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Abstract 
 
In vision and hearing, standardized units such as lumens (for brightness) and decibels (for loudness) allow 
consistent quantification of stimulus intensity, enabling precise control of sensory experiences. Olfaction, 
by contrast, currently lacks a robust quantitative framework linking physical stimulus properties directly 
to perceived odor intensity, complicating efforts to accurately characterize and manipulate aromas. To 
bridge this gap, we used a precisely controlled odor delivery system combined with deep learning models 
to predict the intensity of both single molecules and mixtures from physical properties. These models 
allowed us to develop an automated, quantitative method that accurately identifies which volatile 
components meaningfully contribute to aroma perception, overcoming the limitations of traditional 
heuristic approaches such as odor activity values and demonstrating practical utility in complex 
naturalistic odors.  
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Introduction 
 
The number of photons or the amplitude of air pressure variations, respectively, can determine the 
magnitude of visual or auditory stimuli, thus providing a simple metric for representing quantity using a 
single physical property. In these sensory modalities, an understanding of intensity was necessary to 
elucidate how the nervous system encodes stimuli and how individual components contribute to a 
mixture. In contrast, the concentration of an odorant alone is a poor predictor of the perceived intensity, 
with detection thresholds and maximum intensities varying widely across odorants. To develop the 
olfactory equivalent of noise-canceling headphones, high-fidelity audio, or digital videos we must first be 
able to predict the perceived intensity of an odor.  
  
Previous research on olfactory modeling has established transport-based boundaries for whether a 
molecule is odorous (Mayhew et al. 2022), predicted detection thresholds (Abraham et al. 2012), and 
predicted intensity at specific concentrations (Edwards and Jurs 1989; Keller et al. 2017). However, the 
field still lacks a quantitative axis for perceived odor strength, especially in mixtures, where intensity 
dictates which components dominate perception. Human and rodent psychophysical studies demonstrate 
that intensity does not map linearly to concentration, either within or across odorants (Sirotin et al. 2015; 
Wakayama et al. 2019; Wojcik and Sirotin 2014). Consequently, existing quantitative models cannot 
extrapolate the intensity at different concentrations. The relationship between an odor’s concentration and 
intensity is well described by a three-parameter Hill equation (Chastrette et al. 1998), yet there is no 
comprehensive dataset describing Hill parameters across odorants, or models predicting these parameters 
from molecular structure. Moreover, traditional psychophysical models for mixtures typically rely on 
single-concentration intensity measurements of individual odorants (Cain et al. 1995), despite evidence 
suggesting that full concentration-intensity curves are essential for accurate predictions of mixture 
intensities (Singh et al. 2019). This gap is especially significant given the complexity of natural odors, 
where intensity, rather than concentration, better predicts shifts in odor character for specific odorants 
(Gross-Isseroff and Lancet 1988; Laing et al. 2003), and more accurately weights the contribution of 
odorants in complex mixtures (Ravia et al. 2020). 
  
Several critical barriers have hindered progress toward reliable intensity prediction in olfaction. First, 
there is a shortage of perceptual data, particularly for mixtures, limiting the accuracy and applicability of 
existing models (Gerkin 2021). Second, precise stimulus control has been difficult, with most studies 
reporting liquid-phase concentrations despite the need for accurate air-phase (headspace) concentration 
measurements due to variability in ambient dilution during a sniff, solvent interactions (Jennings et al. 
2023), and odorant binding to delivery systems (Gorur-Shandilya et al. 2019). Finally, two odorants with 
similar intensities but disparate binding affinities will have very different effects on a mixture’s intensity, 
necessitating data collection for a broader set of concentrations. Addressing these barriers, we developed 
a robust, quantitative modeling approach using an extensive psychophysical dataset comprising full 
concentration-intensity profiles for individual odorants (62 molecules at seven or more concentrations) 
and comprehensive mixture data. This method substantially improves intensity prediction, thereby 
enhancing stimulus control and advancing olfactory research toward the precision achieved in other 
sensory modalities. 
  
Here we demonstrate that a comprehensive, high-quality psychophysical dataset of mixture intensities (N 
= 260), alongside concentration-intensity functions for individual molecules (62 molecules at seven or 
more concentrations, totaling 434 data points), enables the prediction of odorant and mixture intensity 
based on molecular structure. Notably, biologically inspired models excelled in predicting odor mixture 
intensity, and molecular features crucial for transporting an odorant from its source through mucosa to the 
odorant binding site were predictive of monomolecular intensities. We extend the application of these 
intensity models to predicting odor quality, revealing that they enhance performance compared to leading 
models. 
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The field of olfaction has lacked a standardized, quantitative system of odor representation. Giving 
researchers access to perceived intensity, and disentangling it from concentration, is a major step toward 
elevating stimulus control in olfactory research to that of audition and vision. 
 
