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A brain-wide map of neural activity during 
complex behaviour
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A key challenge in neuroscience is understanding how neurons in hundreds of 
interconnected brain regions integrate sensory inputs with previous expectations  
to initiate movements and make decisions1. It is difficult to meet this challenge if 
different laboratories apply different analyses to different recordings in different 
regions during different behaviours. Here we report a comprehensive set of recordings 
from 621,733 neurons recorded with 699 Neuropixels probes across 139 mice in 12 
laboratories. The data were obtained from mice performing a decision-making task 
with sensory, motor and cognitive components. The probes covered 279 brain areas 
in the left forebrain and midbrain and the right hindbrain and cerebellum. We provide 
an initial appraisal of this brain-wide map and assess how neural activity encodes key 
task variables. Representations of visual stimuli transiently appeared in classical 
visual areas after stimulus onset and then spread to ramp-like activity in a collection  
of midbrain and hindbrain regions that also encoded choices. Neural responses 
correlated with impending motor action almost everywhere in the brain. Responses 
to reward delivery and consumption were also widespread. This publicly available 
dataset represents a resource for understanding how computations distributed 
across and within brain areas drive behaviour.

It is unclear how hundreds of interconnected brain areas that are 
processing information related to sensation, decisions, action and 
behaviour lead to coherent and effective outputs2–4. To answer this 
question, we need to know how the activities of individual neurons 
and populations of neurons across the brain reflect variables such as 
stimuli, expectations, choices, actions, rewards and punishments5. 
Electrophysiological recordings from animals have been instrumen-
tal in this exploration. Until recently, however, technical limitations 
have restricted these recordings to a limited number of brain areas, 
which leaves much of the mammalian brain uncharted or described by 
fragmentary maps. For example, the mouse brain comprises over 300 
identified regions6, of which only a minority has been systematically 

recorded in comparable behavioural settings. The regions studied 
were typically chosen on the basis of a priori hypotheses derived from 
previous recordings and anatomical connectivity. This approach can 
identify a localization of function and reveal brain regions that are 
engaged in computations such as the accumulation of sensory evidence 
in favour of a decision7. Nevertheless, studies have shown that such 
regions can sometimes be silenced without substantial behavioural 
consequences8–12, which suggests that other regions are involved. 
Overall, it has proven difficult to obtain a comprehensive picture of 
neural processing based on different reports from different laborato-
ries recording in different brain regions during different behaviours 
and analysing the data with different methods.
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A broader search for the neuronal correlates of variables such as 

sensation and decision-making therefore requires the systematic 
recording of brain regions at a wider scale using a single task with suf-
ficient behavioural complexity. Moreover, the data should be analysed 
using the same methods. Obtaining such a comprehensive dataset has 
recently become possible with advances in recording technology. In 
a species with a small brain such as the mouse, Neuropixels probes13,14 
have enabled larger-scale recordings, such as sampling activity across 
eight visual areas15 or across tens of brain regions in mice performing 
behavioural tasks1,16,17 or experiencing changes in physiological state18. 
Modern imaging techniques also provide a wider view of activity across 
dorsal cortical regions19–21. Results from these broad surveys suggest 
that the encoding of task variables varies substantially. Some variables 
have correlates only in a few brain areas, whereas others are encoded 
in sparse sets of cells or distributed much more broadly. It is critical 
to obtain more comprehensive recordings because past recordings 
may have missed essential regions that are focused on the coding of 
certain variables and have not fully characterized the nature of dis-
tributed coding.

Here we present a publicly available dataset22 of recordings from 699 
Neuropixels probe insertions spaced across an entire hemisphere of 
the brain in mice performing a behavioural task that requires sensory, 
cognitive and motor processing23. This approach enabled the detec-
tion of brain-wide correlates of sensation, choice, action and reward, 
as well as internal cognitive states, including stimulus expectation or 
priors (this ‘block’ prior is described in the companion paper24). We 
also describe initial analyses of these data. Neural correlates of some 
variables, such as reward and action, were found in many neurons across 
essentially the whole brain. By contrast, correlates of other variables, 
such as the input stimulus, could be decoded from a narrower range 
of regions and significantly influenced the activity of fewer individual 
neurons. These data, which can be examined online (viz.internation-
albrainlab.org) and downloaded from GitHub (https://int-brain-lab.
github.io/iblenv/notebooks_external/data_release_brainwidemap.
html), are intended to be the starting point for a detailed examination 
of decision-making processes across the brain and represent a valuable 
resource to enable the community to perform a broad range of further 
analyses with single-neuron resolution at a brain-wide scale.

First, we describe the task, the recording strategy and the analy-
sis methods used to provide different views of this rich and complex 
dataset. Further details of how we ensured reproducible behaviour, 
electrophysiology and videography are available separately23,25 and 
are summarized in the Methods. Then we report the neural correlates 
of the main events and variables in the task: visual stimulus, choice, 
feedback and wheel movement.

Behavioural task
We trained 139 mice (94 male and 45 female) on the International 
Brain Laboratory (IBL) decision-making task23 (Fig. 1a,b). On each 
trial, a visual stimulus appeared to the left or right on a screen, and 
the mouse had to move it to the centre by turning a wheel with its front 
paws within 60 s (Fig. 1c). After an initial 90 unbiased trials, the prior 
probability for the stimulus to appear on the left or right side was con-
stant over a block of trials at a ratio of 20:80% (right block) or 80:20% 
(left block). Blocks lasted for between 20 and 100 trials, which were 
drawn from a truncated geometric distribution (empirical mean of 51 
trials). Block changes were not cued. Stimulus contrast was uniformly 
sampled from 5 possible values (100, 25, 12.5, 6.25 and 0%). The 0% 
contrast trials, when no stimulus was presented, were assigned to a 
left or right side following the probability distribution of the block. 
This allowed mice to perform above chance by incorporating this 
prior in their choices. Following a wheel turn, mice received positive 
feedback in the form of a water reward, or negative feedback in the 
form of a white-noise pulse and a 2-s time out. The next trial began 

after a delay, followed by a quiescence period during which the mice 
had to hold the wheel still.

As previously shown23, mice learnt to both indicate the position 
of the stimulus and to exploit the block structure of the task. After 
training, they made correct choices on 81.4 ± 0.4% (mean ± s.d.) of the 
trials, performing better and faster on trials with high visual stimu-
lus contrast (Fig. 1d). Recorded sessions lasted on average 645 trials 
(median of 602, range of 401–1,525). Towards the end of the sessions, 
performance decreased and first wheel-movement times increased 
(Fig. 1e,f). On 0% contrast trials, in which no visual information was 
provided, mice gained rewards on 58.7 ± 0.4% (mean ± s.e.m) of trials, 
significantly better than chance (t-test t138 = 20.18, P = 5.2 × 10−43). After 
a block switch, mice took around 5–10 trials to adjust their behaviour to 
the new block, as revealed by the fraction of correct choices made on 
0% contrast trials after the switch (Fig. 1g). Mice were also influenced 
by their previous estimate in the presence of visual stimuli. That is, for 
all contrast values, mice tended to answer left more often on left blocks 
than right blocks (Fig. 1h).

Recordings
In these mice, we inserted 699 Neuropixels probes (see an example of 
one recording of three trials in Fig. 1i), following a grid that covered the 
left hemisphere of the forebrain and midbrain, which typically repre-
sent stimuli or actions on the contralateral side, and the right hemi-
sphere of the cerebellum and hindbrain, which typically represent the 
ipsilateral side (Fig. 2a). Recordings were collected by 12 laboratories in 
Europe and the USA, with most recordings using 2 simultaneous probe 
insertions. To ensure reproducibility, one brain location was targeted 
in every mouse in every laboratory, as described elsewhere25. Only ses-
sions with at least 400 trials were retained for further analyses. Data 
were uploaded to a central server, preprocessed and shared through a 
standardized interface26. To perform spike sorting on the recordings, 
we used a version of Kilosort27 with custom additions28. This process 
produced 621,733 units (including multineuron activity), averaging 889 
per probe. To separate individual neurons from clusters of multineuron 
activity, we then applied stringent quality-control metrics (based on 
those described in ref. 15), which identified 75,708 well-isolated neu-
rons, averaging 108 per probe.

After recordings, probe tracks were reconstructed using 
serial-section two-photon microscopy29, and each recording site and 
neuron was assigned a region in the Allen Common Coordinate Frame-
work6 (a table of regions is available online on GitHub (https://github.
com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/
meta/region_info.csv); statistics are shown in Fig. 2b). Our main analy-
ses were restricted to regions with 20 or more neurons assigned to them 
in at least 2 sessions, with at least 5 neurons per session. Owing to the 
grid-based insertion strategy of the probes, more recordings were made 
in larger regions, which typically led to more neurons being analysed in 
such regions. Note that it was harder to extract well-isolated neurons 
from some regions than others; therefore, the yield substantially dif-
fered. Although information about molecular cell types can sometimes 
be gleaned from spike waveforms, we did not attempt to do so for the 
analyses here. For example, although we performed recordings in some 
of the main neuromodulatory regions, we do not make specific claims 
about which neurons release which neurotransmitter.

To illustrate our main results, we plotted them into a flatmap of 
the brain30 (Fig. 2c). The Extended Data figures present some of the 
results on more conventional two-dimensional (2D) sections (which 
are detailed in Extended Data Fig. 1). For reference, the average activ-
ity across all regions aligned to the major task events—stimulus onset, 
first wheel-movement time and feedback—is shown in Supplementary 
Fig. 1. To visualize continuous temporal dynamics across different task 
epochs, that figure also shows time-warped average activity, which was 
simultaneously aligned to stimulus, movement and feedback onsets.

https://viz.internationalbrainlab.org
https://viz.internationalbrainlab.org
https://int-brain-lab.github.io/iblenv/notebooks_external/data_release_brainwidemap.html
https://int-brain-lab.github.io/iblenv/notebooks_external/data_release_brainwidemap.html
https://int-brain-lab.github.io/iblenv/notebooks_external/data_release_brainwidemap.html
https://github.com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/region_info.csv
https://github.com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/region_info.csv
https://github.com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/region_info.csv
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The processed data for each trial consisted of a set of spike trains 
from multiple brain regions together with continuous behavioural 
traces and discrete behavioural events (Fig. 1i). These were recorded 
using a variety of sensors, including three video cameras and a rotary 
encoder on the wheel. The data were processed using custom scripts 
and DeepLabCut31 to generate the times of major events in each trial 
along with wheel velocity, whisker motion energy, lick timing and 
the positions of body parts. We only analysed trials in which the first 
wheel-movement time (which is our operational definition of a reaction 
time) was between 80 ms and 2 s (Fig. 1c).

Instructions for accessing the data22, together with an online browser, 
are available at https://data.internationalbrainlab.org.

Neural analyses
To obtain an initial appraisal of the brain-wide map, we performed 
single-cell and population analyses to assess how neural activity 

encodes task variables and how it can be analysed to decode these 
variables. We considered four key task variables (Fig. 3a): visual stimu-
lus; choice (left or right turning of the wheel); feedback (reward or 
time out); and wheel movement (speed and velocity). The main figures 
show the results of these analyses in a canonical dataset of 201 regions 
for which we had at least 2 sessions with 5 well-isolated neurons each 
and at least 20 well-isolated neurons after pooling all sessions (for 
a total of 62,857 neurons; Supplementary Table 1). Supplementary 
information shows results for a wider range of neurons and regions 
appropriate for each analysis.

To provide complementary views on how these task variables are 
represented in each brain region, we used four analysis techniques 
(Fig. 3b–e; see Supplementary Fig. 2 for a fuller picture). The details 
of each technique are provided in the Methods, along with a discus-
sion of the corresponding null distributions, permutation tests and 
false discovery rate (FDRq at the level q using the Benjamini–Hochberg 
procedure) that we used to limit statistical artefacts.
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Fig. 1 | The IBL task, data types and behaviour. a, Schematic of the IBL task 
and the block structure of an example session. b, Timeline of the events and 
analysed variables. Colours are used in other figures. c, Distribution of the 
times between stimulus onset and first wheel-movement time (interpreted  
as a reaction time) from 459 sessions. The distribution is truncated at 80 ms 
and 2 s. A total of 22.8% first wheel-movement times occurred under 80 ms  
(not shown). d, Proportions of correct choices (top) and first wheel-movement 
time (bottom) given a stimulus contrast (one point per mouse per contrast). 
Performance on 0% contrast trials (grey) was 58.7 ± 0.4% correct (mean ± s.e.m. 
across mice). Data are for 139 mice and 454 sessions. e, Proportions of correct 
choices given the number of trials before the end of the session for 0% (grey) 
and non-0% (black) contrast trials (mean ± s.e.m. across mice). f, The same 

analysis for first wheel-movement times. g, Reversal curves. Proportions of 
correct choices around a block change for trials with 0% contrast and  >0% 
contrast (mean ± s.e.m. across mice; excluding the first 90 unbiased trials).  
h, Psychometric curves. Fraction of correct choices given a signed contrast 
(positive or negative for right or left stimuli, respectively) for all mice (one dot 
per contrast per mouse). Right choices were more or less common in right (red) 
or left (blue) blocks, with Pright = 0.8 and Pright = 0.2, respectively. i, Time series 
and trial information for three example trials: rotary encoder output of the 
wheel, video analysis and spike-time rasters across multiple brain regions. 
Figures are organized according to the IBL style (https://github.com/int- 
brain-lab/ibl-style/tree/main). Schematic in a was adapted from ref. 23, eLife, 
under a Creative Commons licence, CC BY 4.0.

https://data.internationalbrainlab.org
https://github.com/int-brain-lab/ibl-style/tree/main
https://github.com/int-brain-lab/ibl-style/tree/main
https://creativecommons.org/licenses/by/4.0/
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First, we used a decoding model to predict the value of the task vari-
able on each trial from the neural population activity using regularized 
logistic or linear regression (Fig. 3b and Supplementary Fig. 2b). This 
analysis can detect situations in which a variable is robustly encoded 
but only in a sparse subset of neurons. We assessed decoding for each 
variable separately without considering the correlations between the 
task variables. This quantifies what downstream neurons would be able 
to determine from the activity, but does not disentangle factors that are 
related such as the stimulus side and choice. We performed decoding 
in each region and then corrected the R2 of the fit to a variable by the  

R2 of the fit to a suitable null distribution. We then used Fisher’s com-
bined probability test32,33 to combine decoding results across sessions. 
To correct for the comparisons over multiple regions, we chose a level 
of 0.01 for the FDR (FDR0.01).

