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Abstract 

We introduce hybrid BAG-seq: a high-throughput, multi-omic method that simultane-
ously captures DNA and RNA from single nuclei. We apply this protocol to 65,499 single 
nuclei from samples of five uterine cancer patients and validate the clustering using 
RNA-only and DNA-only protocols from the same tissues. Multiple tumor genome 
or expression clusters are often present within a patient, with different tumor clones 
projecting into distinct or shared expression states, demonstrating nearly all possible 
genome-transcriptome correlations. We also identify mutant stroma with significant X 
chromosome loss in various cell types and patient-specific stromal subtypes exhibiting 
aberrant expression patterns.

Background
Single-cell analysis offers an opportunity for insight into cancers and their interactions 
with the host. From single-cell RNA data, we can obtain valuable information about the 
cell type and state. This is key in characterizing the various types of normal stroma as 
well as the diverse expression states within the tumor. From single-cell DNA data, we 
can determine important lineage information. This enables us to distinguish tumor cells 
from normal cells and partition tumor cells into subclones. The fusion of these two types 
of analysis, high-throughput data of RNA and DNA from the same single cells, presents 
a significant advancement. By assigning both a distinct DNA and RNA identity to each 
single cell, we may begin to observe the complex interplay between cancer cells and 
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stroma, the emergence of malignant cells from pre-malignant ones, the driving forces 
behind specific expression states, and possible patterns of mutation in certain types of 
host stroma.

Methods for the high-throughput capture of either single-cell DNA [1–3] or RNA [4–
11] are well-established and widely utilized in current research. However, when it comes 
to investigating both omics simultaneously from single cells, existing techniques pre-
sent certain limitations. There are low-throughput methods capable of capturing both 
nucleic acids from single cells [12–24], yet these may not be straightforward to scale for 
high-throughput studies. Additionally, approaches for inferring copy number from high-
throughput RNA-alone data have been described [25–29], but these methods rely on 
the assumption that gene expression and copy number are reliably correlated [30]. The 
integration of high-throughput genome and transcriptome analysis in a single method 
has only recently emerged [31–34] and has not yet been applied to human tumor sam-
ples to systematically investigate cancer heterogeneity and stromal mutations with the 
throughput demonstrated in this study. A method proven to be robust and reliable in 
this context could mark an important leap forward in our understanding of cancer biol-
ogy at the single-cell level.

In this study, we introduce, characterize, and implement a hybrid high-throughput 
droplet-based technology that enables the capture of both DNA and RNA templates 
from the same cell nucleus. This multi-omic technology is an evolution of our BAG 
platform [35], where single cells are encapsulated into individual balls of acrylamide 
gel, with nucleic acid templates captured by Acrydite DNA primers and copolymerized 
into the gel matrix. We use a pool-and-split method to assign unique cell barcodes and 
varietal tags to each template, similar to what we have previously described [35]. After 
sequencing, the nucleic acid reads from each cell are partitioned into distinct DNA and 
RNA layers based on the characteristics of the mapped reads.

We utilized this hybrid BAG approach on frozen tissues obtained from five patients 
diagnosed with uterine cancer. We found sufficient transcriptional complexity in the 
nuclear RNA to clearly distinguish cell types. The DNA layer provided sufficient genome 
copy number information to differentiate stroma from tumor, to identify distinct sub-
clones within the tumor, and to detect mutant stroma. We further confirmed these clus-
tering patterns through comparison with results obtained from validated RNA-only and 
DNA-only BAG protocols.

Clustering in single-cell analysis presents a unique challenge. Popular methods like 
tSNE [36] and UMAP [37, 38] provide compelling visualizations; however, underlying 
algorithmic constraints can force cells to be clustered together. To quantify the likeli-
hood of each cell’s cluster affiliation, we enhanced our analysis by modeling clusters with 
multinomial distributions [39]. Generalizing to a space of pairwise-linear combinations, 
we identify and remove most doublet collisions—instances of mistaken cellular identity 
that arise when two distinct cells are assigned the same identity. We also use multino-
mial distributions to measure inter-cluster distance: two clusters are “far apart” if very 
few unique templates are required to determine that a random cell from one cluster is 
unlikely to have originated from the other.

The tumor and host expression clusters from each patient exhibited distinct charac-
teristics. We use the gene count vectors for the clusters to determine differential gene 
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expression sets that inform labels of cell type and state. Combining expression data 
from all five patients’ samples, we observed that the profiles of the stromal cell types are 
broadly consistent across all patients, but with some notable differences.

Using high-quality, high-throughput single-cell RNA and DNA data, we explore the 
complex genomic and expression landscape of five uterine tumors. We observe that cells 
resembling stromal cell types in their expression profiles are mainly diploid. However, 
we also identify intriguing instances of subclones within normal cells. In one tumor, we 
find diploid cells with X chromosome loss accounting for about half the plasma cell com-
ponent. Upon closer examination of the expression data, we confirmed this DNA-RNA 
subcluster as the clonal expansion of a single B-cell lineage. Making such observations 
about stromal clonality requires a multi-omic approach.

Hybrid DNA-RNA data reveal an extensive range of associations between DNA 
tumor subclones and distinct expression states. Even at this simplest level, these inter-
relationships span from one-to-one correspondences to more complex many-to-many 
interactions, and some patterns are strongly suggestive of epigenetic variation. These 
observations could not be made without a multi-omic approach. Consequently, even 
deeper analysis was undertaken. We find cases where DNA subclones reveal additional 
subpopulations within an RNA expression cluster: we separate the RNA expression clus-
ter based on DNA subclones and derive differential gene sets for the subpopulations. 
These subtle details would also not be observable using RNA-only data.

Overall, our data highlight the potential of multi-omic technologies to better under-
stand cancer evolution, stromal mutations, and the tumor microenvironment. This 
broad view, coming from single cells alone, can be further honed by using differential 
gene sets to explore the spatial relationships using multi-probe high-resolution micros-
copy [40, 41]. Both the broad and detailed views of the inter-connectedness of subpop-
ulations, host and cancer, may enlighten our view of cancer biology and guide future 
therapeutic strategies.

Results
Experimental design

Samples

We obtained fresh tissue samples of primary tumors from five patients with uterine can-
cer (Additional file 1: Table S1), and in three cases, distal “normal” endometrium (see 
Additional file 2: Table S2 for a detailed description). The tumor types surveyed include 
two carcinosarcomas, a serous carcinoma, an endometrioid adenocarcinoma, and a leio-
myosarcoma. Each sample was frozen and pulverized into a powder. From this powder, 
nuclei were extracted for single-cell DNA, single-cell RNA, and single-cell DNA-RNA 
(“hybrid”) BAG platform. We also used the same source material to perform whole-
genome sequencing (WGS). This comprehensive approach ensured that all types of cells 
were proportionately represented in each method of analysis. To refine our methodology 
and study doublet collisions, we mixed powders from different patients prior to single-
nucleus sorting, as discussed later. Additional file 2: Table S2 provides a comprehensive 
overview of the datasets utilized in our study, detailing the combination of sample origin 
(including unique setups like the mixed powder experiment), the associated protocols, 
and the respective experimental parameters.
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The hybrid BAG platform

Our study uses the BAG platform, a versatile method that captures templates from 
a single-cell entity, either whole cells or nuclei. The BAG platform was built for flex-
ibility, allowing for the reagent customization needed to capture DNA and RNA 
from the same single cells in a high-throughput manner. As described in Fig. 1A–D, 
nucleic acid templates (or simply “templates”) are captured through primer hybridi-
zation to Acrydite-anchored primers embedded into balls of acrylamide gel, short-
ened to BAGs. This process is followed by primer extension, transcribing the template 
information of each single cell to primers securely tethered to a single BAG [35]. To 
establish cell identity, we used a pool-and-split synthesis approach to affix a BAG tag 
to each template, randomly assigning one of a million identities (963) to every BAG. 
During pool-and-split, we also introduced a template tag (also known as varietal tag 
or UMI) to each template. For the hybrid protocol, we used both oligo-TG primers 
and oligo-T primers to capture DNA and RNA templates, followed by using DNA 
polymerase and reverse transcriptase to transcribe the templates onto the anchored 
primers simultaneously. We then prepared sequencing libraries by tagmentation.

Fig. 1  Overview of hybrid BAG-seq protocol and performance on cell-mixture experiment. A–D Key steps 
for hybrid BAG-seq pipeline. A Encapsulation: Individual cells or nuclei are encapsulated within droplets 
containing acrylamide and Acrydite-modified primers that are designed to capture both mRNA and 
genomic DNA. B Polymerization and primer extension: Gel polymerization is followed by primer hybridization. 
Acrydite primers are extended by reverse transcriptase and DNA polymerase. C Split-and-pool barcoding: 
The double-stranded cDNA and genomic DNA are cleaved with a restriction enzyme. During successive 
rounds of pool-and-split, BAG-specific barcodes (purple) and template-specific varietal tags (green) are 
added. This process uniquely tags each molecule while assigning a distinct BAG barcode to templates 
in the same droplet. D Sequencing and layer assignment: Post-amplification, the molecules undergo 
tagmentation and subsequent sequencing. The sequencing reads are analyzed for expected structure, tags 
are extracted, and reads with identical varietal tags are collapsed into single templates. Templates are then 
partitioned into either the DNA or RNA layers based on their mapping characteristics. E–I Performance and 
genome-transcriptome correlation from a SKN1-SBKR3 mixture single-cell hybrid sequencing experiment: E 
clustering based on DNA copy number; F heatmap of DNA copy number variations across chromosomes for 
SKN1 and SBKR3 cells; G correlation between genomic clusters and expression clusters; H heatmap of marker 
genes of expression clusters; and I clustering result based on gene-count matrix
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Genomic filters

All three protocols—DNA-only, RNA-only, and hybrid—require mapping reads to the 
genome and then organizing the mapped reads based on their BAG and template tags. 
First, each read is checked for having the expected structure of barcodes and primer 
sequences. Second, with the tag and primer sequences removed, the rest of the read is 
mapped to the reference genome. Reads that share a template tag and a BAG tag, and 
that co-localize in the genome, are collected into read aggregates, and operationally con-
sidered a captured template. The average number of reads per captured template for 
each library is also reported in Additional file 2: Table S2.