Results 
Olfactory research has faced significant challenges in precisely controlling odorant concentrations, often 
leading to discrepancies in reported detection thresholds for the same odorant, sometimes by orders of 
magnitude (Schmidt and Cain 2010). These discrepancies were often attributable to stimulus variability. 
To precisely link chemical structure to perceived intensity, we developed a closed-system odor delivery 
method using gas-sampling bags (Figure 1A). Traditional jar and olfactometer stimulus delivery suffers 
from two main limitations. First, the participant’s sniff mixes the odor with ambient air, diluting the 
stimulus and making it difficult to deliver a precise, consistent concentration. Second, odors are typically 
diluted in solvents, which complicates determination of the air-phase concentration (Jennings et al. 2023) 
(Jennings et al. 2023). Delivering odors via gas-sampling bags minimizes solvent interactions and 
prevents dilution from external air. Using this system, we delivered at least seven intensity-spaced 
concentrations of 62 odorants (more than 434 samples; Figure 1B) to a panel trained to measure intensity 
using the generalized Labeled Magnitude Scale (gLMS) (Methods). The odors were selected to be diverse 
in physicochemical and in perceptual space (Figure S2). Validating the reliability of our odor delivery 
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Figure 1. Predicting concentration-intensity relationships of odorants. (A) Experimental setup for collecting 
intensity ratings using odors in gas-sampling bags. (B) Range of tested concentrations across the sixty-two odorants 
tested. (C) Human participants’ intensity ratings exhibit high test-retest reliability (panel correlation, r = 0.97) (D) 
The Hill equation provides the best fit for concentration-intensity data compared to alternative psychophysical 
models (Beidler, Fechner, Stevens), as indicated by the lowest root mean square error (RMSE). (E) Fitted 
concentration-intensity functions (Hill equation) for all 62 odorants. The relative intensities of three highlighted 
odorants—2-heptanone (green), cis-3-hexenyl acetate (blue), and acetophenone (red)—change rank order as 
concentration increases.  
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system, our panel mean 
intensity ratings were 
stable across replicates 
(Figure 1C; r(60) = 0.97, 
RMSE = 3.0) surpassing 
reliability demonstrated in 
previous studies (r(18) = 
0.65; (Ma et al. 2021)). 
Thus, gas-sampling bags 
enable precise, 
reproducible odorant 
delivery, crucial for 
accurate prediction of 
odor intensity directly 
from chemical structure.  
 
 
Using this data, we first 
fitted concentration-
intensity curves for each 
of the 62 odorants. 
Consistent with previous 
findings (Chastrette et al. 
1998), we confirmed that 
the Hill equation 
(Methods, Equation 1) 
best represents the 
concentration-intensity 
relationship in human 
raters (Figure 1D). These 
fits demonstrate that the 
relative intensity ranking 
between two odorants can 
depend on concentration 
(Figure 1E). For example, 
2-heptanone (green line) 
surpasses acetophenone 
(red line) in perceived 
intensity as its 
concentration increases 
from log (C) = –20 to –15, 
representing a 10⁵-fold 
increase. The substantial 
variation observed in 
maximum intensity, slope, 
and inflection point across 
all 62 odorants further 
demonstrates that odorant 
concentration alone is a 
poor predictor of 
perceived intensity.   
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Figure 2. Molecular structure-based prediction of odorant intensity. (A) 
Schematic of the five-layer neural network trained on 127 physicochemical 
features, including experimental properties (e.g., boiling point, vapor pressure) and 
geometric descriptors. (B) Cross-validated model predictions closely matched 
experimentally measured intensities for held-out odorants (RMSE = 7.1, r = 0.87), 
significantly outperforming shuffled controls (RMSE = 20.4, p < 0.001). (C) Model 
accuracy was robust across chemical classes, although prediction errors increased at 
higher intensities. Colors represent prediction errors (observed – predicted), and 
grey bars indicate RMSE within each chemical class. (D) Ten molecular features 
strongly correlated with Hill function parameters of the odorants.  (E) A simplified 
neural network trained on only the 10 selected descriptors achieved nearly 
equivalent prediction accuracy (RMSE = 7.2, r = 0.87). (F) Key molecular features 
contributing to predicted odorant intensity include parameters related to odorant 
transport into the olfactory binding pocket (MLogP, vapor pressure, molecular size 
(alpha-area)). Feature importance was quantified as the increase in RMSE when 
each feature was randomly permuted. Error bars show the standard deviation of this 
RMSE change. 
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We trained a 5-layer deep neural network (DNN) to predict the fitted values of intensity for each odorant 
based on their physicochemical features (Figure 2A). Our model performed well on held-out data (RMSE 
= 7.1, r = 0.87; Figure 2B) and significantly outperformed the same model trained on data where the 
relationship between intensity and concentration was shuffled (RMSE = 20.4, t(566) = 15.32, p < 0.001). 
Model accuracy remained consistent across various chemical classes, although prediction errors were 
most pronounced at maximum intensities (Figure 2C; Figure S3). To further investigate which 
physicochemical properties drove these predictions, we created a simplified model using only ten select 
features. These properties included parameters associated with physical transport [molecular weight, 
vapor pressure, boiling point, and octanol-water partition coefficient (MLOGP) (Mayhew et al. 2022)], a 
geometric descriptor of molecular shape (alpha-area), and five additional physicochemical features 
(CATS2D_03_LL, 
SpMax8_Bh.p., MPC07, 
MATS7i, H2s) that showed 
the strongest correlations with 
the Hill parameters (Fig. 2D, 
see Methods). The simplified 
model showed only a ~1% 
decrease in predictive 
performance (RMSE=7.2, 
r=0.87, Figure 2E), despite 
using only 10 molecular 
features compared to 127 in 
the full model. We explored 
the correlation between each 
feature and the three Hill 
Equation parameters. The 
maximum intensity (Imax) was 
higher for molecules that 
have a high vapor pressure. 
The inflection point (EC50) 
was at lower concentrations 
for molecules that have a high 
vapor pressure. The slope of 
the psychophysical function 
(Hill coefficient) was the 
most difficult of the three to 
predict and was steeper for 
molecules that have a large 
number of lipophilic atoms 3-
bonds apart 
(CATS2D_03_LL) (Fig. 2D). 
To understand how the model 
uses these features, we 
randomly shuffled the 10 
parameters for the test set of 
molecules one by one and 
measured the resulting 
increase in RMSE (Fig. 2F). 
The permutation of vapor 
pressure resulted in a 