Second, we computed single-cell statistics. For this, we tested 
whether the firing rates of single neurons correlated with three task 
variables (visual stimulus side, choice side and feedback) in the appro-
priate epochs of each trial (Fig. 3c and Supplementary Fig. 2c). As the 
task variables of interest are themselves correlated, we used a condi-
tion combined Mann–Whitney U-test1 for analysis, which compares 
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spike counts between trials differing in just one discrete task variable 
with all others held constant. Using a permutation test, we determined 
the fraction of individual neurons in a region that were significantly 
selective to a variable, using a threshold specific to each variable. 
For each session with recordings in a specific region, we computed 
the significance score of the proportion of significant neurons by 
using the binomial distribution to estimate false-positive events. 
We then combined significance scores across sessions with Fisher’s 
combined probability test32,33 to obtain a combined P value for each 
region. We report a region as being responsive to a variable if this 
combined P value was below the chance level, correcting for multiple 
comparisons using FDR0.01. This method has lower statistical power 
than decoding as it only examines noisy single neurons; therefore, 
it may miss areas that have weak but distributed correlates of a vari-
able. However, it controls for correlated variables in a way that the 
decoding method does not. Therefore, it is able to exclude neurons 

that appear to represent a variable by virtue of the correlation of that 
variable with a confound.

Third, we performed a population trajectory analysis (Fig. 3d and 
Supplementary Fig. 2d). To that end, we averaged firing rates of single 
neurons in a session across all trials in 20-ms bins and then aggregated 
all neurons across sessions and mice per brain region. We examined 
how trajectories in the high-dimensional neural spaces reflected task 
variables. We did this by measuring the time-varying Euclidean distance 
between trajectories, d(t), in the interval of interest, normalized by the 
square root of the number of recorded cells in the given region to obtain 
a distance in units of spikes per second. From this time-varying distance, 
we extracted differential response amplitude and latency statistics. For 
significance testing, we permuted trials for the variable of interest while 
keeping the other variables fixed to minimize the effect of correlations 
among the variables (as done for single-cell statistics), using FDR0.01 to 
control for multiple comparisons. For visualization, we projected the 
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trajectories into a three-dimensional principal components space. 
This analysis combined all recordings into one supersession before 
computing the effect of a variable for each brain region, weighting 
each cell equally, thus combining recordings at the cell level for each 
region. This approach can produce a strong signal-to-noise ratio, but 
it cannot distinguish results obtained in individual sessions. It further 
stands out by providing the temporal evolution of the sensitivity of a 
region to a variable during the interval of interest.

Finally, we used an encoding model34 to fit the activity of each cell on 
each trial as a linear combination of a set of temporal kernels locked to 
each task event (Fig. 3e and Supplementary Fig. 2e). This generalized 
linear model quantifies the dependency at a temporally fine scale at 
the cost of a potentially low signal-to-noise ratio. We measured the 
impact of a variable by removing its temporal kernels and quantifying 
the reduction in the fit of the activity of a neuron (typically assessed 
using ΔR2). This method lacks a convenient null distribution; therefore, 
we report effect sizes rather than significance.

The results from the different analysis methods are not expected 
to agree perfectly, because they focus on different aspects of the 
responsivity of individual neurons and populations thereof. Moreo-
ver, for the population trajectory analysis, information across multiple 
sessions rather than within single sessions was combined. However, 
this strategy allowed us to test the robustness of our results by com-
paring findings based on subsets of the data (Supplementary Fig. 3). 
The results from the methods therefore should be collectively inter-
preted. For a direct comparison of analysis scores, see flatmaps in 
Extended Data Fig. 2 and scatter plots of scores for analysis pairs in 
Extended Data Fig. 3.

On the basis of the four main analyses, we also performed a basic, 
inter-area analysis using Granger interactions for simultaneously 
recorded brain areas (Extended Data Fig. 4). High Granger interac-
tion scores were obtained for region pairs from all major brain regions, 
which were weakly correlated with anatomical distance and mostly 
bidirectional. A similar analysis was performed for the prior over the 
block in a companion paper24.

Below, we describe the results of our four analyses applied to the 
coding of each of the four task variables.

Representation of visual stimulus
We first considered neural activity related to the visual stimulus. Clas-
sical brain regions in which visual responses are expected include 
the superior colliculus35,36, the visual thalamus37–39 and visual corti-
cal areas40–43, with latencies reflecting successive stages in the visual 
pathway15,44. Correlates of visual stimuli have also been observed in 
other regions implicated in visual performance, such as parietal45 and 
frontal46–49 cortical areas and the striatum50,51. Substantial encoding of 
visual stimuli may also be present beyond these classical pathways, as 
the retina sends outputs to a large number of brain regions52. Indeed, 
an initial survey1 of regions involved in a similar task uncovered visual 
responses in areas such as the MRN (information and definitions for 
brain regions are provided in a table on GitHub: https://github.com/
int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/
region_info.csv). Thus, we proposed that visual coding would extend 
to diverse regions beyond those classically described.

Consistent with this hypothesis, a decoding analysis based on the 
first 100 ms after stimulus onset revealed correlates of the visual stimu-
lus side in many cortical and subcortical regions. Strong signatures 
were observed in the visual cortex (VISam, VISI, VISa and VISp), the 
prefrontal cortex (MOs), the thalamus (LGd, LGv and CL), the mid-
brain (NOT, SNr, MRN, SCm and APN) and the hindbrain (GRN and 
PGRN) (Fig. 4a,f). For example, the activity of neurons in the primary 
visual cortex (VISp) could be used to predict the stimulus side (Fig. 4i). 
Note that among the analyses we performed, the decoding analysis 
is distinct because it does not control for variables correlated with 

the visual stimulus, such as choice and block. Therefore, some of the 
regions with significant results from this analysis might instead encode 
these variables.

Decoding performance varied across sessions; therefore, in Extended 
Data Fig. 5, we show performance across sessions for all regions, even 
those that are not significant after the FDR0.01 correction for multi-
ple comparisons. Supplementary Figure 4 presents data for a subset 
of these results split by sex. These results did not reveal differences 
between male and female mice. Given that some regions may represent 
visual information in localized sites that were only occasionally covered 
by our probes, we also report the fraction of sessions in which we were 
able to decode the stimulus from a region significantly to assess the 
spatial distribution (Extended Data Fig. 6a).

To distinguish the possible contributions of variables correlated with 
the visual stimulus, we next analysed responses in the same 100-ms 
window using single-cell analysis, which controlled for other variables 
by holding them constant in each comparison of stimulus side. This 
analysis produced a consistent picture but revealed fewer significant 
areas, with 0.5% of all neurons correlated with a stimulus side (Fig. 4b). 
Significant regions included visual cortical areas (VISp, VISpm, VISam 
and VISl) and the visual thalamus (LGd, LGv and LP), but also other 
structures such as the auditory cortex (AUDv), the dorsal thalamus 
(PF), parts of the midbrain (SCm, APN and NOT) and the hindbrain (CS, 
PRNr, GRN, IP and ANcr1). However, even in the regions that contained 
the largest fractions of responsive neurons (such as the visual cortex), 
this fraction did not exceed  about 10%. Given our grid-based approach 
to probe insertion, this low percentage of neurons could be the result 
of neurons having receptive fields (RFs) that did not overlap with the 
stimulus position.

To provide an overview of the variability across sessions, Extended 
Data Fig. 7 presents the fraction of significant neurons broken down 
by sessions without applying the FDR0.01 correction.

The results of the population trajectory analysis were consistent 
with the decoding analysis (Fig. 4c) and provided further informa-
tion about the time course during which visual signals were encoded 
(Fig. 4d). For example, the responses in the visual area VISp to right 
visual stimuli compared with left visual stimuli showed early divergence 
shortly after stimulus onset, followed by rapid convergence (Fig. 4j,k). 
The shuffled control trajectories (shown in grey) are close to the true 
trajectories (Fig. 4j) because this analysis controls for choice, which is 
tightly correlated with the stimulus. Altogether, this analysis indicated 
that distance was a significant result in 104 regions (Fig. 4c,f).

The evolution of trajectories over time could be distilled into two 
numbers (Fig. 4l,m): the maximal response (maximum distance or 
dmax) and the response latency (first time to reach 70% of dmax; mapped 
across the brain in Fig. 4d). This characterization of the dynamics of 
visual representations revealed that some areas had short latencies 
and early peaks, including classical areas (LGd, LP, VISp, VISam and 
VIpm). A spatiotemporally finely resolved view of latency differences 
was obtained, such that LGd < VISp ≈ LP < VISpm < VISam (latencies of 
around 34, 42, 42, 57 and 78 ms, respectively; Fig. 4d,l,m). This early 
wave of activity was followed substantially later by significant visual 
encoding in other areas, including the MRN, SCm, PRNr, IRN and GRN 
(latencies of about 100−120 ms; Fig. 4d,l,m).

The encoding analysis characterized visual encoding in individual 
neurons across the brain (Fig. 4e). We asked whether a prediction of 
single-trial activity can be improved by adding a temporally structured 
kernel that unfolds over 400 ms after stimulus onset, on top of activity 
related to feedback, wheel movement speed and block identity. As there 
is no convenient null distribution that could be used to test the signifi-
cance of this improvement, we only report effect sizes. For instance, as 
expected, an example VISp neuron showed large differences between 
stimuli on the left and right (Fig. 4g) such that removing the visual 
kernel resulted in a poor fit of the firing rate of the neuron (Fig. 4h). 
This analysis indicates that the visual stimulus variable improved fits 

https://github.com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/region_info.csv
https://github.com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/region_info.csv
https://github.com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/region_info.csv
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Fig. 4 | Representation of the visual stimulus. See also Extended Data Figs. 5–7 
and data in the IBL Brain Atlas (https://atlas.internationalbrainlab.org/?alias= 
bwm_stimulus). For a–e, colour indicates the effect size; grey not significant at 
FDR0.01; ratios on the upper right indicate significant/total regions; white, 
regions not analysed. The analysed stimulus interval is 0 ms to 100 ms following 
stimulus onset. a, Decoding. Null-corrected median balanced accuracy. b, Single- 
cell statistics. Fraction of neurons significantly modulated by stimulus side. 
Mann–Whitney and condition combined Mann–Whitney tests at P < 0.001 and 
P < 0.05, respectively. Significance was based on the binomial distribution of 
false-positive events and FDR0.01. c, Population trajectory distance. Time- 
resolved maximum Euclidean distance (in spikes per s, for dimension = number 
of cells per region, log10) between trajectories following left versus right 
stimuli. Significance was relative to a shuffle control and FDR0.01. d, Population 
trajectory latency. First time crossing 70% of the dmax for significant regions.  
e, Encoding. Mean absolute difference ∣ΔR2∣ in improvements over 400 ms  
after stimulus-onset from causal right or left stimulus kernels for all neurons. 
Extended Data Figure 9 shows the median split by first wheel-movement time.  
f, Effect significance (grey, not significant; a–c) and size (by darkness; a–c,e)  

by region. g, Spike raster for an example VISp neuron (Supplementary Table 3). 
Trials per condition are shown in temporal order, with every third trial shown.  
h, Top, peri-event time histogram (PETH; shading indicates  ±1 s.e.m.) and full 
encoding model prediction for left or right stimuli aligned to stimulus onset  
for the neuron in g. Bottom, same PETHs, but for predictions from a model  
that omitted stimulus kernels. i, Decoded probability (with 95% confidence 
intervals across 474 trials) of a stimulus side given contrast from 40 VISp 
neurons (Supplementary Table 3). j, Trial-averaged population trajectories 
from left and right stimulus trial-averaged activity across the VISp (all sessions), 
in three principal component analysis (PCA) dimensions. Dots, single time bins; 
darker colours are later times. Grey, pseudo-trajectories (control) from randomly 
selected trials matched for block and choice but not stimuli. k, Trajectory 
distance for VISp neurons. Grey, pseudo-trajectory distances. l, Trajectory 
distances across regions (with neuron numbers indicated). Early responses are 
observed across visual areas, with ramping modulation in others. m, Maximal 
population trajectory distance and modulation latency (diamonds, significant 
regions; dots, not significant regions). Extended Data Figure 10a,d,g shows a 
longer time window and more neurons.

https://atlas.internationalbrainlab.org/?alias=bwm_stimulus
https://atlas.internationalbrainlab.org/?alias=bwm_stimulus
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of encoding models for neurons across a wide range of brain regions 
(Fig. 4e,f).

These results were broadly consistent with RF measurements. At the 
end of the decision-making task, we performed RF mapping in most 
recording sessions (504 out of 699 sessions). We thereby computed the 
visual RFs of neurons across the brain (204 regions covered), includ-
ing classical visual areas and beyond. We estimated the significance 
of the RF of each neuron by fitting the RF to a 2D Gaussian function 
and comparing the variance explained to the fitting of 200 random 
shuffles of each RF. Overall, we found a relatively small fraction of 
cells with significant RFs (Supplementary Fig. 5). The regions with 
large fractions tended to be classical visual regions (VISp, VISl and 
SCs). We also observed non-zero fractions in diverse areas beyond 
classical visual regions, including the auditory cortex (AUDv), the audi-
tory thalamus (MG), parts of the midbrain (MRN, SCm, APN and NOT) 
and the hindbrain (ANcr1) (Supplementary Fig. 5 and Extended Data  
Fig. 8). These results provide further support for the findings from the 
neural analysis of coding of visual stimuli during the task.

