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5

Abstract Single-cell RNA sequencing technologies have enabled unprecedented insights into gene6

expression and are poised to transform clinical diagnostics. At present, most computational approaches7

for interpreting single-cell data operate at the level of individual cells, predicting labels or properties8

based on isolated transcriptomic profiles. This approach overlooks a key class of signals: the9

composition of cells within a sample or defined population. Such signals are often critical for inferring10

tissue identity, disease state, or other sample-level phenotypes. To address this limitation, we introduce11

TissueFormer, a Transformer-based neural network that analyzes groups of single-cell RNA profiles to12

infer population-level labels while retaining single-cell resolution. Applied to predict the cortical area of13

groups of cells sampled from spatial transcriptomic data from mouse brains, TissueFormer14

outperformed both single-cell foundation models and machine learning methods applied to pseudobulk15

and cell type composition. This higher performance enables the automated construction of16

high-resolution brain region maps in individual animals directly from spatial transcriptomic data. More17

broadly, TissueFormer provides a framework for predicting any population-level phenotypes which are18

influenced by cellular diversity and tissue-level organization.19

20

Introduction21

Many clinically and biologically important features such as disease state, tissue identity, or treatment22

response are defined at the level of cell populations but are driven by patterns of single-cell phenotypes.23

Such features are often predictable from the composition and organization of cells in a population. For24

example, functionally distinct areas in the cerebral cortex can be distinguished by the relative abundance25

of cell types (Yao et al., 2021b). In clinical medicine, methods for detecting imbalances in cell type26

proportions such as complete blood count (CBC) tests form the basis of key diagnostics. For example, a27

high neutrophil-to-lymphoctye count is a widely used marker of inflammation (Templeton et al., 2014).28

Despite their clinical utility, readouts depending on cell composition remain limited to a handful of29

canonical patterns identified through decades of observation rather than discovered systematically30

through large-scale, data-driven analyses.31

With the increasing availability of single-cell RNA sequencing, it is now possible to measure patterns32

in single-cell properties at high resolution across large numbers of cells per sample (Svensson et al.,33

2018). This rich granularity presents a tradeoff for the analysis of phenotypes across tissues, samples, or34

individuals, each of which containsmany sequenced cells. At one extreme, many computational pipelines35

focus on single cells in isolation, taking the a cell profile as input and producing a label specific to that36

cell. This is the approach taken by most recent single-cell ‘foundation models’ of mRNA transcription37

data (Lopez et al., 2018; Connell et al., 2022; Cui et al., 2023; Theodoris et al., 2023; Rosen et al., 2023;38
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Yuan et al., 2024; Schaar et al., 2024; Ito et al., 2025; Hsieh et al., 2024), reviewed in (Szałata et al.,39

2024). These models learn rich single-cell representations by first ‘pretraining’ with an unsupervised task40

on large datasets before fine-tuning on specific tasks, often resulting in improved performance when41

adapted for tasks such as cell type classification. However, these models are fundamentally single-cell42

in design, and as result they are unable to detect signals that emerge only from the composition of cells43

present.44

An opposing strategy is to first compute summary statistics about cell populations across tissues or45

samples, then use these for downstream analysis and classification. One such statistic is the average46

expression, or psuedobulk expression profile, as is frequently used in differential state analysis (Crowell47

et al., 2020). Alternatively, one may calculate compositional features about a population, such as cell48

type frequencies, ratios of cell types, putative cell-cell communication networks, and cell type specific49

pathway scores (Cao et al., 2022). While informative, both psuedobulk and cell composition measures50

obscure single-cell granularity and rely on the researcher to specify which compressed representation of51

a population of cells is likely to be informative about sample labels.52

In order to maximize the potential of single-cell data, it is important that methods combine the53

transfer-learning capabilities and end-to-end trainability of single-cell foundation models with the ability54

to compare cells across a population. Certain models exist which are end-to-end trainable and can55

compare across cells, such as CellCnn (Arvaniti and Claassen, 2017), scAGG (Verlaan et al., 2025),56

and ScRAT (Mao et al., 2024), but these models are not compatible with existing foundation models.57

The ability to incorporate knowledge from pretrained models is especially important given the high58

dimensionality of the inputs when predicting sample-level phenotypes. In each independent sample, the59

input dimensionality is on the order of the number of cells per sample times the number of genes per cell.60

By first pretraining on self-supervised tasks, foundation models effectively reduce this dimensionality by61

establishing a learned prior over the representation of each cell.62

To bridge these approaches we present TissueFormer, a neural network architecture that analyzes63

groups of single-cell RNA profiles collectively while utilizing knowledge embedded in pre-trained single-cell64

foundation models. The model incorporates a module based on the Geneformer architecture for single-65

cell analysis (Theodoris et al., 2023), which can be initialized with pre-trained weights. During processing,66

each cell is given a learnable representation with this pretrained module. These cell representations67

are then processed by several further layers of self-attention, allowing the model to learn to attend68

to the relevant cells and their interactions. Importantly, the output of Tissueformer is invariant to the69

order of cells presented as input. These design choices allow TissueFormer to learn arbitrary functions70

from observations of many cells to sample-level phenotypes while simulateously leveraging pretrained71

single-cell foundation models.72

To validate our approach, we applied TissueFormer to apply Allen Brain Atlas labels to regions of73

the mouse cortex profiled with spatial transcriptomics. This task is a competitive benchmark for the74

supervised classification of sampled tissues, though it is important to note that clustering or alignment-75

style methods have also been developed for tissue annotation (e.g. Biancalani et al. (2021); Hu et al.76

(2021); Lee et al. (2025)). We found that TissueFormer outperforms both standard supervisedmethods as77

well as fine-tuned single-cell foundation models at predicting the labels due to previous brain annotations.78

Furthermore, the performance of TissueFormer scaled roughly logarithmically with the number of79

cells input as a group, demonstrating the utility of observing multiple cells. These results highlight the80

importance of sample- or tissue-level features in transcriptomic analysis and establish a framework for81

integrating single-cell foundation models into higher-order biological investigations.82
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Results83

Our primary goal is to design and evaluate a model which is generally applicable to the supervised84

problem of sample or tissue annotation from single-cell data. In what follows, we first describe the85

particular characteristics of this problem that make it challenging for standard methods.86

Multi-cell supervised problem setting87

A typical problem in single cell analysis is relating mRNA expression levels in each cell to a cellular88

property such as cell type identity (Figure 1a). If we denote the cell-by-transcript matrix of counts as 𝐶 ,89

where each row of 𝐶𝑖 contains the mRNA transcript counts for a single cell, this problem seeks to find a90

function 𝑓 that maps each row 𝐶𝑖 (a cell) to a particular value 𝑦𝑖 corresponding to a label. For example,91

