benchmarking DANN on simulated data

229 To assess the ability of the DANN to correct for simulation misspecification we evaluated
230  the model using simulated data for both the source and target domains. We performed simulations
231  varying the degree of mismatch between the target and source domains in terms of demography
232  and missing data rates, as we expected these two variables to contribute the largest amount of
233  discrepancy between real data and simulations. In all scenarios evaluated, the target domain, used
234  as a proxy for real aDNA, consisted of simulations of a previously inferred admixture model
235  describing ancient Europeans®***~** (Fig. 1C) with missing data at the rate of 43% per base pair,
236  reflecting the rates of missing data of the samples analyzed in this study (Methods, Fig. S2). To
237  evaluate the ability of the DANN to correct for misspecification, we compared the performance of
238 the DANN to that of a standard CNN lacking a discriminator branch but still having misspecified
239  source and target domains. We evaluated the CNN on two test sets, one on a hypothetical best case
240  scenario with matching target and source domains (hypothetical best case), and another one with
241  mismatched domains (standard CNN, Fig. S3). This comparison allowed us to assess how much
242  improvement the DANN could achieve under varying degrees of misspecification .

243 We found that for all simulation scenarios, the DANN outperformed the CNN, albeit

244  modestly, when the target and source domains did not match, demonstrating its ability to mitigate
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245  misspecification (Fig. 3A, Fig S4). Moreover, we found that the DANN could correct for
246  mismatch in demography better than mismatch in missing data rates between target and source
247  domains with the DANN performing slightly better in mitigating the most extreme
248  misspecification in demography (constant N, vs. Admixture; area under the precision-recall curve
249  (AUPRC) of 0.814) compared to the most extreme misspecification in missing data rates (5% vs
250  43%; AUPRC =0.80) (Fig. 3A). This suggests that missing data introduces a more challenging
251  form of misspecification, making it harder to correct using a domain-adaptive framework.
252  Additionally, the DANN outperformed the haplotype homozygosity statistic H12%, recently
253  applied to aDNA data®®, with AUPRCs of 0.942 vs 0.898 for sweep detection, respectively
254  (Fig. 3B, Fig S5,6). Finally, we found that in a model trained on a source domain of constant N,
255  with 43% missing data and target domain of admixture with 43% missing data, the DANN had an
256  AUPRC of 0.956 for hard sweeps and 0.844 for soft sweeps (Fig.S5). We found similar
257  performance when we trained with real aDNA for the target domain in order to explicitly unlearn

258  the differences between simulated and real data (Methods, Fig. S8).

259
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262  Figure 3. Domain adaptive neural network improves the detection of selective sweeps in
263 simulated data that mimics aDNA. (A) AUPRC of the DANN (yellow). This is compared with
264  ahypothetical best case simulation benchmark CNN representing an upper bound on performance.
265  This benchmark was trained and tested on the source domain (grey). Additionally in red is a
266  standard application of the CNN tested on a misspecified domain with mismatching demographic

267 model and missing data (MD) compared to the source domain. (B) Precision-recall curve for
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268  detection of sweeps (hard and soft) from neutrality using a constant N, model as a source domain
269 and a human admixture model, both with an average of 43% missing data per site as a target
270  domain.

271

272 The ability to detect selective sweeps may vary with the strength of selection and the
273  softness of the sweep. To systematically evaluate the performance of the DANN across a range of
274  selection coefficients, we tested the model on weak (s~[0.005,0.05]) versus strong (s~[0.05,0.1])
275  selection, as well as on sweeps of varying softness modulated by rate of input of adaptive mutations
276  0a = 4N.ua, where pa is the adaptive mutation rate. We found that when selection is strong,
277  irrespective of the softness of the sweep, we could distinguish sweeps from neutrality correctly
278  93% or more of the time (Fig. S7). However, when selection is weak, the ability to correctly
279  distinguish a sweep from neutrality drops to 60%, especially in the scenarios where sweeps are
280  extremely soft (0a=5). This result implies that the DANN has the greatest ability to detect sweeps,
281 either hard or soft, when selection is sufficiently strong.

282 We next asked how often soft sweeps are misclassified as hard sweeps and vice versa,
283  conditional on being distinguishable from neutrality (Fig. S7). We found that the majority of hard
284  sweeps (82%) are correctly classified as hard, with this percentage increasing to 93% for strong
285  selection. Similarly, we found that the majority of soft sweeps (~75%) are correctly classified as
286  soft, with this percentage increasing to 86% as 0a increases to 5 when the signatures of hard vs

287  soft sweeps become most distinct.
288
289  Application of the DANN to aDNA and modern humans

