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bacteria responds preferentially to the plant 
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Félix Velando1†, Jiawei Xing2,3,5†, Roberta Genova1†, Jean Paul Cerna‑Vargas1,4, Raquel Vázquez‑Santiago1, 
Miguel A. Matilla1, Igor B. Zhulin2,3* and Tino Krell1* 

Abstract 

Background:  Chemotaxis to plant compounds is frequently the initial step for the col‑
onization of plants by bacteria. Plant pathogens and plant-associated bacteria contain 
approximately twice as many chemoreceptors as the bacterial average does, indicat‑
ing that chemotaxis is particularly important for bacteria–plant interactions. However, 
information on the corresponding chemoreceptors and their chemoeffectors is limited.

Results:  We identify the chemoreceptor PacP from the phytopathogen Pectobacte-
rium atrosepticum, which exclusively recognizes phosphorylated C3 compounds at its 
sCache ligand binding domain, mediating chemoattraction. Using a motif of PacP 
amino acid residues involved in ligand binding, we identify a chemoreceptor family, 
termed sCache_PC3, that is specific for phosphorylated C3 compounds. Isothermal 
titration calorimetry studies reveal that family members preferentially bind glycerol 
3-phosphate, a key plant signaling molecule. Family members recognize glycerol 
2-phosphate and glycolysis intermediates glyceraldehyde 3-phosphate, dihydroxy‑
acetone phosphate, and 3-phosphoglycerate. This study presents the first evidence 
of chemoreceptors that bind phosphorylated compounds. We show that the sCache_
PC3 family has evolved from an ancestral sCache domain that responds primarily 
to Krebs cycle intermediates. Members of the sCache_PC3 family are predominantly 
found in plant-associated bacteria, including many important phytopathogens 
belonging to the genera Brenneria, Dickeya, Musicola, Pectobacterium, and Herbaspiril-
lum. Consistently, glycerol 3-phosphate is a signal molecule that is excreted by plants 
in response to stress and infection.

Conclusions:  Chemotaxis toward glycerol 3-phosphate may be a means for bacteria 
to localize stressed plants and move to infection sites. This study lays the groundwork 
for investigating the role of chemotaxis to phosphorylated C3 compounds in plant–
bacteria interactions and virulence.
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Background
Chemotaxis is the directed active movement of bacteria in response to chemical gra-
dients. The primary benefit of chemotaxis is access to nutrients or the localization of 
sites that are favorable for growth [1]. However, chemotaxis has also been observed in 
response to signals such as quorum-sensing molecules, hormones, and neurotransmit-
ters that provide the bacterium with useful information about its microenvironment [2–
5]. Many bacteria establish interactions with other organisms, and chemotaxis to host 
compounds is frequently required for efficient host colonization or virulence [6, 7].

Chemotaxis is mediated by chemosensory pathways that contain as the central ele-
ment the ternary complex comprising chemoreceptors, the CheA autokinase and the 
CheW coupling protein. Chemotactic signaling is typically initiated by signal binding at 
the ligand binding domain (LBD) of chemoreceptors that causes a molecular stimulus 
altering the autokinase activity of CheA and, consequently, the transphosphorylation of 
the response regulator CheY. In its phosphorylated state, CheY interacts with the flagel-
lar motor, altering its activity and ultimately resulting in chemotaxis [8, 9].

The chemotactic sensory capacity of a bacterium is reflected in the number of chemo-
receptors that can differ greatly among bacteria, ranging from 1 to 90 [10]. The bacte-
rial lifestyle was found to determine the number of chemoreceptors [11, 12]. Whereas 
bacteria that inhabit specific ecological niches possess few chemoreceptors, bacteria that 
live in variable environments or that maintain interactions with other living species have 
many more chemoreceptors. Chemoreceptors respond to many structurally different 
compounds, including amino acids, organic acids, fatty acids, biogenic amines, polyam-
ines, purine compounds, sugars, aromatic hydrocarbons, metal ions, inorganic anions, 
oxygen, or polysaccharides [13]. Although the link between chemoreceptor number and 
lifestyle has been established, we are still in the early stages of understanding the rela-
tionship between lifestyle and chemoreceptor function.

Chemotaxis is particularly important for the initiation of an interaction of beneficial 
[7] or pathogenic bacteria [6] with plants. The deletion of chemotactic signaling genes 
in different plant beneficial [14–17] and pathogenic bacteria [18–21] reduced bacterial 
plant colonization and infection. Frequently, chemotaxis is required for the efficient 
entry of bacteria into the plant host [22–24] and multiple lines of evidence indicate that 
compounds released by stomata and plant wounds attract bacteria to entry sites [6]. The 
importance of chemotaxis in plant infection is further supported by the fact that phy-
topathogens and plant-associated bacteria have very broad chemosensory capabilities 
[25]. On average, phytopathogens possess 27 chemoreceptors, twice as many as bacteria 
that are not associated with plants [25]. Many chemoreceptor families are almost exclu-
sively present in phytopathogens, suggesting that they play specific roles in sensing plant 
compounds [25]. However, information on the signals recognized by chemoreceptors of 
plant-associated bacteria is scarce and this study aims to narrow this gap in knowledge.