𝑦𝑖 could represent the cortical area from which a given cell was obtained.92

𝑓 (𝐶𝑖) = 𝑦𝑖 (1)

In some problem settings, it is advantageous to use information from many cells. In this multi-cell93

setting, the characteristic equation relates sets of cells to labels. For spatial transcriptomic data, for94

example, a set might refer to a group of cells within some spatial distance of one another. Denoting95

𝐺𝑖 as the 𝑖th such group, and {𝑐 ∈ 𝐺𝑖} as the set of cells in this group, the classification or regression96

problem seeks to find a function 𝑓 that maps each set of cells to its label 𝑦𝑖.97

𝑓 ({𝑐 ∈ 𝐺𝑖}) = 𝑦𝑖 (2)

The fundamental difficulty of themulti-cell problem is its high dimensionality. Relative to the single-cell98

problem, the dimensionality of input examples increases from the number of genes 𝐷 to 𝐷 × |𝐺|, where99

|𝐺| is the number of cells in a group. Meanwhile, the number of independent labels decreases from the100

total number of cells to the number of disjoint groups, i.e. from𝑁 to 𝑁
|𝐺|

. The ratio of input dimensions to101

independent examples, a proxy for the difficulty of the problem, thus increases as the group size squared,102

|𝐺|

2.103

Most strategies for the multi-cell problem explicitly reducing its dimensionality through aggregation104

(as in psuedobulk analyses) or summary statistics (e.g. Cao et al. (2022)). However, these strategies105

destroy information which could be critical in multi-cell problems. Pseudobulk methods obscure the106

variance in the signal, whereas cell type composition or other such signals are fixed and non-adjustable107

representations of single-cell profiles and are incapable of observing transcriptional dysregulation within108

cell types. To take full advantage of single-cell data, a model should ideally be able to attend to any109

aspect of the full RNA transcriptome in each cell while comparing across the population.110

It is nevertheless crucial take steps to constrain the distribution of learned functions so as to cir-111

cumvent the curse of dimensionality in multi-cell prediction problems. One way to address this is by112

pre-training a foundation model on a self-supervised task before downstream supervised learning. If this113

self-supervised task is sufficiently similar to the supervised task at hand, the pretrained model weights114

will be close in weight space to a good solution for the supervised task. This reduces the number of115

training steps and data needed in the supervised task.116

Recent related work has introduced several foundation models tailored for spatial transcriptomic117

data. Because these models observe groups of cells, they can be seen as solutions to a subcase of the118

multi-cell problem in Equation 2. For example, scGPT-spatial is pretrained to predict gene expression in119

held-out cells in the local neighborhood (Wang et al., 2025). Unlike TissueFormer, scGPT-spatial averages120

the embedding of several cells in the local neighborhood for the inter-cell problem, rather than employing121

self-attention across cells, and thus cannot compare compositional signals. HEIST (Madhu et al., 2025)122

and CI-FM (You et al., 2025) define graph neural networks over a hierarchical graph spanning both nearby123
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Figure 1. TissueFormer is a Transformer-based neural network to analyze groups of single-cell RNA profiles. a) Single-cell
foundation models focus on cellular targets, yet many properties of tissues relate to cellular diversity. b) TissueFormer learns
to extract critical information from each cell into a cell embedding vector. The module that extracts these is in architecture
identical to Geneformer, a single-cell foundation model. First, cells are processed by a normalized rank-ordering of their genes
into a ’sentence’ of gene tokens, prefixed by a ‘<cls>’ token to pool gene information, then processed by several transformer
layers. c) Experiments in this manuscript use a pretrained single-cell model we call Murine Geneformer, created by adapting the
12-layer Geneformer model (pretrained on human cells) to mouse cells via pairing orthologous genes and further pretraining. d)
TissueFormer architecture. Cell embeddings for all cells in a group are fed to 6 Transformer encoding units before
average-pooling and a linear readout.

cells and their genes, which in principle enables comparative processing across cells. As explained124

below, TissueFormer uses Transformer layers and not graph neural networks, making it compatible with125

single-cell foundation models trained on traditional scRNA-seq data. Unlike these works, the design126

of TissueFormer is not restricted to spatial transcriptomic data and is applicable to any sample-level127

phenotype prediction problem.128

TissueFormer architecture129

TissueFormer is a neural network architecture tailored for groups of single-cell RNA transcriptomic130

profiles (Figure 1). It is able to attend to information within each cell’s relative mRNA transcription profile,131

yet also look across cells to extract information from the diversity and frequency of mRNA profiles in the132

group. Architecturally, this is accomplished by first applying a ‘single-cell module’ to extract information133

from each cell, then attending across cells in further layers. This combination of intra- and inter-cell134

expressivity creates a regression problem of high dimensionality, yet this is mitigated by the bottleneck135

architecture and the easy loading of pre-trained single-cell foundation models into the cell embedding136

module.137

The building block of TissueFormer which performs these capabilities is the Transformer block138

implementing self-attention (Vaswani et al., 2017). Compared to older neural network architectures like139

Multi-Layer Perceptrons (MLP), Transformers are distinguished by the shape of their inputs. Whereas an140

MLP observes vector-shaped inputs (i.e. a vector of mRNA transcript counts), Transformers operate on141

lists of vectors, or equivalently, on matrix-shaped inputs. Self-attention acts to select which vectors in142

the list are most relevant in the current context.143

In order for single-cell data to be compatible with Transformers, each cell’s vector of mRNA transcript144

counts 𝑐𝑖 must be expanded into a list of vectors. Multiple strategies for this conversion are possible145

for single-cell data, as reviewed in Szałata et al. (2024). Here we use a rank-ordering approach as in146

Geneformer (Theodoris et al., 2023). Each cell’s expressed genes are ordered by their relative expression147

normalized by their median expression in a pretraining corpus. Each gene name in this ordered list is148

4 of 25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2025. ; https://doi.org/10.1101/2025.08.17.670735doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.17.670735
http://creativecommons.org/licenses/by/4.0/


Preprint August 17, 2025

then mapped to a high-dimensional embedding vector via a learnable dictionary. While alternatives to149

rank encoding have been tested in other foundation models, rank encoding is common in bioinformatic150

pipelines and has generally been found to be robust to common sources of experimental variability151

(Ballouz et al., 2015).152

The single-cell module within TissueFormer is designed to compress each cell’s unique and relevant153

information into a cell embedding for later processing (Figure 1b). This is achieved by prefixing to each154

cell a special token named the <cls> token, following standard design choices (Devlin et al., 2019). The155

<cls> token instantiates a working space for the accumulation of information from all genes. During156

learning, any error-corrective information passed backwards is bottlenecked through the cell embedding,157

ensuring it collects the necessary information from each cell. In sum, the cell embedding vector which is158

passed to later layers can be written as a function of the mRNA transcript count vector 𝑐𝑖 as:159