To determine whether trials with rapid responses were associated 
with distinct patterns of activity, we separated effect sizes according to 
a median split of the first wheel-movement time (Extended Data Fig. 9). 
Regions with high explained variance from stimulus onset on all trials 
also mostly appeared in the early first wheel-movement time model 
(for example, RSPv, VISl, PAG and RN). By contrast, a handful of new 
cortical regions in motor areas (namely MOs, and ORBm and ILA to a 
lesser extent) seemed to be explained only when fitting early-response 
trials. Late-response trials showed fewer regions with well-explained 
(>0.03 change) variance, but in those trials, significant variance in the 
subiculum and post-subiculum was explained, which was not true when 
considering all trials.

Taken together, the decoding, single-cell statistic and popula-
tion trajectory analyses reveal a largely consistent picture of visual 
responsiveness. That is, it includes large and short-latency responses 
in classical areas but also extends to other diverse regions, even when 
controlling for correlated variables, particularly at later times relative 
to the stimulus onset.

Representation of choice
Next, we examined which regions of the brain represented the mouse’s 
choice and in which order. Choice-related activity has been observed 
in parietal, frontal and premotor regions of the primate cortex7,53,54 
where many neurons show ramping activity consistent with evidence 
accumulation7,55. These choice signals develop across frontoparietal 
regions and appear later in frontal eye fields56. Similar responses were 
found in rodent parietal57, frontal58,59 and premotor60,61 cortical regions. 
However, in both rodents and primates, choice-related activity has also 
been found in the hippocampal formation62 and subcortical areas, in 
particular in the striatum1,63, the superior colliculus1,64,65 and other mid-
brain structures1. Subcortical regions show choice signals with similar 
timings as the cortex1,17 and have a causal role in making choices65. 
This evidence indicates that decision formation engages a distributed 
network of cortical and subcortical brain regions. Our recordings ena-
bled us to determine in detail where and when choice-related activity 
emerges across the brain.

The decoding analysis suggested a representation of choice (left 
versus right upcoming action) in a larger number of brain regions than 
the representation of the visual stimulus (Fig. 5a,f). The animal’s choice 
could be decoded from neural population activity during a 100-ms 
time window before the first wheel-movement time in many analysed 
regions. The strongest effect sizes were observed in the hindbrain 
(GRN, VII, PRNr and MARN), the thalamus (CL), the midbrain (SNr, RPF 
and MRN), the hypothalamus (LPO) and the cerebellum (CENT2). For 
example, the activity of neurons in the GRN of the medulla could be 
readily decoded to predict choice in an example session (Fig. 5g,i). 

Choice was also significantly decodable from somatosensory (SSp-ul), 
prelimbic (PL), motor (MOp, MOs), orbital (ORBvl) and visual (VISp) 
cortical areas.

Some of the decodable choice information, however, could be due 
to responses to the visual stimulus or block, which correlate with 
choice. We therefore performed single-cell analyses that controlled 
for correlations between all these task variables. More single neurons 
significantly responded to choice than to the visual stimulus (Fig. 5b,f). 
That is, firing rates of 4% of all neurons recorded across all brain regions 
correlated with choice direction during the 100 ms before the first 
wheel-movement time when controlling for correlations with the 
stimulus and block. The largest fractions of neurons that significantly 
responded to choice were in the hindbrain, cerebellar, midbrain and 
thalamic regions, consistent with the results of the decoding analysis. 
Neurons with significant responses to choice were highly prevalent 
in the thalamus (CL and SPF), the midbrain (SCm, MRN, SNr, RPF and 
NPC), the pons and the medulla and cerebellar nuclei (GRN, IRN, SOC, 
VII, TRN and FOTU), most of which did not show visual responses. The 
prevalence of choice-selective neurons in these subcortical regions 
was further confirmed by the single-cell encoding model (Fig. 5e). For 
instance, an example neuron in GRN showed stronger responses for 
right choices than left choices (Fig. 5g). The encoding model captured 
this preference but only in the presence of the kernel associated with 
choice (Fig. 5h), thereby indicating choice selectivity.

The population trajectory analysis enabled us to compare the mag-
nitude of choice representation across brain regions on the population 
level. This parameter was measured as the distance between trajecto-
ries in the neural population state space on left versus right choice trials 
(Fig. 5c,f). The population-level choice representation was evident in 
many regions across the brain, with the strongest separation of neural 
trajectories in the hindbrain (IRN, GRN and PRNc) and the midbrain 
(APN, MRN and SCm). A similar magnitude of population-level choice 
encoding was observed in many other areas (Fig. 5c,f). In our example 
region, the GRN, the trajectories for left and right choice trials sepa-
rated significantly more than in the shuffled control (Fig. 5j,k; control-
ling for correlations with stimulus and block), and the magnitude of 
this separation was greatest across all brain regions (Fig. 5l). Thus, all 
our analyses consistently point to a distributed choice representation, 
with some of the strongest choice signals in the midbrain, the hindbrain 
and the cerebellum, and relatively weaker encoding of choice across 
many cortical areas.

Next, we analysed when the choice signals emerged across the brain 
by measuring the latency at which neural population trajectories sepa-
rated on the left versus right choice trials during the time preceding 
the first wheel-movement time (Methods). Some of the earliest choice 
signals developed nearly simultaneously in the thalamus (LD) and the 
cortex (VISl, VISam and ECT), and later appeared in a larger distributed 
set of brain areas (Fig. 5d,l,m). The regions GRN and MRN in the reticular 
formation showed moderate choice latencies and some of the strongest 
magnitude of population-level choice representations (Fig. 5j,l,m). This 
result suggests that these brainstem structures have a role in decision 
formation or movement preparation.

For the encoding model, we also separated out the differences in vari-
ance explained according to a median split of the first wheel-movement 
time (Extended Data Fig. 9). Regions that showed a high degree of 
variance explained by rightward movement onset in the RSPv again 
appeared when fitting all trials and early-response trials, but not 
late-respose trials. In the case of movement onset, however, the sec-
ondary visual areas VISam and VISal were consistently involved in all 
trials along with motor areas. Notably, the high variance explained in the 
subiculum extended to the hippocampal CA1 and the post-subiculum 
only in late-response trials, and did not appear at all in early-response 
trials. Subcortical involvement seemed to be limited to early-response 
trials in some regions like the PAG, which did not appear in the model 
fit to all trials.
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Fig. 5 | Representation of choice. See also Extended Data Figs. 5, 7 and 11 and 
data in the IBL Brain Atlas (https://atlas.internationalbrainlab.org/?alias=bwm_
choice). Figure parts and statistics are as for Fig. 4. The analysed choice interval 
is −100 ms to 0 ms relative to the first wheel-movement time. a, Decoding. 
Null-corrected median balanced accuracy. b, Single-cell statistics. Fraction  
of neurons significantly modulated by choice side in −100 to 0 ms relative to 
the first wheel-movement time. Mann–Whitney and condition combined 
Mann-Whitney tests at P < 0.001 and P < 0.05, respectively. Significance was 
based on the binomial distribution of false-positive events and FDR0.01.  
c, Population trajectory distance. Time-resolved maximum Euclidean distance 
(dmax in spikes per s, for dimension = number of cells per region, log10) between 
trajectories for left versus right choices. Significance is relative to a shuffle 
control and FDR0.01. d, Population trajectory latency. First time crossing 70% of 
the dmax for significant regions relative to movement onset. e, Encoding. Mean 
absolute difference ∣ΔR2∣ in improvements from 200-ms anticausal kernels 
aligned to the right and left first-movement times. See Extended Data Fig. 9 for 
separation by the median first wheel-movement time. f, Effect significance 
(grey, not significant; a–c) and size (by darkness; a–c,e) by region. g, Spike 

raster of an example GRN neuron (Supplementary Table 3). Trials per condition 
are shown in temporal order, with every third trial shown. h, Top, PETHs 
(shading indicates  ±1 s.e.m.) aligned to the first wheel-movement time on  
left (blue) and right (red) choice trials and full encoding model prediction for 
an example neuron in g. Bottom, the same PETHs but with predictions from a 
model that omitted left and right first-movement regressors. i, Decoded choice 
probability from 68 neurons in the GRN (Supplementary Table 3). j, Trial- 
averaged population trajectories in GRN neurons from left and right choice 
trials in three PCA dimensions. Dots, single time bins; darker colours indicate 
times closer to the first wheel-movement time. Grey (control), pseudo- 
trajectories from trials with a randomized choice, controlling for correlations 
with stimulus and block. k, Trajectory distance between left and right choice 
for GRN neurons, showing ramping activity. Grey, pseudo-trajectory distances. 
l, Trajectory distances across regions (with neuron numbers indicated) showing 
ramping choice-modulation with time. m, Maximal population trajectory 
distance and modulation latency (diamonds, significant regions; dots, not 
significant regions). Extended Data Figure 10b,e,h shows a longer time window 
and more neurons.

https://atlas.internationalbrainlab.org/?alias=bwm_choice
https://atlas.internationalbrainlab.org/?alias=bwm_choice
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Representation of feedback
At the end of each trial, the mouse received feedback for correct or 
incorrect responses: a liquid reward at the lick port or a noise-burst 
stimulus with a time-out period. These positive or negative reinforcers 
influence the learning of the task66–70. The liquid is consumed through 
licking, an activity that probably involves prominent neural represen-
tations that, in this study, we were not able to distinguish from the 
more abstract representation of reward. Feedback also activates neu-
romodulatory systems such as dopamine71,72, which have widespread 
connections throughout cortical and subcortical regions. Nevertheless, 
it is unclear whether direct encoding of feedback signals in the brain 
is widespread.

The decoding analysis revealed nearly ubiquitous neural responses 
associated with reward delivery on correct versus incorrect trials, 
and probably the motor responses associated with its consumption 
(Fig. 6a,f). Using the neural responses in the 200 ms after feedback 
onset, we were able to decode whether the trial was correct from nearly 
all recorded brain regions (Fig. 6a,f). In many regions, decoding was 
almost perfect. An example is the activity of the IRN in a selected ses-
sion shown in Fig. 6i.

Our single-cell statistics applied to the same trial interval confirmed 
the decoding results. Neurons with significant response changes to 
correct versus incorrect feedback or reward consumption were wide-
spread (Fig. 6b,f), with only a small handful of regions not significant 
for feedback type. The same was true for feedback versus the inter-trial 
interval baseline (Supplementary Fig. 6).

Population trajectory analysis also showed significant response dif-
ferences for correct versus incorrect responses across every recorded 
brain region, which was predominantly consistent with the other analy-
ses (Fig. 6c,f). It confirmed the relative strength of hindbrain, midbrain 
and thalamic responses to feedback seen across analyses. Population 
trajectory analysis also revealed asymmetries in response to nega-
tive versus positive feedback. For positive feedback, the response was 
overall stronger, and multiple brain areas exhibited coherent approxi-
mately 10 Hz oscillatory dynamics during reward delivery that was 
phase-locked across brain areas (Fig. 6j,k,l) and sessions (Extended Data 
Fig. 12). Across-session coherence was visible as a large oscillatory signal 
in an example area: the IRN (Fig. 6j,k). These oscillatory dynamics were 
missing during negative feedback and were closely related to licking 
behaviour73–76 (Extended Data Fig. 12), being stronger when reward was 
delivered. This result suggests that motor-related activity is the domi-
nant factor over more abstract influences of reward on neural activity.

Assessing response latencies on the basis of the divergence of 
the trajectories over time showed that the saccade-reorienting and 
gaze-reorienting brainstem region the PRNr and the primary audi-
tory region the AUDp exhibited the earliest and strongest responses 
(Fig. 6l,m). Some early responsivity is probably a carry-over from 
choice-related activity because the latencies were short and several 
identified areas exhibited high choice responsivity. The responses 
from auditory areas probably reflect responses to the error tone and 
the click from the reward delivery valve. This was particularly clear for 
the IC (a region that is known to relay auditory signals), which had a peak 
at the start and end of the 0.5-s-long error noise burst (Fig. 6l). After 
these initial responses, latencies across other brain regions appeared 
roughly similar, which suggests that there is a common signal broadcast 
across the brain (Fig. 6d). More detailed trajectory distance and latency 
scatterplots are provided in Extended Data Fig. 10.

We then applied the encoding model to the responses measured in 
the 400 ms after stimulus onset. The kernel for correct feedback was 
the largest single contributor to neural response variance across each 
trial (mean ΔR2 of 8.6 × 10−3 averaged across all neurons; Extended 
Data Fig. 13), which exceeded all other kernels (left or right stimulus, 
left or right wheel movement, incorrect feedback, block probability 
and wheel speed). This high variance-explaining response to reward 

delivery or consumption held across both wide regions of the cortex 
and subcortical areas. Midbrain and hindbrain areas exhibited par-
ticularly strong responses to reward delivery, with many additional 
regions, including the thalamus and the sensory (AUDp and SSs) and 
motor (MOp) cortices, also showing sensitivity (Fig. 6e). Removing 
the regression kernel for correct feedback then refitting the encod-
ing model of an IRN neuron confirmed the large influence of correct 
feedback on activity (Fig. 6g,h).

In summary, we found that feedback signals are present across nearly 
all recorded brain regions, with a stronger response to positive feedback 
(that is, to reward delivery and consumption) and with particularly 
strong responses in the thalamus, the midbrain and the hindbrain. 
Further research will be needed to distinguish between responses for 
an internal expectation of feedback or the initiation of choice-related 
action versus responses to external feedback.

Representation of wheel movement
A consistent finding from previous large-scale recordings in mice has 
been the macroscopic impact of movement on neural activity. That 
is, both task-related and task-unrelated movements influence activity 
beyond premotor, motor and somatosensory cortical areas19,20,77,78. 
Here we started from the task-dependent component of movement, 
namely the movement of the wheel to register a response. We observed 
that different mice (and potentially the same mouse on different ses-
sions) adopted different strategies for moving the wheel. For instance, 
some used both front paws, whereas others used only one paw. Turn-
ing the wheel is also a relatively complex operation, rather than being 
a simple, ballistic movement. Thus, one should not expect a simple 
relationship between these movements and activity in laterally specific 
motor areas. For simplicity, we restricted our analyses to the activity 
associated with wheel velocity (signed to distinguish left from right 
movements) and its absolute value, wheel speed. Furthermore, unlike 
the other task variables, movement trajectories change relatively 
quickly, which necessitates different analysis and null control strat-
egies. Accordingly, we only report simple decoding and encoding 
analyses.

