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neurons and in the antigen presenting dendritic cell of the 
innate immune system [5].

Unlike most other organs, the mammary gland in female 
mice undergoes the majority of its branching morphogen-
esis postnatally, driven by hormonal cues associated with 
puberty [6]. In mice, this pubertal transition—marked by a 
rise in circulating estrogen—typically occurs between 4 and 
7 weeks of age and initiates the outgrowth and elongation 
of the mammary ductal tree [7]. Whole-mount imaging of 
mammary glands during this developmental window reveals 
striking structural changes, including expansion of the duc-
tal epithelium throughout the fat pad and, in some models, 
the early emergence of malignant lesions [8–11]. Therefore, 
the quantifying of ductal branching initiation and elongation 
has emerged as a key approach for assessing how molecular 
or cellular perturbations influence mammary gland expan-
sion across developmental stages [5, 12]. Despite its critical 
importance, the field still lacks a robust and widely adopt-
able method for quantifying mammary gland morphology 
that delivers consistent reproducibility across both normal 
development and neoplastic transformation studies.

Previous advances in network theory-based analysis of 
ductal branching morphogenesis have been largely built on 
entirely manual pipelines with custom made software or 
convoluted imaging modalities such as optical projection 

Main Text

Branching is a fundamental morphogenic pattern found in 
life across plants and animals at the tissue and cellular level 
[1, 2]. In plants, branching occurs at the level of shoots and 
in the veins of leaves (alongside the branches from which 
the name of the structural pattern is derived) [3, 4]. In ani-
mals, branching morphogenesis occurs during the develop-
ment of organs as varied as the kidney, liver, lung, pancreas, 
prostate as well as at the cellular level in the dendrites of 

Steven M. Lewis, Lucia Tellez-Perez and Samantha Henry 
contributed equally to this work.

	
 Camila O. dos Santos
dossanto@cshl.edu

1	 Cold Spring Harbor Laboratory, NY  
11724 Cold Spring Harbor, USA

2	 Graduate Program in Genetics, Stony Brook University, 
NYStony Brook, USA

3	 Medical Scientist Training Program, Stony Brook University, 
NYStony Brook, USA

4	 School of Biological Sciences, Cold Spring Harbor 
Laboratory, NY 11724 Cold Spring Harbor, USA

Abstract
The mammary gland is a uniquely dynamic organ with a branching architecture that develops entirely after birth in 
response to hormonal cues. A common approach in mammary gland biology is the evaluation of branching morphogenesis 
to characterize the role of developmental, physiological and molecular perturbations on branching tissue invasion, growth, 
and maintenance. Yet, the field still lacks a fully open-sourced, quantitative framework to analyze whole-mount mammary 
tissue images, as a commonly utilized methodology. Here, we present MaGNet (Mammary Gland Network analysis tool), 
a method that leverages network theory to characterize key features of ductal branching during mammary gland develop-
ment. Applying this pipeline to mammary gland images captured at three pubertal timepoints, we achieved reproducible 
quantification of ductal tree expansion across development. In addition, this network analysis pipeline captures ductal 
expansion induced by pregnancy hormones. By providing open-source tools to the research community, this method may 
increase reproducibility and broad applicability across diverse organ systems, model organisms, and developmental stages.
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tomography scanning [5, 13–16], [16]. However, these 
approaches often lack open-source availability and typically 
require specialized expertise to operate. These limitations 
underscore the need for an accessible analysis pipeline that 
is scalable, user-friendly, reproducible, and easily adapt-
able, thus offering a practical alternative to closed, and tech-
nically demanding methods. Here, we present a method of 
Mammary Gland Network Analysis (MaGNet), a validated, 
user-friendly, and freely available method for the quantifi-
cation of branching morphogenesis from 2D whole-mount 
mammary gland images, using a network theory–based 
computational approach.

The MaGNet method leverages the conceptual frame-
work of network theory to quantitatively and systematically 
analyze the mammary ductal tree. Within this framework, 
networks represent the structural organization of the gland, 
where nodes correspond to branch points or terminal end 
buds (TEBs), and edges represent the ducts connecting 
them (Fig. 1). By abstracting the ductal architecture into a 
graph of undirected and unweighted edges, we simplify the 
analysis without compromising accuracy. While this model 
currently emphasizes macro-level branching dynamics, it is 
readily adaptable for future integration of edge direction-
ality or weights—features that could capture physiological 

parameters such as nutrient flow, ductal thickness, or spa-
tial-temporal remodeling (Fig.  2). This approach provides 
a powerful, flexible platform to interrogate mammary gland 
morphology across diverse developmental and disease 
contexts.