CellEmb[𝑐𝑖] = SingleCellModule[RankEncoding[𝑐𝑖]][<cls>] (3)

The single-cell module shares the Geneformer architecture, meaning that any trained single-cell160

model can be loaded into this module. This gives TissueFormer the ability to incorporate model weights161

and biological knowledge from pretrained single-cell foundation models. In this work, all experiments162

unless otherwise indicated use weights from the Geneformer 12L model, a 12-layer BERT network trained163

on a masked prediction objective on 30 million human cells (Theodoris et al., 2023). We then further164

pre-trained these weights using an identical objective function but on a collection of datasets of mouse165

tissue totaling 6 million cells (Figure 1c). To facilitate the transfer of knowledge across species, we166

initialized the gene tokens for mouse genes with their orthologous human genes where available. We167

call this resulting pretrained single-cell model ‘Murine Geneformer’.168

TissueFormer attends to information across cells by processing each cell embedding with several169

additional Transformer layers (Figure 1d). At this stage, TissueFormer is invariant to the order of cells170

presented to the model, seeing them only as a bag or set of cells. The output of any Transformer is171

inherently equivariant with respect to the order of the input embedding vectors (i.e. rearranging the inputs172

causes the outputs to be rearranged in the same order). In order to attain invariance to cell order, such173

that rearrangements to the order have no effect on the output, the output of the Transformer layers is174

pooled by averaging over cells. A final step is a linear classification layer for classification problems.175

Collectively, these design choices allow TissueFormer to attend to any relevant information in each cell’s176

transcriptome in a context-dependent manner based on the diversity of cells present and the problem at177

hand.178

Taken together, the equation representing TissueFormer can be summarized as:179

𝑦𝑖 = LinearClassifier[AvgPool[Transformers[{CellEmb[𝑐𝑗] for 𝑐𝑗 ∈ 𝐺𝑖}]]] (4)

Cortical annotation180

The mammalian brain is often partitioned into regions with distinct functional roles, connectivity, and181

cellular composition. In any particular brain, variations in neuroanatomy may arise due to genetic factors182

as well as due to the animal’s environment. These variations underlie the evolution of innate behavior183

and reflect the aptitude for adaptation within a lifetime.184

Current methods for the annotation of single brains have certain well-known limitations. One common185

approach is to register a brain into the average-brain template of the Common Coordinate Framework186

(CCF), a 3D reference coordinate systemconstructed fromover 1,000 referencemouse brains (Wang et al.,187

2020). Once transformed into CCF coordinates, one can visualize the area boundaries of the Allen Brain188

Atlas, which again reflect a canonical, average brain. The drawback of this approach is that it obscures189

individual variation, especially the relative size of brain areas to one another. An alternative approach190
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which enables individual variability is to employ experimental methods that interrogate only a small191

brain region in each animal—for example, focal viral projection tracing (Xu et al., 2020) or two-photon192

functional imaging for a particular functional modality like visual responses (Kalatsky and Stryker, 2003).193

While accurate, these methods’ limited spatial scope prevents a holistic assessment of anatomy across194

the entire cortex.195

An alternative strategy that balances whole-brain coverage with single-animal individuality is to196

perform in situ single-cell RNA sequencing across a single brain. This method modernizes a classic197

approach of defining neuroanatomy through differences in cell type composition, an idea that goes back198

at least to Brodmann’s brain atlas (Brodmann, 1909; Zilles and Amunts, 2010). Currently, the technical199

efficiency of spatial transcriptomics is now high enough to allow the profiling of cells across an entire200

mouse brain, and furthermore cheaply enough to cover multiple brains in single studies (Chen et al.,201

2024). Given such datasets, the remaining challenge in a robust pipeline for labeling brain areas is202

computational in nature.203

To investigate whether TissueFormer could serve this purpose, we applied TissueFormer to predict204

the brain region of cells from their transcriptomes as characterized in a recent dataset of whole-brain205

spatial transcriptomics of the brains of several animals (Chen et al., 2024). Over 1 million cells across206

the brain, largely in the left hemisphere, were profiled in each of eight animals, four of which were raised207

in normal rearing conditions. Each cell profile contains counts from a panel of 104 genes selected208

for their ability to distinguish cell type clusters in excitatory cells. With multiple separate brains and209

whole-cortex coverage in one hemisphere, this dataset enables a test of whether individual differences210

in neuroanatomy can be resolved with spatial transcriptomics.211

In addition to mRNA counts, this dataset also contains labels of the brain area of each cell as212

established through a registration into the Common Coordinate Framework (CCF). Each brain in Chen213

et al. (2024) was previously registered to the CCF using standard software that defines a non-rigid214

smooth deformation from raw slice coordinates into the CCF. This step normalizes differences in gross215

anatomy and brain size. Importantly, once transformed into CCF coordinates, one may associate the216

topography of a new brain with the Allen Brain Atlas to obtain brain area annotations (Wang et al., 2020).217

These CCF annotations provide the labels we use for training.218

It is important to note that CCF boundaries may not reflect ground truth neuroanatomy. While CCF219

registration accounts for overall brain shape, it does not account for more fine-grained differences220

such as the relative size of brain areas or a shift in a single boundary in one animal versus another.221

Nevertheless, these labels are sufficiently accurate to allow a comparison of computational methods. It222

is possible as well that the ‘errors’ of a model trained on such data will in fact represent a more accurate223

annotation than the CCF, a possibility we will return in Figure 3 in which we examine the predictions of224

TissueFormer on held-out brains.225

Single-cell profiles are not informative of cortical area226

The utility of attending across cells can be made clear by comparing with the performance of machine227

learning methods which are trained to predict the area given only a single cell. To investigate this, we228

first split the data into training data (90% of cells in 3 brains), validation data (the remaining 10% of the229

same 3 brains), and a held-out test brain (Figure 2b). We then trained a range of methods on the task of230

predicting the cortical area of a single cell from its transcriptome.231

The methods tested ranged in complexity from simple heuristics to modern single-cell foundation232

models (Figure 2c). We included three standard machine learning benchmarks, namely, a logistic regres-233

sion model, a random forest model, and k-neighbors classifier. These models map the vector of mRNA234

transcript counts to the label after a log(1 + 𝑥) transformation and z-scoring, and their hyperparameters235

were tuned on the validation set. We also trained two models which make use of the cell types of the236
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cell in question. These cell types were previously constructed at three levels of granularity (Chen et al.237