Figure 3. Systematic evaluation of odor mixture intensity models. (A) 
Overview of historical and biophysical models used for predicting odor 
mixture intensities. (B) Human panelists rated perceived intensities of odor 
mixtures composed of 2, 3, 5, or 10 components (7623 ratings total), presented 
via a standardized delivery system. Each row corresponds to a specific 
mixture, with colored bars indicating the concentration (x-axis) and intensity 
(color) of its component odorants when presented alone. (C) Panelist ratings 
showed high consistency across replicate trials (r=0.97, RMSE=3.62). (D) 
Models incorporating concentration-intensity functions (green) outperformed 
traditional models. The red dotted line indicates the test-retest RMSE. (E) A 
neural network model (same as in Figure 2) accurately predicted odor mixture 
intensities using component concentrations and physicochemical properties 
(RMSE=7.5), significantly outperforming a control model trained on shuffled 
data (RMSE=15.8, p<0.001, bootstrap).  
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significant RMSE increase (p<10-5, bootstrap test, Fig. 2F). Overall, we trained a neural network model 
that is highly predictive of single molecule intensities and found a set of molecular features relevant to 
computing perceived intensity. 
 
Psychophysical curves of individual components enhance mixture odor prediction 
Most odors we encounter in everyday life are complex mixtures, yet our understanding of how odorants 
interact to influence the perceived intensity of mixtures remains incomplete. Historically, simple models 
(Figure 3A) such as linear addition (ADD) and strongest component (SC) were used to predict odor 
intensity, though both consistently generate overestimates. Later, geometrical models (Euclidean addition 
(EUC), vector (VEC), and U-model (U)) incorporated multidimensional relationships between odorants in 
larger mixtures, improving predictions at the cost of requiring additional empirical parameters. All 
existing mixture interaction models rely solely on single-concentration intensity measurements for their 
estimates, have not been systematically compared, and do not incorporate biophysical mechanisms. 
Recently, biophysical models such as Competitive Binding (CB) and Primacy Coding (PRI) have 
emerged, capturing receptor-level interactions and providing greater biological plausibility (Wilson et al. 
2017; Singh et al. 2019). The CB model incorporates concentration-intensity functions into its predictions 
and here we introduce a modified version of the PRI model, similarly incorporating concentration-
intensity functions (Figure 3A; see Methods for details). We hypothesized that incorporating information 
about each components’ concentration-intensity function would perform better than historical models that 
only use single-concentration intensity measurements. 
 
To systematically compare these models, trained human panelists (n ≥ 15) evaluated the intensity of odor 
mixtures containing different numbers of components: 216 binary, 20 tertiary, 16 five-component, and 8 
ten-component mixtures. Each mixture was rated twice, resulting in 7623 total data points (Figure 3B). 
We strategically oversampled mixtures with components at higher intensities, where published models 
showed the most disagreement. All odorants were delivered via gas-sampling bags, and panelists 
demonstrated high test-retest reliability (Figure 3C; r(258) = 0.97, RMSE = 3.62) - again surpassing 
previous studies (r(62) = 0.77; (Ma et al. 2021)). 
 
Supporting our hypothesis, models that incorporated concentration-intensity profiles for individual 
components outperformed traditional approaches (Figure 3D). Commonly used models, such as EUC and 
SC, consistently overestimated mixture intensity, as most mixtures were less intense than the strongest 
individual component. The newly developed primacy model (PRI) achieved the best overall best 
performance (r(258) = 0.85, p < 0.001, RMSE = 8.6). The primacy model assumes that mixture intensity 
is determined early in the inhalation cycle, when the odor concentration in the nose is approximately 20% 
of the ambient concentration (Figure 3A). The intensity of the mixture is then computed as a weighted 
average using the intensities of individual components at the 20% concentration (Methods, Equation 8).  
 