290 Having confirmed the ability of the DANN to detect selective sweeps in simulations, we
291  trained a DANN using empirical aDNA as the target domain and simulations generated under the
292  admixture model shown in Figure 1 with a 43% missing data rate as the source domain. To identify
293  selective sweeps in aDNA, we next applied the DANN to genome-wide aDNA data across all time
294  periods. We used a sliding window of 201 SNPs, advancing each window by 10 SNPs. To ensure
295  predictions are well supported by more than one window, we averaged the predicted probabilities
296  every five consecutive, overlapping windows, generating the final class predictions (Methods).
297  Each window was assigned to the class with the highest predicted probability from the model’s

298  multiclass output (hard sweep, soft sweep, or neutral). We show the resulting scan across the
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299  aDNA time transect in Fig. 4A, where windows predicted to be hard sweeps are shown in red, soft
300 in blue, and neutral regions in grey. In addition, In Fig. 4B, we show a scan on the modern
301  European population (CEU). This scan was generated using a different model trained on modern
302  human data as the target domain (Methods).

303 To avoid calling the same selective sweep multiple times, we grouped consecutive non-
304  neutral windows into a single ‘peak’. Additionally, to ensure distinct selective events, we further
305 required peaks to be at least 1.5 Mb apart. Within each peak, we identified the representative
306  window as the one with the highest sweep probability (the highest —log(probability of neutrality)).
307 We identified a total of 48 unique sweeps in ancient humans (Fig 4A) and 28 selective
308  sweeps in modern humans. Among the 48 ancient human sweeps, over half the sweeps recurred
309 across multiple periods with 5 detected in all periods, 8 in three, 12 in two, and 23 in only one
310  (Fig. S9). Additionally, 18 ancient sweeps were found to persist in modern humans with 5 of these
311 sweeps present in all ancient human time periods resulting in 58 unique peaks across all ancient
312  and modern periods. To assess the robustness of our sweep inferences in ancient humans, we
313 trained two additional models varying the source domain, and observed high concordance across
314  models both in sweep detection and classification, with 44 sweeps overlapping in all three scans
315  (Fig. S10A, Fig. S11, Table S2).

316 Out of the 48 sweeps detected in ancient humans (Figure 4A), 16 overlap with recent
317  studies®®3%3#40 Among these are 5 sweeps overlapping well known targets of selection
318  highlighted in Fig. 4. The strongest signal across all time periods corresponds to the HLA region
319  and neighboring gene ZKSCAN3. HLA encodes cell surface proteins that are involved in the
320 adaptive immune system and has long been recognized as a target of selection*’*? and ZKSCAN3
321  is involved in transcriptional regulation of autophagy-related genes and was reported as under
322  selection in Mathieson et al. 2015. We also detect a sweep spanning the OCA2/HERC?2 genes,
323  which is associated with light eye color in Europeans®®. We identify this signature across all four
324  time periods, which was not observed in earlier scans across the same time transect®**“°. Our scan
325 also recovers a strong sweep signal at the LCT locus, which is associated with lactase persistence
326  into adulthood****. This signal is restricted to the H period and the CEU population (Fig. 4),
327  consistent with the rapid rise in frequency of the causal variant rs4988235 during this time.
328  Notably, this allele was absent in Europe prior to the arrival of Steppe pastoralists in the Bronze

329  Age and therefore could not have been under selection earlier*®*3404547 We also highlight a sweep
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330 overlapping the gene KITLG, associated with light hair and skin pigmentation and recently
331  identified as a target of selection, and SLC22A44, associated with Crohn’s disease*. We summarize
332  the number of sweeps that overlap with previous work in Table S3 and Fig. S12,S13.

333 The remaining 32 ancient sweeps we identify represent novel candidates that, to our
334  knowledge, have not been identified in previous studies. We do not consider peaks as novel
335  candidates if they are within 1Mb away from genes that have been previously identified as sweep
336  candidates®>®%%% To understand if the genes within these 32 peaks are enriched for any
337  functions, we assigned peaks to genes by annotating all protein coding genes within 300 Kb
338  distance upstream and downstream of the representative SNP of each peak using Ensembl Variant
339  Effect Predictor (VEP) (Supplementary table S5). We next performed an enrichment analysis for
340 previously identified genome-wide association study (GWAS) annotations on the set of mapped
341  genes using Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA)*,
342  We observed an enrichment in many GWAS categories related to anthropometric traits as well as

343  disease and auto-immune related traits. These results are reported in Fig. S14.
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Figure 4. Genome-wide selection scan with the DANN in ancient and modern data. Results
for the DANN are shown for all four ancient time periods highlighted at the top of each panel (A)
and for modern Europeans (B). The time period range is specified as years before present (BP).
The y-axis shows the probability of selection -log(Pxeu) predicted using the DANN, whereby a high
value indicates the window is likely under selection. The x-axis shows the genomic position. The
DANN was trained using a human admixture model with missing data as the source domain and

aDNA data as target domain. Windows predicted as hard sweeps are colored in red and windows
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352  predicted as soft are colored in blue. Sweeps previously reported in the literature are highlighted
353  above the peaks. We highlight with purple vertical bands 14 sweeps that are present across the two
354  ends of the major admixture event that occurred ~4.5 kya, that is sweeps that are detected in earlier
355  periods (N or BA) and are also detected in later periods (H or CEU).