(2024)); we selected the finest level. The ‘cell type model’ predicts the area of a cell based on the most238

common area of cells of the same type in the training set. The ‘cell type k-neighbors’ model labels the239

target cell based on the area of the k-closest neighbors with the same cell type in the training set. Finally,240

we fine-tuned Murine Geneformer to predict the area of each cell.241

Despite the diversity of modeling approaches, all six models performed poorly, with classification242

accuracies ranging from 20–31%. This highlights the challenge of predicting cortical area from single-cell243

transcriptomes, consistent with previous findings that many cell types are broadly distributed across the244

cortex (Tasic et al., 2018; Yao et al., 2021b; Chen et al., 2024). While some types are more localized and245

thus were predicted with higher accuracy (for example, RSP/ACA or Retrosplenial/Anterior Cingulate246

excitatory cells), overall performance was low. Among the models tested, the Transformer-based Murine247

Geneformer achieved the highest accuracy, modestly outperforming the others. This is consistent with248

recent results showing strong performance of large pretrained models on downstream tasks (Theodoris249

et al., 2023). These results motivated our turn toward models that integrate information across cells.250

Annotating cell groups with TissueFormer251

To apply TissueFormer, we first created a pipeline to group cell sharing a label. Specifically, we grouped252

cells into cylindrical columns which fall inwards from the surface of the cortex (Figure 2d-e). Note that253

this strategy can easily be generalized to other shapes for spatial data from other tissues, or to other254

sampling strategies for non-spatial data. The cerebral cortex can be viewed as a layered cake draped255

over the exterior of the mouse brain, with functional areas as slices (Figure 2a). Thus, cortical columns256

contain cells in the same functional area. Our pipeline programmatically selects a single cell, then grows257

a cylinder centered on that cell up to the minimum radius needed to contain𝑁 total cells. Each columnar258

group of 𝑁 cells is labeled with the most common CCF annotation of cells in that group.259

We next trained TissueFormer to predict the group’s label from the set of transcriptomic profiles260

within the group. We again cross-validated by training on 90% of cells from three brains, validating on261

the remaining 10% of cells, and testing on one held-out brain. As we varied the number of cells in each262

group from𝑁 = 1 to𝑁 = 256, we observed that the validation accuracy of TissueFormer increased from263

around 35% to nearly 80% accuracy (Figure 2f). On test brains, the accuracy Tissueformer also increased264

markedly with group size from 30% to over 60% accuracy (Figure 2g). Providing the cortical depth of265

each cell as additional input to the model did not improve results, suggesting that depth represents266

redundant information (Figure 2—figure Supplement 1f). Note that random guessing on this 1-of-42267

classification task yields 8% accuracy due to imbalanced classes. Similar relative accuracies were seen268

when training with a class-balancing weighted objective (Figure 2—figure Supplement 1c). These results269

demonstrate that TissueFormer is able to dramatically outperform single-cell models at predicting tissue270

identity.271

As the group size increased from 𝑁 = 1 to 𝑁 = 256, the accuracy increased smoothly and roughly272

logarithmically with group size, indicating a predictable scaling law with more cells. Performance273

saturated at𝑁 = 128 cells, possibly because at this scale and at this density of cells per brain the groups274

sometimes straddle straddle boundaries, at which point group identity begins to lose meaning. Indeed,275

at𝑁 = 256 over 70% of groups contained a boundary (Figure 2—figure Supplement 1g). Higher sampling276

densities would enable larger group sizes in smaller locales, and thus possibly an even higher saturating277

accuracy. Due to this problem of spatial density, it is not possible to verify the maximum group size at278

which cells contain no further information about area. Overall, the considerable increase of performance279

with group size highlights the importance of the ability to integrate and compare information across280

single cells.281

The cell embedding module in the above experiment was previously pretrained on a masked mRNA282
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Figure 2. Comparison of accuracy at predicting brain regions shows that TissueFormer outperforms other methods. a)
Cortical cells from coronal slices of one hemisphere (left, colored by area) are visualized as a ‘flatmap’, a top-down projection.
Color legend is in Figure 3.b) Models were evaluated using 4-fold crossvalidation with 3 or 4 brains used for training and
validation labels, 1 of 4 brains held out for testing. Shown here are true labels for each cell. c) Comparison of accuracy when
predicting the area of a single cell in a test brain from its transcriptome shows that all methods perform poorly, though with
Murine Geneformer performing best. d) An example cell group (𝑁 = 256) plotted in slice coordinates, colored by cell type. e) A
sample of groups (𝑁 = 32) plotted in flatmap coordinates, here colored by the modal area of the group. f) Validation accuracy
as a function of group size shows that TissueFormer outperforms logistic regression (LR) given either pseudobulk transcription
or a histogram of cell types. g) Test brain accuracy. Error bars in f-g represent standard deviation across 4 folds. h) The
average rate of test accuracy improvement with group size for the above TissueFormer (black bar) compared to the accuracy
curve slopes of several TissueFormer models trained on homogeneous groups containing only a single cell type. Accuracy
curves are visible in supplement 1.
Figure 2—figure supplement 1. Effect of pretraining on TissueFormer, performance of random forest benchmarks, and
controls for unequal area size and sampling density.
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transcript prediction task on several other datasets containing tens of millions of human andmouse cells.283

In principle, this pretraining step could help, hinder, or have little effect on our current supervised task of284

predicting brain area. To investigate its impact, we also trained a TissueFormer model from a random285

initialization without any pretraining. Surprisingly, the performance of this randomly initialized model was286

indistinguishable from the pretrained model for all group sizes (Figure 2—figure Supplement 1d). This is287

likely due to the large number of cells in our labeled dataset. To confirm this, we varied the number of288

training cells used to train both a pretrained and a randomly initialized TissueFormer from one thousand289

cells to the full dataset of over two million. We found that pretraining indeed offered an advantage, but290

only in the intermediate range of less than one million cells (Figure 2—figure Supplement 1e). Thus, this291

spatial transcriptomic dataset is large enough that transfer learning from Murine Geneformer offers no292

advantage.293

We next compared the performance of TissueFormer with two standard methods for processing294

transcriptomic data of groups of single cells. We first examined pseudobulk analyses, which average295

the single-cell profiles in the group to approximate the measurements of a traditional bulk sequencing296

experiment. Logistic regression trained on pseudobulk vectors underperformed TissueFormer, yet still297

showed a nearly logarithmic increase of accuracy with group size (Figure 2f). A random forest model298

trained on the same data underperformed logistic regression (Figure 2—figure Supplement 1b). Next,299

we trained logistic regression and random forests to predict area from the cell type composition of a300

group, which was represented as a histogram of cell types. We used the finest-grain categorization of301

cell types from Chen et al. (2024) for this analysis. Overall, type composition was less informative of302

area than pseudobulk expression (Figure 2f). Intriguingly, each method displayed a logarithmic increase303

in accuracy with group size despite the differences in their representations of RNA transcription.304