Wheel speed was decodable from 81% of the reportable areas (163 out 
of 201), with the strongest effect sizes in the hypothalamus (LPO), the 
hindbrain (MARN and GRN), the midbrain (CLI), the thalamus (CL, PF), 
the cortex (ORBvl, VISC and VISrl) and the cerebellum (VeCB) (Fig. 7a,e). 
For example, we could readily decode wheel speed from single trials 
of activity in the GRN (Fig. 7f).

The encoding analysis confirmed that many regions across the brain 
were sensitive to the wheel speed during the task, with ΔR2 showing 
values up to several times larger than for the other variables considered 
besides feedback (Fig. 7b,e and Extended Data Fig. 13). The PRNc and 
GRN in particular stood out in our analysis for the mean ΔR2 for neurons 
in these regions (mean ΔR2 = 9.4 × 10−3 in the PRNc and ΔR2 = 179 × 10−3 
in the GRN). Many other cortical (for example, MOs) and subcortical 
(for example, GPe, GPi and CP) regions had less substantial, but still 
above-average, correlations with the wheel speed relative to other 
regressors (Fig. 7b,e).

Wheel velocity was also significantly decodable from a similar col-
lection of areas as wheel speed (Fig. 7c,e,g and Supplementary Fig. 7a) 
and was also duly encoded (Fig. 7d,e), albeit with generally smaller 
values of ΔR2 (Fig. 7h). The apparently high decodability of velocity was 
unexpected given the complexities of wheel movement (as mentioned 
above). Indeed, the uncorrected values of R2 for decoding speed were 
substantially larger than those for velocity in most regions (Supplemen-
tary Fig. 7). However, the null distribution based on imposter sessions 
(that is, wheel movements from other sessions, including from other 
mice; Methods) could be decoded more accurately for speed than for 
velocity (Supplementary Fig. 7c), which reduced the significance of the 
decoding of speed. We attributed this excess decodability of the null 
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Fig. 6 | Representation of feedback. See also Extended Data Figs. 5, 7 and 14 
and data in the IBL Brain Atlas (https://atlas.internationalbrainlab.org/ 
?alias=bwm_feedback). Figure parts and statistics are as described in Fig. 4. 
The analysed feedback interval is 0–200 ms following feedback onset. 
 a, Decoding. Null-corrected median balanced accuracy. b, Single-cell statistics. 
Fraction of neurons modulated by feedback compared with activity during 
baseline (−200 to 0 ms aligned to the stimulus onset). Mann–Whitney and 
condition combined Mann–Whitney tests at P < 0.001 and P < 0.05, 
respectively. Significance was based on the binomial distribution of false 
positive-events and FDR0.01. c, Population trajectory distance. Time-resolved 
maximum Euclidean distance (dmax in spikes per s for dimension = number of 
cells per region, log10) between trajectories for correct versus incorrect 
choices. Significance is relative to a shuffle control and FDR0.01. d, Population 
trajectory latency. First time crossing 70% of the dmax for significant regions.  
e, Encoding. Mean absolute difference ∣ΔR2∣ in improvements from 400-ms 
causal kernels for correct and incorrect feedback aligned to the feedback time. 
f, Effect significance (grey, not significant; a–c) and size (by darkness; a–c,e).  
g, Spike raster for an example IRN neuron (Supplementary Table 3). Trials per 
condition are shown in temporal order, with every third trial shown. h, Top, 

PETHs (shading indicates  ±1 s.e.m.) aligned to first wheel-movement time on 
correct (blue) and incorrect (red) trials and the full encoding model prediction 
for an example neuron in g. Bottom, the same PETHs but for predictions from a 
model that omitted correct and incorrect feedback regressors. i, Decoded 
probability of reward receipt coloured by true feedback from 39 neurons in  
the IRN (Supplementary Table 3). j, Trial-averaged population trajectories  
from incorrect and correct trial-averaged activity across the IRN in three  
PCA dimensions. Dots, single time bins; darker colours indicate later times.  
The oscillation of the blue trajectory correlated with licking. Grey (control) 
pseudo-trajectories from averaging randomized trials, with shuffling choice 
types within classes of stimulus side and block. k, Trajectory distance between 
correct and incorrect trials in the IRN. Grey, pseudo-trajectory distances.  
l, Trajectory distances across (with neuron numbers indicated) regions 
showing early response in, for example, auditory areas and prolonged feedback 
type modulation with time in others. The IC relays auditory signals, which 
explains the peaks at onset (0.5 s), when the noise burst starts and ends on 
incorrect trials. m, Maximal population trajectory distance and modulation 
latency (diamonds, significant regions; dots, not significant regions). 
Extended Data Figure 10c,f,i shows a longer time window and more neurons.

https://atlas.internationalbrainlab.org/?alias=bwm_feedback
https://atlas.internationalbrainlab.org/?alias=bwm_feedback
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distribution to the more stereotyped, that is, less variable, trajectory 
of speed (Supplementary Fig. 7d).

We also correlated neural activity with behavioural movement traces 
extracted from videos (nose, paw, pupil and tongue). To test for sig-
nificance, we used the linear-shift method to compare the correlation 
of spiking activity with behavioural movement variables against a null 
distribution in which the movement variables were shifted in time79 

(Methods and Extended Data Fig. 15a). More than half of the neurons 
in most brain regions were significantly correlated with at least one 
behavioural variable (Extended Data Fig. 15b).

The widespread relationship between neural activity and motion has 
various potential sources. These include the specific details of motor 
planning and execution, efference copy80, somatosensory feedback 
and the suppression of input associated with self-motion81. More subtle 
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Fig. 7 | Representation of wheel movement. See also Extended Data Fig. 5, 
Supplementary Fig. 7 and the IBL Brain Atlas website for speed data (https://
atlas.internationalbrainlab.org/?alias=bwm_wheel_speed) and velocity data 
(https://atlas.internationalbrainlab.org/?alias=bwm_wheel_velocity). For a–d, 
colour indicates the effect size; grey not significant at FDR0.01; ratios on the 
upper right indicate significant/total regions; white, regions not analysed.  
Wheel movement was decoded based on 20-ms bins from 200 ms before,  
until 1,000 ms after, first wheel-movement onset. a, Wheel speed decoding. 
Null-corrected median balanced accuracy. b, Wheel speed encoding. Mean 

improvement (ΔR2) per region from including, as the regressor, 200-ms 
anticausal temporal kernels convolved with the trace of wheel speed. c,d, As for 
a and b but for velocity. Encoding results were based on a completely separate 
model fit. e, Effect significance (grey, not significant; white, not analysed; a,c) 
and size (by darkness; a–d) by region. f, Actual and decoded wheel speed  
for an example trial from 68 GRN neurons in the GRN (Supplementary Table 3). 
g, Same as f but for velocity. h, Truncated distributions of additional variance 

RΔ wheel
2  explained across all neurons for speed or velocity as base signals.
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effects such as the change in other sensory inputs caused by the move-
ment19 or even prediction errors associated with incompetent execution 
that can fine-tune future performance82, may also be involved. Others 
are more general, including arousal and the calculation and processing 
of the costs of movement (which would then be balanced against future 
gain)83. More generally, of the components that are indeed specific, 
only a fraction is likely to be associated with the wheel movement that 
we monitored compared with other task-related motor actions. This is 
especially true given the results of previous studies19,20 showing how 
important uninstructed movements are in modulating a swathe of 
neural activity.

Discussion
Building on previous efforts to build large-scale maps of activity in 
the mouse at neuronal resolution using Neuropixels probes1,16,17 and in 
other species using imaging (for example, refs. 84–86), we assembled 
a brain-wide electrophysiological map by pooling data from numerous 
laboratories that used the same standardized and reproducible per-
ceptual decision-making task for mice23. Rigorous statistical analyses 
of this brain-wide consensus map of neural activity showed that neural 
activity throughout the entire brain correlates with some aspects of 
the task but with large differences in the ubiquity of representation of 
different task variables (Figs. 4–7; see Extended Data Figs. 2, 5 and 7 for 
side by side comparisons).

The neural representations of feedback (Fig. 6) and movement1,19,20 
(Fig. 7) were particularly widespread. The former may also partially 
or primarily reflect the licking movements required for reward con-
sumption rather than the hedonic aspects of reward as such. Distin-
guishing these possibilities would require experiments that involve 
recording activity during the presentation of reinforcement with no 
motor correlates, such as optogenetic stimulation of dopamine sys-
tems87,88. Alternatively, correlates of rewards with a motor correlate 
to the same movements when their hedonic reward is devalued, for 
example, by satiation, can be compared. The brain-wide correlates of 
movement could potentially reflect a brain-wide change in the state of 
neural processing during movement periods along with specific encod-
ing of motor features. The hypothesis of a brain-wide state change is 
consistent with findings that the neural representation of upcoming 
movements in the cortex is widespread, although not all of this activity 
is causally related to the performance of the movements47. Our strategy 
of reducing individual differences in performance impedes a complete 
analysis of the relationship between neural activity in particular regions 
and factors such as the reward rate.

The upcoming choice for a mouse was represented in the activity 
of neurons across brain systems that included the cortex, the basal 
ganglia, the thalamus, the midbrain, the hindbrain and the cerebel-
lum (Fig. 5). These representations cannot reflect sensory reafference 
(that is, responses related to sensory stimuli that occur as part of the 
movements, such as pressure on the paws and movements of the visual 
stimuli across the screen). This is because we only analysed the time 
period before the earliest detectable first wheel-movement time. 
Moreover, our carefully controlled task design and pseudo-session 
statistical methods meant that choice coding reported in the single-cell 
and population trajectory analyses cannot reflect processing of the 
visual stimulus or nonspecific brain states such as arousal. Instead, 
these responses reflect aspects of decision formation or motor prepa-
ration, which potentially include corollary discharge specific to the 
chosen action89,90. Although many studies have focused on the role 
of the cortex, the basal ganglia or the midbrain in visual perceptual 
decisions1,7,55,56,63–65,91,92, here we discovered that parts of the medulla, 
the pons and the cerebellum are all selectively responsive with similar 
timing to those areas. Our data were not able to determine whether 
these different systems make specific contributions to decision for-
mation and execution. However, they rule out a model in which only a 

limited set of systems subserve a given behaviour according to specific 
task demands.

The visual stimulus (Fig. 4) was represented (before movement) in a 
more restricted manner. Its processing followed a temporal sequence 
through traditional visual areas from the visual thalamus to the cortex 
and to midbrain and hindbrain regions, the activity of which also cor-
related with choices. Notably, the temporal structure of activity in 
these two groups of regions differed. Visual representations in classical 
visual regions showed a transient representation of the stimuli, whereas 
activity in the midbrain and hindbrain showed later, ramping activity, 
consistent with a role of this activity in decision-making. The fact that 
visual information was found in hindbrain regions such as the GRN and 
the PRNr, even after accounting for correlates of choice, suggests that 
these regions have a role in all phases of the cognitive decision-making 
process rather than simply low-level motor control.

Although more than half of the recorded neurons in most brain 
regions were significantly modulated by at least some aspect of the task, 
our ability to explain the total variance of single neurons was limited 
(Extended Data Fig. 13). This finding indicates that the bulk of activity 
in the brain is not modulated by the task. It may instead be related to 
uninstructed movements19,20 or other processes that are not timed to 
the task events. Even for the activity that is modulated by the task, it is 
notable that external cue-driven responses were consistently smaller 
than internally generated signals, such as those arising in relation to 
the integration of the stimulus and movement planning. However, the 
absence of evidence for a neural representation of a task variable in a 
given region cannot be taken to indicate evidence of absence. This is 
particularly important to keep in mind because here, for robustness, 
we used simple variants of analysis methods rather than, for instance, 
extensively parameterized deep neural networks. Furthermore, our 
recordings may include implicit biases; for example, spike sorting 
may be more challenging where cell bodies are more densely packed. 
Nevertheless, our freely available dataset provides a rich resource 
for in-depth investigations of brain-wide neural computations. Such 
studies may include detailed analyses at the level of subregions (for 
example, cortical layers or functional zones of the striatum) and cell 
types (as identifiable from extracellular waveforms, such as broad 
versus narrow spike shapes in the cortex).
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Methods

All experimental procedures involving animals were conducted in 
accordance with local laws and approved by the relevant institutional 
ethics committees. Approvals were granted by the Animal Welfare 
Ethical Review Body of University College London, under licences 
P1DB285D8, PCC4A4ECE and PD867676F, issued by the UK Home Office. 
Experiments conducted at Princeton University were approved under 
licence 1876-20 by the Institutional Animal Care and Use Committee 
(IACUC). At Cold Spring Harbor Laboratory, approvals were granted 
under licences 1411117 and 19.5 by the institutional IACUC. The Uni-
versity of California at Los Angeles granted approval through IACUC 
licence 2020-121-TR-00. Additional approvals were obtained from the 
University Animal Welfare Committee of New York University (licence 
18-1502), the IACUC at the University of Washington (licence 4461-01), 
the IACUC at the University of California, Berkeley (licence AUP-2016-
06-8860-1) and the Portuguese Veterinary General Board (DGAV) for 
experiments conducted at the Champalimaud Foundation (licence 
0421/0000/0000/2019).

Animals
Mice were housed under a 12–12-h light–dark cycle (normal or inverted 
depending on the laboratory) with food and water available ad libitum, 
except during behavioural training days. Electrophysiological record-
ings and behavioural training were performed during either the dark 
or light phase of the cycle depending on the laboratory. The data from 
n = 139 adult mice (C57BL/6; 94 male and 45 female, obtained from 
either Jackson Laboratory or Charles River) were used in this study. 
Mice were aged 13–178 weeks (mean 44.96 weeks, median 27.0 weeks) 
and weighed 16.1–35.7 g (mean 23.9 g, median 23.84 g) on the day of 
electrophysiological recordings. We did not attempt to standardize 
other variables such as temperature, humidity and environmental 
sound, but we regularly documented and measured them23.