356

357  Hard sweeps were common in ancient and modern humans

358 We next analyzed whether sweeps discovered in aDNA and modern humans were
359  predominantly hard or soft. The DANN classified all 58 sweeps (ancient and modern) in Fig. 4 as
360 hard. In three cases, we observe that windows on the edges of the peak are classified as soft
361  (chromosomes 6 and 15, Figs. 4 and S15). This pattern is consistent with the “soft shoulder
362 effect”™, where recombination causes regions flanking a hard sweep to exhibit patterns that
363 resemble a soft sweep. However, based on our peak calling approach, these flanking regions are
364  not classified as independent soft sweeps. Instead, they are grouped with adjacent windows into a
365  single peak, which is then labeled according to the window with the highest sweep probability.
366 To evaluate whether the predicted hard sweeps may reflect a high rate of soft-to-hard sweep
367  misclassification by the model, we use simulated data from the human admixture model to estimate
368 the proportion of predicted hard sweeps that may actually correspond to soft sweeps misclassified
369 as hard. Applying these rates (Fig. S16) to our ancient hard sweep predictions, we estimate that,
370  conservatively, 83% of detected sweeps are hard and 15% are soft, indicating that despite any
371  potential for misclassification, hard sweeps were likely common in ancient human populations. It
372  is important to note, however, that these error rate estimates are rough approximations based on
373  simulated data, as the true labels in real aDNA are unknown.

374 Additionally, to assess robustness of our results to the underlying model of soft sweeps, we
375  trained a model in which soft sweeps were simulated from standing genetic variation (SGV) rather
376  than recurrent de novo mutations (Fig. S10B). We identified a total of 53 unique sweeps in aDNA,
377 43 of which overlap with the scan trained on de novo soft sweeps. Of the 53 sweeps, 38 are
378  classified as hard, 9 as soft and 6 change classification from hard to soft across time periods.
379  However, we note that the predicted probabilities for soft sweeps are low, ranging from 0.34-0.44,
380  where 0.33 is the probability of predicting either hard, soft or neutrality at random. By contrast,
381  the predicted probabilities for hard sweeps range from 0.34-0.93, suggesting that the support for

382  peaks classified as soft is weak.
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383 To further validate whether the peaks detected by the DANN are in fact hard sweeps, we
384  visualized the central window of all peaks detected in Figure 4. By visual inspection, we observe
385 a single haplotype at high frequency across all windows, consistent with partial hard sweeps, as
386  highlighted in 24 examples in Fig. S17. These windows are distinct from windows classified as
387  soft on chromosome 6 of period H (Fig. S18), whereby multiple haplotypes are at high frequency,
388  and distinct from windows classified as neutral, whereby no haplotypes are at high frequency (Fig
389  S18).

390 In addition to the above, to further confirm inferences about the softness of sweeps made
391 by the DANN, we compute the value of the haplotype homozygosity statistics H12 and H2/H1¥
392  forthe sweep candidates detected in Figure 4A. These statistics have been previously used to detect
393  and classify hard and soft selective sweeps, with both hard and soft sweeps showing elevated H12,
394  and soft sweeps exhibiting higher H2/H1 values than hard sweeps®. Using an approximate
395  Bayesian computation (ABC) approach to estimate whether each (H12, H2/H1) pair observed in
396 the aDNA is more likely to arise under a hard or soft sweep model (Fig. S19), we find that of the
397 23 sweep candidates with elevated H12 values in the 95th percentile of values under neutrality, 22
398 peaks are better supported by a hard sweep model (BF<1) with 15 showing strong support
399 (BF<0.5).

400 Finally, to assess if our DANN is able to recover known soft sweeps,we applied the DANN
401  to a North American population of Drosophila melanogaster that has three well established soft
402  sweeps that have been identified empirically at Ace®®*2, CHkovI%*** and Cyp6g1°°°°. The sweeps
403  at Ace and Cyp6gl arose from recurrent de novo mutations while the sweep from CHkovI arose
404  from standing genetic variation. To run the scan on this data, we trained a new DANN using the
405 D. melanogaster data as the target domain and simulated data from a constant N. model with
406  parameters relevant to this population for the source domain (Methods). Our model is able to
407  recover all three known positive controls and classify them as soft sweeps (Fig. S20). Additionally
408  we find that soft sweeps dominate across the autosomes of this population and that hard sweeps
409  are enriched on the X chromosome relative to the autosomes, consistent with our previous findings
410  that hemizygosity on the X results in an abundance of hard sweeps®”?®.
411