To predict mixture intensity, the models presented above relied on known intensities or intensity-vs-
concentration curves for mixture components. Can quantitative models predict mixture intensity directly 
from physicochemical properties and concentrations of components? To address this, we trained a DNN 
with the same architecture as in Figure 2A to directly predict mixture intensity from concentration-
weighted physicochemical properties of the components. The DNN was trained end-to-end using both 
single-molecule response curves and mixture intensity data, with cross-validation to avoid data leakage. 
This unified approach demonstrated high accuracy in predicting the intensity of held-out mixtures (RMSE 
= 7.5; Fig. 3E), significantly outperforming a shuffled-label control (RMSE = 15.8, t(316) = 14.1, p < 
0.001). These results demonstrate that incorporating both component molecular properties and 
concentrations enables accurate predictions of mixture intensity.   
      
Using intensity to identify key odorants in complex aromas 
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We demonstrate the practical 
utility of our mixture model by 
addressing a central challenge in 
flavor chemistry: identifying the 
molecules responsible for a 
food’s aroma. Although foods 
can emit hundreds of volatile 
compounds, fewer than 5% 
meaningfully contribute to their 
aroma, as most molecules are not 
present at sufficiently high 
concentrations to have 
significant impact (Grosch 
2000). Conventional methods 
rely on headspace solid‐phase 
microextraction coupled to gas 
chromatography (HS-SPME-
GC) to quantify volatiles, 
prioritize compounds with an 
odor activity value (OAV = 
concentration / detection 
threshold) > 1 (Dunkel et al. 
2014), and then confirm through 
omission tests (full vs. N−1 
blends). This pipeline is slow, 
expensive, sensitive to variable 
thresholds (Stevens et al. 1988), 
assumes intensity is linearly 
related to concentration 
(Audouin et al. 2001), and 
ignores interactions between 
molecules. Figure 4A highlights this limitation, showing that odorants at the same OAV of 100 span a 
wide range of intensities, confirming the nonlinear behavior captured by our model. 
 
We propose an alternative to traditional OAV and omission testing by using predictive models to identify 
key odorants in complex aromas. Drawing on published data (He et al. 2020; C. Liu et al. 2022; R.-S. Liu 
et al. 2012), we compiled concentrations of 95 odorants across five naturalistic aromas quantified using 
HS-SPME-GC. In these studies, odorants with OAV > 1 underwent omission testing, comparing the full 
mixture (N) to a version missing a single component (N-1). Among these odorants, 60 were also 
evaluated by trained panelists for perceived intensity using GC-Olfactometry (GC-O). First, we externally 
validated our single-molecule intensity model by predicting the perceived intensity of chemicals rated by 
GC-O with high accuracy (Figure 4B, r(60) = 0.62, p < 0.001). Next, we evaluated our intensity 
predictions as an alternative to OAV for identifying key odorants. Although single odorant intensities 
predicted omission-test outcomes well (r(65) = .45, p < 0.001), our DNN mixture model provided even 
greater accuracy by simulating intensity reductions between full (N) and omission (N-1) mixtures (r(65) = 
.55, p < 0.001; Figure 4C). In summary, our intensity-based approach outperformed traditional OAV-
based methods in identifying critical odorants (Figure 4D). 
 
Discussion 
In this study, we developed and validated quantitative models to predict perceived odor intensity based on 
the concentration and physicochemical properties of both individual molecules and complex mixtures.  

Figure 4. Assessing individual odorants’ contributions to aroma perception. 
(A) Relationship between odor activity values (OAV) and perceived odor 
intensities, highlighting substantial nonlinear variation among odorants. (B) 
Intensities predicted by our single-molecule model strongly correlate with 
measured intensities of monomolecular components in naturalistic volatile 
mixtures measured via HS-SPME-GC (r(60) = 0.62, p < 0.001). (C) Single-
odorant intensity predictions (as in B) significantly correlate with odorant 
importance assessed by omission tests (r(65) = 0.45, p < 0.001). Incorporating 
odorant interactions through neural network (NN) mixture prediction further 
enhances accuracy (r(65) = 0.55, p < 0.001). (D) The DNN mixture model 
predictions outperform those based solely on either OAV or the single-molecule 
intensity model in (B), highlighting the importance of capturing nonlinear 
interactions when modeling complex aromas. 
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For individual odorants, we confirmed that a three-parameter Hill function accurately describes the non-
linear relationship between concentration and perceived intensity, and related its parameters to molecular 
descriptors. Extending this model to odor mixtures, we demonstrated that approaches that incorporate the 
full concentration–intensity profiles of each component outperform traditional additive or “strongest-
component” models. Collectively, these advances offer a unified framework for predicting how chemical 
features translate into perceived intensity, facilitating systematic investigation of odor coding and 
enabling more precise control of olfactory stimuli in both research and applied contexts. 
 