The logarithmic increase in accuracy with group size across all methodologies could in principle305

be driven by two effects. One possibility is that the diversity and particular composition of cells pro-306

vided a new signal not available to single cell models. An alternative possibility is that cells contained307

independent measurement noise which can be averaged away. Some evidence to the first possibility308

is that benchmarks based on cell type composition alone showed such an increase (Figure 2f-g). To309

further distinguish these factors within TissueFormer, we reasoned that we could artificially restrict310

the diversity of cells in each group and then re-test a method’s performance. If the scaling were due to311

measurement noise alone, then this would have little effect and performance would likewise increase312

with a similar slope on a log-linear plot. We therefore constructed a new method of constructing groups313

such that they contain only a single cell type from the second level of granularity in the cell type hierarchy314

("H2" types). Note that there is still significant diversity within each H2 type, albeit much less than the315

general population. After training a TissueFormer model from scratch on these homogeneous groups, we316

found that the test set accuracy given a group of homogeneous type scaled more slowly with increasing317

group size 𝑁 , on average (Figure 2h). Groups of cells of certain types such as NP cells showed little318

improvement with larger size. Other types, such as L6 IT cells, nevertheless show comparable increases,319

likely indicating higher and more informative diversity in that population. The areas of some cell types320

are more easily predictable than other types due regional localization (Figure 2—figure Supplement 1h).321

These analyses confirmed that the increase in accuracy with group size was at least partially driven by322

comparative signals across a cell group rather than solely by averaging away technical noise.323

The decrease in accuracy between validation and test brain accuracy could have arisen due tomultiple324

reasons. A first reason is the differences in spatial coverage of data from each brain, visible in Figure 2b,325

which may cause test brains to contain areas not in the training data. However, correcting for this effect326

by only testing data with high density in the training set yielded improvements in accuracy of at most327

a few percentage points (Figure 2—figure Supplement 1a). Secondly, this could have reflected other328

batch effects across brains affecting single-cell measurements, effectively making this test brain an329
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out-of-distribution test for the methods. Finally, it is also possible that ‘errors’ in classification were due330

to actual changes in neuroanatomy which were correctly predicted by the model but were mislabeled by331

the pipeline of registering each brain to the CCF. We investigate this possibility in the following section.332

Predicted cortical maps333

TissueFormer can be used as an automated pipeline to create maps of cortical anatomy from single-cell334

transcription after being trained on reference brains. Note that annotating from reference brains is a335

supervised task, not to be confused with the unsupervised task of spatially clustering single-cell data336

(see Discussion). In Figure 3a, we demonstrate this capability and display the predicted cortical maps for337

each of 4 animals treated as a held-out test set. Pixels in these maps were colored by a weighted average338

of nearby cells’ predictions (see Methods). For visualization we used the predictions of TissueFormer339

trained with a class-size-balancing objective ensuring that the prior probability was uniform across340

all areas regardless of area size. We found that all four maps were coarsely similar to the reference341

annotation (see Figure 2a), supporting the finding in Figure 2 that TissueFormer is able to predict brain342

area more accurately than other approaches.343

A close inspection of these cortical maps revealed several notable differences in the predicted344

anatomy of each animal. For example, the boundary between the somatosensory cortex and the motor345

cortex is consistently shifted in the posterior-lateral direction in brain 1 relative to the Common Coordinate346

Framework (CCF) annotations, yet is consistently shifted in the opposite (anterior-medial) direction in347

brain 2 (Figure 3b). Additionally, the primary visual area is shifted medially in brain 2, yet laterally in brains348

3 and 4. Likewise, the primary auditory area is shifted medially in brain 2 yet is expanded and shifted349

laterally in brain 4. These shifts are a predominant cause of why test brain ‘accuracy’ in Figure 2g is lower350

than validation accuracy.351

While it is possible that the discrepancies between the CCF annotation and the predicted annotation352

are ‘errors’ of the model, it is also possible that this reflects true differences in anatomy between animals353

or errors in registrationwith the CCF. The CCF represents the average anatomy of over 1,000mouse brains,354

obscuring potential individual variability between brains. To investigate this possibility, we examined the355

somatosensory-motor boundary inmore detail. This boundary can be canonically identified by differences356

in cell type composition. In particular, motor cortex is classically considered to lack a Layer 4 (Brodmann,357

1909), and thus should show a large decrease in the density of Layer 4/5 IT excitatory cells relative to358

Layer 5 IT cells. This easily verifiable boundary was qualitatively visible in coronal slices colored by cell359

type (Figure 3c). To confirm its location, we examined the density of these two cell types along slices360

taken from brain 1 and brain 2 which intersect the sensory/motor boundary (Figure 3d). We found that361

the CCF boundary was inconsistent across brains relative to the ratio of cell types, but TissueFormer’s362

predicted maps showed a consistent 1:1. Furthermore, in the CCF boundaries, we observed a large shift363

between animals in the ratio for large distances on either side (Figure 3e). In contrast, the density ratios364

were consistent in their alignment to the predicted boundaries. Thus, a closer inspection of cell type365

distributions around this verifiable boundary revealed a closer alignment with our predicted atlas than366

with the boundaries due to CCF alignment.367

To provide further verification of the predicted cortical maps, we examined the spatial distributions of368

individual genes known to correlatewith area identity (Figure 3—figure Supplement 2). For example, Tshz2369

formsa strikingmedial-to-lateral gradientwith high abundance in anterior- and posterior-cingulate/retrosplenial370

areas with steep drops at the boundaries to motor, somatosensory and visual fields (Yao et al., 2021b).371

Across all four brains, the inter-animal differences in Tshz2 aligned better with the predicted boundary372

than the CCF area boundaries. Other genes which are also selectively expressed in retrosplenial areas,373

such as as Coro6 and Zfpm2 (Chen et al., 2022), shared this pattern, as did genes with selectively374

expressed in the dorsal but not the ventral retrosplenial area, such as Nell1 and Zmat4 (Hashikawa et al.,375
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Figure 3. Creation of cortical maps from spatial transcriptomics using TissueFormer. a) Predicted cortical areas for each brain
when held-out as a test brain. Predicted boundaries are in black, and the reference Common Coordinate Framework (CCF)
boundaries are overlaid in white. Areas with low spatial density are masked. b) In brains 1 (top) and 2 (bottom), the
somatosensory-motor boundary is displaced relative to the CCF, but in opposite directions. c) Example slices from brains 1 and
2 which contain the somatosensory-motor boundary boundary. Points are cells, colored by cell type with similar cell types
assigned similar colors (see Methods). d) Spatial density along the slices of two cell types, L4/5 IT and L5 IT, in the same colors
and slices as (c). e) The cell type ratio (L4/5 IT / L5 IT) aligned to the CCF boundary (left) or predicted boundary (right), showing
an inter-animal shift in CCF vs. inter-animal consistency in the predicted maps.
Figure 3—figure supplement 1. Predicted areas of single cells, highlighting discrepancies (‘errors’) with CCF labels.
Figure 3—figure supplement 2. Comparison to maps of mRNA transcription of single genes.
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2020). Meanwhile, the sensory/motor border analyzed in Figure 3 was correlated to the expression376

density of Rorb1, Brinp3, and Rcan2 (Cederquist et al., 2013), all of which showed consistent shifts377

across animals with the predicted maps but not with CCF boundaries. These examples of genes with378

clear spatial boundaries in their patterns of expression lend support to the predicted maps’ veracity.379