To convert whole-mount mammary gland images into 
analyzable network graphs, we utilized the previously vali-
dated tool NEFI (Network Extraction From Images) [17]. 
This tool is particularly well-suited for the analysis of mam-
mary gland whole mount, as its ductal architecture inherently 
forms a branching network. After tracing and extracting the 
network structure from the images, we processed the data 
using the Python-based NetworkX package [18]enabling 
high-throughput and customizable quantitative analyses 
(Fig. 3A–J). The resulting network models allow for auto-
mated computation of key architectural metrics, including 
total node and edge counts, node degree distributions, and 
the identification of terminal nodes (Fig. 4A–F). While the 
image tracing step currently involves manual user input, all 
downstream analyses are fully automated, thus supporting 
reproducibility, scalability, and broad applicability across 
experimental conditions.

As a proof of principle, we applied the MaGNet ana-
lytical pipeline to analyze whole-mount mammary gland 

Fig. 1  Illustration of a mammary 
ductal tree network, and how it 
compares to a network schematic, 
with features such as nodes, 
edges, terminal nodes and degree 
noted
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images from wild-type female mice at three closely spaced 
developmental stages, 1 month, 1.5 months, and 2 months 
of age, thus capturing the critical window of pubertal onset 
(Fig.  4A–C). These timepoints were strategically selected 
to test the sensitivity of our method in detecting rapid, 
hormone-driven changes in ductal morphogenesis. Our 
network-based quantification revealed statistically sig-
nificant increases in key architectural features of the duc-
tal tree, including a ~ 4-fold rise in the number of nodes 
(branch points/TEBs, 4.19-fold), edges (ducts, 4.23-fold), 
and terminal nodes (branches, 4.06-fold) in mammary 
glands from 1.5-month-old female mice compared to those 
at 1 month of age. These results demonstrate the MaGNet 
pipeline’s robustness in detecting short-term but significant 
morphogenic changes during this developmental window 
(Fig. 4D-H).

Comparative analysis of mammary ductal networks 
between 1.5- and 2-month-old female mice revealed mod-
est but statistically significant differences in tissue archi-
tecture. Specifically, we observed a ~ 1.3-fold increase in 
nodes (branch points/TEBs), edges (ducts), and terminal 
nodes (branches) in the 2-month-old samples relative to 
1.5-month-old counterparts (Fig.  4D–H). These findings 
indicate a developmental shift from rapid ductal expansion 
to structural refinement and maturation during late puberty, 
dynamics that were effectively captured by the quantifica-
tion method offered by MaGNet.

The MaGNet quantification pipeline also facilitates 
high-resolution analysis of node degree distributions across 
diverse physiological and experimental contexts. In our 

developmental dataset, we observed a consistent pattern in 
which approximately 50% of branching nodes displayed 
either a degree of 1 (terminal) or 3 (bifurcation), indepen-
dent of animal age. This finding underscores a stereotypi-
cal bifurcating architecture of the mammary ductal network 
during pubertal development (Fig. 4I). Nodes with a degree 
of 2, indicative of direction changes without branching, 
were rarely detected, suggesting that ductal outgrowth 
proceeds with high directional fidelity during this devel-
opmental window. Yet, the number of nodes with degree 1 
(terminal) and degree 3 (bifurcation) rose markedly during 
the pubertal phase of mammary gland development, with 
a ~ 4-fold increase observed between 1- and 1.5-month-old 
mice, and a further 1-fold increase from 1.5 to 2 months 
(Fig. 4J). Collectively, these quantifications are consistent 
with known developmental dynamics of puberty and mam-
mary gland morphogenesis [13]. Our observations dem-
onstrate the MaGNet pipeline’s sensitivity in capturing 
both rapid ductal expansion during early puberty and the 
subsequent refinement phase characterized by more subtle 
remodeling of the mammary architecture.