412

413
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414  Selective sweeps through time

415 The massive admixture events in which large fractions of the European population
416  experienced genetic turnover may have important implications for the ability to detect selective
417  sweeps over time. Previous work has suggested that sweeps in ancient populations may no longer
418  be detectable in modern time periods due to a masking effect of admixture and drift>*°. Of
419  relevance to our dataset, 33% of the Anatolian population from which our samples were derived
420  was replaced by samples from the CHG population ~4.5kya, overlapping samples from the BA
421  and IA periods (Fig. 1B, C). We asked whether sweeps detected before this admixture event are
422  detectable subsequently, as this would imply resilience to major events and shared selective
423  pressures through time.

424 To investigate the potential impact of admixture events on sweep detection across time, we
425  quantified the overlap in selective sweep signals across the five time periods studied here. We
426  found that among the ancient time periods (N-H), 35 sweeps are detectable in only one or two time
427  periods, suggesting that admixture and drift may in fact have an impact on sweep detection.
428 However, at the same time, 14 sweeps that were identified before the admixture event in either the
429 N or BA time periods were also present after the admixture event in the H time period and modern
430  humans. This suggests that admixture events may not obscure all ancient sweeps and that some
431  sweeps are subject to sustained selection pressures over time (Fig. S9).

432 The genes identified in these 14 selective sweeps persisting across human epochs fall into
433 a few functional categories: These include neural and cognitive functions encoded by AUTS2,
434  ASCLI1, and SEMAGA, of which AUTS2 was previously discovered to putatively be under
435  selection®, neuronal signaling and calcium channels encoded by CACNB4, exocytosis encoded
436 by EXOC6B®, and previously**® discovered adaptations at pigmentation genes OCA2, HERC2,
437  and KITLG. Most of these genes are either found solo within the coordinates of their respective
438  selective sweeps, or with few other genes, narrowing the targets of selection. Contained in peaks
439  with more genes are metabolic and nutrient processing genes like PAH and SLC38A9,
440  reproductive and germ cell genes such as DDX4, SPAG4, and protein quality control and signaling
441  genes like LTN1, USP16, CCTS8, and MAP3K7CL (Table S4). Together, the gene categories
442  present in the 14 sweeps persisting through history highlight functional classes, particularly
443  cognitive and pigmentation, that were potentially of great importance throughout the past 7000
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444  years of history. Future work, however, is needed to fully understand the nature of positive
445  selection at these loci.

446 We next asked whether lack of overlap of sweep signals is correlated with the admixture
447  event4.5kya. To do so, we measured the overlap in sweeps between pairs of ancestral time periods
448  (N-H) using the Jaccard similarity index (J), which measures the proportion of shared elements
449  Dbetween two sets relative to their union (Methods). We asked whether these observed Jaccard
450  values were larger or smaller than expected under a null where sweeps are randomly distributed
451  across time periods. We found that the farthest time periods, N and H, which have the admixture
452  event separating them, had significantly less sharing of sweeps than expected by chance (J=0.17,
453  p-val=0.03, permutation test, Fig. S21, Methods). This is consistent with some sweeps detected in
454  the earliest time period (N) being lost due to the impact of admixture and/or drift over long
455  timescales. However, the absence of sweeps in later periods may, in some cases, reflect limited
456  power rather than true biological loss. Additionally, we found that two sets of consecutive time
457  periods, (BA, IA) and (IA and H), have higher than expected sweep sharing (J= 0.44-0.45, p-val
458  <0.05, permutation test, Fig. S21, Methods), indicating that on shorter time scales sweeps can
459  persist.

460 Next, we asked whether sweeps that are shared across multiple time periods persist because
461  the same haplotype carrying the adaptive allele remained under selection, or whether the original
462  haplotype was replaced by a distinct haplotype, potentially introduced through admixture. To test
463  this, we calculated whether the most frequent haplotypes of peaks across time periods are more
464  similar than would be expected based on the average divergence between random pairs of
465  haplotypes (Fig. S22, Fig. 5). Out of the 14 sweeps detected on either end of the major admixture
466  event spanning our dataset (Fig. 4), 9 of these share the same top haplotype across at least 4 time
467  periods, including periods where our method does not detect the sweep. This implies that the
468  sweeping haplotype frequently persisted despite widespread admixture. In Fig. SA, we highlight
469 6 examples of these sweeps. Among these we include a more recent sweep at the LCT locus where
470 the recent rise of the adaptive haplotype is particularly evident.