Discussion380

We developed TissueFormer, a neural network architecture that attends to groups of single-cell tran-381

scriptomic profiles in order to predict a label or annotation common to that group. In tests of predicting382

the brain area of a group of nearby cells in a multi-brain spatial transcriptomics dataset, TissueFormer383

achieved much higher accuracy rates compared to methods which predict the area of a single cell from384

its transcriptomic profile. For example, on held-out test brains TissueFormer achieved 60% accuracy with385

groups of 64 cells compared to 30% for a matched single-cell model. Furthermore, accuracy steadily386

increased with group size. TissueFormer also outperformed machine learning methods trained on the387

pseudobulk expression or cell type composition of the same group of cells. These results highlight the388

importance of attending across cells when predicting tissue-level properties.389

Because TissueFormer accepts arbitrary cell groupings, it can flexibly model phenotypes defined by390

anatomical contiguity (as in spatial transcriptomics), by patient sample (e.g., blood draws, biopsies), or by391

dynamic windows in longitudinal sampling. These applications include a wide range of use cases, from392

immunomonitoring in inflammatory disease to potentially the detection of cancer states (Weinkauff et al.,393

1999; Sun et al., 2025). As increasingly comprehensive healthy and disease cell atlases become available,394

population-aware models like TissueFormer offer a principled route to integrate those resources into395

predictive diagnostics that bridge cellular resolution and clinical decision-making (Dann et al., 2023).396

TissueFormer provides a promising tool for automated brain mapping from spatial transcriptomics.397

Compared to the labels due to Common Coordinate Framework (CCF) registration, TissueFormer’s398

predicted labels displayed individual variability that better correlated with inter-animal differences in local399

gene expression and cell type distributions, despite being trained to predict CCF labels. This tool could400

thus expedite the study of the individual differences in the size and location of transcriptomically-defined401

regions in the brain.402

Our approach to brain mapping is a supervised approach in which reference brains supply ground403

truth labels. Note that this is distinct from the approach of aligning tissue without regard to area labels, as404

in Tangram (Biancalani et al., 2021) and CAST (Tang et al., 2024). An important caveat of the supervised405

approach is the lack of perfect training data. No datasets of spatial transcriptomics are yet available406

which have animal-by-animal annotations of neuroanatomy verified by additional modalities such as407

projection tracing or functional imaging. Without access to such datasets, we instead trained to predict408

the imperfect CCF labels. In general, there is no formal guarantee that the predictions on held-out brains409

should reflect a better assessment than the CCF itself. While we are compelled by our empirical analysis410

to trust the model, this must be done with caution until a model can be trained on a dataset with multiple411

brains individually annotated with complementing experimental modalities.412

In the current study, we did not take up the question ofwhether different boundaries than theAllen Brain413

Atlas would be in any sense better, as in recent spatial clustering methods. Current boundaries are widely414

used and important for shared nomenclature. However, the automated clustering and identification of415

spatially homogeneous regions within spatial transcriptomic dataset is an interesting and open research416

question. Several algorithms have already been developed for this purpose (Dries et al., 2021; Zhao417

et al., 2021; Chitra et al., 2025; Hu et al., 2021; Dong and Zhang, 2022; Singhal et al., 2024; Jackson418

et al., 2024). When algorithms from this family are applied to the mouse cortex, the resulting regions419

correspond more to cortical layers than to functional regions (Ortiz et al., 2020; Partel et al., 2020; Lee420

et al., 2025). This is consistent with there being larger differences in gene expression across layers421
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than across cortical areas. In contrast, the functional specialization of neurons in cortex varies more422

across area than across layers within an area; neurons within a cortical column typically mediate the423

same cognitive tasks and furthermore respond to similar features within that task (Mountcastle, 1997;424

Callaway, 1998). Amid this dichotomy between transcriptomic and functional contiguity in space, we425

chose in this manuscript to classify functional areas for practical utility and for the reason of it being a426

benchmark task that leverages transcriptomic diversity within cellular ensembles. Nevertheless, it would427

be interesting in future work to train TissueFormer with self-supervised or contrastive objectives so as to428

discover brain areas de novo.429

Methods430

TissueFormer architecture431

TissueFormer contains two main components: a single-cell module and an aggregation module. In432

this sense it can be viewed as an end-to-end trainable hierarchical model above single-cell foundation433

models.434

The single-cell module is based on the BERT architecture, an encoder-only Transformer-based neural435

network (Devlin et al., 2019). We use identical hyperparameter settings as used by Geneformer 12L436

(Theodoris et al., 2023), allowing pretrained weights to be readily employed. Specifically, we use a437

12-layer BERT network with ReLU activations, hidden layer sizes of 512, and a context window of up to438

2048 genes. Each Transformer uses multi-head attention with 8 heads, and the inputs are appended439

with sinusoidal positional embeddings.440

The aggregation model pools across single-cell embeddings. As a first step, the first token from441

the single-cell module for each cell, which is always the <cls> token in the input token list, is extracted.442

This group is then fed as input to a stack of Transformer layers (without positional embedding so as to443

preserve order equivariance). Each layer employs LayerNorm normalization and GELU nonlinearities.444

Finally, the output is averaged over cells, resulting in a single vector for the group of cells. This is given as445

input to a single linear classifier layer, outputting unnormalized log probabilities of each of the potential446

labels. All classification tasks use a cross-entropy objective.447

In the present manuscript, we used the following hyperparameters. The aggregation module had 6448

Transformer layers, each with a hidden size of 768 units. All training runs on the classification task used449

the Adam optimizer with a learning rate of 0.001 and a linear learning rate decay following a learning rate450

warmup with warmup ratio 0.1. Our implementation relies on the Hugging Face Transformers library451

(Wolf et al., 2020), based on Pytorch (Paszke et al., 2019). We used Hydra for configuration management452

(Yadan, 2019).453

Single-cell pretraining454

The single-cell module can be pretrained on single-cell data using a self-supervised objective. In our455

experiments we use a version of Geneformer adapted for mouse brain tissue. We first downloaded the456