We used Pectobacterium atrosepticum as a model phytopathogen. It is among the 10 
most relevant plant pathogens, causing black leg and soft rot diseases [26]. The genome 
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of P. atrosepticum strain SCRI1043 encodes 36 chemoreceptors that have a large variety 
of LBD types with different topologies [27]. To date, four chemoreceptors that respond 
to formate [28], quaternary amines [29], amino acids [30], and nitrate [31] have been 
identified. The functions of the remaining 32 chemoreceptors remain unknown.

Cache domains constitute the largest superfamily of extracytosolic LBDs in bacteria 
[32]. They assume either a monomodular (single Cache domain, sCache) or a bimodular 
configuration (double Cache domain, dCache). P. atrosepticum SCRI1043 has a single 
chemoreceptor with an sCache type LBD (ECA_RS12390). Several sCache LBDs from 
chemoreceptors have been studied in phylogenetically diverse bacterial species, where 
they recognize different C1 to C4 carboxylic acids [33–38], urea, and related compounds 
[39–41].

Over the last decade, the use of thermal shift assay-based ligand screening has become 
a very successful approach for identifying the functions of chemoreceptors [42–45]. In 
addition, we have recently pioneered a computational approach that aids in the identi-
fication of receptor signals. Using LBD/ligand 3D structural information and multiple 
alignments of homologous sequences, we derived sequence motifs that capture amino 
acid residues that interact with the ligand. Database searches for sequences that match 
these motifs have resulted in the identification of thousands of receptors that specifically 
bind amino acids [46], biogenic amines [47], purines [48], or formate [28]; these results 
were subsequently verified by isothermal titration calorimetry (ITC) studies.

In the present study, we combined both approaches. Thermal shift assays and ITC 
studies of the LBD of ECA_RS12390 (termed PacP) revealed that it specifically binds 
phosphorylated C3 compounds, including three glycolysis intermediates as well as glyc-
erol 2-phosphate and glycerol 3-phosphate. Using a specific sequence motif present in 
the binding site, we defined the corresponding domain family and confirmed the ligand 
binding characteristics of the selected members. Family members are almost exclusively 
present in plant-associated bacteria, including a number of important plant pathogens.

Glycerol 3-phosphate was preferentially recognized by the analyzed family members 
and induced the strongest chemotaxis in P. atrosepticum. Glycerol 3-phosphate is one of 
the most relevant plant signaling molecules. For example, it regulates systemic immunity 
[49, 50] and responses to drought [51, 52]. To the best of our knowledge, this is the first 
report on a bacterial receptor family that specifically binds phosphorylated compounds.

Results
The chemoreceptor ECA_RS12390 (PacP) exclusively binds phosphorylated C3 compounds

Chemoreceptor ECA_RS12390 is composed of a periplasmic sCache_2 LBD 
(PF17200), flanked by two transmembrane regions, and a cytosolic signaling domain 
(PF00015) at is C-terminal extension. To identify the ligands recognized by this 
chemoreceptor, its individual LBD was overexpressed in Escherichia coli and purified 
by affinity chromatography. The purified LBD was subsequently subjected to thermal 
shift-based ligand screening assays using the compound arrays PM1, PM2A, PM3B, 
and PM4A, which contain bacterial carbon, nitrogen, phosphorus, and sulfur sources 
(Additional file 1: Fig. S1). This approach measures ligand-induced increases in pro-
tein thermal stability, as quantified by the midpoint of the thermal unfolding tran-
sition (Tm). Among the 95 phosphorylated or sulfonated compounds in the PM4A 
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compound array, glycerol 3-phosphate, carbamoylphosphate, and 3-phosphoglycer-
ate caused significant increases in Tm (Fig. 1A). No significant increases in Tm were 
observed for the remaining compound arrays, which include most of the carboxylic 
acids that were previously shown to bind to sCache_2 domains [33–38].

We subsequently conducted ITC binding studies to derive the dissociation con-
stant (KD). The titration of ECA_RS12390-LBD with glycerol 3-phosphate resulted 
in large exothermic heat changes (Fig. 1B), leading to a calculated KD of 3 ± 0.2 µM 
(Table 1). The binding of 3-phosphoglycerate occurred with significantly lower affin-
ity (KD = 88 ± 5  µM), whereas titration with carbamoylphosphate did not result in 
measurable heat release. Owing to the restriction of ligand dilution heats, microcalo-
rimetry only permits monitoring of high-affinity binding events, indicating that car-
bamoylphosphate may bind with an affinity that is not detectable by ITC.