For classifying molecules into DNA or RNA origin, templates are assigned to either 
the RNA or DNA molecular layers based on the composition of their read aggregates. 
As detailed in the Methods section, templates with largely exonic read aggregates are 
assigned to the RNA layer, whereas templates with strictly intergenic read aggregates are 
assigned to the DNA layer. Any remaining templates are marked as indeterminate. Based 
on our observations, we also found it necessary to introduce additional measures to con-
trol bias in the hybrid data. First, we observed interference of RNA with DNA cluster-
ing. For DNA profiling and clustering, we excluded certain genomic hotspots, mostly 
poly-T/A-rich regions, to which many nuclear RNA sequences map. This progressively 
more stringent criterion significantly increased the quality of copy number data from the 
hybrid protocol, as shown in Additional file 3: Fig. S1. The bin boundaries were deter-
mined empirically to achieve uniform template counts using data integrated from the 
two normal tissues (Normal 1 and Normal 4) in this study. Second, for clustering analy-
ses, we removed BAGs with fewer than 300 RNA-layer molecules or 600 DNA-layer mol-
ecules (discarding approximately 20% of all hybrid BAGs, see Additional file 2: Table S2), 
and then excluded BAGs where the ratio of DNA to RNA templates fell below one-fifth 
or exceeds five times the average ratio for that library. These BAGs, which constituted 
only a very small proportion (0–0.5%) of the nuclei passing minimum-count thresholds 
(Additional file 3: Fig. S2), could represent poor quality in either the RNA or DNA layer 
and could result in abnormal clustering results if not removed. We applied these catego-
rization rules to all seven tissue nuclei datasets for all three protocols: hybrid, DNA-only, 
and RNA-only. The full distribution of each category per sample is shown in Additional 
file 3: Fig. S3A. Using data from one tumor sample as an example, we demonstrated that 
the layer categorizations are reasonable. Specifically, DNA clustering identities are very 
similar (97.6% concordance) whether using all molecules or only DNA-layer molecules 
as bin counts (Additional file 3: Fig. S4) in the DNA-only protocol, and a similar con-
clusion (95.2% concordance) was observed for gene expression clustering results in the 
RNA-only protocol (Additional file 3: Fig. S5), when restricting the analysis to the RNA 
layer or using all of the RNA templates mapped within transcripts.

We initially applied the molecular-layer concept to a mixture experiment involving 
two human cell lines: a normal fibroblast, SKN1, and a breast cancer cell line, SKBR3. 
The distributions of the basic parameters and downsampling curves from this experi-
ment are shown in Additional file 3: Fig. S3B–G. We illustrate the clustering results and 
heatmaps based on the copy number and gene expression in Fig.  1E–I. The genomic 
and transcriptomic features from the hybrid protocol successfully recapitulate the pub-
lished features of these two cell lines [35, 42]. The alluvial diagram (Fig. 1G) shows the 
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projection of the genomic clones into the expression clusters. As expected, we observed 
a good one-to-one correlation between the genome and transcriptome of each cell type. 
Only 1.06% (10 out of 941) of the cells from the DNA cluster of one cell type (either 
SKN1 or SKBR3) projected to the RNA cluster of the other cell type, probably due to cell 
doublets.

Clustering RNA and DNA layers

We used the Seurat package [43] for our single-cell sequencing analysis—a tool widely 
recognized for its utility in gene expression clustering. For the RNA layer, we followed 
the standard methodology for expression clustering via “RunUMAP” and “FindClusters” 
functions. We extended the application of Seurat to cluster the DNA layer. We explored 
a range of DNA bin sizes and ultimately used a total of 300 bins for the DNA clustering 
and copy number analysis, as it provided a good balance of genomic resolution and aver-
age per-bin counts for a high signal-to-noise ratio and copy number reliability. These 
empirical bins range from 4.7 to 36.5 Mbp, with a median of 9.5 Mbp, and we treated the 
normalized raw DNA template count within each bin as a “gene input” for the clustering 
process and heatmap plotting. The segmentation information was only used for cluster-
based copy number profile plotting, as shown in Fig. 2 and Additional file 3: Figs. S6–S9, 
panel B. This approach allowed us to identify shared copy number profiles that we could 
leverage in a manner similar to gene expression clustering (further detailed in Methods 
section).

Multinomial wheel

Whether dealing with DNA or RNA data, a common question often arises: how well 
does a single cell “fit” within its assigned cluster? To investigate this question within the 
context of a pre-established set of clusters, we first use multinomial probabilities. We 
take as a given the N clusters that Seurat identifies. For each cluster, we sum the gene (or 
genomic bin) count data over the cells in that cluster and normalize by the total template 
count. This results in a probability vector that represents the average gene frequency of 
the cluster. Utilizing this vector, we can calculate the probability that an observed single-
cell count vector arose from each of the N clusters.

However, multinomial probabilities do not translate into a useful metric for devia-
tion from a cluster. Every cell is assigned with almost no ambiguity to one of the major 
clusters. To properly identify cells that fall between clusters, we incorporate mixed clus-
ter states into a multinomial wheel. For every pair of clusters, A and B with multino-
mial vectors pA and pB, we also consider the mixed state ABα with multinomial vector 
α pA + (1 − α) pB for α in [0.1, 0.2, …, 0.9]. This results in a total of 9*(N choose 2) + N 
cluster states. By doing this, we can segregate the cells into two categories: core clus-
ter members that stay close to an original cluster, and transitional members that fall 
between two clusters.

The hybrid platform is comparable to DNA‑only and RNA‑only platforms

In this section, we compare the hybrid BAGs to the DNA-only and RNA-only BAG plat-
forms. We first focus on comparing the hybrid DNA layer to the DNA-only data, and 
then the hybrid RNA layer to the RNA-only data. We use the tumor tissue sample from 
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patient 2 as a representative example, with similar comparisons for the other tumor tis-
sue samples provided in Additional file 3: Figs. S6–S9.

Fig. 2  Comparative clustering analysis using the hybrid BAG-seq protocol versus DNA-only and RNA-only 
protocols. A Single-cell DNA copy number analysis of a tumor sample from patient 2, comparing the hybrid 
protocol data (green) with the DNA-only protocol data (red). The tumor sample has six distinct copy number 
profiles: normal diploid cells (N), diploid cells with X chromosome loss (Nx), and four aneuploid tumor clones 
(A, B, C, and D). Central plots show UMAP visualizations of single nuclei, color-coded according to cluster 
identity. Adjacent heatmaps display the binned copy number variations for each single nucleus, arranged 
by cluster identity on the x-axis against genomic bins on the y-axis, with red indicating amplification and 
blue indicating deletion. B Aggregated copy number profiles derived from summing across all single nuclei 
within the same cluster, showing high concordance between hybrid (green) and DNA-only (red) datasets. C 
RNA expression analysis of the hybrid data (green) compared to RNA-only data (blue). To the far left, hybrid 
and RNA-only data are co-clustered into eight expression clusters: two tumor expression clusters (Ta and Tb) 
and six somatic cell types—fibroblasts (F), epithelial cells (EP), endothelial cells (EC), T-cells, monocytes, and 
plasma cells. These merged clusters are then segregated by hybrid or RNA-only origin. To the far right, each 
protocol’s data are independently clustered into the same eight expression clusters. The central heatmaps 
quantify the agreement between the merged clusters with the respective hybrid and RNA-only clusters. 
Analogous plots for the other four patients are presented in the supplementary figures
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DNA layer

Figure  2A compares the DNA layer from the hybrid data (left) with the data from 
the DNA-only BAG protocol (right). The central scatter plots display the clustering 
results in UMAP space, with the hybrid data (in the green box) above and the DNA-
only data (in the red box) below. Each point represents a single nucleus, color-coded 
by its DNA copy number cluster. Both methods resolved six clusters, which we manu-
ally aligned based on pattern similarity. The N cluster includes cells with a typical dip-
loid profile, whereas the Nx cluster represents a subpopulation of diploid cells with 
loss of an X chromosome. The remaining clusters—A, B, C, and D—exhibit varied 
aneuploid copy number profiles. The adjacent heatmaps illustrate the distribution of 
copy number changes across the genome, with deletions in blue, amplifications in red, 
and the diploid state in white. Each single cell is represented by a column and the cells 
are grouped by their DNA cluster.

To verify the congruence of profiles between platforms, we compared the average 
copy number profiles for each cluster in Fig. 2B, with DNA-only data in red and the 
DNA layer of the hybrid data in green. To quantify the similarity of clustering results 
between the two protocols, we used the multinomial wheel approach to measure the 
proximity of every single tumor nucleus to the centroids of tumor clones determined 
both by its own protocol (either hybrid or DNA-only) and by the other protocol. As 
shown in Additional file  3: Fig. S10, projecting DNA-only data to either DNA-only 
multinomial states or hybrid multinomial states showed no signal reduction (84.5% 
versus 84.5% nuclei within 2 units to the centroids), and similarly high concordance 
was observed when projecting hybrid data to either hybrid multinomial states or 
DNA-only multinomial states (77.2% versus 68.9% nuclei within 2 units to the cen-
troids). Additionally, we examined heterozygous SNPs in both platforms and found 
similar patterns of loss of heterozygosity (LoH) and allele imbalance. These allele 
imbalance patterns (Additional file 3: Fig. S11) align with the copy number calls, in 
that when the copy number is an odd integer, allele imbalance is always observed.

RNA layer

We next analyzed the RNA layer of hybrid data compared to the RNA-only protocol. 
We first combined all the nuclei from both the hybrid and RNA-only platforms and 
clustered the integrated dataset into 8 clusters as shown in Fig. 2C (leftmost “merged 
UMAP” plot). While each cluster is labeled with a unique identifier, hybrid nuclei 
are shown in blue, and RNA-only nuclei in red. We then split the merged dataset by 
experimental origin with hybrid nuclei shown above and RNA-only nuclei below. The 
rightmost plots in the panel reflect the clustering of each dataset independently into 
the same eight identified categories.