471 In addition to sweeps that persist across multiple time periods, we also tracked the
472  frequency of the top haplotype in cases where the sweep is only detected in the earliest period (Fig.
473  5B), clearly highlighting how, in some cases, a haplotype at high frequency in N is lost or masked
474  in subsequent periods. The temporal patterns highlighted in Fig. 5A,B are strikingly different from
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475  those in regions classified as neutral by the DANN (Fig. SC), where no haplotype reaches high
476  frequency and the distances between top haplotypes fluctuate.
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478  Figure 5. Persistence of top haplotype across time. (A) Six examples where the most frequent
479  haplotype persists across multiple time periods. (B) Three examples of sweeps that become
480  masked after time period N. (C) Three examples of neutral windows across all time periods. In all
481  panels, the blue line (left y-axis) shows the frequency of the top haplotype in four ancient
482  populations (N-H) and in a modern population (CEU). The gray line (right y-axis) shows the
483 normalized Hamming distance between the top haplotype in each time period and the top
484  haplotype in CEU in the case of (A) or in period N in the case of (B), (C). The horizontal red
485  dashed line marks the 1st percentile of the distance between random haplotype pairs, with values
486  above this threshold indicating distinct haplotypes. We highlight with a star (*) the epochs for
487  which the window was classified as a sweep using the DANN.

488

489 Discussion

490 In this study, our goal was to characterize the targets and mode of adaptation in ancient
491  humans. To do this, we implemented a domain adaptive neural network that is able to detect and
492  classify selective sweeps in aDNA data and is robust to model misspecification. We applied our
493  model to empirical aDNA from 708 individuals spanning ~7000 years in the past as well as 99
494  modern Europeans, and identified 48 unique ancient hard selective sweeps and 28 modern hard
495  sweeps, recovering both previously known and novel candidates of selection. Finally, we found
496  that while some sweeps identified in the Neolithic have been masked in more recent time periods,
497 14 sweeps spanning neuronal, reproductive, pigmentation, and signalling traits, can be found in
498  the earliest and latest time periods despite the impacts of drift and admixture.

499 Past studies on humans have generally found few clear examples of hard sweeps in modern
500 genomes®"®2 Souilmi etal. proposed that this paucity of classic sweeps reflects the impact of
501  complex population history, in particular the masking of sweep signatures by strong admixture
502  events. Using SweepFinder2%, which is primarily powered to detect completed hard sweeps, they
503 identified 57 sweeps across ancient Eurasian human genomes, including many sweeps that are
504  undetectable in modern data. Our DANN recovers several sweeps that show a similar pattern: Out
505  of the 24 sweeps detected in the most ancient time period of our study, the Neolithic, 41% are not
506  detected in the following periods (Fig. S9, Fig. SB). However, our results also reveal additional
507  dynamics not previously captured: the persistence of sweeps across time periods, even those most

508 impacted by admixture. First, we observed sweeps in which the top haplotype is shared across
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509  multiple time periods, even when the sweep is not detected by the DANN in all time intervals.
510  This pattern might reflect standing genetic variation, where the haplotype has not been driven by
511  selection to a high enough frequency to be detected by the DANN. We also detect cases where the
512  same top haplotype appears in non-consecutive periods, suggesting more complex evolutionary
513  dynamics such as fluctuating selection or a temporary replacement of the top haplotype driven by
514  admixture or migration that obscure detection of the sweep in some time intervals.

515 The finding that hard sweeps were common in aDNA suggests that adaptation in humans
516  has largely been mutation limited, or that standing genetic variation available to seed adaptation
517 was low. Even accounting for a 16% misclassification rate of soft sweeps as hard sweeps
518  (Fig. S16), hard sweeps remain the dominant mode of selection in aDNA. The high frequency of
519  hard sweeps in the data is consistent with the notion that hard sweeps are expected to dominate in
520 populations with small population sizes, where the input of new adaptive mutations is low”®*. In
521  ancient human populations, the effective population size is estimated to be relatively small®® (
522 N~10%), therefore the input of new adaptive mutations was likely moderate (@ ~ 0.001), making
523  adaptation through hard sweeps likely. Nonetheless, given the inherent challenges of
524  distinguishing between hard and soft sweeps, especially in regions of the parameter space where
525  their genomic signatures overlap, additional work will be needed to fully resolve the rapidity of
526  human adaptation.

527 Domain adaptation provides meaningful improvement on supervised machine learning
528 methods for analyzing genomic data. With the significant increase in available aDNA samples
529  over the past decade®®, domain adaptation may be especially valuable, as aDNA analyses may
530  be susceptible to false positives due to unmodeled or unknown demographic events as well as the
531  overall poor quality of the data. Domain adaptation was recently applied to SIA, a method that
532  detects selection using the ancestral recombination graph (ARG) inferred from sequence data?,
533  Here, we bypass ARG inference, which is computationally intensive and can introduce an
534  additional layer of misspecification, by working directly with haplotype matrices. In other recent
535  work, site frequency spectra were used as inputs to the DANN, though this summary statistic
536  removes any linkage signal between SNPs®. By working with haplotypes'®, we can fully leverage
537  all available data without the need for additional inferences, making it more straightforward and

538  better suited hard vs soft sweep inference in aDNA. This framework is generalizable and in future
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539  work could be extended to other organisms with low coverage data or where the demography is
540 not fully characterized.