We next explored the binding of structurally related phosphorylated compounds 
that were not present in the compound arrays. No binding was observed for 2-phos-
phoglycerate, whereas glycerol 2-phosphate and glyceraldehyde 3-phosphate bound 
with KD values of 72 ± 2 and 58 ± 2 µM, respectively (Fig. 1C, Table 1). In addition, 
dihydroxyacetone phosphate was recognized with a KD of 13 ± 1  µM. Pyruvate and 
lactate, ligands recognized by other sCache LBDs [34–36, 53], did not bind, suggest-
ing that a phospho-moiety is required for binding. In summary, ECA_RS12390 binds 
specifically to phosphorylated C3 compounds (Fig. 1D) and, to our knowledge, repre-
sents the first chemoreceptor that binds exclusively to phosphorylated ligands.

Glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, and 3-phosphoglycer-
ate are glycolysis intermediates (Fig.  1D). Glycerol 3-phosphate is an intermediate 
that connects glycolysis, glycerol metabolism, and triacylglycerol synthesis [54, 55]. 
Furthermore, glyceraldehyde 3-phosphate and 3-phosphoglycerate are intermediates 
of the Calvin–Benson–Bassham cycle that permits CO2 fixation in plants [56]. We 
renamed ECA_RS12390 PacP (Pectobacterium atrosepticum chemoreceptor for phos-
phorylated compounds).

PacP mediates chemoattraction to phosphorylated compounds that bind to its LBD

We conducted quantitative capillary chemotaxis assays to determine whether PacP 
ligands induce chemotaxis. Modest chemoattraction was observed for glyceraldehyde 
3-phosphate, dihydroxyacetone phosphate, and glycerol 2-phosphate. In contrast, 
chemotaxis toward glycerol 3-phosphate and 3-phosphoglycerate was significantly 
greater (Fig. 2). To assess the contribution of PacP to this response, we constructed 
a pacP mutant (MpacP). Only glycerol 2-phosphate served as an attractant for the 
mutant, indicating that PacP is the sole chemoreceptor for glyceraldehyde 3-phos-
phate, dihydroxyacetone phosphate, glycerol 3-phosphate, and 3-phosphoglycerate 
(Fig.  2). An additional chemoreceptor(s) must exist for glycerol 2-phosphate. These 
responses are mediated by the sole chemosensory pathway present in the strain 
SCRI1043, since a mutant in cheA failed to respond to glycerol 3-phosphate and 
3-phosphoglycerate (Additional file 1: Fig. S2). In trans complementation of MpacP 
with a plasmid harboring the pacP gene restored chemotaxis to wild type levels 
(Additional file 1: Fig. S2).
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Fig. 1  Binding of phosphorylated C3 compounds to the ligand binding domain of the chemoreceptor 
ECA_RS12390 (PacP-LBD). A Thermal shift assays with compounds of the Biolog array PM4A (phosphorus 
and sulfur sources). Tm changes with respect to the ligand-free protein are shown. B, C Microcalorimetric 
titration of 80 μM ECA_RS12390-LBD with 8 µL aliquots of 1 mM glycerol 3-phosphate, 2 mM glycerol 
2-phosphate, and 2.5 mM glyceraldehyde 3-phosphate. Upper panels: Titration raw data. Lower panels: 
Concentration-normalized and dilution heat-corrected integrated titration data. The lines are the best fits 
with the “One binding site model” of the MicroCal version of ORIGIN. D Summary of ligands recognized by 
PacP-LBD and their metabolic relationships
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Table 1  Dissociation constants (KD) derived from microcalorimetric binding studies of 
phosphorylated compounds to the LBDs of different chemoreceptors

Nb no binding

Rec. 
no

Accession code Species KD (µM)

Glyceraldehyde 
3-P

Dihydroxyacetone 
P

3-P 
glycerate

Glycerol 
3-P

Glycerol 
2-P

R1 WP_011094075.1 
(PacP, ECA_RS12390)

P. atrosepti-
cum

58 ± 2 13 ± 1 88 ± 5 3 ± 0.2 72 ± 2

R2 WP_136157342.1 Brenneria 
roseae

253 ± 11 99 ± 10 261 ± 17 11 ± 0.2 90 ± 3

R3 WP_006464688.1 Herbaspiril-
lum frisin-
gense

Nb 109 ± 14 Nb 33 ± 1 36 ± 2

R4 WP_158281851.1 Rivicola ping-
tungensis

100 ± 2 230 ± 10 926 ± 8 7 ± 0.2 60 ± 2

R5 WP_028444678.1 Chitinimonas 
koreensis

Nb Nb Nb Nb Nb

R6 WP_174062248.1 Agrobac-
terium 
larrymoorei

Nb Nb Nb Nb Nb

R7 WP_019915375.1 Methyl-
oversatilis 
discipulorum

126 ± 9 Nb Nb Nb 223 ± 45

R8 WP_028536266.1 Paludibacte-
rium yong-
neupense

No protein overexpression

R9 WP_189529961.1 Paludibacte-
rium paludis

Nb Nb Nb Nb Nb

R10 WP_028866120.1 Psych-
romonas 
aquimarina

Nb Nb Nb Nb Nb

Fig. 2  Capillary chemotaxis assays of P. atrosepticum SCRI1043 and a mutant deficient in pacP to 1 mM 
solutions of the identified ligands. The data have been corrected with the number of cells that swam into 
buffer-containing capillaries. The data are presented as the means and standard deviations from three 
biological replicates conducted in triplicate (*P value < 0.01; by Student’s t-test, n.s.: not significant)
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Three PacP ligands are of metabolic value