We reserve a discussion of the differentially expressed genes for later, but currently 
label the clusters as monocytes, T-cells, F (fibroblasts), EC (endothelial), EP (epithe-
lial), plasma cells, and two distinct tumor RNA clusters, Ta and Tb. The central agree-
ment matrices, formatted as heatmaps, show the consistency of cell classification 
across platforms within the merged dataset. The top matrix compares hybrid clus-
ter assignments to merged dataset classifications, while the bottom does the same for 
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Fig. 3  Connecting genomic and transcriptomic data across five tumor samples using alluvial diagrams. A–E 
Summary of the hybrid data analysis of tumor tissue samples from five individual patients, show the various 
connections between genomic and transcriptomic landscapes. For each patient: The “genome” sections on 
the left, bordered in red, display the DNA layer information, including UMAP visualizations of single nuclei 
colored by genomic cluster identities and accompanying heatmaps showing copy number variations across 
the genome. The “transcriptome” sections, bordered in blue, present the RNA layer data, including UMAP 
plots of single nuclei colored by expression cluster identities. These are accompanied by heatmaps of marker 
genes that are distinctly upregulated within specific expression clusters. At the center of each panel, alluvial 
diagrams connect the DNA and RNA data, linking genomic cluster identities (left) to the RNA expression 
clusters (right). The thickness of the flow lines represents the proportion of nuclei that belong to a specific 
genomic cluster (X) and an expression cluster (Y), illustrating the integrative analysis facilitated by the hybrid 
BAG-seq platform
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RNA-only data. For both datasets, a significant proportion (95%) of cells align diago-
nally, confirming that cluster identities are well preserved across the two platforms.

Profiling genome and transcriptome of tumor samples using hybrid data

For each of the five tumors, we clustered the DNA and RNA layers of the hybrid data, 
respectively (Fig.  3). The DNA clusters are presented on the far left, accompanied by 
copy number heatmaps similar to the previous illustrations. On the far right, RNA clus-
ters are displayed, along with a heatmap that illustrates the relative expression levels 
across sets of differentially expressed genes (blue for low expression, red for high).

Based on the dual DNA and RNA identities assigned to single cells in the hybrid data-
set, we quantified the frequency with which cells from a specific DNA cluster appear in 
a given RNA cluster. This cross-layer association is visualized using alluvial diagrams. 
For example, in panel A from Tumor Sample 1, the alluvial diagram illustrates that the 
diploid N cells map exclusively with non-malignant expression profiles (macrophage, 
F + EC, and EP). Conversely, both tumor clones A1 and B1 map to the two tumor expres-
sion profiles (Ta1 and Tb1).

We now delve into the unique characteristics of each of the five tumor specimens, 
drawing comprehensive insights from both DNA and RNA layers. Focusing on the tumor 
genome projection patterns, each of the five tumors displayed a different projection pat-
tern, and we observed almost all the possible patterns. To classify projections, we used 
a set of letters and numbers to represent the tumor genome and tumor RNA clusters, 
respectively. For example, [A:1,2; B:2] indicates tumor clone A projected into RNA clus-
ters 1 and 2, whereas tumor clone B from the same primary tumor tissue projected only 
into RNA cluster 2. We have seen: distinct tumor clones could each project into distinct 
expression clusters (e.g., [A:1; B:2] for Tumor 5), into shared clusters (e.g., [A:1,2; B:1,2] 
for Tumor 1), or into a combination of distinct and shared clusters (e.g., [A:1,2; B:1] for 
Tumor 4). Alternatively, multiple DNA clones could project into a single RNA cluster 
(e.g., [A:1; B:1; C:2; D:2] for Tumor 2), or a single tumor clone could project into two 
RNA clusters (e.g., [A:1,2] for Tumor 3). Furthermore, based on the alluvial plots and 
the underlying tumor cell identity contingency tables, we calculated the Rand Index and 
Adjusted Rand Index to quantify the correspondence between DNA and RNA cluster 
assignments (Additional file 4: Table S3). Higher values of these indices indicate stronger 
concordance between the two clustering schemes. Tumors 2 and 5, which showed more 
evident alignment between DNA and RNA clusters, exhibited higher Rand Index and 
Adjusted Rand Index values compared to Tumors 1, 3, and 4. The latter tumors displayed 
more mixed projections across modalities, suggesting greater transcriptional plasticity.

With the details of the five cases using the hybrid protocol provided in Additional 
file  5: Supplementary text, we briefly highlight the important findings regarding these 
respective cases here.

Tumor 1 was a uterine carcinosarcoma, which is pathologically observed as a biphasic 
tumor containing both carcinomatous and sarcomatous components. Echoing this in the 
RNA analyses, cluster Ta1 showed high expression of fibroblast-specific genes, includ-
ing FGFR3, COL9A2, and COL27A1, in keeping with the pathological classification of 
this tumor as having a sarcomatous component, whereas these fibroblast genes had 
lower expression in cluster Tb1. This separation between Ta1 and Tb1 in gene expression 
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patterns was consistent across the hybrid, RNA-only BAG protocol, and 10 × Chromium 
v3 platform (Additional file  3: Fig. S12). We found that the two tumor clones, which 
mainly differ in copy number of chromosome 13, each project equally to tumor RNA 
clusters Ta1 and Tb1. To explore whether any hidden patterns were missed during clus-
tering, we projected DNA-layer clone identities onto the RNA-layer UMAP space and 
found that nuclei from both DNA clones are randomly interspersed, showing little cor-
respondence between DNA and RNA clusters (Additional file 3: Fig. S13). Similarly, ran-
domly interspersed patterns were observed when projecting RNA-layer cluster identities 
onto the DNA-layer UMAP coordinates. Tumor 2 is a uterine serous carcinoma and pre-
sents a more complex DNA and RNA landscape than Tumor 1. The tumor sample served 
as our example in the previous section comparing the BAG platforms (Fig. 2). In contrast 
to Tumor 1, the DNA-RNA correspondence in Tumor 2 is visually more straightforward: 
tumor DNA clones A2 and B2 mainly project to RNA cluster Ta2, while clones C2 and 
D2 correspond to Tb2. Regarding resolution of the RNA-layer clustering of the hybrid 
protocol, we stopped at the hierarchical level where both the hybrid and RNA-only pro-
tocol yielded consistent clustering patterns and featured genes. We did not pursue finer 
subdivisions of RNA clusters that appeared in only one protocol. Given the hierarchical 
nature of RNA clustering, we report the top-level, biologically meaningful RNA clusters 
for correspondence analyses and alluvial plots. This rule applies to all five cases. How-
ever, in cases where distinct DNA clones are associated with a shared RNA expression 
profile, such as A2 and B2 with Ta2, we further dissect the RNA cluster to test whether 
these DNA subgroups differ in gene expression. To assess how copy number variation 
affects gene expression, we compared gene expression profiles between the subgroups 
Ta2-A2 and Ta2-B2, as well as Tb2-C2 versus Tb2-D2, as shown in Additional file 3: Fig. 
S14. The top genes separating these subgroups are not necessarily located in regions 
with copy number differences that distinguish the two DNA clones.

Tumor 3 is an endometrial adenocarcinoma. It contains a single tumor DNA clone 
that projects to two distinct RNA clusters—one estrogen receptor (ER) positive and the 
other ER negative. This observation is consistent with the pathological findings, with the 
immunohistochemistry (IHC) images showing that ER-positive and ER-negative tumor 
cells are spatially intermixed within the tissue (Additional file 3: Fig. S15).

Tumor 4 is another uterine carcinosarcoma case. Unlike the other carcinosarcoma 
case Tumor 1, the tumor cells here globally exhibit sarcomatous-like features, with 
one RNA cluster, Ta4, comprising about 90% of the tumor cells. These cells are pro-
portionally derived from two distinct tumor DNA clones, A4 and B4, which show 
substantial differences in copy number. In contrast to this major cluster, a smaller 
tumor cluster, Tb4, exhibits upregulation of genes related to cytoskeletal organi-
zation, cell motility, protein synthesis, and cellular metabolism, and is primarily 
derived from clone A4. In addition, unlike the first three cases, a separate RNA clus-
ter characterized by proliferation markers is clearly distinguishable at this cluster-
ing resolution, but disproportionately comes from one tumor DNA clone A4. As in 
previous cases, when multiple DNA clones project to a single RNA cluster, we per-
formed differential expression analysis between the DNA-defined subgroups, in this 
case, Ta4-A4 and Ta4-B4. While there are significantly differentially expressed genes 
between these two subgroups (Additional file  3: Fig. S16A), the projections of A4 
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and B4 onto Ta4 appear randomly intermixed in the RNA UMAP space (Additional 
file 3: Fig. S16B), similar to what was observed in the tumor RNA clusters of Tumor 
1. This suggests limited correspondence between DNA copy number variation and 
RNA expression, despite the much more pronounced genomic differences between 
clones A4 and B4 compared to the differences between A1 and B1.

Tumor 5 is a uterine leiomyosarcoma, with the most intuitively straightforward tumor 
DNA-RNA correspondence among these five cases, as it exhibits a nearly one-to-one 
mapping between the two tumor DNA clones and two RNA clusters, despite some 
cross-projections. Similar to Tumor 4, an RNA cluster representing proliferating cells 
is distinguishable at this hierarchical level, but unlike Tumor 4, both tumor DNA clones 
proportionally contribute to this cluster Tc.

Combined clustering of all patient samples

Integrative clustering analysis and cluster phylogeny

In our previous sections, we examined one patient at a time, while in this section, we aim 
to understand how patient expression profiles interrelate and potentially achieve finer 
resolution in our clustering analysis. To gain such a global picture of the hybrid data, we 
performed cluster analysis on the combined data from all patients, separately for RNA 
layer and DNA layer, as demonstrated in Fig. 4. For RNA layer clustering, we lowered 
the threshold for RNA template count from 400 to 300. This analysis includes hybrid 
data from the five tumors (Tumor i) presented in the previous section, as well as normal 
tissue samples from patients 1, 2, and 4 (Normal i). We then explore which expression 
clusters map to which patient and within each patient to which genome cluster, diploid 
copy number (flat), diploid copy number with one chromosome X (X-loss), or complex 
aneuploid genome (CN +). In this way, we reveal diverse and common cellular and func-
tional repertoires. These results are summarized in Table 1.

Specifically, our gene expression clustering procedure incorporates several novel fea-
tures, which we detail below for clarity. First, we include 3500 “empty” cells derived from 
the RNA layer of DNA-only BAGs. These empty cells were clustered together in Fig. 4A. 
This cluster also attracts hybrid BAGs with severe RNA template depletion. Overall, 
2.4% of hybrid cells coalesce into the empty state.

As before, we use Seurat’s FindClusters and UMAP functions to cluster and display 
40,149 nuclei, which uses the UMAP coordinates to visualize the single cells, as shown 
in Fig.  4A. After the initial clustering, we further resolved the diploid cells to deline-
ate subpopulations, described in the next section. Specifically, we chose four sub-regions 
of the initial UMAP (blood elements, fibroblasts, endothelial cells, epithelial cells) for 
further subclustering. Given the single-cell pool’s diverse cell type composition—rang-
ing from tumor, epithelial, endothelial, myeloid, etc. —an iterative clustering approach 
is a reasonable strategy. For the tumor subclusters, we adopted the case-specific cluster 
information defined in the previous section.