Headbar implant surgery
A detailed account of the surgical methods for the headbar implant 
is provided in appendix 1 of ref. 23. In brief, mice were anaesthetized 
with isoflurane and head-fixed in a stereotaxic frame. The fur was then 
removed from their scalp, which was subsequently removed along with 
the underlying periosteum. Once the skull was exposed, Bregma and 
Lambda were marked. The head was positioned along the anterior–
posterior and left–right axes using stereotaxic coordinates. The head 
bar was then placed in one of three stereotactically defined locations 
and cemented (Super-Bond C&B) in place. Future craniotomy positions 
were marked on the skull relative to Bregma. The exposed skull was 
then covered with cement and clear UV curing glue (Norland Optical 
Adhesives).

Materials and apparatus
For detailed parts lists and installation instructions for the training rigs, 
see appendix 3 of ref. 23; for the electrophysiology rigs, see appendix 1 
of ref. 25.

Each laboratory installed a standardized electrophysiological rig, 
which differed slightly from the apparatus used during behavioural 
training23. The structure of the rig was constructed from Thorlabs parts 
and was placed on an air table (Newport, M-VIS3036-SG2-325A) sur-
rounded by a custom acoustic cabinet. A static headbar fixation clamp 
and a 3D-printed mouse holder were used to hold a mouse such that 
its forepaws rested on the steering wheel (86652 and 32019, Lego)23. 
Silicone tubing controlled by a pinch valve (225P011-21, NResearch) 
was used to deliver water rewards to the mouse. Visual stimuli were 
displayed on an LCD screen (LP097Q  × 1, LG). To measure the timing 
of changes in the visual stimulus, a patch of pixels on the LCD screen 
flipped between white and black at every stimulus change, and this 
flip was captured with a photodiode (Bpod Frame2TTL, Sanworks). 

Ambient temperature, humidity and barometric air pressure were 
measured using a Bpod Ambient module (Sanworks), and the wheel 
position was monitored with a rotary encoder (05.2400.1122.1024, 
Kubler). Videos of mice were recorded from 3 angles (left, right and 
body) with USB cameras (CM3-U3-13Y3M-CS, Point Grey) sampling at 
60, 150 and 30 Hz, respectively (for details, see appendix 1 of ref. 25).  
A custom speaker (Hardware Team of the Champalimaud Foundation 
for the Unknown, v.1.1) was used to play task-related sounds, and an 
ultrasonic microphone (Ultramic UM200K, Dodotronic) was used 
to record ambient noise from the rig. All task-related data were coor-
dinated using a Bpod State Machine (Sanworks). The task logic was 
programmed in Python, and the visual stimulus presentation and video 
capture were handled by Bonsai93 and the BonVision package94.

Neural recordings were made using Neuropixels probes, either v.1.0 
(3A or 3B2, n = 109 and n = 586 insertions, respectively) or v.2.4 (n = 4 
insertions) (Imec13), which were advanced into the brain using a micro-
manipulator (Sensapex, uMp-4). Typically, the probes were tilted at a 
15° angle from the vertical line. Data were acquired using an FPGA (for 
3A probes) or PXI (for 3B and 1.0 probes, National Instruments) system 
using SpikeGLX, and stored on a PC.

Habituation, training and experimental protocol
For a detailed protocol on animal training, see the methods in  
refs. 23,25. In brief, at the beginning of each trial, the mouse was 
required to not move the wheel for a quiescence period of 400–700 ms. 
After the quiescence period, a visual stimulus (Gabor patch) appeared 
on either the left or right (±35° azimuth) of the screen, with a contrast 
randomly sampled from a predefined set (100, 25, 12.5, 6 or 0%).  
A 100-ms tone (5-kHz sine wave) was played at stimulus onset. Mice 
had 60 s to move the wheel and make a response. Stimuli were yoked 
to the rotation of the response wheel, such that a 1-mm movement 
of the wheel moved the stimulus by 4 visual degrees. A response was 
registered if the centre of the stimulus crossed the  ±35° azimuth line 
from its original position. If the mouse correctly moved the stimulus 
35° to the centre of the screen, it immediately received a 3-μl reward; if 
it incorrectly moved the stimulus 35° away from the centre, it received 
a time out. If the mouse responded incorrectly or failed to reach either 
threshold within the 60-s window, a white-noise burst was played for 
500 ms and the inter-trial interval was between 1 and 1.5 s. In trials for 
which the visual stimulus contrast was set to 0%, the mouse had to 
respond as for any other trial by turning the wheel in the correct direc-
tion (assigned according to the statistics of the prevailing block) to 
receive a reward, but the mouse was not able to perceive whether the 
stimulus was presented on the left or right side of the screen. The mouse 
also received feedback (noise burst or reward) on 0% contrast trials.

Each session started with 90 trials in which the probability of a visual 
stimulus appearing on the left or right side was equal. Specifically, the 
100%, 25%, 12.5% and 6% contrast trials were each presented 10 times 
on each side, and the 0% contrast was presented 10 times in total (that 
is, the ratio of the 100, 25, 12.5, 6 and 0% contrasts were set at 2, 2, 2, 
2 and 1, respectively). The side (and thus correct movement) for the 
0% contrast trials was chosen randomly between the right and left 
with equal probability. This initial block of 90 trials is referred to as 
the unbiased block (50:50).

After the unbiased block, trials were presented in biased blocks: in 
right-bias blocks, stimuli appeared on the right on 80% of the trials, 
whereas in left-bias blocks, stimuli appeared on the right on 20% of the 
trials. The ratio of the contrasts remained as above (2:2:2:2:1). Whether 
the first biased block in a session was left or right was randomly cho-
sen, and blocks were then alternated. The length of a block was drawn 
from an exponential distribution with scale parameter of 60 trials, but 
truncated to lie between 20 and 100 trials.

The automated shaping protocol for training23 involved two collec-
tions of sessions. In the first session, the animals started performing a 
version of the task without biased blocks and were then progressively 



introduced to harder stimuli with weaker contrasts as they became 
progressively more competent. They also experienced a debiasing 
protocol, which was intended to dissuade them from persisting with 
just one of the choices. Once they were performing sufficiently well on 
all non-zero contrasts, they were faced with the biased blocks. When, 
in turn, performance on those was adequate (including on 0% contrast 
trials, which are informed by the block), they graduated to recording. 
Supplementary Figure 8a shows a joint histogram of the number of 
sessions the mice took in the first and second collections (these were 
not correlated). Supplementary Figure 8b shows a joint histogram 
of the number of sessions the mice took in the second collection and 
the performance during the recording sessions. These were also not 
correlated.

Electrophysiological recording using Neuropixels probes
For details on the craniotomy surgery, see appendix 3 of ref. 25. In brief, 
on the first day of electrophysiological recording, the animal was anaes-
thetized using isoflurane and surgically prepared. The mouse was sub-
cutaneously administered with analgesics (typically Carprofen). The UV 
cured glue was removed (typically using a biopsy punch (Kai Disposable 
Biopsy Punches (1 mm)) or a drill), exposing the skull over the planned 
craniotomy site (or sites). A test was made to check whether the implant 
could hold liquid; the bath was then grounded either through a loose or 
implanted pin. One or two craniotomies (approximately 1 × 1 mm) were 
made over the marked locations. The dura was left intact, and the brain 
was lubricated with artificial cerebrospinal fluid. A moisturising sealant 
was applied over the dura (typically DuraGel (Cambridge NeuroTech) 
covered with a layer of Kwikcast (World Precision Instruments). The 
mouse was left to recover in a heating chamber until locomotor and 
grooming activity were fully recovered.

Mice were head-fixed for recording after a minimum recovery period 
of 2 h. Once a craniotomy was made, up to four subsequent record-
ing sessions were made in that same craniotomy. Once the first set of 
craniotomy was fully recorded from, a mouse could undergo another 
craniotomy surgery in accordance with the institutional licence. Up 
to two probes were implanted in the brain on a given session. CM-Dil 
(V22888, Thermo Fisher) was used to label probes for subsequent his-
tology analyses.

Serial section two-photon imaging
Mice were given a terminal dose of pentobarbital and perfuse-fixed with 
PBS followed by 4% formaldehyde solution (Thermo Fisher 28908) in 
0.1 M PB pH 7.4. The whole mouse brain was dissected and post-fixed 
in the same fixative for a minimum of 24 h at room temperature. Tis-
sue samples were washed and stored for up to 2–3 weeks in PBS at 4 °C 
before shipment to the Sainsbury Wellcome Centre for image acquisi-
tion. For full details, see appendix 5 of ref. 25.

For imaging, brains were equilibrated with 50 mM PB solution and 
embedded into 5% agarose gel blocks. The brains were imaged by serial 
section two-photon microscopy29,95. The microscope was controlled 
with ScanImage Basic (Vidrio Technologies) and BakingTray, a custom 
software wrapper for setting up the imaging parameters96. Image tiles 
were assembled into 2D planes using StitchIt97. Whole brain coronal 
image stacks were acquired at a resolution of 4.4 × 4.4 × 25.0 μm in 
xyz, with a two-photon laser wavelength of 920 nm and approximately 
150 mW at the sample. The microscope cut 50-μm sections but imaged 
two optical planes in each slice at depths of about 30 μm and 55 μm 
from the tissue surface. Two channels of image data were simultane-
ously acquired using multialkali PMTs (green at 525 ± 25 nm; red at 
570 nm low pass).

Whole brain images were downsampled to 25-μm isotropic voxels 
and registered to the adult mouse Allen Common Coordinate Frame-
work6 using BrainRegister98, which is an elastix-based99 registration 
pipeline with optimized parameters for mouse brain registration. For 
full details, see appendix 7 of ref. 25.

Probe track tracing and alignment
Neuropixels probe tracks were manually traced to produce a probe tra-
jectory using Lasagna100, a Python-based image viewer equipped with a 
plugin tailored for this task. Traced probe track data were uploaded to 
an Alyx server101 (a database designed for experimental neuroscience 
laboratories). Neuropixels channels were then manually aligned to 
anatomical features along the trajectory using electrophysiological 
landmarks with a custom electrophysiology alignment tool102,103. For 
full details, see appendix 6 of ref. 25.

Spike sorting
The spike-sorting pipeline used at IBL is described in detail in ref. 28. 
In brief, spike sorting was performed using a modified version of the 
Kilosort 2.5 algorithm14. We found that it was necessary to improve the 
original code in several aspects (scalability, reproducibility and stabil-
ity, as discussed in ref. 25); therefore, we developed an open-source 
Python port (the code repository is provided in ref. 104).

Inclusion criteria
We applied a set of inclusion criteria to sessions, probes and neurons 
to ensure data quality. Supplementary Table 1 lists the consequences 
of these criteria for the number of sessions and probes that passed 
the criteria.

Sessions and insertions. Each Neuropixels insertion was repeated 
in at least two laboratories, with reproducibility of outcomes across 
laboratories verified with extensive analyses that we have previously 
reported25.

Sessions were included in the data release if the mice performed at 
least 250 trials, with a performance of at least 90% correct on 100% 
contrast trials for both left and right blocks, and, to be able to ana-
lyse the feedback variable, if there were at least 3 trials with incorrect 
choices (after applying the trial exclusions below). Furthermore, ses-
sions were included in the release only if they reached threshold on 
a collection of hardware tests (definitions are available from GiHub 
(https://int-brain-lab.github.io/iblenv/_autosummary/ibllib.qc.task_
metrics.html)).

Insertions were excluded if the neural data failed the whole record-
ing per visually assessed criteria of the ‘Recording Inclusion metrics 
and Guidelines for Optimal Reproducibility’ (RIGOR) from ref. 25, by 
presenting major artefacts (see examples in ref. 28) or if the probe tract 
could not be recovered during the histology procedure. Furthermore, 
only insertions for which alignments had been resolved (see appendix 6 
of ref. 25 for definitions) were used in this study.

After applying these criteria, a total of 459 sessions, 699 insertions 
and 621,733 neurons remained, constituting the publicly released 
dataset.

Trials. For the analyses presented here, trials were excluded if one of the 
following trial events could not be detected: choice, probabilityLeft, 
feebackType, feeback times, stimON times and firstMovement times. 
Trials were further excluded if the time between stimulus onset and 
the first movement of the wheel (the first wheel-movement time) were 
outside the range of 0.08–2.00 s.

Neurons and brain regions. Neurons generated by the spike-sorting 
pipeline were excluded from the analyses presented here if they failed 
one of the three criteria described in ref. 28 (the single unit computed 
metrics of RIGOR25): amplitude > 50 μV; noise cut-off < 20 μV; and 
refractory period violation. Neurons that passed these criteria were 
termed well-isolated neurons (or often just ‘neurons’) in this study. 
Out of the 621,733 units collected, 75,708 were considered well-isolated 
neurons. Final analyses were additionally restricted to regions that were 
designated grey matter in the adult mouse Allen Common Coordinate 

https://int-brain-lab.github.io/iblenv/_autosummary/ibllib.qc.task_metrics.html
https://int-brain-lab.github.io/iblenv/_autosummary/ibllib.qc.task_metrics.html
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framework6, contained at least five well-isolated neurons per session 
and were recorded from in at least two such sessions.

Video analysis
We briefly describe the video analysis pipeline (full details can be found 
in ref. 105). The recording rigs contained three cameras: one called ‘left’ 
at full resolution (1,280 × 1,024) and 60 Hz, filming the mouse from one 
side; one called ‘right’, filming the mouse symmetrically from the other 
side at half resolution (640 × 512) and 150 Hz; and one called ‘body’ at 
half resolution and 30 Hz, filming the body of the mouse from above. 
We developed several quality-control metrics to detect raw video issues 
such as poor illumination (as infrared light bulbs broke) or accidental 
misplacement of the cameras105.