Without an accurate model to predict the perceived intensity of an odor, neuroscience studies in animal 
models typically use concentration as a proxy for intensity. While concentration correlates with intensity 
for a given odor, it fails to predict intensity across odors. For this reason, the field has not yet reached 
consensus regarding the neural features (e.g., spike rate, latency, ensemble synchrony) underlying 
perceived intensity. The availability of a reliable intensity metric now makes it possible to design 
experiments that dissociate concentration from intensity and can adjudicate among neural coding 
hypotheses such primacy, latency or synchrony models. Additionally, our simplified model uses a small 
set of molecular transport features, provides greater mechanistic interpretability, and simplifies 
implementation, thereby broadening its appeal for researchers investigating neural correlates of olfactory 
perception. 
 
Previous studies have shown that the perceived intensity of odor mixtures does not scale linearly with 
concentration (Chastrette et al. 1998), and simple additive models often fail to account for mixture 
interactions like suppression or overshadowing (Cain et al. 1995). Although previous models have been 
developed to predict odor detection thresholds (Abraham et al. 2012) or odor intensity at fixed 
concentrations (Keller et al. 2017), these approaches were limited in their ability to generalize across 
different concentrations or to odor mixtures. Furthermore, limited datasets and challenges in controlling 
air-phase concentrations have hindered progress (Jennings et al. 2023). Using a large, high-quality dataset 
of intensity ratings for stimuli with known gas-phase concentrations, we demonstrated that incorporating 
concentration-intensity functions for individual components substantially improves mixture predictions, 
outperforming traditional approaches. This is consistent with receptor-level studies showing competitive 
binding and non-linear responses to mixtures (Singh et al. 2019). 
  
Across sensory modalities, perceived intensity fundamentally shapes stimulus identity. In vision, green 
light appears brighter than red light even when both deliver identical photon fluxes (Backhaus 1992; 
Bezold 1873). Similarly, in olfaction, increasing intensity can alter the perceived odor quality of both 
monomolecular odors (Laing et al. 2003; Gross-Isseroff and Lancet 1988) and complex mixtures (Ravia 
et al. 2020). However, the field currently lacks a simple, standardized metric for odor intensity, hindering 
the development of accurate models of odor identity. Current mixture-quality models therefore depend on 
supplementary intensity ratings from human panelists (Ravia et al. 2020), introducing variability and 
limiting generalization to novel odors. In food science, this gap means that key aroma compounds are 
missed because suprathreshold intensity cannot reliably be inferred from detection thresholds. Our 
mixture model closes this gap by providing an automated, scalable method to predict which odorants 
dominate perception directly from a gas-chromatography trace. 
 
By converting concentration into a perceptually meaningful scale, our models provide olfactory research 
with a long-needed analog of decibels or lumens. Just as standardized intensity units have transformed 
research in vision and audition, these validated intensity models now enable researchers to design stimuli 
that vary along one perceptual dimension while holding others constant—a fundamental requirement for 
dissecting neural codes. Odor intensity also governs which components dominate perceptual salience in 
natural aromas, yet has remained quantitatively intractable. This framework for automated identification 
of perceptually dominant molecules in complex mixtures has immediate applications in flavor chemistry, 
fragrance design, and environmental monitoring. 
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Methods 
 
Participants 
We recruited 36 panelists (20 female, ages 20-55, mean age = 33.0 ± 11.2 years) from the Philadelphia 
area. Each testing session used a subset of at least 15 panelists, as panel-averaged intensities are stable at 
this sample size (Keller et al. 2017). All panelists reported a normal sense of smell and no known health 
complications that could impair olfaction, such as renal disease, neurodegenerative disease, or congestion 
at the time of testing. The study was approved by the University of Pennsylvania Institutional Review 
Board (#818208), and all panelists provided informed consent before enrollment.   
 
Location and Setup 
All experiments were conducted in well-ventilated rooms designed for human olfaction experiments at 
the Monell Chemical Senses Center. During testing, an opaque curtain obstructed the participant’s view 
of the experimenter and stimuli (Figure 1A). 
 
Odor Sampling Bag 
Creating a method to deliver known odorant concentrations presents three major challenges: solvent 
interactions, incompatible solvent mixtures, and dilution from ambient air. The traditional delivery 
method, an open jar with diluted odorant, fails to control for these factors and often results in poor 
reliability across participants (Schmidt and Cain 2010). To address these limitations, we developed a 
controlled odor delivery system using gas-sampling bags (Figure S1). This approach ensures consistent 
odorant concentrations throughout testing sessions and improves measurement reliability compared to 
conventional methods. We constructed an odor delivery system using Nalophan gas sampling bags 
(Miller and McGinley 2008) sealed at both ends with cable ties: one end around a tube fitted with an 
external septum, the other around an open/close valve. Bags were first evacuated via vacuum through the 
valve, then filled with dehumidified, carbon-filtered air at a flow rate of 2 LPM for 5 minutes to achieve a 
volume of 10 L. The liquid odorant was injected through the septum and allowed to equilibrate into the 
gas phase, a process that took between minutes to hours depending on the odorant's volume and volatility. 
After reaching equilibrium, the odorant concentration was uniform throughout the bag. For sampling, we 
connected the open/close valve to a flexible nose mask equipped with a low-resistance one-way valve. 
This system allowed natural inhalation of the headspace while preventing ambient air contamination. The 
mask's design enabled a tight facial seal and quick attachment to multiple bags in succession. Detailed 
assembly instructions and a complete materials list are provided in the supplementary material (Table S1 
and Document S1). 
 