To further demonstrate the versatility and sensitiv-
ity of the MaGNet pipeline across distinct developmental 
contexts, we also analyzed whole-mount mammary gland 
images from a previously published study in which nullipa-
rous wild-type mice were treated with slow-release estrogen 
and progesterone pellets to mimic pregnancy-induced mam-
mary gland development [8]. We specifically compared 
ductal tree architecture at 6- and 12-days following hor-
mone exposure. MaGNet analysis of traced images revealed 

Fig. 2  Schematic overview of MaGNet analysis pipeline, beginning with brightfield image acquisition and manual tracing of the mammary ductal 
tree, followed by conversion of the traced structure into a NEFI-compatible format for downstream network analysis using NetworkX
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a foundational framework that is readily compatible with 
future integration of automated tracing tools. Such advance-
ments are expected to significantly improve both the usabil-
ity and reproducibility of the quantification workflow, 
further enhancing its value to the research community. 
Importantly, the MaGNet pipeline is compatible with the 
NetworkX Python package [18]enabling users to extend 
the analysis beyond basic metrics like nodes and edges to 
include advanced topological features such as centrality, 
clustering coefficients, and path lengths. These capabilities 
position the MaGNet pipeline as a scalable and customiz-
able platform for quantitative analysis of mammary ductal 
architecture, while providing a robust and extensible alter-
native for whole mount mammary quantification.

Materials and methods

Animals

Wildtype C57BL/6 female animals of 1 month, 1.5 and 2 
months of age were used in this study and ordered from 
Charles River. For hormone exposure experiments, Balb/C 
female mice (6–8 weeks old) were ordered from Charles 
River [8]. All experiments involving mice were completed 
in agreement and approval by the CSHL Institutional Ani-
mal Care and Use Committee.

Whole-Mount Staining

After dissection of the lower left mammary gland from 
mice, the gland was spread carefully on a glass slide and the 
protocol followed as previously described [8]. In brief, the 
mammary gland was fixed overnight at 4 °C with Carnoy’s 
fixative (3 parts 100% ethanol, 1 part glacial acetic acid). 
Post fixation, the Carnoy’s fixative solution was discarded, 
and the mammary glands were incubated in 70% ethanol for 
15 min, following wash with running tap water for 5 min. 
Mammary tissue was then stained with Alum carmine solu-
tion (1 g Carmine dye, 2.5 g potassium alum, MilliQ water 
to 500 mL, filtered) for at least 24 h at 4 °C, following a 
serial 15 min washes with ethanol solution at 70%, 95%, 
and 100% (each repeated once). Stained and washed mam-
mary tissue was then immersed in histoclear solution over-
night or until the fatpad has cleared, followed by imaging. 
For long-term slide storage, mammary tissue slides can be 
mounted with permount and stored at room temperature 
shielded from light.

marked increases in key structural metrics, including a 1.6-
fold rise in branch points (nodes), a 1.6-fold increase in duc-
tal segments (edges), and a 1.6-fold elevation in terminal 
branches by day 12 compared to day 6 (Fig. 5A–C). These 
results highlight MaGNet’s capacity to capture hormone-
driven morphogenic changes with high resolution, rein-
forcing its utility in quantifying dynamic remodeling of the 
mammary epithelium during simulated pregnancy.

To assess the methodological reproducibility and robust-
ness of MaGNet, we compared quantifications across users 
and additional conventional methodologies. Analysis of 
inter-user quantification variability was evaluated by having 
three independent users manually trace three separate mam-
mary gland samples (1-month-old), followed by automated 
network analysis. Although slight variations were observed, 
the quantification of terminal nodes identified across users 
were not statistically significant, suggesting consistency 
of the tracing quantification in a user-independent manner 
(Fig. 6A).

To further evaluate the performance of the MaGNet 
pipeline, we compared its network-based quantification out-
puts with conventional manual duct counts obtained from 
H&E-stained mammary tissue Sects. [19–22]. While the 
comparison did not yield statistically significant differences 
in absolute duct counts, MaGNet demonstrated greater sen-
sitivity in detecting sample-to-sample variation. This sug-
gests that MaGNet provides a more consistent assessment 
of ductal features that are often underrepresented or missed 
in manual quantification approaches (Fig.  6B-D). These 
findings underscore the utility of MaGNet in offering a more 
nuanced and scalable alternative to traditional histological 
analysis.

Overall, our analysis and conclusion support that the 
MaGNet pipeline offers a valuable and accessible resource 
for the mammary gland development research community. 
In addition to its robust mode of quantification, the MaG-
Net pipeline is fully available as an annotated Colab Note-
book, which contains all necessary steps for conducting a 
mammary quantification network-based analysis. The code 
is modular and easily adaptable to accommodate user-spe-
cific datasets or experimental designs. While image tracing 
remains a technically demanding step and could be viewed 
as a current limitation of MaGNet, this platform establishes 