541 Our findings highlight the power of deep learning for uncovering signatures of selection in
542  aDNA data. By applying a DANN to aDNA data, we find that hard sweeps have played an
543  important role in the evolutionary history of humans. Moreover, our approach opens the door to a
544  range of future applications of deep learning in aDNA to study adaptation, including incorporating
545  time as an explicit variable to examine how selection has fluctuated across historical periods or
546  extending our approach to detect other modes of selection. As aDNA datasets continue to grow
547  and deep learning methods for population genetics continue to improve, so will our ability to
548  disentangle the evolutionary forces that have shaped genetic diversity through human history.
549

550 Methods

551
552  Ancient DNA data
553 Data was downloaded from the Allen Ancient DNA Resource (AADR version 51;

554  https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-
555  day-and-683). This includes genome-wide data from human populations from Holocene Europe
556  with samples dating from ~7,000 years before present (BP) to ~1,345 BP, covering the Neolithic
557  (N), the Bronze Age (BA), the Iron Age (IA) and the Historical periods (H) (Fig. 1).

558 We focused our analyses on the most reliable samples in our dataset. The criteria we used
559  to select samples are the same as in our previous work>® and include enrichment for 1240k nuclear
560 targets with an in-solution hybridization capture reagent, removal of individuals with high
561 indication of contamination (see *°) , and inclusion of unrelated individuals up to the third degree.
562  Additionally, like in our previous work we selected 177 individuals with the highest coverage
563  across all time periods, resulting in a total of 708 aDNA samples (Table S1). Finally, since aDNA
564  coverage is low and thus both alleles at heterozygous sites may not be sampled, and, since there is
565  ascertainment bias of alleles towards the SNPs included in the aDNA capture array®® we pseudo-
566  haploidized the data by randomly selecting one of the reads that mapped to a given position and

567  assigned that read as the genotype of the sample at that site®.
568
569
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570  Simulations

571 We performed simulations of neutrality, hard sweeps and soft sweeps. We use two different
572  demographic models: a constant N. =10* model and a human admixture demographic model that
573  accounts for the major migratory movements contributing to the genetic diversity of contemporary
574  Europeans®** (Fig. 1C).

575 We simulated a total of 400,000 neutral simulations and 400,000 selective sweep
576  simulations (200,000 hard sweeps and 200,000 soft sweeps) under each demographic model.
577  Constant mutation rates and recombination rates were applied to each simulated genome and were
578  drawn uniformly as follows: p ~U[1e-8,1.5¢-8] and p ~U [3e-9,2¢-8]. Simulations were performed
579  using SLiM 4.1%97° followed by recapitation with msprime””.

580 We simulated hard sweeps by introducing a single adaptive mutation to the center of the
581  chromosomal segment of length 450kb. We restarted the simulation and re-introduced the adaptive
582  mutation if the mutation was lost. The simulation was allowed to proceed until the adaptive
583  mutation reached a partial frequency (PF) drawn from a uniform distribution PF ~ U[0.5,0.95]. In
584  all simulations, 177 individuals were sampled and subsequently downsampled to the 150
585 individuals with the least amount of missing data, reflecting the same procedure applied to aDNA.
586 We simulated soft sweeps from recurrent de novo mutations by introducing adaptive
587  mutations to the center of the chromosome at a rate determined by parameter @ = 4N, 14, where
588 M. is the effective population size and 4 the mutation rate of the adaptive mutation. The value of
589  Oa was drawn from a uniform distribution @ ~U[1,5] as soft sweeps are expected when O >=
590 17 Finally, the selection strength, s, for both hard and soft sweep simulations was drawn from a
591  uniform distribution s ~U[0.005,0.1].

592 Additionally, we simulated sweeps arising from standing genetic variation (SGV) by
593  drawing the frequency of the adaptive mutation prior to the onset of selection from a uniform
594  distribution fii:~ U[0.025,0.1]. Given the computational constraints of simulating a sweep from
595 the SGV jointly with a complex admixture model, we only simulated SGV sweeps using the
596  constant N. model. Additionally, to improve computational efficiency, we used a hybrid approach
597  where we first simulated a neutral process with msprime and selected a mutation m; at frequency
598  fiir The resulting tree and mutation id of the variant m; was then fed to SLiM, where m; was

599  assigned a selective advantage and allowed to rise in frequency, producing a sweep from SGV.
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600 Simulations were processed to mimic the missing data rate observed in aDNA data.
601  Missing data was added to each site following a beta distribution with a mean of 0.43 per SNP and
602  a standard deviation of 0.28, mimicking the distribution of missing data observed in aDNA (Fig.
603  S2). Additionally, we pseudo-haploidized the data by randomly selecting one allele from each
604  sampled individual at each site®. Finally, since we ran our scan in 201 SNP windows in aDNA,
605  spanning roughly 450Kbs, we randomly selected 201 SNPs from the simulated chromosome.