We computed the motion energy (the mean across pixels of the abso-
lute value of the difference between adjacent frames) of the whisker 
pad areas in the ‘left’ and ‘right’ videos (Fig. 1d). The whisker pad area 
was empirically defined using a rectangular bounding box anchored 
between the nose tip and the eye, both found using DeepLabCut106 (DLC; 
see more below). This metric quantifies motion in the whisker pad area 
and has a temporal resolution of the respective camera.

We also performed markerless pose estimation of body parts using 
DLC31, which is used in a fully automated pipeline in IBL (v.2.1) to track 
various body parts such as the paws, nose, tongue and pupil (Fig. 1d). 
In all analyses using DLC estimates, we excluded predictions with likeli-
hood < 0.9. Furthermore, we developed several quality-control metrics 
for the DLC traces105.

RF mapping
At the end of the behavioural task session, for most of the recordings 
(504 out of 699 insertions), we performed an RF mapping experiment 
for 5 min. During the RF mapping phase, visual stimuli were random 
square pixels in a 15 × 15 grid occupying 120° of visual angle both hori-
zontally and vertically. There were three possible colours for each pixel: 
white, grey and dark. The colour of pixels randomly switched at the 
frame rate of 60 Hz, with an average duration of around 100 ms (Sup-
plementary Fig. 5a).

To compute the RF, we identified the moments when colour switch-
ing occurred for each pixel. We defined the moments when colour 
brightness increased as the on stimulus onset time, which included the 
transition from dark to grey and grey to white. Similarly, we defined 
the moments when colour brightness decreased as the off stimulus 
onset time, which included the transition from grey to dark and white 
to grey. We then computed the average spike rate aligned with on and 
off stimulus onset for each pixel, from 0 to 100 ms. We defined two 
types of RFs, on and off, as the average on and off spike rates, respec-
tively, across pixels.

To estimate the significance of the RF, we fitted the RF to a 2D Gauss-
ian function then compared the variance explained to the fitting of a 
randomly shuffled receptive field (200 shuffles) and computed the 
P value of significance. We defined a neuron as having a significant RF 
if either an on or off RF had P < 0.01.

Assessing significance
In this work, we studied the neural correlates of task and behavioural 
variables. To assess the significance of these analyses, we needed to 
properly account for spurious correlations. Spurious correlations can 
be induced in particular by slow continuous drift in the neurophysi-
ological recordings due to various factors, including movement of the 
Neuropixels probes in the brain. Such slow drifts can create tempo-
ral correlations across trials. Because standard correlation analyses 
assume that all samples are independent, they can produce apparently 
significant nonsense correlations even for signals that are completely 
unrelated107,108.

Null distributions were generated, which we used to test the sig-
nificance of our results. Specifically, we used distinct null distributions 

for each of the three types of variables we considered: a discrete 
behaviour-independent variable (the stimulus side); discrete 
behaviour-dependent variables (for example, reward and choice); and 
continuous behaviour-dependent variables (for example, wheel speed 
and wheel velocity). For the rest of the section, we denote the aggre-
gated neural activity across L trials and N neurons by RS ∈ L N× , and 
denote the vector of scalar targets across all trials by C ∈ LR .

For the discrete behaviour-independent variable, we generated the 
null distribution from so-called pseudo-sessions. These are sessions 
generated from the same generative process as the one used for the 
mice. This process ensured that the time series of trials in each pseudo- 
session shared the same summary statistics as the ones used in the 
experiment. We generated M (typically M = 200) pseudo-targets 
C i M, ∈ [1, ]i
∼ , and performed the given analysis on the pair S C( , )i

∼   
and obtained a fit score Fi

∼. In pseudo-sessions, the neural activity S 
should be independent of ∼Ci as the mouse did not see Ci

∼ but rather C. 
Any predictive power from Ci

∼ to S (or from S to Ci
∼) would arise, for ins

tance, from slow drift in S unrelated to the task itself. These pseudo- 
scores Fi

∼ were compared with the actual score F obtained from the 
neural analysis on S C( , ) to assess significance.

For discrete behaviour-dependent variables (such as choice or 
reward), we could not use the pseudo-session procedure above as we did 
not know the underlying generative process in the mouse. We therefore 
used ‘synthetic’ sessions to create a null distribution. These depended 
on a generative model of the process governing the choices of the ani-
mals. In turn, this required a model of how the animals estimated the 
prior probability that the stimulus appears on the right or left side of 
the screen, along with a model of its response to different contrasts 
given this estimated prior. In a companion paper on the subjective 
prior24, we found that the best model of the prior across all animals 
uses a running average of the past actions as a subjective prior of the 
side of the next stimulus, which we refer to as the ‘action-kernel’ model. 
The subjective prior πt follows the update rule:

π π a α α π α a| , , = (1 − ) ⋅ + ⋅ ( > 0)t t t t t+1 I

with a ∈ {−1, 1}t  {(left, right)} the action performed by the mouse on 
trial t and α the learning rate, which we fitted on a session-by-session 
basis. This effectively modelled how mice use information from previ-
ous trials to build a subjective prior of where the stimulus is going to 
appear at the next trial. The details of how this prior is integrated with 
the stimulus to produce a decision policy is described in the compan-
ion paper24.

We fit the parameters of this model of the mouse’s decision-making 
behaviour separately for each session and then created ‘synthetic’ 
targets Ci

∼ for that session by applying the model (with those fitted 
parameter values) to stimuli generated from pseudo-sessions to obtain 
time series of choice and reward. Then, as for the pseudo-sessions 
above, we obtained pseudo-scores Fi

∼ based on S C( , )i
∼  and assessed sig-

nificance by comparing the distribution of pseudo-scores to the actual 
score F obtained from the neural analysis on (S, C).

For the third type of variable—continuous behaviour-dependent vari-
ables such as wheel speed—generating synthetic sessions was harder 
as we did not have access to a reasonable generative model of these 
quantities. We instead used what we call ‘imposter’ sessions, which 
were generated from the continuous behaviour-dependent variable 
from another mouse on another session. In detail, an imposter ses-
sion for an original session of L trials was generated by performing 
the following steps:
1.	 Concatenating trials across all sessions analysed in this study (leaving 

out the session under consideration).
2.	Randomly selecting a chunk of L consecutive trials from these con-

catenated sessions.
3.	Returning the selected chunk, the imposter session.

The continuous behaviour-dependent variable could then be 
extracted from the imposter session. As with the pseudo-sessions and 



the synthetic sessions, we obtained pseudo-scores ∼Fi from a collection 
of imposter sessions and assessed significance by comparing the dis-
tribution of pseudo-scores to the actual score F obtained from the 
neural analysis on S C( , ).

To apply the linear shift method79,109 to compare spiking with move-
ment variables, we first truncated both the movement and spiking time 
series by removing n = 20 samples from both ends of both time series. 
We computed the Pearson’s correlation coefficient of the central seg-
ments and compared the square of this coefficient to a null distribution 
obtained by repeatedly shifting the spiking time series linearly from the 
beginning to the end of the full behavioural time series. Significance 
was assessed using the approximate criterion, rejecting the null with 
significance α = 0.05 if the unshifted correlation was in the top α(2n + 1) 
of the shifted values.

Additional information about assessing significance for individual 
analyses are detailed in the analysis-specific sessions below. For decod-
ing, single-cell and population trajectory analyses, the results come in 
the form of per-region P values. We used the FDR to correct for com-
parisons across all the regions involved in each analysis (201 for the 
main figures) at a level of q = 0.01. We used the Benjamini–Hochberg 
procedure110 as we expected substantial independence among the 
tests. As noted, we were not able to assess significance for the encoding 
analysis because of a lack of a convenient null distribution.

Overview of decoding
We performed a decoding analysis to measure how much information 
the activity of populations of neurons contained about task variables 
such as stimulus side and choice. To do this we, used cross-validated, 
maximum-likelihood regression with L1 regularization (to zero out the 
contribution from noisy neurons). The neural regressors were defined 
by binning the spike counts from each neuron in each session in a given 
region in a specific time window on each trial. The duration of the time 
window, the number of bins in that time window (that is, the bin size) 
and the trial event to which it was aligned depended on the variable that 
is the target of our regression (Supplementary Table 2). These factors 
are discussed further below and include a variety of behavioural and 
task variables: stimulus side, choice, feedback and wheel speed and 
velocity. Although a session may have included multiple probe inser-
tions, we did not perform decoding on these probes separately because 
they are not independent. Instead, neurons in the same session and 
region were combined across probes for our decoding analysis. Decod-
ing was cross-validated and compared with a null distribution to test 
for significance. A given region may have been recorded on multiple 
sessions; therefore, in the main figures (Figs. 4–7) the region P value 
was defined by combining session P values using Fisher’s combined 
probability test, and the region effect size was defined by subtract-
ing the median of the null distribution from the decoding score and 
reporting the median of the resulting values across sessions. The P val-
ues for all regions were then subjected to FDR correction for multiple 
comparisons at q = 0.01.

Decoding target variables
Stimulus side, choice and feedback were treated as binary target vari-
ables for logistic regression. For stimulus side, trials that had zero 
contrast were excluded. We used the LogisticRegression module 
from scikit-learn111 (v.1.1.2) with 0.001 tolerance, 20,000 maximum 
iterations, “l1” penalty, “liblinear” solver and “fit_intercept” set to True. 
We balanced decoder classes by weighting samples by the inverse of 
the class frequency, 1/(2Pi,class). Decoding performance was evaluated 
using the balanced accuracy of classification, which is the average of 
the recall probabilities for the two classes. Supplementary Figure 9 
shows histograms of the regression coefficients for all the variables.

Wheel values (speed and velocity) change over the course of a 
trial, unlike the previous decoding targets, and we therefore had to 
treat these target variables differently. We averaged wheel values in  

nonoverlapping 20-ms bins, starting 200 ms before first wheel- 
movement time and ending at 1,000 ms after first wheel-movement 
time. Spike counts were similarly binned. The target value for a given 
bin (ending at time t) was decoded from spikes in a preceding (causal) 
window spanning W bins (ending at times t, …, t-W ). Therefore, if 
decoding from n neurons, there were (W + 1)n predictors of the target 
variable in a given bin. In practice, we used W = 10. To decode these 
continuous-valued targets, we performed linear regression using 
the Lasso module from scikit-learn111 (v.1.1.2) with 0.001 tolerance, 
1,000 maximum iterations and “fit_intercept” set to True. Decoding  
performance was evaluated using the R2 metric.

Decoding cross-validation
We performed all decoding using nested cross-validation. Each of five 
outer folds was based on a training and validation set comprising 80% 
of the trials and a test set of the remaining 20% of trials. We selected 
trials at random in an interleaved manner. The training and validation 
set of an outer fold was itself split into five inner folds, again using an 
interleaved 80:20% partition. When logistic regression was performed, 
the folds had to be selected such that the trials used to train the decoder 
included at least one example of each class. Because both outer and 
inner folds were selected at random, it was possible that this require-
ment was not met. In those circumstances, we re-sampled the outer 
or inner folds. Likewise, we disallowed pseudo and synthetic sessions 
that had too few class examples. We fit regression models on the 80% 
training set of the inner fold using regularization coefficients (10−5, 10−4, 
10−3, 10−2, 10−1, 100 and 101) for logistic regression (input parameter 
C in sklearn) and (10−5, 10−4, 10−3, 10−2 and 10−1) for linear regression 
(input parameter α in sklearn). We then used each model to predict 
targets on the remaining 20% of the trials of the inner fold (that is, the 
validation set). We repeated this procedure such that each trial in the 
original training and validation set of the outer fold was used once for 
the validation set and four times for the training set. We then took the 
regularization coefficient that performed best across all validation 
folds and retrained a regression model using all trials in the training 
and validation set of the outer fold. This final model was used to predict 
the target variable on the 20% of trials in the test set of the outer fold. 
We repeated the above train–validate–test procedure five times, each 
time holding out a different 20% of test trials such that, after the five 
repetitions, each trial had been included in the test set exactly once 
and included in the training and validation set exactly four times. The 
concatenation of all test set predictions, covering 100% of the trials, 
was used to evaluate the decoding score.

We found that for some regions and sessions, the resulting decod-
ing score was sensitive to the precise assignment of trials to different 
folds. Therefore, to provide additional robustness to this procedure, 
we repeated the full fivefold cross-validation over multiple separate 
runs, each of which used a different random seed for selecting the 
interleaved training, validation and test splits. We then took the aver-
age decoding score across all runs as the final reported decoding score. 
When decoding stimulus side, choice and feedback, we performed ten 
runs, and for decoding wheel speed and wheel velocity, we used two 
runs owing to the added computational burden of decoding the wheel 
values, which included multiple bins per trial.

To further reduce the sensitivity of decoding scores due to fold allo-
cation, the companion prior paper24 used a minimum of 250 trials to 
perform decoding of a given session. We waived that requirement for 
the decoding analyses in this study to match the same neurons used 
in the other analyses. We found that relaxing this requirement only 
affected the significance of a small number of regions for each target 
variable (Supplementary Fig. 10).

Decoding significance testing with null distributions
We assessed the significance of the decoding score that resulted from 
the multirun cross-validation procedure by comparing it to those of 
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a bespoke null distribution of decoding scores. To construct appro-
priate null distributions, we fixed the regressor matrices of neural 
activity and generated new vectors of target values that followed 
similar statistics (Supplementary Table 2), as described above. Once 
the new target values were generated, we carried out the full multirun 
cross-validation procedure described above to obtain a new decod-
ing score. This was repeated multiple times to produce a null distri-
bution of decoding scores: stimulus side, choice and feedback were 
repeated 200 times, whereas wheel speed and velocity were repeated 
100 times to reduce the computational burden (Supplementary  
Table 3).