We use UMAP coordinates to obtain a planar representation of the cells, and our 
method of multinomial analysis to color the cells by expression type. The aggregate of 
templates in each subcluster forms a gene probability vector, wherein the total number 
of templates mapping to a gene is normalized by the total number of templates mapping 
to any gene, resulting in a probability distribution. This probability vector determines a 
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multinomial distribution for each cluster that in turn, assigns a cluster probability for 
each single cell based on its gene counts. In Fig. 4A, each point’s color reflects the cluster 
most likely to have generated the gene counts in that cell.

Fig. 4  Integrated cluster analysis and unique cluster identification using aggregate tumor and normal 
tissue data from all patients. A UMAP scatter plot showing the RNA layer data from both tumor and normal 
tissue samples across all patients, totaling 40,149 nuclei. Stromal clusters are defined through iterative 
subclustering, while tumor subclusters are defined from individual tumor analyses as presented in Fig. 3. 
An empty cluster (gray) consists of nuclei mainly from the RNA layer of seven DNA-only experiments. Each 
point is colored according to the cluster with the highest likelihood as determined by a multinomial model. 
B The neighbor-joining tree illustrates the relationships among the stromal and tumor subtypes. The tree is 
computed from inter-cluster distances based on multinomial distributions. C The source of nuclei from the 
hybrid protocol used in the combined analyses. D Combined DNA clustering after removing nuclei clustered 
to the “empty” state of the RNA clustering in A. E–J The tumor-genome (blue) and normal-genome (red) 
nuclei projections on the RNA UMAP space for six tissue samples. The tumor-genome or normal-genome 
information is determined by the combined DNA analysis in C. Unique stromal components specific to 
certain tissues are circled in dashed lines and indicated by arrows in I and J, and marked in B 
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We then use the multinomial distributions to establish a distance metric between any 
two subclusters, each with its own multinomial distribution. The asymmetric disparity 
between two multinomial distributions, A and B, is determined by simulation, in which 
we determine the number of unique RNA-layer templates of a cell simulated from distri-
bution A that are needed to preferentially assign the cell to A rather than to B, for some 
given confidence threshold. We then symmetrize the disparity measure, combining A 
to B and B to A. Clusters with distinct profiles will require fewer templates to estab-
lish separation, while those with similar profiles require more templates for differentia-
tion. We invert this measure to establish a pairwise distance (Additional file 3: Fig. S17) 
and use neighbor-joining to build a phylogeny over the expression clusters (Fig. 4B). We 
rank the genes that best separate two sets of expression clusters, A and B, using bino-
mial methods, rather than the FindMarkers function within Seurat. We use the ratio of 
total templates in A and B to determine the null expectation of the ratio for any given 
gene. We then apply a binomial test to the observed counts for each gene in A and B. 
The marker genes distinguishing tumor expressional subclusters for each patient can be 
found in Additional file 6: Table S4, while those for stroma clusters across all five patients 
are listed in Additional file 7: Table S5.

On the DNA front, from a total of 35,369 nuclei from the sources indicated in Fig. 4C 
studied using the hybrid protocol, after removing the 2.4% (859 out of 35,369) low-
quality nuclei that were clustered into the empty state in the gene expression cluster-
ing result, we clustered the DNA-layer of all the remaining nuclei based on genomic 
bin counts. Similar to the RNA clustering result, in the DNA space in Fig. 4D, tumor-
genome clusters were quite distinct from the normal-genome clusters, and distinct 
clones within a patient mapped nearby to each other or merged into a single cluster at 
this resolution of clustering.

Common and unique features in stromal subpopulations

Combining RNA and DNA clustering information, the projections of nuclei from six 
sample sources into the combined RNA space (Fig. 4A) are shown in Fig. 4E–J, where 

Table 1  Co-clustering counts across all samples. This table presents the distribution of nuclei for 
each patient (P1 to P5) and tissue sample (Tumor or Normal) categorized by DNA cluster: diploid 
(flat, white), diploid with one X chromosome (X-loss, blue), and aneuploid (CN+, red). It details the 
total count of nuclei within each category, along with sub-counts for each expression cluster
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nuclei from a given sample are highlighted either in blue or red, depending on whether 
they are classified by DNA as tumor or normal genomes. In each panel, the nuclei from 
other samples are colored in light gray. The projections of the tumor genomes are very 
distinct between patients, well separated from each other and the projections of the nor-
mal genomes.

Although the normal-genome stromal clusters are mostly shared between patients, the 
distribution and abundance of different subtypes vary significantly by patient and sam-
ple. For example, there are substantial differences in immune cell proportions among the 
five patients, as illustrated in Fig. 4E–J with more quantitative data in Table 1, suggest-
ing variation in tumor microenvironment and immune response. In addition, there are 
several gene expression clusters that only belong to certain tissues and certain patients, 
implying influences from tumor microenvironments and personal genomes. For exam-
ple, the epithelial-like cluster EP4 (Fig. 4I, indicated by the brown arrow) from the tumor 
tissue of patient 1 is significantly different from the EP3 cluster (Fig.  4J, indicated by 
the green arrow) from the distal normal uterine site in the same patient, and they are 
both distinct from the main epithelial cluster EP1. These two clusters are also pointed 
to by arrows in the hierarchical wheel in Fig. 4B, far away from each other. We believe 
these distinct clusters are not due to batch effects or template counts, not only because 
they have distinct and biologically plausible gene expression patterns (Additional file 7: 
Table S5), but also because these distinct clusters overlapped well in experimental rep-
licates and showed the same patterns in RNA-only datasets (Additional file 2: Table S2). 
These unique stromal subpopulations will be discussed in detail in the following section.

From a hierarchical and phylogenetic perspective, the multinomial tree (Fig. 4B) pro-
vides a more quantitative view of these diverse stromal and tumor RNA clusters. The 
branches of the tree largely preserve cell-type categories. The blood elements share a 
common branch (blue labels) with a myeloid-derived sub-branch (dark blue) distinct 
from lymphocytes (light blue); a branch of epithelial cells (orange); fibroblasts (purple) 
and endothelial cells (green). Most of the subclusters fall on their expected branch. The 
exception includes a single sub-branch containing two epithelial subclusters, EP4 and 
EP5, and osteoclasts, a myeloid cell type. In general, clusters that are close together in 
the UMAP (Fig. 4A) share a common branch in the tree (Fig. 4B). The major exception is 
cluster F5, B-cell-like fibroblasts, which are near the B-cells in the UMAP but nearer to 
the fibroblasts in the tree.

The tumor clones from each patient occupy distinct sub-branches in the tree. The 
uterine leiomyosarcoma (purple), a muscle-derived tumor, has expression subclusters on 
the fibroblast branch of the tree. The other four tumors share a deep branch with the 
epithelial cells. One sub-branch contains the two uterine carcinosarcomas (red and dark 
red). Nearer the epithelial cells in the tree, are the endometrial adenocarcinoma (green) 
and nearer still the uterine serous carcinoma (blue). The branch lengths provide a rela-
tive measure of similarity, showing that Ta1 and Tb1 are highly similar as are Ta3 and 
Tb3. In contrast, the subclones of Ta2 and Tb2 are far apart.

Multinomial wheel and crossovers

In the previous section, we observed that the majority of nuclei exhibit concordant DNA 
and RNA profiles: diploid DNA with stromal RNA expression (flat, N) or complex DNA 
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patterns with tumor RNA expression (CN +, T). These concordant nuclei constitute the 
expected biological behavior; however, there are a subset of cells that do not match this 
pattern. Additional file  8: Table  S6 shows the counts for each patient of cells that are 
diploid or complex (flat or CN +) and map to normal clusters or tumor clusters (N or 
T). Across all patients and tissue samples, 1–5% of nuclei have flat copy number profiles 
and tumor expression patterns, or a combination of copy number variations and stro-
mal expression patterns. Although accounting for a small proportion of the total dataset, 
these crossover nuclei may represent an interesting population. Alternatively, they may 
be the result of unresolved doublet collisions [44]. Additional file 9: Table S7 summarizes 
the counts and calculates the proportion of concordant and crossover nuclei per patient.

To determine if crossover nuclei are a unique biological state or collision artifacts, we 
employed the multinomial wheel to differentiate mixed states. Integrating DNA-layer 
data across all hybrid-protocol experiments, we constructed a multinomial wheel with 
tumor clusters, diploid cells and diploid cells with X-loss as the individual spokes of the 
wheel (Additional file 3: Fig. S18A). Some tumor DNA clusters are so similar (A1 and B1, 
A4 and B4) that we collapse each of those pairs into a single node (A1/B1 and A4/B4). For 
each pair of the 11 vertices, we created 9 equally spaced sampling states, resulting in a 
multinomial wheel with (11 choose 2) = 55 spokes and 9*(11 choose 2) = 495 intermedi-
ate states.

From the DNA counts of each nucleus, we evaluate the probability that those obser-
vations are derived from each of the (495 + 11) = 506 multinomial distributions in the 
wheel. We assign each nucleus to the node with the highest posterior probability. Nota-
bly, more than 60% of nuclei align with a “pure” cluster on the multinomial wheel by 
residing on a vertex, and 85% are situated within two units’ distance from a pure clus-
ter (Additional file  3: Fig. S18A). Informed by two mixture experiments, detailed in 
the Methods and Additional file 3: Fig. S18B–E, we apply a collision filter, marking for 
removal nuclei that are 3 or more units from a vertex and fall between a normal DNA 
cluster (N, Nx) and a tumor DNA cluster (Ai, Bi, etc.). Additional file 7: Table S5 and 
Additional file 8: Table S6 (filtered nuclei) show the counts after applying the collision 
filter.

If crossovers are the result of cryptic collisions, the collision filter will disproportion-
ately reduce the frequency of crossovers compared to the concordant nuclei between the 
DNA and RNA layers. Indeed, our observations align with these expectations: while the 
collision filter removed 14% of concordant nuclei, it removed a substantial 71% of cross-
over nuclei (Additional file 8: Table S6). Removing collisions does not alter the results 
presented in the previous section. A version of Table 1 restricted to nuclei that pass the 
collision filter can be found in Additional file 10: Table S8.