Odor Stimuli Selection 
We selected 62 odorants (Sigma-Aldrich, >98% purity) to maximize diversity across chemical structure 
and perceptual qualities. To avoid redundant and trivial stimuli, odorants were chosen to be diverse across 
two objective criteria: chemical structure (physicochemical features) and perceptual quality (e.g. 
pleasantness). Compounds were structurally distinct from each other (Figure S2A) and varied in odor 
character (Figure S2B). A complete list of odorants and their concentrations for both monomolecular and 
mixture stimuli is provided in Table S2.  
 
Rating Odor Stimuli Intensity 
We trained participants to rate odor intensity using the generalized Labeled Magnitude Scale 
(gLMS;(Green et al. 1996)) with instructions to focus solely on intensity and disregard pleasantness. 
Training included ratings of cross-modal verbal examples (e.g., jet engine loudness) and physical weights. 
Participants were then trained using the bag delivery system and established their baseline response using 
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a blank (clean air) sample. Each testing session began with scale recalibration and included duplicate 
presentations of both a blank (clean air) and reference stimulus (linalool at -5 log C) to assess rating 
consistency. Monomolecular odorants were presented at seven or more concentrations, with all stimuli, 
including mixtures, rated in duplicate. Stimuli were presented in randomized order with 30-second 
intervals between them. We evaluated participant performance using two criteria: ability to discriminate 
concentration differences and test-retest reliability within sessions. Participants with poor reliability (rho 
< 0.6) were excluded from further testing. 
 
Modeling Monomolecular Concentration-Intensity Functions 
Psychophysical function for Intensity 
Human psychophysical data show that the relationship between an odorant’s concentration and perceived 
intensity is reminiscent of ligand-receptor binding and can be modeled using the Hill equation (Chastrette 
et al. 1998): 
 
(Equation 1) 

𝐼	 = 	
𝐼!"#𝐶$

𝐶$	 +	𝐸𝐶50$
 

 
where I is the perceived intensity, C is the odorant concentration, Imax is the maximum perceivable 
intensity, EC50 is the concentration at the curve’s inflection point, and n is the Hill exponent describing 
the curve’s steepness. This function produces a sigmoid curve when plotted in log concentration space. 
  
Although other models, such as Stevens’ power law, Beidler’s function, and Fechner’s logarithmic 
function, have been proposed, Chastrette and colleagues (Chastrette et al. 1998) found that the Hill 
equation best fit human data. To validate this finding on a larger scale, we fit all four models to our 
dataset and compared their performance using root-mean-square error (RMSE). The Hill equation 
consistently yielded the lowest error, and was therefore used throughout this study. 
 
Analytical Models of Mixture Intensity 
Multiple historical models have been proposed to predict odor intensity of a mixture from the perceived 
intensities (Ii) of its components. We evaluated a range of models grouped into two categories: simple and 
geometrical. Two additional models using the context of the components’ concentration-intensity 
relationships were developed specifically for this study. We excluded the vector model from the results as 
it produced results with imaginary intensity for mixtures with more than 4 components due to the 
negative cosine term within the square root (see equation 5 below). Mixture intensities were rated by 
trained panelists using the generalized Labeled Magnitude Scale (gLMS) for binary (N = 216), tertiary (N 
= 20), five-component (N = 16) and ten-component (N = 8) mixtures. All mixtures were constructed from 
the 62 odorants that our panelists rated in this study. To maximize contrast between models, we selected 
component concentrations where model predictions maximally differed, typically above the inflection 
point of a component’s concentration-intensity curve. 
 
Evaluation of Model Performance 
Model performance was measured using RMSE and Pearson correlation. Since our dataset contained an 
uneven distribution of mixture sizes, RMSE was computed separately for each mixture type (2-, 3-, 5-, 
and 10-component mixtures), and then averaged across all groups. 
 
Simple Models 
Linear Addition (ADD) 
Assumes that the perceived intensity of a mixture is the sum of the intensities of its components. For a 
mixture of n odorants, the predicted intensity Imix can be expressed as: 
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(Equation 2) 

𝐼!&# =)𝐼&

$

&'(

 

 
where Ii is the intensity of each odorant when presented alone. 
 
Strongest Component (SC) 
Assumes the mixture’s intensity is determined by the most intense single component: 
 
(Equation 3) 
 

𝐼!&# = 𝑚𝑎𝑥(𝐼(, . . . 𝐼$) 
 
 
Geometrical Models 
Grounded in Euclidean geometry, these models assume that odorant intensities combine in a 
multidimensional space and have been shown to provide a more accurate prediction of odor intensity than 
simpler linear models (Laffort and Dravnieks 1982).  
 