Chemoeffectors can be classified into three groups: (i) compounds that are of metabolic 
value, (ii) compounds that act as environmental signaling cues, and (iii) compounds 
with a dual metabolic/signal function [1, 57]. To assess the metabolic value of the PacP 
ligands, we conducted growth experiments in minimal medium containing the indi-
vidual ligands as the sole carbon or phosphorus source. Glycerol 3-phosphate was the 
only ligand that supported growth as the sole carbon and phosphorus source, whereas 
3-phosphoglycerate and glycerol 2-phosphate permitted growth as phosphorus sources 
(Fig. 3). The glycolysis intermediates glyceraldehyde 3-phosphate and dihydroxyacetone 
phosphate were devoid of apparent metabolic value (Fig. 3).

Fig. 3  Growth of Pectobacterium atrosepticum SCRI1043 when the PacP ligands were used as the sole carbon 
(A) or phosphorus (B) source. As a reference, growth was monitored on glucose and inorganic phosphate 
as the sole C or P source, respectively. The data are the means and standard deviations of three biological 
replicates
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Definition of the sCache_PC3 family for phosphorylated compounds

Subsequent experiments were conducted to define the LBD family that binds phospho-
rylated C3 compounds. LBDs are rapidly evolving domains, and their ligand specificity 
is thus poorly reflected in overall sequence identity [58]. We have recently established 
a procedure to predict ligands recognized by LBDs by taking into account the amino 
acid residues in the binding site that interact with the bound ligand [28, 46–48]. Because 
extensive attempts to crystallize PacP-LBD failed, we constructed an AlphaFold2 model 
[59], which was then used for computational ligand docking.

These experiments indicated that Arg105 in PacP is likely the key residue for phos-
phate sensing (Fig. 4A). A number of other amino acid residues, Y86, H100, Y121, K148, 
Y150, and Y167, also interact with the bound ligand (Fig. 4A). To identify other chemo-
receptors that may bind phosphorylated compounds, we collected > 1000 PacP homologs 
from the RefSeq protein database, from which 610 nonredundant sCache_2 domains 
were used to construct a phylogenetic tree (Fig. 4B). To examine which of these domains 
might recognize phosphorylated compounds similarly to PacP-LBD, we selected 10 
domains from chemoreceptors from different clades (R1 to R10, Fig. 4B, C, Table 1) for 
further analyses. The corresponding source strains were α-, β-, and γ-proteobacteria 
that were isolated from plants, soil, or freshwater (Additional file 2: Table S1) [60–73]. 
Domains were selected for their pattern of conservation of residues within the predicted 
binding site (Fig. 4A) from the three distinct groups that are shown in different colors in 
Fig. 4B, C. Domains shown in red (including R1 to R6) have an invariant Arg105 (Fig. 4B, 
C). Domains shown in blue (including R7 and R8) have an Arg105Lys substitution 
(Fig. 4B, C). Domains shown in gray (including R9 and R10) have various other substitu-
tions at the PacP position Arg105 (Fig. 4B, C).

To identify the ligands recognized by R2 to R10, expression plasmids harboring codon-
optimized LBD sequences were introduced into E. coli. With the exception of R8, all the 
proteins could be overexpressed. The purified proteins were then subjected to micro-
calorimetric titrations. Receptors R2, R3, and R4 all bound phosphorylated compounds. 
Whereas R2 and R4 bound all five PacP ligands, receptor R3 bound only three of them: 
glycerol 3-phosphate, glycerol 2-phosphate, and dihydroxyacetone phosphate (Table 1). 
PacP, R2, R3, and R4 recognized glycerol 3-phosphate with the highest affinity, with dis-
sociation constants ranging from 3 to 33 µM. These affinities are in the range typically 
observed for sensor protein–ligand interactions [74]. Glycerol 2-phosphate was the sec-
ond most tightly binding ligand for the three proteins. The preferential recognition of 
glycerol 3-phosphate is illustrated by the binding studies of the 5 phosphorylated ligands 
to R4 (Fig. 5).