The multinomial wheel can be used for much more than detecting doublets. It quanti-
tatively measures how much a single cell deviates from the centroids of major clusters in 
DNA or RNA space and can provide insights into genomic heterogeneity, particularly for 
cells transitioning between states. It does not rely on PCA or UMAP coordinates, and by 
using only cluster centroids as reference points, it offers an interpretable, coordinate-free 
metric for cell-wise distance that aids interpretation of nonlinear, reduced-dimensional 
embeddings such as UMAP. For example, in Additional file  3: Fig. S19, we extracted 
tumor cells from three cases in which only two major tumor clones were present and 
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projected them onto a one-dimensional space based on their best multinomial probabil-
ity. The proportion of cells classified as “in transition” by the one-dimensional multino-
mial wheel agrees with the intuitive spatial distribution observed in UMAP space and is 
significantly higher than expected from doublet rates, suggesting the presence of inter-
mediate or transitioning cells that share features of both clones.

Loss of X chromosome in stromal lineage

In this final analysis, we revisit the occurrence of X chromosome loss in diploid cells, 
particularly noted in the plasma cell population from patient 2’s tumor sample. X chro-
mosome loss, while reported before in various tissues associated with cancer [45, 46] 
or aging [47, 48], presented an unusual prevalence in our dataset among the stromal 
cell types in the tissue. For example, about half of the plasma cells in patient 2 exhib-
ited X chromosome loss, a finding that merited further investigation into its biological 
implications.

To determine whether the X chromosome loss was the result of a clonal event or 
occurred independently across different cells, we performed a haplotype analysis: If 
all affected cells lost the same X chromosome, it would suggest a common ancestry; 
whereas if they lost different copies of the X, it would point to independent, convergent 
events. The tumor genome from patient 2 has two subclones with X-loss (A2, B2), and we 
used these two subclones to phase the SNPs on the X chromosome. Upon aggregating 
SNPs within each nucleus, we found that the Plasma-Nx nuclei share a common hap-
lotype, suggesting a clonal nature, whereas the T-cell-Nx population shows both haplo-
types (Fig. 5A). Given the robust coverage of the Plasma-N and Plasma-Nx subclusters, 
we were able to conduct a differential analysis on their aggregate gene expression data. 
As shown in Fig. 5B, there are four genes with significantly different expressions: XIST 
and TSIX are under-expressed in the X-loss population, affirming the X-loss observed in 
the DNA layer. The other two genes are IGHG1 and IGHG2, hinting at a potential com-
positional difference between these plasma cell populations. As XIST RNA is required 
for X chromosome inactivation and is only expressed from the inactive X chromosome 
[49–51], these results also verify that nuclei from the “Nx” DNA clone lost their inacti-
vated X chromosomes.

Considering the distinct IGH expression in the plasma subclusters, we further inves-
tigated the clonality of the Plasma-Nx population through VDJ recombination analy-
sis. Using MiXCR [52] to count the unique VDJ recombination patterns, our analysis 
strongly suggests that the Plasma-Nx cells are primarily derived from a singular B-cell 
lineage expansion, in contrast to the Plasma-N cells, which originated from a diverse 
array of lineages (Fig. 5C).

To corroborate our findings and further visualize the loss of the X chromosome, we 
applied RNAScope technology on the same tumor tissue from patient 2. The spatial 
transcriptomics images (Fig.  5D–I) provide a vivid illustration of the XIST expression 
patterns. DAPI staining (blue) marks the nuclei, while XIST (red) and IGHG (green) 
show specific gene expressions. In Fig. 5D, half of the cells display no XIST signal, indi-
cating X-loss, likely from tumor A2 or B2 clones with deletions in the X chromosome. 
Figure 5E and F show IGHG, the plasma cell marker, and XIST expression within two 
different regions, showing two opposite phenomena. While most of the plasma cells in 
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Fig. 5E contain the XIST signal, implying the presence of the inactivated X chromosome; 
the majority of the plasma cells in Fig. 5F lack the XIST signal, suggesting that these cells 
have lost the inactivated X chromosome. Both the plasma cells with and without XIST 
signals were found spatially localized in the tumor microenvironment.

We next extended our X-loss analysis to the other tissue samples. For patient 1, we 
noted a 5% X-loss in the diploid component of the normal distal sample, predominantly 
in the smooth muscle (F2) expression cluster. However, establishing clonality in this con-
text was challenging because the tumor subclones in this patient retained both X chro-
mosomes, making it difficult to phase the lost X haplotype for validation. In patient 4, we 

Fig. 5  Analysis of chromosome X loss in somatic cells of the primary tumor 2. A Bar plot showing the ratio 
of X-haplotype observations in the X-loss populations of plasma (Plasma-Nx) and T-cell (T-cell-Nx) nuclei 
from patient 2. Tumor subclones A2 and B2 with only one copy of the chromosome X are used to phase the 
X chromosome SNPs in the Plasma-Nx and T-cell-Nx populations as belonging to one haplotype (red, match 
A2/B2) or the other (gray, mismatch A2/B2). T-cell-Nx nuclei exhibit a balanced distribution of SNVs from both 
haplotypes, while Plasma-Nx nuclei show a pronounced bias toward the A2/B2 haplotype. B A volcano plot 
shows the genes with statistically significant expression differences between diploid plasma cells (Plasma-N) 
and plasma cells with one X chromosome (Plasma-Nx). C Pie charts showing VDJ recombination results for 
Plasma-N and Plasma-Nx nuclei. Each color represents a unique B-cell clone identified by its CDR3 sequence, 
with the size indicating the clone’s prevalence. The Plasma-N chart shows a diverse clonal makeup with few 
dominant clones, while the Plasma-Nx chart shows a clear dominance of one lineage (red), constituting 80% 
of the population and matching the signature of the primary clone in Plasma-N. D–I Spatial transcriptomics 
images illustrating XIST expression in the same tumor tissue of patient 2. D RNAscope images displaying 
the expression of XIST (red) along with DAPI staining of nuclei, showing half of the cells with no XIST signal 
detection. E, F IGHG (green, plasma cell marker) and XIST (red) expression along with DAPI staining of nuclei. 
E shows a region consisting of normal plasma cells with XIST gene expression, while F shows another region 
of plasma cells with no XIST red dots detected. G–I are zoomed-in images of D–F, respectively
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identified significant X chromosome loss in the blood component of the normal distal 
sample, particularly in naïve and active T-cell populations. Additionally, a smaller but 
notable percentage of fibroblast ECM and smooth muscle cells (F1 and F2) also exhibited 
X-loss. In contrast, patients 3 and 5 displayed minimal X chromosome loss, accounting 
for 0.5% of the diploid population.

Discussion
In our analysis of the hybrid data, we observed a small but significant population of cells 
that appear to violate their identities: tumor cells with normal expression and diploid 
cells with tumor expression. The former suggests a sort of mimicry in which the cancer 
cells appear like normal stroma, while the latter may point to a pre-aneuploid tumor 
precursor state or stromal cells dramatically altered by the tumor microenvironment. 
However, the application of a collision detection method significantly reduced these 
crossover populations. This reduction has tempered our initial belief in the prevalence 
of mimicry or progenitor states as observed in the hybrid dataset. The existence of such 
cells cannot be completely dismissed, and further refinements to the method, larger 
datasets, and additional data types will be required to determine their frequency and 
biological significance.

The current version of hybrid BAG-seq yields relatively low DNA-layer template 
counts, lower than those obtained from the DNA-only protocol. This is likely due, in 
part, to suboptimal primer denaturation and hybridization time and temperature condi-
tions, which have not yet been fully optimized and could be improved in the future to 
increase yield. In addition, we applied very conservative filtering criteria for DNA-layer 
molecules to ensure copy number accuracy-restricting analysis to intergenic templates 
and excluding hotspot regions. Furthermore, the majority of captured templates, espe-
cially for nuclei samples, actually fall within intronic regions, which we did not use for 
either DNA-layer or RNA-layer analyses in this work, but they are worth further investi-
gation to develop better algorithms for assignment to the RNA or DNA layer. Regarding 
RNA yield, we used NST buffer for nuclei isolation but did not test alternative methods 
that may better preserve RNA integrity and potentially further enhance recovery for dif-
ferent tissue types [53–56].

Most tumors exhibit detectable copy number differences [57]. Because of the insta-
bility of aneuploid genomes during replication, we can often find unique copy number 
changes that trace a tumor’s lineage. As we have observed in this study, even stromal 
cells may carry detectable copy number changes that mark their lineal descent. Unfor-
tunately, some tumors do not have copy number changes and many bifurcations in the 
tumor phylogeny go unremarked by copy number events, and the vast majority of phy-
logenic branches of the stroma do not carry a unique, detectable copy difference. There-
fore, to enhance our ability to identify unique subclones in both the tumor and stroma, 
we are working on smaller genomic changes such as single nucleotide variants (SNVs) 
[58–61], small insertions and deletions (indels), and microsatellite length variations 
(MSLVs). Both our previous single-omic DNA/RNA BAG-seq and the current hybrid 
BAG-seq are based on primer hybridization and extension. This foundation enables a 
natural extension of BAG-seq as a target-specific capture platform for enriching tumor 
or germline variants, whether located on chromosomal or mitochondrial sequences. 
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These developments promise to provide detailed insights into tumor phylogeny and 
could positively affect the DNA capture yield.

Although the DNA analyses in this study were mostly based on coverage-derived copy 
number information, we also performed loss-of-heterozygosity (LoH) analyses using 
germline SNPs from matched blood whole-genome sequencing. These SNP-based analy-
ses were used to validate cluster differences inferred from copy number variation and 
also to provide additional phylogenetic information. In the same vein, this DNA-RNA 
paired dataset also presents an opportunity to explore allele-specific expression (ASE) in 
the RNA layer, which could potentially help resolve subclones with similar copy number 
profiles but different allelic gene expression patterns. A transcriptome-wide ASE analy-
sis is for future studies, but we have included a proof-of-concept example by analyzing 
RNA-layer data from nuclei of the A2 and B2 DNA clones, both projecting to the same 
RNA cluster Ta2. By examining all genes on chromosome 10 with sufficient coverage, we 
observed significant and consistent allele ratio differences between the A2 and B2 aggre-
gates (Additional file 3: Fig. S20), echoing the LoH patterns identified in the DNA-only 
data (Additional file 3: Fig. S11) and supporting the potential of RNA-layer allele analysis 
to further refine subclonal architecture and DNA-to-RNA cluster projections.

Building on its capacity to detect genomic mutations, future versions of the BAG plat-
form could also be adapted to incorporate epigenetic features. For example, transposons 
modified with Acrydite could be incorporated via transposase to access open chromatin 
regions, which can be covalently linked to BAGs. This linkage of original genomic DNA 
molecules to BAGs would also allow for parallel genomic variation and epigenetic DNA 
methylation analyses.

