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Evaluating population genetic inference methods is challenging due to the complexity of evolutionary his-
tories, potential model misspecification, and unconscious biases in self-assessment. The Genomic History
Inference Strategies Tournament (GHIST) is a community-driven competition designed to evaluate methods
for inferring evolutionary history from population genomic data. The inaugural GHIST competition ran from
July to November 2024 and featured four demographic history inference challenges of varying complexity:
a bottleneck model, a split with isolation model, a secondary contact model with demographic complexity,
and an archaic admixture model. Data were provided as error-free VCF files, and participants submitted
numerical parameter estimates that were scored by relative root mean squared error. Approximately 60 par-
ticipants competed, using diverse approaches. Results revealed the current dominance of methods based on
site frequency spectra, while highlighting the advantages of flexible model-building approaches for complex
demographic histories. We discuss insights regarding the competition and outline the next iteration, which
is ongoing with expanded challenge diversity. By providing standardized benchmarks and highlighting areas
for improvement, GHIST represents a substantial step toward more reliable inference of evolutionary history
from genomic data.
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Population genetic inference aims to reconstruct
the recent evolutionary history of populations from
genomic variation data. This field has seen explo-
sive growth, driven by the increasing availability of
whole-genome sequencing data from diverse groups
of humans and other species (Pool et al. 2010). But
population genetic inference is inherently challeng-
ing. First, the stochasticity of the evolutionary pro-
cess means that the same history can produce dif-
ferent genetic patterns. Second, different histories
can produce similar patterns of genetic variation, cre-
ating an identifiability problem (Myers et al. 2008;
Lapierre et al. 2017; Lawson et al. 2018; Rosen et al.
2018). Third, real populations rarely conform to the
simplified models typically used for inference, lead-
ing to potential biases when models are misspecified
(Loog 2021; Momigliano et al. 2021). Finally, compu-
tational constraints often necessitate approximations
that may impact accuracy.

Many methods for population genetic inference ex-
ist. For example, site frequency spectrum (SFS)
methods examine the distribution of allele frequen-
cies within and among populations (Marth et al.
2004; Gutenkunst et al. 2009; Excoffier et al. 2013).
Linkage-based approaches analyze patterns of link-
age disequilibrium or identity-by-descent (IBD) seg-
ments (Harris & Nielsen 2013; Browning & Brown-
ing 2015). Markovian coalescent methods reconstruct
recent genealogical relationships among samples (Li
& Durbin 2011; Schiffels & Durbin 2014), while an-
cestral recombination graph (ARG) methods explic-
itly reconstruct the genealogical history including re-
combination events (Rasmussen et al. 2014; Kelleher
et al. 2019; Speidel et al. 2019). More recently, ma-
chine learning approaches apply supervised learning
to haplotype matrices or summary statistics (Schrider
& Kern 2018; Flagel et al. 2019; Sanchez et al. 2021;
Tran et al. 2024). Each approach captures only a por-
tion of the information contained in genomic data,
and different methods excel in different scenarios.

Papers describing new inference methods typically
benchmark against existing approaches, but these
self-assessments are often biased (Norel et al. 2011;
Boulesteix 2015), if unconciously. First, method de-
velopers naturally focus on scenarios where their ap-
proaches excel, potentially masking weaknesses. Sec-
ond, developers have intimate knowledge of opti-
mal parameter settings for their own methods but
may use default parameters for competing methods,
leading to unfair comparisons. Lastly, developers
benchmarking their own tools know the ground truth

they simulated, enabling unconscious bias toward
that truth. Best-practice guidelines for benchmark-
ing studies (Boulesteix 2015; Lotterhos et al. 2022)
can reduce, but not eliminate, these biases.

Independent benchmarking studies can provide
more reliable conclusions than developer-driven
benchmarking (Boulesteix et al. 2013), and they have
been conducted in population genomics, but limi-
tations remain. While developing a data simula-
tion framework for the community, the stdpopsim
project compared methods for inferring demographic
history, distributions of fitness effects, and selective
sweeps, although not systematically (Adrion et al.
2020; Gower et al. 2025). For demographic history
inference, parametric SF'S-based methods have been
compared with non-parametric SFS-based (Lapierre
et al. 2017) and Markovian coalescent methods (Be-
ichman et al. 2017). The confounding effects of back-
ground selection on such inference have been stud-
ied for SFS-based and Markovian coalescent meth-
ods (Johri et al. 2021) and ARG-based methods
(Marsh & Johri 2024). Brandt et al. (2022) evalu-
ated the accuracy of ARG inference methods in es-
timating coalescence times, Peng et al. (2025) eval-
uated ARG-based methods for predicting historical
polygenic scores, and Patton et al. (2019) evaluated
non-parametric methods for demographic history in-
ference under varying genome assembly quality. Al-
though these studies have investigated many different
tools, each has been carried out by a small group of
authors, and their expertise in the tools tested can
strongly influence benchmark results (Lotterhos et al.
2016; Weber et al. 2019). And because each of these
studies is singular, it is difficult to assess progress in
the field from them.