To determine whether receptors R2, R3, and R4 recognize other ligands in addition to 
the phosphorylated compounds, we conducted thermal shift assays with the compound 
arrays PM1, PM2A, PM3B, and PM4A (Additional file 1: Fig. S1). Glycerol 3-phosphate 
was the only compound that caused significant increases in the Tm for proteins R3 and 
R4 (Additional file  1: Fig. S3). In addition to glycerol 3-phosphate, several small acids 
caused minor increases in the Tm of R2 (Additional file 1: Fig. S3). However, ITC studies 
of these compounds to R2 showed binding exclusively for glycerol 3-phosphate. Taken 
together, the data show that proteins R2, R3, and R4, like PacP, recognize exclusively 
phosphorylated C3 compounds.
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Fig. 4  Definition of the sCache_PC3 family. A PacP-LBD AlphaFold2 model containing docked 
dihydroxyacetone phosphate. Key residues are labeled. B Maximum likelihood tree of sCache_2 domains 
from PacP homologs. Receptors R1 to R10, which were selected for experimental studies, are labeled. Dots 
indicate branches with bootstrap values not less than 70. C Multiple sequence alignment of the sequence 
fragments covering the binding pocket of R1 to R10. The color of the protein name corresponds to that of 
B: red: conserved Arg105; blue: Lys instead of Arg105; gray: no Arg or Lys at position Arg105. PacP residue 
numbering is shown
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Among the remaining proteins, only R7 bound to phosphorylated compounds, namely, 
glyceraldehyde 2-phosphate and glycerol 3-phosphate. However, the affinities were well 
below the affinities of the tightest binding ligands of receptors R1 to R4 (Table 1). These 
data indicate that the complete sequence motif present in R1 to R4 (Fig. 4C) is a prereq-
uisite for high-affinity binding of phosphorylated compounds. To verify the role of this 
sequence motif in ligand binding, we generated a PacP-LBD mutant in which Y86, H100, 
R105, Y121, K148, and Y167 had been replaced by alanine residues. Microcalorimetric 
titrations of this domain with glycerol 3-phosphate and glyceraldehyde 3-phosphate 
showed heat changes that are indistinguishable from ligand dilution heats, indicating 
an absence of binding (Additional file 1: Fig. S4). The corresponding domain family has 
been termed sCache_PC3 (sCache domains for phosphorylated C3 compounds). The 
members of this family are provided in Additional file  3 and are exclusively found in 
chemoreceptors.

The sCache_PC3 family has arisen from domains that bind different carboxylic acids

Because R5, R6, R9, and R10 fail to bind phosphorylated compounds, efforts have been 
made to identify their ligands. To achieve this goal, the purified proteins were analyzed 
by a thermal shift assay using the compound arrays PM1, PM2, PM3B, and PM4. The 
compounds that caused significant Tm shifts were selected for microcalorimetric stud-
ies. All four receptors bound one or several Krebs cycle intermediates, such as succinate, 
fumarate, malate, or citrate (Fig.  6, Table  2). In addition, three domains bound other 

Fig. 5  Microcalorimetric titration of the ligand binding domain of R4 with different phosphorylated 
compounds. A Titration of 33 µM protein with 8 µL aliquots of 3 mM glycerol 3-phosphate, 5 mM glycerol 
2-phosphate (G2P), and 5 mM glyceraldehyde 3-phosphate (Gal3P). B Titration of 33 µM protein with 8 µL 
aliquots of 2.5 mM dihydroxyacetone phosphate and 5 mM 3-phosphoglycerate. Upper panels: Titration raw 
data. Lower panels: Concentration-normalized and dilution heat-corrected integrated titration data. The lines 
are the best fits with the “One binding site model” of the MicroCal version of ORIGIN



Page 11 of 22Velando et al. Genome Biology          (2025) 26:260 	

organic acids (Table  2); three of which, tricarballylate, methyl-, and bromosuccinate, 
are structurally related to Krebs cycle intermediates. The affinities of these compounds 
were generally lower than those of Krebs cycle intermediates (Table 2). Taken together, 
these findings suggest that domains other than those of the sCache_PC3 family (Fig. 4B) 
respond to Krebs cycle intermediates. The sCache_PC3 family likely evolved from these 
receptors, which are found in Burkholderiales and Enterobacterales.

sCache_PC3 members are present primarily in plant‑associated bacteria

Members of the sCache_PC3 family are chemoreceptors from γ-proteobacteria that 
belong to the orders Burkholderiales and Enterobacterales (Additional file  3). At the 
genus level, the most abundant bacteria were Pectobacterium, followed by Janthinobac-
terium, Acidovorax, Herbaspirillum, and Brenneria (Fig.  7A). To gain insight into the 
environments inhabited by these bacteria, we compiled the isolation sources of all the 
family members (Additional file 3, Fig. 7B). Importantly, approximately two-thirds of the 
strains were isolated from plants, and another one quarter were isolated from freshwater 
and soil, which are two habitats in which plants are frequently found. In a number of 
cases, strains of the same species were isolated from plants and soil or freshwater [75, 
76]. Among the plant-associated strains, many belong to species that are associated with 
plant virulence, such as Brenneria, Dickeya, Musicola, Pectobacterium, Herbaspirillum, 
Acidovorax, and Paracidovorax [77, 78] (Additional file 3). Despite the presence of many 
human and animal derived strains in databases, only very few of them possess receptors 
with an sCache_PC3 domain (Fig. 7B), supporting the notion that sCache_PC3-contain-
ing chemoreceptors are predominantly present in plant-associated bacteria.