The null distribution was used to define a P value for each region– 
session pair, in which the P value was defined as 1 − ρ where ρ was the per-
centile relative to the null distribution. Each brain region was recorded 
in ≥2 sessions, and we used two different methods for summarizing the 
decoding scores across sessions: (1) the median-corrected decoding 
score among sessions, which was used as the effect size in the main 
figures (the values were corrected by subtracting the median of the 
decoding score of the null distribution); and (2) the fraction of ses-
sions in which decoding was significant, that is if the P value was less 
than α = 0.05, which is shown in Extended Data Fig. 6. We combined 
session-wide P values using Fisher’s combined probability test (also 
known as the Fisher’s method32,33) when computing a single statistic 
for a region. Finally, the combined P value for a region was subjected 
to a FDR correction for multiple comparisons at q = 0.01. We note that 
the combined P value may be significant but the computed effect size 
may be negative. This is because many sessions used for decoding in 
that region may have been insignificant, thereby driving the effect size 
down, whereas a small number of sessions may have been significant, 
thereby causing the Fisher’s combined probability test to produce a 
significant combined P value.

Single-cell correlates of sensory, cognitive and motor variables
We quantified the sensitivity of single neurons to three task variables: 
visual stimulus (left versus right location of the visual stimulus); choice 
(left versus right direction of wheel turning); and feedback (reward 
versus non-reward). We computed the sensitivity metric for each task 
variable using the condition combined Mann–Whitney U-statistic1,112,113 
(Supplementary Fig. 2a,c). Specifically, we compared the firing rates 
from those trials with one task-variable value V1 (for example, trials with 
the stimulus on the left side) to those with the other value V2 (for exam-
ple, with the stimulus on the right side) while holding the values of all 
other task variables fixed. In this way, we could isolate the influence of 
individual task variables on neural activity. To compute the U-statistic, 
we first assigned numeric ranks to the firing rate observations in each 
trial. We then computed the sum of ranks R1 and R2 for the observations 
coming from n1 and n2 trials associated with the task-variable values V1 
and V2, respectively. The U-statistic is defined as:
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The probability that the firing rate on V1 trials is different (greater 
or smaller) from the firing rate on V2 trials is computed as 1 − P, where 
P is given by

P
U
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which is equivalent to the area under the receiver operating character-
istic curve114,115. The null hypothesis is that the distributions of firing 
rates on V1 and V2 trials are identical.

To obtain a single probability across conditions, we combined  
observations across different trial conditions j by a sum of U-statistic 
in these conditions1:
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Here n1,j and n2,j are the numbers of V1 and V2 trials, respectively, in 
the condition j.

For the visual stimulus, we compared firing rate in trials with the 
stimulus on the left versus stimulus on the right during the time win-
dow 0–100 ms aligned to the stimulus-onset time. For choice, we 
compared firing rates in trials with the left versus right choice during 
the time window −100 to 0 ms aligned to the first wheel-movement 
time. For the feedback, we compared firing rate in trials with reward 
versus non-reward during the time window of 0–200 ms aligned to 
the feedback-onset time.

To estimate significance, we used a permutation test in which trial 
labels for one task variable were randomly permuted 3,000 times in 
each subset of trials with fixed values of all other task variables, and 
the Mann–Whitney U-statistic was computed for each permutation. 
We computed the P value for each task variable as the fraction of per-
mutations with the statistic P greater than in the data. This approach 
controlled for correlations among task variables and allowed us to 
isolate the sensitivity of the neuron to a stimulus that is not due to 
sensitivity to block and choice and vice versa. Random permutations, 
however, do not control for spurious correlations that can arise owing to 
autocorrelations in the time series of the firing rate and task variable107. 
To control for spurious correlations, we used a within-block permuta-
tion test to simultaneously control for both temporal correlations 
and correlations among task variables. Specifically, we generated the 
null distribution by randomly permuting trial labels with fixed values 
of all other task variables in each individual block, which effectively 
reduced the serial dependencies of task variables at the time scale of 
block duration.

The combined condition Mann–Whitney U-statistic is known to have 
a relatively high false-positive rate owing to the limited number of tri-
als in each condition. To obtain a sufficient number of trials, we also 
computed a simple Mann–Whitney U-statistic without separating dif-
ferent conditions. We defined P < 0.001 (αMW = 0.001) as the criterion 
of significance for the simple Mann–Whitney U-statistic, and P < 0.05 
(αCCMW = 0.05) for the combined condition Mann–Whitney U-statistic. 
We defined neurons that were significant in both tests to be sensitive 
neurons for a specific task variable.

To quantify the overall responsiveness of single neurons to the 
behavioural task, we used the Wilcoxon rank-sum test to compare fir-
ing rates between the baseline (–200 to 0 ms window aligned to the 
stimulus onset) and the following different task periods: 50–150 ms 
and 0–400 ms aligned to the stimulus onset; –100 to 50 ms and –50 
to 200 ms aligned to the first wheel-movement time; and 0–150 ms 
aligned to the reward delivery. These time windows are selected on 
the basis of the test of responsiveness in previous work on large-scale 
neural coding with a similar task structure1.

To measure the behavioural movement correlates of single neurons 
in the entire recording sessions, we computed zero time-lag Pearson’s 
correlation coefficients between time series of spike counts in 50-ms 
bins and time series of four behavioural variables (nose, pupil, paw 
and tongue) each extracted from videos of the mouse using DLC soft-
ware31. To assess the significance of these correlations, we applied a 
time-shift test79 and computed 2K = 40 time-shifted correlations, vary-
ing the offset between time series of spiking activity and behavioural 
variables from 50 to 1,000 ms (both positive and negative offsets). 
We then counted the number of times m where the absolute value of 
time-shifted correlation exceeded that of zero time-lag correlation and 
assigned the P value as the fraction of the absolute value of permuted 
correlations greater than in the data P = m/(2K + 1). We then assigned 
each neuron as being significantly responsive relative to a particular 
threshold on this P value.



We then computed the fraction of neurons in each brain region that 
were significantly responsive to the behavioural task, movement, visual 
stimulus, choice and feedback, and identified brain regions that were 
most responsive to these conditions. Specifically, for each region, we 
computed the P value of the fraction of neurons (fi) in i-th session by 
comparing the fraction to a binomial distribution of fractions due to 
false-positive events: Binomial(Ni, α), where Ni is the number of neurons 
in i-th session, and α is the false-positive rate:

(4)α α α= × = 0.001 × 0.05, for stimulus, choice, and feedbackMW CCMW

We defined the P value Pi as the probability of the fraction fi that is 
larger than the distribution Binomial(Ni, α). Next, we used Fisher’s com-
bined probability test to compute a combined P value of each brain 
region by combining the P values of all sessions (i = 1, 2, … m).

After computing combined P values of each brain region, these P val-
ues were then subjected to the FDR procedure (Benjamini–Hochberg) 
at q = 0.01 to correct for multiple comparisons. We defined a list of 
regions to be significant on the basis of this FDR procedure.

Population trajectory analysis methods
We examined how responsive different brain regions were to a task 
variable v of interest. To do so, we constructed a pair of variable-specific 
supersessions (s s, ′v v ): We partitioned all the IBL data into two, corre-
sponding to the opposing pair of conditions for the variable (for exam-
ple, for stimulus discrimination, we split the trials into the left and right 
stimulus conditions) and replaced the trial-by-trial responses of each 
cell in the condition and in each session with one trial-averaged 
response (Fig. 3e). These trials were aligned to a variable-specific refer-
ence time (for example, the stimulus-onset time for stimulus discrim-
ination). We used the canonical time windows shown in Fig. 3a around 
the alignment time for the main figures unless stated otherwise (for 
example, for feedback, we used a longer time window in the temporal 
evolution plot to illustrate licking), time bins of length 12.5 ms and 
stride of 2 ms. The supersessions S S, ′v v had a number of rows equalling 
the number of IBL sessions that passed quality control for that variable 
condition times the number of cells per session; columns corresponded 
to time bins.

We then subdivided the supersessions by brain region r (S S, ′v r v r, , ). 
These defined a pair of across-IBL response trajectories (temporal 
evolution of the response) to the pair of variable v conditions for each 
brain region.

We next computed the time-resolved difference in response of brain 
region r to the opposing conditions of task variable v. We restricted 
our analyses to regions with ≥20 rows in (S S, ′v r v r, , ) for all analyses. Our 
primary distance metric, which we call dv,r(t), was computed as a simple 
Euclidean distance in neural space, normalized by the square root of 
the number of cells in the given region.

Given a time-resolved distance curve, we computed the maximum 
and minimum distances along the curve to define a variable-specific 
and region-specific modulation amplitude:

A d t d t= max [ ( )] − min [ ( )]. (5)v r t v r t v r, , ,

We obtained a variable-specific and region-specific response  
latency by defining it as the first time t at which d t d t( ) = min [ ( )] +v r t v r, ,

d t d t0.7(max [ ( )] − min [ ( )])t v r t v r, , . Using modulation amplitude as a 
measure of effect size, we then quantified the combined modulation 
amplitude and latency of regions as a function of task variable.

To generate a significance measure for the variable-specific and 
region-specific distance measures, we used a pseudo-trial method 
for generating null distance distributions, as described below. 
Distances were significant if they were greater in size than the cor-
responding null distance distribution with P < 0.01. Although the 
significance of regions was therefore controlled for the effects of 

other task variables, note that the distance amplitudes and latencies  
were not.

Below we list the three task variables examined and the associated 
null distributions:
•	 Stimulus supersession: S S, ′v v corresponded to trials with the stimulus 

on the left or right, respectively, aligned by the stimulus-onset time 
and including 0 ms before to 150 ms after onset. To generate pseudo- 
trials, we permuted the stimulus side labels among trials that shared 
the same block and choice side.

•	 Choice supersession: S S, ′v v ′ corresponded to trials with the animal’s 
response (wheel movement) to the left or right, respectively, aligned 
by the first wheel-movement time and including 0 ms before to 150 ms 
after onset. To generate pseudo-trials, we permuted the choice labels 
among trials with the same block and stimulus side.

•	 Feedback supersession: S S, ′v v  corresponded to trials in which the 
animal’s response was correct (recall that the feedback was water 
delivery) or incorrect (recall that the feedback was tone and time out 
delivery), respectively, aligned by feedback onset and including 0 ms 
before to 150 ms after onset. To generate pseudo-trials, we permuted 
the choice labels among trials with the same block and stimulus side 
and then compared these pseudo-choices with the true stimulus sides 
to obtain pseudo-feedback types.

For each S S, ′v r v r, ,  pair, we repeated the pseudo-trial process M (1,000) 
times, then followed the same distance computation procedures 
described above to obtain a null distribution of M modulation ampli-
tude scores. We obtained a P value by counting n (as the number of 
pseudo-scores that were greater than the true score for this region) as: 
P = n

M
+ 1
+ 1.

For regions with significant and large effect sizes to a given variable, 
we generated visualizations of the population dynamics by projecting 
the trajectories in S S, ′v r v r, ,  into a low-dimensional subspace defined  
by the first three principal components of the pair S S, ′v r v r, , . In addition 
to the main figure results, population trajectory results on the maximal 
dataset are shown in Extended Data Fig. 10.

Multiple linear regression model of single-neuron activity
We fit linear regression models to single-neuron activity, measured as 
spikes binned into 20-ms intervals. These models aimed to express 
{slt}, the neural activity in time bin t ∈ [1, T ] on trial l ∈ [1, L] based on D 
time-varying task-related regressors RX ∈ L T D, , . We first represented 
the regressors across time using a basis of raised cosine ‘bump’ func-
tions in log space116. Each basis function was associated with a weight 
in the regression model, with the value of the basis function at time t 
described by ( )cos +t τ

w
2( − )π

2
1
2

. The basis functions were computed in 
log space and then mapped into linear time to more efficiently capture 
both fast neuronal responses in the  <100-ms range and slow changes 
beyond that time (Fig. 3c). The width w and centre τ of each basis were 
chosen to ensure even coverage of the total duration of the kernel. In 
an example kernel with three bases, three separate weights would be 
fit to the event in question with weights describing early, middle and 
late activity predicted by the event. These bases were convolved with 
a vector describing the effects of each regressor. In the case of timing 
events, the bases were convolved with a Kronecker delta function, 
which resulted in a copy of the kernel at each time when the event 
occurred. We describe the simple case that each regressor has the same 
number B of basis functions. This produced a new regression tensor 

̂ RX ∈ .L T D B, , ,

We then sought regression weights Rβ ∈ D B,  such that, as closely  
as possible, ̂∑s β β x= +lt d b db ltdb0 ,

, where {βdb} are linear regression 
weights. Each single-neuron model used regressors for stimulus onset 
(left and right separately), first wheel-movement time (left or right), 
correct feedback, incorrect feedback, value of the block probability, 
movement initiation and wheel speed. Fitting was performed using an 
L2-penalized objective function (as implemented in the scikit-learn 
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Python ecosystem as β X β α β‖ − − ⋅ ‖ + × ‖ ‖0 2

2
2
2̂s ), with the weight of  

the regularization α determined through cross-validation. Note that 
the intercept of the model is not included in the regularization to  
capture fully the mean of the distribution of s.

We used a kernel composed of five basis functions to parameterize 
left and right stimulus onset, and correct and incorrect feedback. These 
bases spanned 400 ms and corresponded to 5 weights per regressor 
for each of these 4 regressors in the model.

Previous work has shown that difficulty in perceptual decision- 
making tasks117, along with neural responses, does not change line
arly with contrast. To account for this, we modulated the height of  
the stimulus-onset kernels as a function of contrast c with height  
h = ctanh5

tanh5 . The resulting kernels would produce a response that was 
lower at low contrasts for the same set of weights {βdb}.

To capture statistical dependencies between wheel movements and 
spiking, we used anticausal kernels (in which the convolution of signal 
and kernel produces a kernel peak before peaks in the signal) describ-
ing the effect of first wheel-movement time for leftward and rightward 
movements. These kernels described 200 ms of activity preceding 
first movement using 3 basis functions. We also used an additional 
anticausal kernel of 3 bases covering 300 ms describing the effect of 
wheel speed, and was convolved with the trace of wheel speed for each 
trial. With these regressors, we aimed to capture preparatory signals 
that preceded movements related to the wheel.