606

607 DANN model architecture

608 The input to the DANN are raw genomic “images” or haplotype matrices (Fig. 2B), where
609  rows represent pseudo-haplotypes from each individual and columns represent the ordinal position
610  of each variant site in the sample. These haplotype matrices have dimensions #n x L, where n=150
611  pseudo-haplotypes and L=201 SNPs in a given window. In these images, the color of each pixel
612  represents the occurrence of the major or minor allele'®'®%, We transformed the alleles into binary
613  values such that the major allele was coded as -1 and minor allele as 1. Missing data was coded as
614 0. Images were sorted by frequency of most to least frequent haplotype. In text S1 we test the
615  effectiveness of alternative sorting approaches and window sizes.

616 The feature extractor of the DANN consists of two convolutional layers each containing
617 64 filters with kernel size of 3x3 and ReLu activation (Fig. 2A). Each convolutional layer is
618 followed by 2x2 max-pooling. The last pooling layer is then flattened into a feature vector that is
619  shared between the two subsequent branches of the network: the classifier and the discriminator.
620  Each branch consists of two fully-connected dense layers of 128 neurons each. We use ReLu
621  activation functions and set a dropout rate of 0.5 after each dense layer. The classifier outputs a 3-
622  neuron softmax layer with the predicted probabilities for each of the three classes: hard sweep, soft
623  sweep, or neutral. The discriminator outputs a single sigmoid output layer, which predicts whether
624  the haplotype image comes from the source or target domain.

625 An important component of the DANN is a Gradient Reversal Layer (GRL) between the
626  feature vector and the discriminator branch. During the feed-forwards step of training, the GRL is
627  inactive and the data is passed along to the next layers. During backpropagation, the GRL inverts
628  the gradient of the loss before passing it back to the feature extraction layer?. This operation
629 penalizes features that discriminate between source and target domains, encouraging the model to

630 learn domain-invariant features critical for accurate classification.

24


https://www.zotero.org/google-docs/?CNXfzM
https://www.zotero.org/google-docs/?0gzCXg
https://www.zotero.org/google-docs/?ID0ZCB
https://doi.org/10.1101/2025.10.14.682443
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.10.14.682443; this version posted October 14, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

631  Model training

632 We implemented the domain-adaptive neural network model described above using
633  TensorFlow (v2.18.0). All models were trained with the Adam optimizer and a batch size of 64.
634  The classifier branch utilized a categorical cross-entropy loss function, while the discriminator
635  branch used a binary cross-entropy loss function. We fed labeled data from simulations into the

636  classifier branch to compute the class prediction 10ss (L¢jgssifier )- Simultaneously, we fed a mix

637  of unlabeled data from the source domain (simulations) and target domain (aDNA data) into the
638  discriminator branch to compute the discriminator 10ss (Lgiscriminator)- During back propagation,
639 the feature extractor’s weights were updated based on a combination of the gradient from the
640 classifier loss and the reversed gradient from the discriminator loss. We use the same simulated
641  data for both branches, however the data is shuffled differently in each mini-batch. The real
642  empirical aDNA data was used on the discriminator branch only. To achieve this training
643 approach, we implement a custom data generator using the Sequence class
644  (‘tfkeras.utils.Sequence’) that acts as a data generator interface for training Keras models.

645

646 The relative contribution of the model’s branches can be adjusted via the hyperparameter

647 A, such that

648 Liotal = Letassifier + ALdiscriminator -

649  If =0 then the GRL is effectively “off” and only the classifier branch learns to classify sweeps
650  without attempting to unlearn domain differences. Conversely, when A=1 the GRL is fully “on”,
651  assigning equal importance to the tasks of classifying sweeps and unlearning domain differences
652  simultaneously. Following the approach proposed by Ganin & Lempitsky 2014, we gradually
653 increased A from O to 1 in order to reduce potential noisy signal from the discriminator at early

654  stages of training. In Ganin & Lempitsky 2014 2 is defined as:

655 1=—2
1+ exp(—y'p)

656  Where p is the training progress changing linearly from 0 to 1 and is defined as p= epoch;/ nepochs,
657  with nepochs =30 total epochs and i=1,..nepochs. In all models trained for this paper we set y =10.