The RNAscope assay on X chromosome loss in this study briefly touches on the poten-
tial of using spatial transcriptomics to image stromal mutations, which are difficult to 
validate or infer using single-omic sequencing techniques. In the spatial context, hybrid 
BAG-seq holds even greater promise. With the advancement of spatial platforms like 
Xenium, Visium, and MERSCOPE that can resolve hundreds of genes across millions 
of cells, hybrid BAGs can guide the selection of informative genes that best represent 
tumor subclones, somatic variations, and even stromal mutations, thereby empower-
ing spatial transcriptomics assays for genomic lineage tracing and mutation-informed 
mapping.

Conclusions
RNA-only data cannot definitively distinguish a stromal expression state from that of 
the tumor or tumor precursors. Identifying which expression patterns belong to stromal 
cells and which belong to tumor cells becomes particularly challenging when stromal 
populations exhibit atypical expression or when tumor cells mimic normal cells. Moreo-
ver, there is little hope of connecting tumor genomic changes marked by DNA clonality 
with changes in expression states marked by RNA clusters.

To close this gap in our understanding requires integrating single-cell DNA and RNA 
together from the same nuclei, ideally with thousands of nuclei per tissue sample. We 
achieved this by leveraging our BAG (balls of acrylamide gel) platform. The BAG plat-
form uses a microfluidics oil-emulsion technique to co-encapsulate single nuclei with 
Acrydite-modified primers and acrylamide monomers into a droplet. The primers 
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hybridize to the cellular nucleic acids, which are subsequently copolymerized to convert 
the droplet into a permeable gel matrix or BAG. Depending on primer design, hybridiza-
tion conditions, and polymerases, BAGs can capture either DNA or RNA alone, as we 
have previously shown.

In this paper, we introduce a new method that captures DNA and RNA together in 
hybrid BAGs. We demonstrate that hybrid BAGs provide sequence data that are consist-
ent with those obtained from DNA-only or RNA-only BAGs. The hybrid data are suf-
ficient to establish the same genomic and expression identities identified by the other 
two methods. In the five patients we examined, we observed comparable and consistent 
clusters (Fig. 2, Additional file 3: Figs. S6–S9). This includes even subtle features, such as 
a single 43 MB deletion that distinguished two tumor subclones from patient 1, and loss 
of the X chromosome in some diploid cells.

Having established the effectiveness of the hybrid method for each modality, we then 
explored the interplay between the DNA and RNA layers. We found that the combina-
tion of expression and genomic data from hybrid BAGs clarified the subpopulation com-
position of the primary site of tumors. We used several standard tools from the Seurat 
package, including cell type clustering, subset selection, and UMAP visualizations. We 
also developed additional modules: (1) using Seurat to cluster the DNA copy number 
data; (2) alluvial plots to visualize the mappings of genomic clusters into expression 
clusters; (3) multinomial methods to determine cell cluster membership and to filter 
collisions; (4) establishing distance metrics relating clusters; and (5) cluster back prop-
agation, which uses information from the DNA-layer to divide RNA clusters, and the 
reverse.

By examining the alluvial plots in Fig. 3, we note varied patterns of mapping between 
the tumor DNA clones and the RNA expression clusters. In patient 1, both A1 and B1 
map equally to the same two expression clusters and in similar proportions, strongly 
suggesting that the phenotypic flexibility of the tumor was preserved through the single-
cell bottleneck event that generated the B1 population. The tumor of patient 4 presents 
a more clinically advanced uterine carcinosarcoma. Its two tumor clonal populations 
both map to all three expression states, again suggesting that this diversity was preserved 
during tumor evolution. However, their proportional contributions to each expression 
state differ significantly. In contrast, patient 2 and patient 5 present a different story, with 
tumor cells demonstrating a marked dependency between genomic identity and RNA 
expression.

In cases where different tumor DNA clones project to the same RNA cluster, we use 
a process unique to hybrid data that we call back-propagation. In back-propagation, 
we use the DNA-layer identities to look for additional substructures in the RNA-layer 
expression states (and vice versa) and then test those groups for significant differences 
in expression. Subclustering obtained in this way usually does not emerge when cluster-
ing RNA-layer alone, or it does not appear at the same hierarchical level as other major 
tumor clusters, but the genes detected through this approach may have important impli-
cations for tumor evolution and could serve as lineage-specific expression markers.

In the combined data from all samples, we identified 23 distinct stromal expression 
clusters. The majority of these clusters (21 of 23) include nuclei from more than one 
patient, suggesting that many stromal cell types have consistent expression patterns 
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across individuals. In contrast, every tumor cluster occurs in one and only one patient 
with little in common between the tumor clusters from different patients.

By analyzing highly expressed genes, we accurately determined the likely cell type or 
state for most of these clusters. Our analysis revealed two stromal expression clusters 
unique to patient 1: a fibroblast population in the distal normal tissue with activation 
of the AP-1 pathway, and an epithelial population in the tumor tissue with unique 
makers for signaling and response to stimuli. This epithelial population was distinct 
in both the UMAP and the multinomial tree. Without the DNA-layer from the hybrid 
data, we could not have confidently concluded that this unique cluster derives from 
diploid cells.

While most of the diploid cells are copy number 2 everywhere (labeled as N), in 
every patient we identified a subset of diploid nuclei that exhibited the loss of an X 
chromosome (labeled Nx). While this phenomenon has been previously observed 
in both tumors and stromal populations, the hybrid BAGs provide new insights into 
their role in tumor biology. In patient 2, we identified an X-loss event in a significant 
proportion of the plasma cell and T-cell populations. Using the RNA data and the 
DNA data together, we determined that each plasma cell lost the same X chromo-
some, whereas the T-cells lost either one or the other equally. This strongly suggested 
that the plasma cell population may have a common origin. Comparing the expres-
sion profiles of plasma-N and plasma-Nx, we observed reduced expression of XIST 
and TSIX, in the Nx population, further confirming that the X-loss observed in the 
DNA layer is not a sequencing artifact but a genuine genomic event. Furthermore, 
the differential expression analysis showed differences between the IGH1 and IGH2 
genes. This led us to explore the VDJ recombination region, providing decisive evi-
dence of a clonal origin for this mutant plasma cell population.

Methods
Pulverization of frozen tissue samples in liquid nitrogen

All patient tissue samples were pulverized in liquid nitrogen (LN2) with a sterile mor-
tar and pestle prior to analysis. Mortar and pestles were submerged in LN2 and cooled 
to LN2 temperature. The cooled vessels were then partially filled with fresh LN2 and 
transferred to a basin containing a shallow pool of LN2. The presence of LN2 in both 
the mortar and basin helped maintain a constant temperature during the pulverization 
process and prevent sample heating due to friction. The tissue samples were then trans-
ferred to the sterile mortar, submerged in LN2, and pulverized until they were mostly a 
fine, homogeneous powder. Once pulverized, residual tissue material was scraped off the 
pestle back into the mortar with a sterile, LN2-cooled disposable spatula. The mortar 
was then removed from the basin to allow for the LN2 to evaporate out of the mortar. 
Subsequently, pulverized tissue was immediately collected with a fresh, sterile, LN2-
cooled disposable spatula into 2.0 mL DNA LoBind Eppendorf tubes submerged in LN2. 
Pulverized samples were placed on dry ice with the caps open to allow for temperature 
equilibration before closing the tubes, and then stored at − 80 °C until further use. All 
samples were pulverized with separate sterile mortar and pestles to avoid cross-contam-
ination between tumor and normal tissues.
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The sample cohort

We studied samples from five patients (patient 1–patient 5). The samples were from 
their uterine cancers (Tumor 1–Tumor 5), and in three patients also from an adjacent 
normal endometrial site (Normal 1, Normal 2, and Normal 4). For most samples (Nor-
mal 1, Tumor 1, Tumor 2, Tumor 3, Normal 4, Tumor 4, Tumor 5), we sequenced single 
nuclei of the same sample on each of three platforms: DNA-only, RNA-only, and the 
hybrid protocol. We performed comparison analyses and showed the validity of the 
hybrid protocol mainly using the above five trio data sets.

Hybrid BAG generation

A detailed step-by-step bench protocol is archived at protocols.io [62], and in this sec-
tion we highlight some critical steps in hybrid BAG generation. We dissolved the pul-
verized tissue in ice-cold NST detergent buffer [42] and stained it with DAPI. We 
performed single-nuclei sorting using DAPI-H vs. DAPI-A single-nuclei gate on a FAC-
SAria II SORP cell sorter to remove debris and clumps. We confirmed (data not shown) 
that single-nuclei sorting based on ploidy would not be able to distinguish cancer cells 
from normal cells because the hypodiploid peak of cancer cells often overlaps with the 
diploid peak of normal cells [42]. Single nuclei were loaded into the microfluidic device 
described in detail in a previous publication [35]. Nuclei were encapsulated into drop-
lets with an average diameter of 120 microns. For the capture of nucleic acids, we used 
5′ Acrydite oligonucleotides. All the Acrydite-modified oligonucleotides became cova-
lently copolymerized into the gel ball matrix. They also all contained, at their 5′ end, a 
universal PCR primer (UP1) for subsequent amplification. For RNA-only protocol, we 
used oligo-dT; for DNA-only protocol, we used random T/G primers and followed their 
respective published protocols [35]. To capture both RNA and DNA together in the new 
hybrid protocol, we used both Acrydite primer designs, but we altered the protocol in 
two important ways.

The first critical change was an incubation step at 85 °C for 5 min instead of 95 °C for 
12 min for DNA denaturation in the DNA-only protocol. Otherwise, we observed sig-
nificant destruction of the RNA.

The second critical change took place after the BAGs were formed. The RNA and 
genomic DNA trapped in the BAGs were used as templates to make covalently bound 
copies, and in the new hybrid protocol, both reverse transcriptase and DNA polymer-
ase were used. Template-switch-oligos were also introduced in the hybrid protocol so 
that the cDNA products which were covalently linked to the BAG matrix ended with a 
double-stranded region. This double-stranded DNA region included an NLA-III cleav-
age site. Subsequently, DNA polymerase (Klenow) was added to extend the captured 
genomic DNA from primers, forming a copy that was also covalently linked to the BAGs. 
Some, perhaps most, of the cDNA-mRNA sequence was further partially converted 
to double-stranded cDNA. BAGs were pooled and the covalently captured DNA and 
cDNA were cleaved with NLAIII leaving a sticky end used for subsequent extensions.