Models were fit on a per-neuron basis with the L2 objective function 
using fivefold cross-validation. Trials for cross-validation were chosen 
from a uniform distribution, and not in contiguous blocks. Models 
were then fit again using a leave-one-out paradigm, with each set  
of regressor weights βd1…βdB being removed as a group and the result-
ing model fit and scored again on the same folds. The change between 
the base model score Rfull

2  and the omission model R−regressor
2  was com-

puted as R R RΔ = −regressor
2

full
2

−regressor
2 . Moreover, the sensitivity for sev-

eral pairs of associated regressors, such as left or right stimulus onset 
and correct and incorrect feedback, were defined as R Rlog Δ − ΔA B

2 2 . 
This computation was applied to the following pairs: right and left 
stimulus, right and left first wheel-movement time, and correct and 
incorrect feedback.

Granger analysis across simultaneously recorded regions
Granger causality has been suggested as a statistically principled 
technique to estimate directed information flow from a pair of time  
series118. We used nonparametric spectral Granger causality119, imple-
mented in Python120, to compute a Granger score for all simultaneously 
recorded region pairs in the IBL’s brain-wide dataset.

For a given session, binned spikes (12.5-ms bin size) from both probes 
were averaged across regions to obtain a firing rate time series for the 
complete recording (excluding regions with fewer than ten neurons 
per recording). These series (typically 1.5-h long) were then divided in 
nonoverlapping 10-s segments (irrespective of task contingencies or 
alignment), which resulted in a data input of shape no. of regions × no. 
of segments × no. of observations from which a Granger score as a func-
tion of frequency was computed for each directed region pair with the 
Spectral Connectivity Python package120. We obtained a single Granger 
score per directed region pair by averaging across frequencies121.

Significance for a Granger score and region pair for a given session 
was established using a permutation test. That is, a null distribution of 
pseudo Granger scores was obtained by randomly swapping the two 
region labels across segments. A total of 1,000 of these pseudoscores 
were computed, and a P value was obtained by counting the number of 
pseudoscores that were greater than the true Granger score and divid-
ing this count by the number of pseudoscores plus 1. P values across 
all Granger scores were corrected for multiple comparison using the 
Benjamini–Yekutieli method. Measurements were combined across 
sessions by taking the mean Granger score and using Fisher’s combined 
probability test to combine the P values.

Visualization and comparison of results across neural analyses
To facilitate comparisons of neural analyses across brain regions, for 
each task variable, we visualized effect sizes in a table (for example, 
Fig. 4f), specifying the effect size for each analysis and brain region. 
Cells of the table were coloured according to effect size using the same 
colour map as in the corresponding flatmap. Before summing, the effect 
sizes for each analysis were normalized to lie in the interval from 0 to 1. 
This method highlights regions with large effects across all analyses and 
indicates the extent to which the analyses agree. For a direct compari-
son of analyses scores, see flatmaps in Extended Data Fig. 2 and scatter 
plots of scores for analysis pairs in Extended Data Fig. 3.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Instructions for downloading the data used in this Article are available 
online (https://int-brain-lab.github.io/iblenv/notebooks_external/
data_release_brainwidemap.html). The data can also be browsed online 
at the IBL website (https://viz.internationalbrainlab.org). The following 
resources are available from Figshare: a white paper for the released 
data, with additional details about quality control and metrics (https://
figshare.com/articles/preprint/Data_release_-_Brainwide_map_-_Q4_ 
2022/21400815)22; the protocol used to train mice (https://figshare.
com/projects/A_standardized_and_reproducible_method_to_measure_
decision-making_in_mice/74373)122; and the pipeline used to perform 
the electrophysiology recordings and histology validations (https://
figshare.com/projects/Reproducible_Electrophysiology/138367)123.

Code availability
The code used to produce the results and figures presented in this 
Article is available from GitHub (https://github.com/int-brain-lab/
paper-brain-wide-map).
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Extended Data Fig. 1 | 2d-brain slices maps annotated with region acronyms. a) Region acronyms for sagittal slices with coordinates: ML=−1.8 mm,  
b) ML=−0.8 mm, c) ML=−0.2 mm. d) Region acronyms for the top view of the dorsal cortex.



Extended Data Fig. 2 | Comparison of effect sizes across task variables.  
Each column corresponds to a particular neural analysis and each row a task 
variable. For each analysis, the colour scale is fixed across all variables to enable 

comparison of effects between variables. For most analyses, the feedback 
variable has the largest effect amongst all task variables. The numbers at the 
top right indicate the fraction of significant regions across all analysed regions.
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Extended Data Fig. 3 | Amplitudes of analysis pairs for the three main 
variables. For a given analysis pair, say encoding and population trajectory, 
and a variable, say stimulus, all regions for which both analyses were significant 

are shown as dots in a scatter plot with the amplitudes as coordinates, colored 
using our canonical region coloring. There are 6 possible analysis pair 
combinations (rows) and 3 main variables (columns).



Extended Data Fig. 4 | Granger scores for simultaneously recorded region 
pairs. a) Firing rates in two regions (CP and MOp) for an example session  
(eid = af55d16f-0e31-4073-bdb5-26da54914aa2); first 10 sec of recording.  
b) Directed spectral Granger prediction for an example region pair from  
this example session as a function of frequency. This is the average across 
consecutive 10 sec windows of the whole recording, irrespective of trial- 
structure. The mean Granger prediction across frequencies is the Granger 
score, used in all other panels. c) Binarised significant Granger score adjacency 
matrix, canonical region ordering (as in circular graph plot). Note the near- 
symmetry. d) Symmetry of Granger scores for all significant region pairs, log 
scale. Correlation scores in panel title. e) Granger scores for region pairs as 
averages across recordings, edge width proportional to Granger score, black if 

significant. Only region pairs with at least 2 recordings are shown. f) Graph of  
e) restricted to incoming/outgoing Granger scores for subsets of regions 
(Cosmos hierarchical level). g) Significant Granger scores for all region pairs, 
black dots are individual recordings, gray bars are mean across recordings, 
ordered by mean. Only region pairs with at least 3 recordings are shown.  
h) Granger scores in relation to two other connectivity metrics: axonal  
(axonal projection tracing, Fig. 3 in124) and cartesian (inverse Euclidean distance 
between centroids of region pairs). Weak but significant correlations (Pearson, 
Spearman, on top of panels, together with number of directed region pairs for 
the plot) are found for cartesian/Granger (.25, .33), cartesian/axonal (.14, .35) 
and Granger/axonal (.12, .23). All results are further listed in this online table.

https://github.com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/region_info.csv
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Extended Data Fig. 5 | Decoding performance per region with per session 
results. Decoding analysis as performed for stimulus in Fig. 4, choice in Fig. 5, 
feedback in Fig. 6, and wheel-speed and wheel-velocity in Fig. 7. No FDR 
correction has been applied in the bar plots, but the bold ticks indicate those 
regions that survive FDR0.01 (and are shown in the main figures). Black dots and 

x’s indicate decoding performance on individual sessions; dots are significant 
at α = 0.05 and x’s are insignificant. The bar height is the median of all sessions 
within that region, and the white dot is the across-session median of the null 
distribution medians.



Extended Data Fig. 6 | Representation of the stimulus variable. a) Fraction 
of sessions with significant decoding performance for the stimulus variable 
relative to the null. b) 2d-brain slices of analysis results for the stimulus variable 
in Fig. 4a–e. Instead of Swanson flat map, here we use 3 sagittal slices with 

coordinates ML=−1.8 mm, −0.8mm, −0.2mm, and the top view of the dorsal 
cortex to visualize the representation of task variables across the brain.  
The locations of sagittal brain slices are optimised to display 252 brain regions. 
The region acronyms for these slices are listed in Extended Data Fig. 1.
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Extended Data Fig. 7 | Fraction of significant cells per region in single-cell 
analysis. Summary of single-cell analysis for stimulus in Fig. 4, b) choice in 
Fig. 5, c) feedback in Fig. 6. No FDR correction has been applied in the bar  
plots; but the red colour labels indicate those regions that survive FDR0.01  

(and are shown in the figures in the main paper). Black dots and x’s indicate 
single-cell analysis is done on individual sessions where dots are significant  
at α = 0.05 and x’s are insignificant. The bar height is the mean of all sessions 
within that region.



Extended Data Fig. 8 | Example of significant receptive fields of single 
neurons in auditory areas, hindbrain, and midbrain. a) Example of receptive 
fields in auditory cortex (AUDv) and auditory thalamus (MG) (d.v.a. stands for 
degrees of visual angle). Each pixel in the receptive field denotes 8 × 8 d.v.a.  
The receptive field is computed by averaging spike rate aligned with On and  
Off stimulus onset for each pixel, from 0 to 100 ms (Methods). b) Example of 
receptive fields of single neurons in hindbrain. c) Example of receptive fields  
of single neurons in midbrain.
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Extended Data Fig. 9 | Variance explained by stimulus and choice kernels  
in GLMs fit to early (below median), late (above median), and all RT trials.  
a) Mean ΔR2 from the right stimulus onset kernel per region in trials with 
response time below median (left), above median (middle), and all trials (right). 

b) Mean ΔR2 from the right first wheel movement time kernel per region in trials 
with response time below median (left), above median (middle), and all trials 
(right).



Extended Data Fig. 10 | Population trajectories across the brain on the full 
dataset. Using all well-isolated units and considering regions with at least 20 
neurons after pooling across sessions, results in about 446 more neurons  
(in 9 more regions) than in the canonical set of cells that are used across analyses 
and shown in the main figures. a-c) Visualizations (through low-dimensional 
PCA-embedding) of whole-brain population dynamics (combined across all 
cells, all sessions, all regions) for three task variables (left versus right stimulus, 
left versus right choice, correct versus wrong feedback. Blue/red dots represent 
one time-bin of the population response for left/right (or correct/wrong) trials; 
colour gradient indicates temporal evolution (darker is later). Grey dots: 
pseudo-trials. d-f) Quantification of the time-resolved distance between 

opposite trajectories for each variable, based on Euclidean distance (in spikes/
second) in the full-dimensional space (dimension = number of cells) for 
example brain regions, selected based on response magnitude and to illustrate 
different response profiles. Curves are annotated by region name and number 
of cells. Scalebars in all panels represent spikes/s/cell. g-i) Summary of variable 
discriminability for stimulus side, choice side, and feedback type, respectively, 
by magnitude and latency of response across all recorded brain regions. 
Diamonds indicate all regions that have statistically significant discrimination 
(p < 0.01 relative to pseudo-trial controls), and line plot examples are labelled 
by region name. Dots indicate responses of non-significant regions.
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Extended Data Fig. 11 | Representation of the choice variable. Analysis of the choice variable, with conventions as in Extended Data Fig. 6.



Extended Data Fig. 12 | Neural correlates of licking. a) Example lick activity 
for a single session, top trial-averaged, bottom per trial. Animals lick more for 
correct trials (blue) with a clear rhythm around 10 Hz. Licks were detected 
using tongue tracking via DLC from side videos. b) Population trajectory 
distance between correct and incorrect trials for example regions selected 
manually for visible oscillations, with the number of cells (pooled across 
sessions) next to the region acronym in the title, aligned to feedback. Right  
to each panel is the power spectral density of the distance curve, all having a 
peak around 10 Hz, correlating with licking. c) One example neuron’s activity  
(pid = ‘3b729602-20d5-4be8-a10e-24bde8fc3092’, region VPL) to show activity 
is physiological and not an artefact. Left panel, raster per trial with rhythmic  
10 Hz activity, also shown in the middle panel by the power spectral density of 

the raster, averaged across trials. Right panel, waveforms of this neuron across 
adjacent traces, illustrating that the spikes we counted are physiological rather 
than being caused by an electrical artefact. Artefacts could arise, for example, 
from current flowing through the drinking spout into the Neuropixels probe, 
which would result in all traces having a strong waveform. We exclude saturated 
segments prior to analysis and after this found no evidence for such artefacts 
when sampling various neurons and inspecting the waveforms. d) Single- 
session population trajectory distance for select regions with trial-averaged 
lick activity in blue on top. E.g. in MRN a clear correlation with licking was  
found when restricting the analysis to a single session, while much less so  
when considering the session-averaged results (not shown).
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Extended Data Fig. 13 | Regressor windows and variance explained in  
linear encoding model and neural correlates of the task across the brain.  
a) Schematic of within-trial windows in which different regressors in the 
encoding model apply to firing predictions. b) Additional variance explained in 
a leave-one-out paradigm by each regressor for the full distribution (left) and 
zoomed-in to the medians of the distributions (right). Note that the range on 
the right panel is depicted on the left via dotted lines. c) Statistical tests to 

measure responsiveness in different task windows. The schematics show the 
summary of all tests, superimposed on the task timeline. Each row represents  
a separate Wilcoxon rank-sum test comparing firing rates in two different 
periods over which firing rates were estimated. d) The flat brain map of the 
fraction of neurons that show significant task response during at least one of 
the task epochs (test of responsiveness: c), using FDR0.01 to correct for multiple 
comparisons.



Extended Data Fig. 14 | Representation of the feedback variable. Analysis of the feedback variable, with conventions as in Extended Data Fig. 6.
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Extended Data Fig. 15 | The behavioural correlates of single-neuron 
activity across the brain. a) Statistical tests to measure the behavioural 
correlates of single neurons across all sessions. We compute the Pearson 
correlation coefficient between the time series of neural activity and five 
behavioural variables (nose position, pupil diameter, paw position, and licks, 
extracted from behaviour video by using DLC; see Methods). The significance 

of correlation is estimated by a time-shift test79 (Methods), using FDR0.01 to 
correct for multiple comparisons. b) The flat brain map of the fraction of 
neurons significantly correlates with at least one of the movement variables. 
 c) The flat brain map of the fraction of neurons that significantly correlate with 
one of the movement variables: nose, pupil, paw, tongue.
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