Fig. 3  Processing from mammary gland whole mount images using 
MaGNet pipeline. A Acquisition of brightfield images of whole-mount 
staining. B Conversion to a tracing manually. C-H Conversion of the 
tracing into a NEFI object using segmentation (C), thinning (D), graph 
detection (E-F) and filtering (G-H). All NEFI steps are shown as a 
zoom-in for image clarity (D, F, H). I-L Analysis of the network graph 
using a NetworkX object. A representative NetworkX object is shown 
with its derived total ductal tree length (I-J), and ductal tree area (area 
within the network limits) (K-L). The functionalities to calculate duc-
tal tree length and area are included in our open-source code
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Tracing

Brightfield images of whole-mount mammary gland tissue 
were traced manually using an iPad and Apple Pencil using 
the Sketch app. The tracing was saved as a separate layer in 
the object in a white background. Tracings were completed 
by multiple individuals to remove potential biases in indi-
vidual tracings. Each layer was then converted separately 
into a TIF file for use in the NetworkX analysis pipeline.

Imaging

Alum carmine-stained slides are covered with a coverslip, 
and the same histoclear media is used as mounting media 
to image them. Images were acquired on a Nikon SMZ25 
brightfield microscope with a Nikon DS-Ri2 stereoscope. 
For the mammary gland analysis of response to pregnancy 
hormones [8]n = 4 whole mount images were analyzed for 
the 12-day exposure condition, and n = 3 for the 6-day expo-
sure condition.

Fig. 4  Utilization of MaGNet for the quantification of whole-mount 
mammary gland images during pubertal development. A-C Represen-
tative whole-mount images at the three studied timepoints. D-F Quan-
tification of the number of nodes (D), ductal branching tree (E), and 
terminal nodes (F), from mammary tissue obtained from female mice 
at 1 month old (n = 6), 1.5 months old (n = 4) and 2 months old (n = 4). 
G  Quantification of the total tree length (mm) by Condition from 
1 month (n = 4), 1.5 months (n = 4) and 2 months (n = 4) old female 

animals. H Quantification of area of convex hull (mm [2]) by Condi-
tion from 1 month (n = 4), 1.5 months (n = 4) and 2 months (n = 4) old 
female animals. I Quantification of percentage of branching nodes by 
degree and condition from 1 month (n = 6), 1.5 months (n = 4) and 2 
months (n = 4) old female animals. n.s. = not statistically significant. 
J Quantification of branching degree distribution by condition from 1 
month (n = 6), 1.5 months (n = 4) and 2 months (n = 4) old female ani-
mals. Total node number per each branching degree is shown
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all connected components not belonging to the main con-
nected component.

Analysis of networks characteristics

To analyze and quantify mammary gland network features, 
we developed a Python pipeline using the NetworkX python 
package [18]. NEFI networks are used as input in the shape 

Network extraction from network tracing

Network Extraction From Images (NEFI) was used to go 
from the manual tracing to the mathematical representation 
of the network structure [17]. Manual tracings were entered 
as TIF files. The pre-defined NEFI pipeline ‘Leaf Venation’ 
was used to convert the tracing to a network object. Filtering 
is performed on the main mammary gland object to remove 

Fig. 6  Validation of MaGNet Analysis Pipeline Performance Through 
Comparison with Histological Quantification and Assessment of Inter-
User Variability. A  Quantification of terminal nodes tracing of the 
same whole-mount images by three independent users (n = 3 users, 
n = 3 stained glands each). Each color indicates a different user trac-
ing the same image with lines connecting the different traces from the 

same image. B-C Representative H&E-stained tissue section (B) and 
whole-mount image (C) from a 1-month-old female mouse. D Quan-
tification of mammary ductal tree via manual duct counts from H&E-
stained tissue sections, compared to the network pipeline tracings of 
whole-mount staining from the same mouse (n = 5 for each modality 
from each mouse)

 

Fig. 5  Utilization of MaGNet for the quantification of whole-mount 
mammary gland images during hormone-induced pseudo pregnancy. 
Quantification of the (A) number of nodes, (B) number of edges, and 

(C) number of terminal nodes from the ductal branching tree in the 
mammary tissue from female mice exposed to pregnancy hormones 
for 6 days (n = 3) or 12 days (n = 4)
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other third party material in this article are included in the article’s Cre-
ative Commons licence, unless indicated otherwise in a credit line to 
the material. If material is not included in the article’s Creative Com-
mons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit ​
h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​r​g​​/​l​i​​c​e​n​​s​e​s​/​​b​y​​-​n​c​-​n​d​/​4​.​0​/.
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of the NEFI output.txt text with spatial network coordinates. 
In our pipeline, a function read_nefi_graph() is defined to 
transform the NEFI outputs into a NetworkX Python object. 
The graph can be visualized with the function quick_plot(). 
The pipeline supports the calculation of different network 
properties, such as the number of edges (ducts), number of 
terminal nodes (TEBs), length of edges, normalized length 
of branching tree by tree area, convex hull area occupied 
by the ductal network, and analysis of degree branching 
distribution.