Fig. 6  Microcalorimetric titrations of the ligand binding domain of different receptors that do not recognize 
phosphorylated compounds with Krebs cycle intermediates. Upper panels: Titration of 42 to 517 μM protein 
with 8 μL aliquots of 5 to 10 mM ligand solutions. The proteins and ligands are indicated. Lower panels: 
Concentration-normalized and dilution heat-corrected titration data. The dissociation constants are provided 
in Table 2
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Discussion
The functions of flagellar motility and chemotaxis in bacteria are very diverse and 
depend on bacterial lifestyles [57]. Accessing nutrients and, more generally, locating 
niches that are optimal for growth appear to be the major functions of bacterial chemot-
axis. Chemotaxis is also required for interdomain communication, permitting the estab-
lishment of beneficial or pathogenic interactions of bacteria with humans, animals, and 
plants [6, 57]. The diversity of functions of chemotaxis is reflected by the observation 
that bacteria of different lifestyles differ largely in the number and type of chemorecep-
tors [11, 12]. Whereas bacteria that inhabit a specific ecological niche possess few chem-
oreceptors, bacteria that live in variable environments or that maintain interactions with 
other living species have many more chemoreceptors. However, since the functions of 

Fig. 7  sCache_PC3 family of sensor domains. A Distribution of family members in different bacterial genera. 
Genera with fewer than 10 members are combined as “other.” B Isolation sources of strains harboring 
chemoreceptors with sCache_PC3 domains. Detailed information is provided in Additional file 3
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most chemoreceptors are unknown, our understanding of the link between chemore-
ceptor function and lifestyle is currently limited.

Plant pathogens and plant-associated bacteria stand out for their chemosensory capac-
ities because they possess approximately twice as many chemoreceptors as the bacterial 
average [25]. Many chemoreceptor families have been found to be present primarily in 
plant-associated bacteria or phytopathogens [25]. However, the ligands they recognize 
remain largely unknown. The identification of a chemoreceptor family in plant-asso-
ciated bacteria that responds to the plant signal glycerol 3-phosphate provides novel 
insight. In plants, glycerol 3-phosphate is a critical inducer of systemic acquired resist-
ance (SAR) to pathogen attack; mutants defective in glycerol 3-phosphate synthesis are 
unable to induce SAR [49, 50, 79]. Plant infection induces SAR by stimulating glycerol 
3-phosphate biosynthesis via the upregulation of its biosynthetic genes [80]. Glycerol 
3-phosphate is also abundant in the rhizosphere, and it is the only PacP ligand that can 
be detected in root exudates [81, 82].

What might be the physiological benefit of chemotaxis to glycerol 3-phosphate for 
plant pathogens? (i) Our studies show that P. atrosepticum can use glycerol 3-phosphate 
as the sole carbon and phosphorus source for growth and that access to nutrients may 
be beneficial. (ii) Glycerol 3-phosphate, which accumulates at the site of infection [80], 
likely attracts bacteria to these locations, facilitating plant entry. (iii) Glycerol 3-phos-
phate is a stress-related signaling molecule, and its levels increase in response to phos-
phate starvation [81] and drought [51]. Among the 114 compounds enriched in the 
drought-treated endosphere, glycerol 3-phosphate was increased approximately 22,000-
fold. It was thus the compound with by far the most significant increase. Further exper-
iments revealed that this increase was due to changes in the host and not within the 
rhizosphere [51]. Because it is a stress signal, chemotaxis to glycerol 3-phosphate may 
also be a means to locate and move to stressed plants, which are easier targets for infec-
tion than non-stressed plants. Glycerol 3-phosphate is also an important bacterial sign-
aling molecule. For example, in P. aeruginosa, glycerol 3-phosphate accumulation affects 
twitching motility, pyocyanine and exopolysaccharide biosynthesis, antibiotic resistance, 
and tolerance to oxidative stress [83]. Further studies will explore the degree to which 
glycerol 3-phosphate impacts the physiology of plant-associated bacteria.

The lack of information on signals that stimulate bacterial receptors is currently a major 
limitation in microbiology and represents an important research need. Here, we com-
bined two experimental strategies that were successfully used in the past to identify recep-
tor signals, namely, thermal shift-based high-throughput ligand screening [42, 44, 45] and 
the use of binding pocket amino acid motifs derived from LBD signal 3D structures [28, 
46–48]. In contrast to the latter three studies, which were based on experimental three-
dimensional LBD signal co-structures, we identified a sequence motif in a ligand-docked 
AlpaFold2 model of PacP-LBD. This approach thus does not require experimental pro-
tein structures, suggesting that it might be universally applicable for identifying recep-
tor signals. The sCache_PC3 family is characterized by the Y(13)H(4)R(15)Y(26)K(1)
Y(16) sequence motif (Fig. 4C), which can be used to identify additional family members. 
Combining these two strategies is thus a very potent approach for identifying novel LBD 
families, providing insight into receptor function. This approach is not restricted to chem-
oreceptors and can be used to identify signals for LBDs of any other receptor family.
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Chemotaxis has thus far been observed for many compound families, including amino 
acids, organic acids, fatty acids, sugars, polyamines, quaternary amines, purines, pyri-
midines, aromatic hydrocarbons, oxygen, inorganic ions, and polysaccharides [13, 84]. 
This is the first report of chemoreceptors that recognize specifically phosphorylated 
compounds, expanding our knowledge of the sensory capacity of chemoreceptors. Pre-
vious studies reported weak chemotaxis of Bdellovibrio bacteriovorus and Bacillus sub-
tilis to 3-phosphoglycerate, glycerol 3-phosphate, and glycerol 2-phosphate [85, 86]. 
However, these bacteria do not possess sCache_PC3-containing chemoreceptors (Addi-
tional file 3), indicating that there are other types of chemoreceptors that mediate such 
responses. To the best of our knowledge, this is the first report of chemotaxis to the 
glycolysis intermediates glyceraldehyde 3-phosphate and dihydroxyacetone phosphate.