Geneformer 12L model, which was trained to predict the identity of randomly masked genes (15% of457

total genes per cell) on a corpus of 30 million human cells. We then adapted this to data mouse tissue458

by repeating this methodology on a hand-curated dataset containing over 6 million mouse cells. Using459

the CellXGene Census explorer (Program et al., 2025), we aggregated data from several publications460

totaling over 6 million cells (Yao et al., 2021b; Govek et al., 2022; Kozareva et al., 2021; Steuernagel461

et al., 2022; Yao et al., 2021a). After tokenizing (see below), we then trained the Geneformer architecture462

on this dataset with an identical masked gene prediction objective. Models were trained for 3 epochs463

using AdamW, a learning rate of 0.001, and a batch size of 32 cells on two Nvidia V100 cards. We464

tested training on the murine dataset from scratch as well as finetuning the human model. In order to465

13 of 25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2025. ; https://doi.org/10.1101/2025.08.17.670735doi: bioRxiv preprint 

https://doi.org/10.1101/2025.08.17.670735
http://creativecommons.org/licenses/by/4.0/


Preprint August 17, 2025

finetune the human model, we gave mouse genes the same initial embedding vector as their human466

orthologs, where available, and gave unmatched genes random initializations. Orthologs were obtained467

from Ensembl (Harrison et al., 2024), with the first selected if multiple orthologous genes existed. This468

transfer from human genes significantly improved the model compared to training on mouse genes469

alone as measured with the cross-entropy loss on 100,000 held-out cells from the mouse brain datasets.470

We call this finetuned Geneformer pretrained model ‘Murine Geneformer’.471

Data and tokenization472

Data473

The data published inChen et al. (2024) contain spatial transcriptomic data obtained via BARseq. BARseq474

is a probe-based in site sequencing technology based on Illumina chemistry. BARseq establishes mRNA475

transcript counts in cells based on the identification of probe sequences at spatially resolved locations,476

followed by cell segmentation and assignment of genes to cells. In this dataset, probes were selected to477

resolve 104 marker genes chosen to resolve excitatory cells in cortex. After quality control, the overall478

dataset contains 10.3 million cells across nine brains, including a pilot brain, four brains of mice raised in479

normal rearing conditions, and four brains of mice raised following monocular enucleation.480

After downloading spatial transcriptomic data were downloaded from Chen et al. (2024), we first481

converted all files into AnnData format (Virshup et al., 2023) with a custom script. We selected the482

four animals raised in control conditions, then selected only cortical cells, resulting in over 1.6 million483

cortical cells across 4 animals. Several metadata annotations for each cell were computed in the original484

publication. These include cell type annotations at 3 hierarchical levels, and cellular location within each485

brain slice in ‘slice coordinates’ as well as in CCF coordinates after each brain was registered to the Allen486

Brain Atlas. This dataset also contains the location within warped ‘flatmap’ coordinates, which use the487

butterfly projection from the ccf-streamlines python package to place cells in a 3D coordinate space488

in which cortical depth is the third axis (Wang et al., 2020).489

For plots in which cells were colored by cell type (e.g. Figure 3), we assigned to each cell type a color490

so that similar cell types would have similar colors. Specifically, the perceptual distance between any two491

cell types’ colors was chosen to match the correlation between the cell types’ pseudobulk expression492

vectors. Unlike standard color maps, this ensures that perceptual saliency aligns with biological meaning,493

with no salient colors (e.g. red) arbitrarily assigned. Technically, this involves computing the cell type494

similarity matrix, embedding this matrix into 3D via multidimensional scaling (MDS) to best preserve495

distances, then interpreting this 3D space as the LUV axes of the perceptually uniform LUV color space.496

We released a Python package which computes such colormaps called ColorMyCell to accompany this497

manuscript (Benjamin, 2025).498

This dataset also contains labels of the brain area of each cell. These are inherited from the CCF499

coordinate space. We used these annotations as training data when predicting area from cellular500

transcription. As downloaded, these areas were at the finest level of the hierarchical tree of brain501

annotations and distinguished between cortical layers. In order to obtain the cortical area without regard502

to layers, we ascended one level up the hierarchical ‘ancestor’ tree of annotation layers in the Allen Brain503

Atlas. The resulting areas, displayed in e.g. Figure 3, comprise 42 functionally distinct cortical areas.504

Tokenization505

All cells’ mRNA transcript vectors were ‘tokenized’, or converted into a format readable by Transformer506

models, with the following procedure. We used an identical strategy as performed by Geneformer,507

but wrote custom code to accept data in anndata format (Virshup et al., 2023). First, each cell was508

normalized by the total counts in each cell. All mRNA counts were then normalized by a fixed vector509

representing the median per-gene counts in a reference data corpus. When fine-tuning Geneformer, it510
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was empirically better to use the same median count vector used to train Geneformer (i.e. on human511

data) rather than re-establish median counts in mouse data. These normalized counts were then rank512

sorted, and the indices of the sort (i.e. the output of argsort) was used as the model input. For example,513

a model input of [gene 5, gene 2, ...] describes that the gene 5 had highest relative transcription, followed514

by gene 2, and so on. In a modification of the Geneformer pipeline, we ensured genes with zero counts515

were given a special token <pad>. We also modified the Geneformer pipeline to prepend a <cls> token.516

The ‘sentences’ seen by the model were thus of the form [<cls>, gene 5, gene 2, ..., <pad>]. The tokens517

are mapped to high-dimensional embedding vector via a dictionary learned within TissueFormer.518

Group construction strategy519

In order to train and predict with TissueFormer, it is necessary to deliver to it groups of cells which share a520

label. This requires code infrastructure to appropriately group cells according to the proper criteria. Since521

single-cell datasets are already quite large, this would ideally occur without requiring the duplication of522

data for cells that occur in multiple potential groups. Thus, we took an online strategy which loaded the523

single-cell dataset (after tokenization) and then in an online manner constructed groups to deliver to524

TissueFormer in batches. To accomplish this we designed a custom sampler and data collator within525

the Hugging Face code ecosystem for training TissueFormer.526

Our strategy was to select cells in groups which are approximately cortical columns. In order to cover527

the cortical surface with a roughly equal density, our pipeline first selected a seed cell at random from528

the training data, which potentially covers multiple brains. We next extracted the 𝑁 cells in the same529

brain which were closest to that cell in the XY plane of the flatmap coordinate system. This resulted in a530

group of 𝑁 cells which lie within a column. The width of the column differed in each group depending531

on the local density of cells. Note that because each brain contains a comparable number of cells, the532

column size in the test brain was comparable to the column size during training despite there being 3533

training brains and 3 times the overall number of cells.534

Predicting area from single cells535

To provide a baseline for the multi-cell methods, we trained several machine learning models to predict536

area from single-cell data. Benchmark models either saw cell type (H3 types), raw transcriptomic data, or537

both in the case of the k-nearest neighbor cell type model. To finetune Murine Geneformer, we removed538

the last layer and replaced it with a linear classifier of area. We found best performance with a progressive539

training strategy popular in supervised finetuning. For one epoch, we froze all but the last layer, then each540

epoch progressively unfroze one Transformer layer in Murine Geneformer. We used a batch size of 32541

and learning rate 0.0005. Results of training this model from scratch without pretraining are visible in542