Euclidean Addition (EUC) 
Assumes orthogonal contributions of each component: 
 
(Equation 4) 

𝐼!&# 	= 1) 𝐼&)
$

&	'	(

	 

 
 
The vector model (VEC) and U model (U), as originally described by (Laffort and Dravnieks 1982), 
extends the concept of Euclidean addition by incorporating both the magnitudes and angular relationships 
(cosine similarity) between intensity vectors in a multidimensional odor space. However, each model also 
requires the estimation of specific parameters for each mixture pair [cos (αij)] which has previously been 
derived from the data itself. According to (Laffort and Dravnieks 1982), cos (αij) of -0.3 will universally 
work for all mixtures; therefore, this number was used in the analysis.  
 
Vector Model (VEC) 
Extends EUC by incorporating angular relationships (cosine similarity) between odorants: 
 
(Equation 5) 

𝐼!&# 	= 1)𝐼&)
$

&'(

+)2	 ⋅ 𝐼& 	⋅ 𝐼* ⋅ 𝑐𝑜𝑠(𝛼&*)
$

&+*

	 

 
where cos (αij) is the cosine of the angle between odorant i and j. Although cos (αij) can be derived from 
the data itself, based on prior work (Laffort and Dravnieks 1982), we used a fixed value of –0.3 for all 
pairwise interactions. Negative cosine values frequently result in imaginary outputs for mixtures with 
more than three components, leading us to exclude this model from final analyses. 
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U Model (VEC) 
A more complex model incorporating higher-order interactions among all combinations of odorants: 
(Equation 6)	

𝐼!&# 	= 	
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where the first summation represents a linear sum of intensities of individual odorants while the second 
summation sums the interaction terms for all combinations Ck of k odorants, where Ck represents a 
combination of k odorants from the total n. The product term accounts for the geometric mean of 
intensities in each subset. 
 
Biophysical Models 
 
Competitive Binding (CB) 
Inspired by receptor–ligand binding dynamics, this model incorporates receptor competition: 
 
(Equation 7) 

𝐼!&# =
𝐹!"# ⋅ ∑

	𝑎& 	⋅ 	𝐶&
𝐸𝐶50& 	

$
&'( 	

1 + ∑ 𝐶&
𝐸𝐶50& 	

$
&'(

 

 

where 𝑎& is the maximal intensity or difference in Imax and Imin for each odorant, Ci is the concentration of 
each odorant in the mixture, 𝐸𝐶50& is the concentration at half maximal response, and 𝐹!"# is the global 
maximum intensity (set to 1). The denominator represents the competition among odorants for binding to 
the receptor. As multiple odorants compete for the same receptor, the effective concentration available for 
binding decreases, leading to non-linear responses. While biologically-inspired, it simplifies perception 
by assuming a single receptor.  
 
Primacy Coding (PRI) 
Based on the theory that early-activated receptor encode odor identity (Wilson et al. 2017), this model 
estimates mixture intensity from the early part of the concentration-intensity curve, using 20% of the 
ambient concentration as a proxy for early receptor activation: 
 
(Equation 8)	
 

𝐼!&# = 𝑙𝑛 F)𝑒𝑥𝑝(𝐼&(𝛼𝐶& 	)	)
$

&'(

I 

  
where 𝐼&(𝛼𝐶& 	)	is	the	intensity	of	component	𝑖	at	20%	(𝛼 = 0.2) of its maximum (ambient) 
concentration. Equation 8 is mathematically equivalent to the LogSumExp average of intensities of 
mixture components taken at 20% of the ambient concentration. 
 
Deep Learning Models of Intensity 
Preprocessing of Chemoinformatic Features 
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For model training, we used 4,885 Dragon molecular descriptors (DDs) generated using Dragon Software 
(version 6, (Todeschini et al. 2004)). Directly using this high-dimensional feature set would risk 
overfitting, so we reduced the number of DDs using several steps. First, we discarded DDs which did not 
display variance for our molecule set (standard deviation < 10⁻⁸) or had zero values for most of the 
molecules. This procedure reduced the number of DDs to 2353. Descriptors with positive values only 
were log-transformed. Second, to identify descriptors relevant to intensity, we computed correlations 
between each of the three Hill fitting coefficients for our molecules. For each of the Hill coefficients, we 
found the 40 most correlated descriptors and included them into our final DD set. We ensured that 
properties commonly assumed to be predictive of intensity (molecular weight (MW) and Moriguchi 
octanol-water partition coefficient (MLogP)) were included. Experimental, or secondary estimated boiling 
points at normal conditions and saturated vapor pressures were gathered from the U.S. Environmental 
Protection Agencies  (EPA) (Estimation Program Interface (EPI) suite, 2024).  Additionally, for each 
molecule, we calculated the bounding shape of 3D molecular structures using MATLAB’s alphashape 
function. The surface areas of these structures (alpha-areas) were log-transformed and subsequently added 
to the feature set. After filtering and selection, we retained 127 descriptors for use in the model. The 
selection process was applied across all molecules, including both train and test data. To assess 
robustness, we repeated the feature selection within each fold of cross-validation using only training data. 
The resulting feature sets were highly consistent: 117 of the 127 features appeared in most folds. We 
observed no meaningful difference in RMSE between uniform and fold-specific feature sets (difference < 
1 standard deviation, via bootstrap), so we used the same 127 features across all folds to maintain a 
consistent model. The same set of parameters was used for predicting both single molecule intensity and 
the intensity of mixtures.  
 