The identification of the sCache_PC3 family is a significant contribution to the field 
of plant–microbe interactions and provides the basis for further studies exploring the 
physiological relevance of bacterial chemotaxis to phosphorylated C3 compounds. It will 
also serve as an experimental guide to define other domain families.

Conclusions
The bacterial lifestyle has shaped the evolution of signal transduction systems, and the 
number and type of chemoreceptors varies greatly between bacteria occupying various 
ecological niches. Our understanding of the relationship between lifestyle and chemo-
receptor function is limited. Chemotaxis is particularly important for the initial stages 
of plant–bacteria interaction. Our discovery of a chemoreceptor family in plant-asso-
ciated bacteria that primarily responds to an important plant signal molecule is a sig-
nificant advancement. This study allows for further investigations to determine the 
physiological relevance of the observed chemotaxis for plant–bacteria interaction. The 
lack of knowledge about signals recognized by bacterial receptors is currently a major 
challenge in microbiology. This study illustrates the potential of combining experimental 
ligand screening with computational ligand prediction to identify signals recognized by 
uncharacterized receptors.

Methods
Bacterial strains and growth conditions

The bacterial strains used in this study are listed in Additional file 2: Table S2 [87–92]. P. 
atrosepticum SCRI1043 and its derivative strains were grown at 30 °C in Luria broth (5 
g/L yeast extract, 10 g/L bacto tryptone, and 5 g/L NaCl) or minimal medium (0.41 mM 
MgSO4, 7.56 mM (NH4)2SO4, 40 mM K2HPO4, and 15 mM KH2PO4) supplemented with 
0.2% (w/v) glucose as a carbon source. E. coli strains were grown at 37 °C in LB. When 
appropriate, antibiotics were used at the following final concentrations (in μg/mL): kana-
mycin, 50; ampicillin, 100; and streptomycin, 50.

Plasmids and mutants

A mutant defective in ECA_RS12390 was constructed by homologous recombina-
tion using a derivative plasmid of the suicide vector pKNG101. Briefly, a 0.5-kb frag-
ment corresponding to the region encoding the LBD of ECA_RS12390 was amplified 
by the primers specified in Additional file 2: Table S2 and cloned into pGEM®-T. The 



Page 16 of 22Velando et al. Genome Biology          (2025) 26:260 

resulting plasmid pGEM::ECA_RS12390 was digested with XmaI, and the 0.5-kb insert 
was cloned into the same site at pKNG101 to generate pKNG101::ECA_RS12390. This 
plasmid was subsequently transformed into P. atrosepticum SRCI1043 via biparental 
conjugation using E. coli β2163. All the plasmids were verified by PCR and sequencing. 
The pETb(+) derivatives encoding the LBD of the different receptors analyzed in this 
study (Table  1) were purchased from GeneScript. Plasmid pBBR-ECA_RS12390 was 
constructed by amplifying the pacP gene using the primers detailed in Additional file 2: 
Table S2 and cloning of the PCR product into the NdeI/BamHI sites of pBBR1MCS2_
START. The sequences of the proteins analyzed in this study are provided in Additional 
file  2: Table  S3. The ECA_RS12390 nucleotide sequence is available in the published 
genome of P. atrosepticum SCRI1043 [60].

Protein overexpression and purification

Plasmids for the overexpression of the different proteins were transformed into E. coli 
BL21(DE3). The resulting strains were grown under continuous stirring (200 rpm) at 30 
°C in 2-L Erlenmeyer flasks containing 500 mL of LB medium supplemented with 50 μg/
mL kanamycin. At an OD660 of 0.5, protein expression was induced by the addition of 
0.1 mM isopropyl β-D-1-thiogalactopyranoside. Growth was continued at 16 °C over-
night prior to cell harvesting by centrifugation at 10,000 × g for 20 min. Cell pellets were 
resuspended in buffer A (Additional file 2: Table S4) and subsequently broken by French 
press treatment at 62.5 lb/in2. After centrifugation at 20,000 × g for 30 min, the superna-
tants were loaded onto 5-mL HisTrap HP columns (Amersham Biosciences) equilibrated 
with buffer A, and the proteins were eluted with a linear gradient of buffer B (Additional 
file  2: Table  S4). All proteins contain a hexa-histidine tag at the N-terminal extension 
(Additional file 2: Table S3) and were purified at 4 °C. The purified proteins were dia-
lyzed overnight into the corresponding analysis buffers (Additional file 2: Table S4) for 
immediate analysis.