BAG barcodes and varietal tags were added to the 3′ ends of the covalently captured 
nucleic acids in split-and-pool reactions. The BAG barcodes were present on both the 
genomic-DNA and RNA copies. The varietal tags were used for counting. The first BAG 
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barcode and varietal tag were introduced by ligation extension, as described in the step-
by-step hybrid BAG-seq experimental protocol [62], leaving a common 3′ sequence 
identical across all molecules and BAGs. The second BAG barcode and varietal tag were 
added by hybridization extension of the common 3′ sequence, along with a second com-
mon sequence adapter for the third split-and-pool step. The third barcode was added 
by a split PCR, using the first universal PCR primer (UP1) and the second common 
sequence adapter as part of the PCR primer sequences.

These amplified products were pooled and converted by tagmentation into paired-end 
Illumina sequencing libraries. One end of the reads contained BAG barcode and vari-
etal tag, as well as genomic or transcriptomic sequence information. The other end from 
random tagmentation was mostly genomic or transcriptomic sequence information.

Initial data processing

Sequencing libraries were sequenced in paired-end 150 bp format using an Illumina 
NovaSeq 6000. Briefly, each processing step is described in more detail in the immedi-
ately following sections. We first checked the structure of each read pair in the fastq files. 
For the good read pairs with the correct structure as shown in Fig. 1C, we extracted the 
BAG barcode, varietal tag, and genomic sequences from both reads. We then mapped 
the genomic (including transcriptomic) sequence to the reference genome with gene 
transcript information. Finally, we combined the mapping information from all reads 
belonging to each varietal tag for each BAG barcode. In the end, we obtained a template 
data table with each row containing the information of an original template/molecule. In 
the following section, we explain each processing step from the fastq file to the template 
table in detail.

Step 1—check sequence structure

First, we filtered out reads from the fastq files where either Read 1 or Read 2 were less 
than 100 bases. Second, we examined if the sequences from the expected BAG barcode 
positions exactly matched one of the 96 × 96 × 96 barcodes, and if the “CATG” cutting 
site was in the expected location, allowing for one base mismatch. We removed read 
pairs that did not satisfy these requirements. Third, from Read 1 which started with bar-
codes and varietal tags, we trimmed away the first 80 bases containing the BAG barcode, 
varietal tag, and adapter sequences, and also checked if the reverse complementary 
sequence of the universal primer (“CCA​AAC​ACA​CCC​AA”) or oligo-dT (“AAA​AAA​
AAA​AAA​AA”) was present. If present, it meant we had reached the end of the template, 
so these primer-related sequences were trimmed off for downstream mapping. Simi-
larly, for Read 2, the tagmentation end, we checked and removed the adapter sequence 
(“GAG​CGG​ACT​CTG​CG”) from the first split-and-pool if it existed. After trimming, we 
required both Read 1 and Read 2 to be at least 30 bases long. All the bases from Read 1 
and Read 2 after trimming were then used for paired-end mapping (step 3).

Step 2—extract BAG barcode and varietal tags

If a read pair passed step 1, we extracted the BAG barcode and varietal tag informa-
tion from the first 80 bases of Read 1, and this information was appended to the read 
ID. The 17 base BAG barcodes came from three cycles of the split-and-pool procedure, 
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of which five bases came from the 1st-split, six bases came from the 2nd-split, and six 
bases came from the 3rd-split. There were 96 different barcodes for each split, so there 
were altogether 96 × 96 × 96 (≈ 1 million) varieties. The 12 base varietal tag came from 
both the split-and-pool primers and the genomic sequence. Out of these twelve bases, 
four bases came from the 1st-split, four bases came from the 2nd-split, and four bases 
came from the genomic sequence that was two bases away from the “CATG” cutting site. 
These twelve bases provide 412 (≈ 16 million) varieties for each BAG.

Step 3—map to the human genome

After steps 1 and 2 above, read pairs were mapped to the UCSC hg19 human genome 
using HISAT2 version 2.1.0 [63]. The reference genome we used included the primary 
chromosomes and unlocalized and unplaced contigs. Alternate haplotypes were not 
included in the genome index. HISAT2 can take a file with known splice sites to use for 
alignment. This file was generated using a gtf formatted file extracted from the NCBI 
refSeq gene annotation table from the UCSC genome browser and the HISAT2 pro-
gram, hisat2_extract_splice_sites.py. The bam files were then sorted and indexed using 
samtools. In subsequent data analysis steps, we designate as mapped reads those that 
HISAT2 identifies as part of a proper pair, with a primary mapping and a mapping qual-
ity score greater than zero.

Step 4—combine read information with original template information

We grouped the mapped reads based on their BAG barcodes. For the reads with the 
same BAG barcode, we sorted the varietal tags by the number of reads associated with 
each tag in descending order. We performed a “rollup” algorithm on the sorted varietal 
tags and discarded varietal tags within a Hamming distance of one from a more abun-
dant varietal tag having at least ten times more reads. We assumed the eliminated vari-
etal tags originated from the tags with more abundant reads but contained sequencing 
or PCR errors.

Using the varietal tags from the above “rollup” step, we aggregated the mapped seg-
ments for all the reads with the same varietal tag. We checked the total coverage of 
each varietal tag against all exons and transcript boundaries from the NCBI refSeq gene 
annotation file downloaded from the UCSC genome browser and wrote out one line 
per varietal tag with all the useful information into a “template table.” Each line of the 
template table contains the following information: BAG barcode, varietal tag, chromo-
some, start mapping position, end mapping position, start and end mapping position 
for each fragment if there was more than one continuous fragments, total bases cov-
ered by this template, number of reads, number of genes, gene list, bases overlapping 
with the transcript of the best-matched genes, bases overlapping with exons, number of 
splice junctions, number of unspliced sites, bases overlapping with the coding regions, 
5′UTR, and 3′UTR of the gene. The downstream data analyses were mainly based on 
the information from this table. The best-mapped gene was deemed to be the gene from 
the annotated transcript file having the highest overlap to the transcript. If more than 
one transcript had the same overlap then best was determined by overlap to exons, 
then overlap to coding sequence, then the number of splice junctions, then the fewest 
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unspliced sites. If more than one gene tied for all these criteria, then all genes are listed 
in the template table.

Template processing

Sequence classification

Starting from the template data table described above, each initial molecule was classi-
fied as one of the four categories: “Exonic,” “Intronic,” “Intergenic,” and “Uncategorized.” 
This process was applied uniformly regardless of the protocol types (RNA-only, DNA-
only, or hybrid). We classified a template as an “Exonic” template if over 90% of its bases 
were mapped within one gene. Furthermore, we refined the “Exonic” classification only 
if 50% or more covered bases from this template were exonic, or if 20% or more cov-
ered bases were exonic and at least one splicing event was observed (RNA layer). If all 
the bases from a template were mapped to intergenic regions, we classified it as “Inter-
genic.” If a template was not classified as “Intergenic,” but less than 10% of its covered 
bases were exonic and no splicing events were observed, this template was classified 
as “Intronic.” Only a small proportion of templates failed to be classified into the above 
three categories, and these templates were classified as “Uncategorized.”

For expression clustering, we only used “Exonic” templates assigned to a single gene 
regardless of protocols. For copy number clustering, we tested four versions of template 
choices on all the libraries, which we will discuss in the next section.

Refinement of copy number estimation methods

We demonstrated four progressively refined versions of copy number estimation, named 
“all_molecules,” “no_exon,” “no_gene,” and “no_gene.avoid50closeTN” (Additional file 3: 
Fig. S1). The “all_molecules” method simply used all molecules from each retained 
nucleus for copy number estimation, as the name implies. The “no_exon” method used 
only molecules classified as “Intronic” or “Intergenic,” as described in the previous para-
graph. The “no_gene” method further restricted the data to only “Intergenic” templates, 
excluding any molecules with bases overlapping annotated transcripts. For each sample, 
we first downsampled the DNA-only reads using a per-cell binomial draw so that the 
total number of DNA molecules matched those of the hybrid library. Cells with fewer 
molecules than the hybrid depth were left unchanged.

When comparing copy number data derived from intergenic templates in the hybrid 
protocol to those in the RNA-only protocol, we noticed that certain high-count genomic 
bins in the RNA-only data also appeared in the hybrid protocol. To investigate this, we 
aggregated all intergenic templates from seven RNA-only BAG-seq libraries (from two 
normal and five tumor tissues), sorted them by genomic position, and measured the dis-
tances between consecutive templates. Histograms of these distances revealed that the 
majority (> 77%) of adjacent intergenic RNA-only molecules were within 50 bp (Addi-
tional file 3: Fig. S21). Therefore, we defined RNA hotspots as genomic stretches where 
all consecutive inter-molecular distances are ≤ 50 bp after sorting by genomic position. 
We later found that these hotspot regions often contain poly-A (or poly-T) genomic 
DNA sequences. Since these hotspots distorted copy number profiles in both normal 
and tumor specimens, we eliminated them from downstream analysis. This filtering step 
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improved copy number quality, as demonstrated using normal tissue samples (Addi-
tional file 3: Fig. S1).

The final method, “no_gene.avoid50closeTN,” retained only the “Intergenic” templates 
from the “no_gene” method that were located at least 50 bases away from RNA hotspots. 
We observed that each successive filtering criterion progressively improved copy num-
ber quality. To quantify this improvement, we introduced a “terrain” metric to measure 
coverage uniformity across the genome. It is defined as the sum of absolute differences 
between adjacent bins; lower terrain values indicate smoother and more uniform copy 
number profiles. As shown in Additional file 3: Fig. S1, the DNA-only libraries consist-
ently exhibit lower terrain scores than hybrid libraries, but the difference diminishes 
as more stringent filters are applied—from “all_molecules,” to “no_exon,” to “no_gene,” 
and finally to “no_gene.avoid50closeTN.” This final criterion, “no_gene.avoid50closeTN,” 
was used to define the DNA-layer molecules of the hybrid BAG-seq protocol and was 
applied in all downstream analyses throughout this study.

Empirical binning strategy for copy number analysis

Separately for each of the four copy number molecule selection methods described 
above, we used the genomic positions of all molecules from two normal-tissue DNA 
samples to determine empirical bin boundaries for 300 genomic bins, each containing 
approximately equal molecule counts. Excluding any molecules mapped to chromo-
some Y, we assigned to chromosomes 1–22 and X a number of bins proportional to their 
fraction of the total molecule count. Within each chromosome, bin boundaries were 
assigned greedily from the chromosome start, such that all but the final bin contained 
at least the number of molecules equal to the chromosome-specific total molecule count 
divided by its assigned number of bins. The observed count of molecules per bin was 
recorded as a normalization factor for later use during per-sample copy number estima-
tion. This factor accounts for residual bin-to-bin differences resulting from unequal mol-
ecule distributions and rounding of bin assignments per chromosome. Because a small 
total number of bins (300) were used, perfect proportional allocation was not possible, 
and normalization factors could vary by up to 30% between chromosomes.