Simplified Feature Set for Interpretability  
For a reduced model with greater interpretability, we selected a subset of 10 descriptors: five transport-
related features (MW, MLOGP, vapor pressure, boiling point, alpha-area) and five descriptors most 
correlated with Hill coefficients (CATS2D_03_LL, SpMax8_Bh.p., MPC07, MATS7i, H2s). 
 
Training Data Augmentation 
To improve generalization in the single-molecule model, we augmented the training set by upsampling 
the fitted Hill curves. For each molecule, we sampled the concentration range [10/(0, 10/1] at regular 
intervals, generating 300 additional data points per molecule. 
  
Single Molecule Intensity Prediction: Data Split 
We applied 10-fold cross-validation, stratifying by molecular identity to ensure balanced distribution 
across folds (Sechidis et al. 2011). Each fold contained unique molecules in the test set, covering all 62 
molecules across folds. 
 
Single Molecule Intensity Prediction: Network Architecture 
For each datapoint in the dataset, the pre-processed features were concatenated with the base-10 
logarithm of the odorant’s concentration to form an input vector for the model. The neural network (NN) 
was implemented in MATLAB. The NN consisted of four fully connected layers (N=300), each followed 
by a batch normalization and a ReLU nonlinearity, with a fully connected (N=1) layer with MSE loss to 
regress the output with an intensity value. 
  
Mixture Intensity Prediction: Data Split 
For mixture modeling, we used a 90%/10%  train-test split with 10-fold cross-validation. All single-
molecule training data (62 x 300 data points) were included in the training set. Because the 260 mixtures 
were constructed from only 24 components, some overlap in single-molecule identities between train and 
test sets was unavoidable. We assessed the impact of this overlap below.  
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Assessing the Impact of Component Overlap  
To quantify how overlapping single-molecule identities between train and test sets may influence model 
performance, we implemented a stricter cross-validation procedure. For each fold, mixtures sharing the 
same components were grouped together. One group was used as the test set, while mixtures with non-
overlapping components were used for training. The single-molecule data included in the training set 
excluded any molecule present in the corresponding test fold. This “clean split” approach resulted in a test 
RMSE of 10.5, higher than the RMSE observed when overlapping components were allowed. 
 
To disentangle the effects of data leakage vs. reduced training size, we matched the number of training 
samples to the clean split but allowed overlapping molecules. Mixture data (N=260) was randomly 
partitioned into train and test sets for each fold, matching the train-test distribution of the clean setup. 
Using this data, we estimated that the impact of test-train set single molecule overlap is 1.0 RMSE units 
(Figure S4).  
 
Mixture Intensity Prediction: Network Architecture 
To represent a mixture, descriptors for each component were weighted by their relative concentrations 
(i.e., each molecule’s concentration divided by the sum of all concentrations) and summed. This weighted 
vector was then concatenated with the log-transformed total mixture concentration to form the final input 
vector. Alternative vector consolidation strategies were tested but resulted in worse performance. The 
neural network architecture matched that of the single-molecule intensity prediction model. The network 
was trained for 80 epochs using MSE loss, stochastic gradient descent (SGD) with momentum, and a 10-3 
learning rate.  
 
Mixture Intensity Prediction: Primacy Model 
We developed a separate pipeline of mixture prediction by integrating the single molecule NN with a 
primacy model. The primacy model uses the intensity predictions of single components at 20% of their 
concentration in the mixture (see Equation 8) and applies this formula to calculate a mixture intensity 
prediction. 
 
Estimating Key Odorants in Mixtures 
To assess the contributions of individual molecules in complex mixtures, we simulated omission tests 
using the trained NN. For each of 5 naturalistic odor mixtures (He et al. 2020; C. Liu et al. 2022; R.-S. 
Liu et al. 2012), the NN predicted the full mixture intensity (𝐼!&#). We then modified the NN input by 
sequentially omitting each molecule from the mixture, generating a predicted intensity for each modified 
mixture, 𝐼!&#/& 	where i represents the omitted molecule. For each molecule 𝑖 in the mixture, a simulated 
omission score was defined as 𝐼!&# − 𝐼!&#/& and compared to experimentally derived omission scores, 
where such data were available. 
 
As an additional approximation, we also estimated impact using the single-molecule NN by predicting the 
intensity of each molecule in the mixture in isolation. We then used the single-molecule intensity as an 
approximation for the omission score (Figure 4C, D).  
 
Statistical analysis 
All statistical analysis was conducted in the statistical software R (R Core Team 2018) in RStudio 
2023.06.1. Alpha level was set to 0.05. Data analysis files can be found in the Supplementary Materials. 
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