Differential scanning fluorimetry‑based thermal shift assays

Assays were carried out on a MyIQ2 Real-Time PCR instrument (Bio-Rad, Hercules, CA, 
USA). Ligand solutions were prepared by dissolving the array compounds in 50 µL of 
Milli-Q water, which, according to the manufacturer, corresponds to a concentration of 
10–20 mM. Freshly purified proteins were dialyzed into analysis buffer (Additional file 2: 
Table  S4). Compound arrays PM1, PM2A (carbon sources), PM3B (nitrogen sources), 
and PM4A (phosphorus and sulfur sources) from Biolog (https://​www.​biolog.​com/) 
were used. The compositions of these arrays are provided in Additional file 2: Table S1. 
The experiments were conducted in 96-well plates, and each assay mixture contained 20 
µL of the dialyzed protein (at 80–50 µM), 2 µL of 5 × SYPRO orange (Life Technologies, 
Eugene, Oregon, USA), and 2.5 µL of the resuspended array compound or the equivalent 
amount of buffer in the ligand-free control. The samples were heated from 23 to 85 °C 
at a scan rate of 1 °C/min. The protein unfolding curves were monitored by detecting 
changes in SYPRO® Orange fluorescence. The Tm values were determined from the first 
derivative values of the raw fluorescence data.

https://www.biolog.com/
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Isothermal titration calorimetry (ITC)

All experiments were conducted on a VP microcalorimeter (Microcal, MA) at 15 °C for 
PacP-LBD and at 20 °C for the remaining proteins. Proteins were dialyzed into the analy-
sis buffers specified in Additional file 2: Table S4, placed into the sample cell and titrated 
with aliquots of ligand solutions (1 to 10  mM) freshly prepared in dialysis buffer. The 
mean enthalpies measured from the injection of the ligands into the analysis buffer were 
subtracted from the raw titration data prior to data analysis with the MicroCal version of 
ORIGIN. The data were fitted with the “One binding site model” of ORIGIN.

Quantitative capillarity chemotaxis assays

Overnight cultures of P. atrosepticum SCRI1043 were grown at 30 °C in minimal medium. 
At an OD660 of 0.4–0.45, the cultures were washed twice with chemotaxis buffer (50 mM 
K2HPO4/KH2PO4, 20 μM EDTA, 0.05% (v/v) glycerol, pH 7.0) and diluted to an OD660 
of 0.1 in the same buffer. Subsequently, 230 μL of the resulting bacterial suspension was 
placed into the wells of 96-well plates. One-microliter capillary tubes (P1424, Microcaps; 
Drummond Scientific) were heat-sealed at one end and filled with either chemotaxis 
buffer (negative control) or chemotaxis buffer containing PacP ligands at a concentration 
of 1 mM. The capillaries were immersed in the bacterial suspensions at their open ends. 
After 30 min at room temperature, the capillaries were removed from the bacterial sus-
pensions, rinsed with sterile water, and the contents were expelled into 1 mL of 40 mM 
K2HPO4, 15 mM KH2PO4. Serial dilutions were plated onto minimal medium supple-
mented with 15 mM glucose as the carbon source. The number of colony-forming units 
was determined after 36 h of incubation at 30 °C. In all the cases, the data were corrected 
with the number of cells that swam into the buffer-containing capillaries.

Growth experiments

P. atrosepticum SCRI1043 was cultured overnight in phosphate-free M9-based medium 
(PFM9) [93] supplemented with 20 mM glucose as the carbon source and 500 µM inor-
ganic phosphate as the phosphate source. Cultures were washed and then diluted to an 
OD600 of 0.02 in PFM9 supplemented with different PacP ligands as the sole carbon or 
phosphorous source at a final concentration of 5 mM. Subsequently, 200 µL aliquots of 
these cultures were transferred into microwell plates, which were subsequently grown 
at 30 °C on a Bioscreen microbiological growth analyzer (Oy Growth Curves Ab Ltd., 
Helsinki, Finland) for 48 h.

Bioinformatic analyses

Molecular docking was performed on PacP and phosphorylated compounds by Diff-
Dock with 10 inference steps [94]. Homologs of the PacP (WP_011094075.1) N-termi-
nal fragment (residues 7–197) were collected from RefSeq by BLAST (E value < 0.05) 
[95]. The sequences were aligned via MAFFT [96] and reduced to 98% redundancy 
using CD-HIT [97]. The sCache_2 domain regions from the aligned sequences (cor-
responding to residues 27–178 in PacP) were used for phylogenetic analyses [98]. A 
maximum likelihood tree was constructed using MEGA with the JTT model and 100 
bootstraps [99]. The protein targets were selected on the basis of their location on the 
phylogenetic tree and the presence of key residues for ligand binding.
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