Additional file  11: Table  S9 provides the details of the 300 empirical bins used for 
hybrid protocol DNA-layer copy number analysis. This table includes the start and end 
genomic positions of each bin, bin length, GC content, and the actual number of inter-
genic molecules from the two normal samples (“n_good”) used to compute per-bin nor-
malization weights in single-cell copy number analysis. We used the following formula 
to transform the raw per-cell bin count vector into a normalized bin count vector, with-
out changing the sum of total bin counts for each cell. Applying this transformation does 
not affect clustering results but makes the bin counts of normal cells more uniform and 
improves the visual appearance of the copy-number heatmaps. Let us define:
rawcb : raw count of molecules in cell c, bin b;
nb : number of observed intergenic molecules (“n_good” from Additional file  11: 

Table S9) in bin b;
Tc = 

∑

b
rawcb

nb
 : total normalized weight for cell c;

Nc = brawcb : total raw molecules in cell c;
Then, the normalized value is normcb = 

(

rawcb

nb

)

•
Nc

Tc
.
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Segmentation and visualization of copy number profiles

Copy number segmentation was used only to generate visual copy number profiles for 
population-based plotting, such as in Fig.  2B, Additional file  3: Figs. S6–S9 (panel B), 
and Additional file 3: Fig. S1. We aggregated nuclei from a cluster and used the empirical 
bin boundary information specific to the platform and filtering criteria described above. 
Circular binary segmentation (CBS) was then performed using the DNAcopy R pack-
age (version 1.50.1) [64]. Prior to segmentation, we applied LOESS-based GC-content 
normalization to the binned template count ratios. Segmentation was run using the 
function cbs.segment.uber01.0_3k (included in our GitHub codebase indicated below), 
with parameters alpha = 0.1, nperm = 1000, undo.SD = 0.25, and min.width = 2. The 
segmented copy number values were scaled by a multiplier selected to minimize the 
total squared difference between the scaled values and their nearest integers, thereby 
aligning the segmentation output with approximate integer copy number for improved 
interpretability.

RNA clustering

The RNA clustering was performed using Seurat package (version 3.1.5) following the 
standard Seurat clustering pipeline [43]. The gene names were also appended with the 
chromosome information to distinguish any ambiguous locations. We removed the 
ribosomal protein genes for clustering. For comparing expression clustering between the 
hybrid protocol and RNA-only protocol, we normalized the gene-template matrix by cell 
and excluded the PCA components that most significantly distinguished protocol differ-
ences. We typically used at least 15 PCA components for clustering. This approach gave 
us similar clustering results as the “IntegrateData” function in Seurat v4. For the com-
bined RNA clustering of all the hybrid data, we downsampled the gene matrix to 400 
Exonic templates per nucleus and included nuclei with more than 300 Exonic templates 
for clustering. In the clustering process, we only used genes that showed up in at least 30 
nuclei, and nuclei with at least 150 genes; we used the top 5000 variable gene features for 
PCA analysis and used the first 50 PCA components for subsequent UMAP and Find-
Cluster functions. The detailed Seurat parameters and R code have been uploaded to 
GitHub and can be found at: https://​github.​com/​siran​li01/​DNA_​RNA.

RNAScope imaging analysis

RNAScope Multiplex Fluorescent Reagent Kit v2 (Advanced Cell Diagnostics) was 
employed to visualize RNA transcripts within tissue sections. Formalin-fixed, paraffin-
embedded (FFPE) tissue slides from Tumor 2 were prepared according to the manufac-
turer’s instructions. Following deparaffinization and rehydration, sections underwent 
hydrogen peroxide treatment and target retrieval. Protease treatment was then applied 
to facilitate probe penetration.

The following RNAScope probes were used for target detection: IGHG-pool (Cat 
No. 481901), which targets IGHG (1–4) with 11–19 ZZ pairs, and human XIST (Cat 
No. 311231-C2), which targets the XIST RNA transcript. Signal amplification was per-
formed using the RNAScope Multiplex Fluorescent Reagent Kit v2. The TSA Vivid Dyes 
were used for fluorescent signal development: IGHG was visualized using TSA Vivid 

https://github.com/siranli01/DNA_RNA
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Fluorophore 520 dye (Cat No. 323271), and XIST was visualized using TSA Vivid Fluo-
rophore 570 dye (Cat No. 323272). Amplification steps followed the standard protocol 
provided by Advanced Cell Diagnostics, ensuring optimal signal-to-noise ratio.

Imaging was conducted on a Nikon Ti spinning-disk confocal microscope equipped 
with a YOKOGAWA spinning-disk system and controlled by Nikon Elements software 
AR 5.42.04. Fluorophores were excited with the following laser lines: DAPI at 405 nm, 
IGHG (TSA Vivid Fluorophore 520) at 488 nm, and XIST (TSA Vivid Fluorophore 570) 
at 561 nm. Fluorescent signals for DAPI, IGHG, and XIST were pseudo-colored for 
visualization.

Copy number clustering

Similar to RNA clustering, we used “RunUMAP” and “FindClusters” functions of Seurat 
to cluster nuclei based on copy number. For each library, we had a bin-counts matrix, 
similar to the gene matrix for RNA clustering. There were 300 rows in the matrix, rep-
resenting 300 genomic bins. Each column represented a nucleus. Each element of the 
2D matrix represented the tag counts of the corresponding bin in the corresponding 
nucleus. We first normalized the matrix by columns: for each nucleus, we divided each 
bin count by the mean of 300 bins and then multiplied by 2. We not only used these 300 
normalized single bin counts for clustering, but we also included the median normal-
ized bin counts of every two and three adjacent bins, as long as these adjacent bins were 
within the same chromosome. The reason for this step was that copy number segmenta-
tion usually requires similar amplification or deletion patterns in at least two contigu-
ous bins. By doing this, we appended another 277 rows from the two adjacent bins and 
254 rows from the three adjacent bins onto the original 300-row normalized bin-count 
matrix.

We performed clustering using the new matrix with 831 rows. We used a workflow 
similar to that for RNA clustering, but we did not use “NormalizedData” function since 
the matrix had already been normalized. For “FindVariableFeatures” function, we used 
the top 500 features by inputting “selection.method = “vst”, nfeatures = 500”.

Copy number heatmap

The single-nucleus copy-number heatmap was plotted using Seurat “DoHeatmap” func-
tion. Each row represented the median normalized counts of two adjacent bins, except 
for the first bin of each chromosome, in which we used the normalized count of that 
single bin. The total of 300 rows were sorted in genomic order, with chromosome Y 
eliminated.

Multinomial distributions

For a cluster X, we sum the RNA template counts over each gene for all cells in the clus-
ter. If a gene contains zero counts over the population of cells, we assign a value of ½, to 
avoid zero probabilities when comparing to a cell that containing a gene unobserved in 
cluster X. We normalize by the count vector by its total to obtain a probability distribu-
tion over the set of genes. We compute this probability vector for each stromal expres-
sion cluster as determined by the Seurat iterative clustering of the stromal cell types, 
for each tumor cluster as determined in the individual tumor RNA clusters, and for an 
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“empty” cluster composed of the RNA-layer from 500 DNA-only BAGs. The expression 
multinomial distributions are used for two purposes:

1.	 Cluster assignment. We assign each nucleus to the distribution with the maximum 
likelihood of generating its observed counts, assuming a uniform prior on the space 
of clusters. These identities determine the color of the points in Fig.  4A and the 
counts in Table 1.

2.	 Inter-cluster dissimilarity. We compute a pairwise dissimilarity between clusters 
using the multinomial distributions induced by the cluster average. For any two 
clusters X and Y, and template count t between 1 and 300, we compute by simula-
tion (100,000 samples per data point) the posterior probability that a single nucleus 
generated from the multinomial distribution on X and a count of t templates comes 
from X, conditioned on the prior probability of originating from X or Y with equal 
probability. For each value of t, we compute the AUROC (equivalent to the aver-
age posterior probability). To define a measure of how likely X is correctly identified 
against Y, we compute M(X, Y), the smallest value of t for which the AUROC exceeds 
0.999 (Additional file 3: Fig. S17). To convert this matrix into a pairwise dissimilarity 
between clusters, we compute a similarity measure S(X, Y) = ½ * [M(X, Y) + M(Y, 
X)] and invert this to obtain a dissimilarity measure D(X, Y) = 300 − S(X, Y). We 
then apply the neighbor-joining algorithm to the dissimilarity measure to obtain a 
tree (Fig. 4B).

Multinomial wheel

To build a multinomial wheel in DNA space, we first computed a multinomial vector 
to represent each Seurat cluster. Each multinomial vector had 300 elements, represent-
ing 300 genomic bins. Each element was the total bin counts from all the nuclei in that 
cluster. We normalized each vector to sum to one, serving as the multinomial probability 
vector representing that cluster. Next, we computed the linear combination of multino-
mial probability vectors of every two Seurat clusters, and created 9 equally spaced sam-
pling states C1,2,...,9 = pA+ (1− p)B , for p = (0.1, 0.2,…, 0.9), where A and B are the two 
original states. We then assigned the nucleus to the state with the highest likelihood. In 
R language, we used the “dmultinom” function to compute multinomial probabilities.

We applied a similar idea to create the RNA multinomial wheel. Different from the 
DNA multinomial vector where each element was a genomic bin, in RNA space, 
each element represented one of the 29,637 genes. We computed the sum of gene 
counts for each Seurat cluster V1,2,...,n (n is the number of Seurat clusters, and Vi is a 
29,637-element vector,i = 1,2, . . . , n ), but unlike DNA, there were many elements 
still being zero which could not be used as a multinomial probability vector. We 
solved the problem by adding a small value to each element that was proportional to 
the total expression level of every gene, so that each vector V ∗

i  does not contain zero 
elements. For each gene element j, we did the following transformation: 
V ∗

i [j] = Vi[j]+
(

0.05× (
∑

j Vi[j])
)

× (
∑

i Vi[j])÷ (
∑

i,j Vi[j]) . We then normalized 

each vector V ∗

i  to obtain the multinomial probability vector for cluster i.
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