Figure 2—figure Supplement 1e.543

TissueFormer training544

We trained TissueFormer on an NVIDIA H100 card with a batch size of 4096 total cells divided into 𝑁545

groups, each with |𝐺| = 4096∕𝑁 cells. A single model trains to completion for this dataset set (1.4 million546

cells) in 10 epochs in less than an hour. The most efficient training strategy involves saturating the GPU547

memory, and this is largely driven by the overall number of cells rather than the number of distinct groups.548

We trained all models with varying group size 𝑁 to convergence to ensure a fair comparison. However,549

as convergence can be difficult to verify, we attempted to further match the training resources for each550

model by comparing models with an equal number of training steps, which is proportional to the number551

of cell groups seen.552

Due to the imbalance in the size of brain areas, some classes have many more cells than others. A553

Bayes optimal model trained on this data would learn an unequal prior over classes, adding a slight bias554
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to classify cell groups as belonging to the largest areas. This may not be desirable in certain applications555

of brain mapping. For example, cells on the boundary between a large area and a small area which have556

zero evidence towards one or the other will be classified into the large area due to the prior. This would557

cause an inflation of large areas. In Figure 3 we display the results of a model trained with an objective558

designed to eliminate this bias and enforce an equal prior. Specifically we down-weighted examples559

from large areas with the factor as computed by the compute_class_weight function in scikit-learn560

(Pedregosa et al., 2011). For 𝑀 total cells, 𝐶 classes, and 𝑀𝑖 cells in class 𝑖, this factor is 𝑀
𝐶∗𝑀𝑖

. This561

ensures that the magnitude of the loss function equally reflects examples from all areas.562

Pseudobulk and type composition benchmarks563

To ensure a fair comparison with TissueFormer, we constructed train and test sets using the same564

data loading pipeline with the same random seed. For the pseudobulk results, we then averaged the565

mRNA transcript counts within each group of cells, then trained our benchmark methods. For the566

cell type composition models, we extracted the cell type of each cell in the group, the constructed567

a normalized histogram reflecting the relative composition of cell types in that group. For both data568

modalities, our benchmark methods were logistic regression and random forests. Specifically, we trained569

logistic regression with the lbfgs solver. We used nested cross-validation to determine the regularization570

parameter, and found that no regularization was optimal at this dataset size. We also used a random571

forest classifier with 200 estimators, max depth of 15, 33% of features seen per tree, and a minimum572

samples per split and 5 and per leaf at 2. We used the scikit-learn implementation of both classifiers573

(Pedregosa et al., 2011).574

Brain map visualization575

To create Figure 3a, we first trained 4 models in a cross-validated scheme, with 1 brain held out each fold.576

To achieve a high-resolution coverage, we then predicted on the test brain using every cell in the test577

brain once as a center seed of group selection. The prediction on each cell was stored as its label. These578

are visualized in Figure 3—figure Supplement 1. We then constructed a method to present smooth brain579

maps with clear boundaries between areas. Namely, we trained a support vector classifier (SVC) with580

a radial basis function kernel on the cells and their predicted labels, then visualized the predictions on581

pixels. We used the cuML implementation, a GPU-accelerated method, and used 𝛾 = 0.00001 and 𝐶 = 1582

as hyperparameters of the SVC (Raschka et al., 2020). Intuitively, this method acts to color each pixel583

in Figure 3a by a weighted average of the TissueFormer-predicted labels of the cells surrounding that584

pixel. The weights are selected due to a combination of proximity to the pixel and a factor determined by585

the algorithm to minimize the rate at which cells are misclassified, i.e. located on a pixel with a different586

color (area) than that cell’s TissueFormer-predicted area.587

Data Availability588

All code to train TissueFormer aswell as to create the figures in themanuscript is available at https://github.com/ZadorLaboratory/brain-589

annotation.590
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Figure 2—figure supplement 1. a) The drop in test brain accuracy relative to validation accuracy is only
partially due to differences in sampling density. We selected hexes in the test brain which had high
density in the 3 training brains (example at left), specifically, hexes with at least as many cells as the
group size. (right) Test accuracy on data in those hexes was marginally higher than for all points, yet
still much below validation accuracy. b) Performance of random forests (RF) compared against logistic
regression (LR) given identical inputs. c) Performance of a class-balanced model which controls for
some areas having more cells in training brains with a modified objective that discounts samples from
frequent areas. d) Effect of initializing TissueFormer with a pretrained Murine Geneformer as single-cell
module vs. randomly initialized. e) Varying the number of train samples, comparing random initalizations
to pretrained initializations, here for𝑁 = 1 group size. 𝑁 = 1was chosen to reduce ambiguity and ensure
that the number of cells seen equaled the number of groups seen. f) Effect of giving TissueFormer the
relative spatial location (relative to the center of mass) within each group of each cell. g) Number of
groups in the test brain that contain an area boundary as a function of the group size. h) The accuracy
curves of models trained while only ever able to observe groups containing a single cell type. Groups
were constructed by selecting a single cell and choosing the nearest N cells of the same time. The high
performance of some types, such as RSP/ACA, reflects the fact that these cells are localized in just one
area of cortex (retrospenial/anterior cingulate areas). Slopes of these curves are shown in Fig. 2.
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Figure 3—figure supplement 1. Across all 4 brains, we show the CCF labels on single cells (left), the
predicted labels (middle) and the location of mismatches between the two. We call these discrepancies
rather than errors as it is not clear which is closer to ground truth. Notable systematic differences include
a gross shift of the Primary Visual Area (magenta), and the somatosensory-motor boundary. In both
cases, a shift appears in the discrepancy map as a large amount of discrepancies on one side of an area
but very few on the other side, and a large discontinuity at the CCF boundary.
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Figure 3—figure supplement 2. Normalized spatial density of select genes in each animal. Arrows
highlight the animal-specific shifts of regional anatomy relative to the CCF (white boundaries), and how
these are consistent between genes and with the predictions of Tissueformer (top row, reproduced from
Figure 3. The top three rows (Tshz2, Coro6, and Zfmp2) recapitulate themedial shift in the boundary to the
retrospenial areas in Brain 1 and the lateral shift in this boundary in Brain 4. The bottom 5 rows recapitulate
the shift in the somatosensory/motor boundary, the same as analyzed in cell type distributions in Figure
3. To construct normalized gene densities, we first normalized mRNA transcription levels within each
cell. We then plot the average normalized transcription within each hex. Normalization was necessary to
reduce confounds of unequal spatial sampling.
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