658 We trained the DANN for a total of 30 training epochs. Each epoch took ~282s to train on
659 a single A100 GPU. During training, the discriminator loss gradually increased as the model
660  “unlearned” the misspecification between the source and target. The loss eventually plateaued at

661  ~0.693, consistent with the value expected when the domains become indistinguishable under
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662  Dbinary cross-entropy loss. Simultaneously, we observed that the classifier loss monotonically
663  decreased as it learned to distinguish between neutrality, hard sweeps, and soft sweeps (Fig. S23).
664 First, we trained and tested the DANN on simulated source and target domains. In this
665  scenario, we had labeled data from both domains, allowing us to evaluate the performance of the
666  DANN using a validation set from the target domain. In this setting, we selected the model weights
667  from the training epoch that achieved the lowest classifier validation loss when testing on the
668  validation dataset from the target domain.

669 Next, we trained and tested the DANN but this time using simulated data generated under
670  ahuman admixture model with an average of 43% missing data per site as the source domain and
671  aDNA data as the target domain. We included all aDNA data for training, where the data only
672  passed through the discriminator branch, not the classifier, since their labels are unknown. The
673  classifier only sees the aDNA data during inference (next section), avoiding any data leakage. In
674  this setting, we could not directly evaluate the performance of the model on a target validation set
675  due to the lack of labeled data. Instead, we assessed performance on simulated data by computing
676 the AUPRC for each class at every training epoch and then averaging across the three classes. We
677  restricted model selection to epochs beyond epoch four, when the GRL begins to influence training
678 (1>0.5), and chose the epoch with the highest average AUPRC.

679

680 DANN genome-wide scan

681 We performed a genome-wide scan across all autosomes and all four time periods of aDNA
682  data from this study. We also include a scan on 99 samples of modern humans from the CEU
683  population from the 1000 Genomes Project®. This modern data scan was generated using a
684  different DANN than the one used on ancient samples, trained on CEU data as the target domain.
685 To apply the model to all autosomes, we use a sliding window of 201 SNPs, advancing
686 each window by 10 SNPs. To refine the predictions and reduce noise, we then averaged the
687  predicted probabilities every five consecutive, overlapping windows, generating the final
688  predictions used for the scan. The DANN outputs a probability for each of the three classes
689  (neutral, hard sweep or soft sweep). Each window was assigned to the class with the highest
690 probability. To make sure we are identifying distinct selective events, we grouped consecutive
691  non-neutral windows into a single peak and required peaks to be at least 1.5 Mb apart. Each peak

692  was represented by the window with lowest probability of neutrality, in other words, the strongest
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693  signal within the peak. The classification of this representative window (hard or soft sweep) was

694  used to classify the whole peak.

695

696  ABC for hard/soft sweep classification with H12 and H2/H1 statistics

697

698 We assessed whether the predictions for hard vs soft sweeps in the data made by the DANN

699  are consistent with predictions made with the haplotype homozygosity statistics, H12 and H2/H1,
700 that can jointly discriminate between hard and soft sweeps®. H2/H1 is expected to be small for
701 hard sweeps and large for soft sweeps, conditional on H12 being larger than expected under
702 neutrality. As such, we only analyzed 23 peaks in total that had an H12 value greater than the 95th
703  percentile of H12 values from 400,000 neutral simulations under the human admixture model as
704  these were least likely to be neutral.

705 We used an approximate Bayesian computation approach to evaluate if a pair of (H12,
706  H2/H1) values in the data are more likely under a hard vs soft sweep model. To do so, we compare
707  observed values in the data to values measured from simulations of hard sweeps and soft sweeps
708  under the human admixture model. We calculated Bayes factors (BFs) for the observed data by
709  taking the ratio of the number of soft sweep and hard sweep simulations with a Euclidean distance
710  <0.1 from each (H12, H2/H1) data point®’.

711

712 Jaccard index and permutation test

713

714 To quantify the overlap of peaks across different time periods, we calculated a Jaccard
715  similarity index (J) quantifying peak overlap between pairs of time periods. J measures the
716  proportion of shared elements between two sets relative to their total combined elements and its

717  defined as

|ANB|
|[AuB|’

718 J(A,B) =

719  or in other words, the number of shared elements in sets A and B divided by the total number of
720  elements in A and B. In this scenario A and B represent the peaks identified in two distinct time
721  periods, such as A and H. J(I4,H) is obtained by dividing the number of peaks that are shared
722 between IA and H by the total number of peaks found across both periods.
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723 Next, to identify whether the value of J was statistically significant, we performed a
724  permutation test where we randomly shuffled the peaks and time periods, such that peaks were
725 randomly distributed across time. We did this 5,000 times generating a null distribution of
726  expected values of J. The p-value of the observed J value is given by the proportion of test statistics
727  from the null distribution that are as extreme or more extreme than the observed value for a pair
728  of time periods.

729

730  Code availability

731 All code developed and used in this study will be made publicly available via a GitHub repository
732 upon acceptance of the manuscript.
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