Statistical analyses and data visualization

All statistical analyses and data visualization from raw data 
were conducted in Python. For statistical analysis between 
groups, Tukey’s HSD tests were performed using the stats-
models function pairwise_tukeyhsd. The Python package 
Seaborn [23] was used to develop our own functions for 
data visualization, available on our code.

Acknowledgements  This work was performed with assistance from 
CSHL Animal Facility, and the CSHL Tissue Histology Shared 
Resources, which are supported by the CSHL Cancer Center Sup-
port Grant 5P30CA045508. This work was financially supported 
by the Pershing Square Sohn Prize for Cancer Research (C.O.D.S.), 
the CSHL and Simons Foundation Award (C.O.D.S), the CSHL 
and Northwell Health affiliation (C.O.D.S), the NIH/NCI grant 
R01CA248158-05 (C.O.D.S.), NIH/NIA grant R01AG069727-05 
(C.O.D.S.), the NIH/NCI R01CA284630-3 (C.O.D.S.), the NIH NCI 
grant F30CA281082 (S.M.L.), the NIHGM T32GM008444 (S.M.L.), 
and a fellowship from “la Caixa” Foundation (ID 100010434, code 
“LCF/BQ/EU23/12010061” to L.T.P.).

Author Contributions  C.O.D.S. supervised the research; S.M.L., L.T-
P., S.H., and C.O.D.S designed the research and wrote the manuscript. 
S.M.L., L.T-P., and S.H. performed experiments and data analysis. 
X.Z. and S.N. provided critical support on data analysis.

Data Availability  No datasets were generated or analysed during the 
current study. Code availability: The relevant code for this pipeline has 
been laid out as an interactive notebook openly available on Google 
Colab (Mammary gland analysis on NetworkX). Folders with demo 
data have also been uploaded to Github for users to try out the func-
tionalities ​(​h​t​t​​p​s​:​​/​/​g​i​​t​h​​u​b​.​c​o​m​/​l​u​c​i​a​-​t​e​l​l​e​z​/​N​e​t​w​o​r​k​A​n​a​l​y​s​i​s​/​t​r​e​e​/​m​a​i​n​
)​.​​

Declarations

Conflict of interest  The correspondent author is an EdBoard member 
for the Journal of Mammary Gland Biology and Neoplasia.

Open Access   This article is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International License, 
which permits any non-commercial use, sharing, distribution and 
reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if you modified the licensed 
material. You do not have permission under this licence to share 
adapted material derived from this article or parts of it. The images or 

1 3

   13   Page 8 of 9

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.25080/tcwv9851
https://github.com/lucia-tellez/NetworkAnalysis/tree/main


Journal of Mammary Gland Biology and Neoplasia           (2025) 30:13 

23.	 Waskom M. Seaborn: statistical data visualization. J Open Source 
Softw. 2021;6:3021.

Publisher’s Note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

21.	 Frey WD, et al. BPTF maintains chromatin accessibility and the 
Self-Renewal capacity of mammary gland stem cells. Stem Cell 
Rep. 2017;9:23–31.

22.	 Henry S, et al. Host response during unresolved urinary tract 
infection alters female mammary tissue homeostasis through col-
lagen deposition and TIMP1. Nat Commun. 2024;1–14. ​h​t​t​p​s​:​​​/​​/​d​
o​​i​.​o​​r​​g​​/​​1​0​​.​1​0​​​3​8​/​​s​4​1​​4​6​7​-​​0​2​4​-​4​​7​4​6​2​-​7

1 3

Page 9 of 9     13 

https://doi.org/10.1038/s41467-024-47462-7
https://doi.org/10.1038/s41467-024-47462-7

	﻿MaGNet: A Network-Based Method for Quantitative Analysis of the Mammary Ductal Tree in Developing Female Mice
	﻿Abstract
	﻿Main Text
	﻿Materials and methods
	﻿Animals
	﻿Whole-Mount Staining
	﻿Imaging
	﻿Tracing
	﻿Network extraction from network tracing
	﻿Analysis of networks characteristics
	﻿Statistical analyses and data visualization

	﻿References