Community-based competitions have proven effec-
tive at driving innovation across multiple domains
of computational biology (Meyer et al. 2011). The
Critical Assessment of Protein Structure Prediction
(CASP), running since 1994, is perhaps the most suc-
cessful (Moult et al. 1995). By providing semi-annual
blind tests of protein structure prediction methods,
CASP has catalyzed remarkable improvements, cul-
minating in the 14th competition with AlphaFold 2’s
breakthrough performance that revolutionized struc-
tural biology (Jumper et al. 2021; Kryshtafovych
et al. 2021). Similarly, challenges from DREAM (Dia-~
logue for Reverse Engineering Assessment and Meth-
ods) have addressed diverse problems in systems biol-
ogy and genomics, from gene regulatory network in-
ference to disease prediction (Stolovitzky et al. 2007;
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Marbach et al. 2012; Saez-Rodriguez et al. 2016).
More recently, the Critical Assessment of Genome
Interpretation focuses on predicting phenotypic con-
sequences of genetic variants, driving improvements
in variant effect prediction (Critical Assessment of
Genome Interpretation Consortium 2024). Preci-
sionFDA challenges evaluate methods for variant call-
ing, genome assembly, and other genomics tasks, set-
ting standards for precision medicine applications
(Olson et al. 2022). These examples illustrate the
power of competition-based assessments of computa-
tional biology methods. In evolutionary inference,
real-world data for which the truth is known is typi-
cally lacking (see Randall et al. (2016) for an excep-
tion), but modern simulators capture enough features
of real data to provide valuable insights (Baumdicker
et al. 2022; Haller & Messer 2023).

The Genomic History Inference Strategies Tour-
nament (GHIST, pronounced /glst) adapts the suc-
cessful competition model to address the specific
challenges of population genetic inference. Here,
we report results from the first competition, which
consisted of four challenges focused on inferring
demographic history. The competition attracted
many participants, demonstrated the feasibility of the
model, and revealed current community practices.

Methods

The organizing team (authors Struck and
Gutenkunst) and the design committee (authors
Lotterhos, Moreno-Estrada, Ralph, and Siepel)
collaborated closely to develop the structure of the
first GHIST competition. Although creating highly
complex challenges was tempting, we prioritized
accessibility to ensure early community engagement
and success. We chose demographic history inference
as the competition’s focus, because it is founda-
tional to many other population genetic analyses,
it allows comparison across a variety of established
methods, and aligns with the organizers’ expertise.
To further encourage participation, we outlined
a proactive communication strategy and offered
authorship on the resulting paper as recognition for
the top-performing competitors.

The structure of the first GHIST competition
was developed in collaboration between the organiz-
ing team (authors Struck and Gutenkunst) and de-
sign committee (authors Lotterhos, Moreno-Estrada,
Ralph, and Siepel). While it was tempting to de-
velop extremely complex challenges, accessibility was

deemed important for early success of the competi-
tion. It was decided to focus on demographic history
inference, because it is foundational for other popu-
lation genetics inference tasks, there are many meth-
ods to compare, and because the organizers have spe-
cific expertise. To engage community participation,
a preliminary plan for communications was also de-
veloped. Lastly, to incentivize participation, it was
decided that top competitors would be offered au-
thorship on the resulting paper.

The inaugural GHIST competition consisted of
four demographic history inference challenges. These
were a simple bottleneck, a simple split with migra-
tion, a complex split with secondary contact, and
a complex archaic admixture scenario. Competitors
could submit to any challenge(s) they chose, in any
order. The scenarios were parameterized such that
existing methods were expected to have good statis-
tical power and sample sizes were set to be similar
to contemporary non-human data sets. For all four
challenges, the data were simulated using the Wright-
Fisher coalescent method msprime (Baumdicker et al.
2022) and distributed as error-free Variant Call For-
mat (VCF) files (Danecek et al. 2011), with only
biallelic sites and correct ancestral states provided.
To minimize complexity, mutation and recombination
rates were uniform across the simulated regions, and
selection was absent.

For each challenge, competitors reported estimates
for a small number of key population genetic parame-
ters, such as population sizes, divergence times, or ad-
mixture proportions. They were told the total size of
the simulated region and the true simulated mutation
and recombination rates. Entries were scored based
on the relative root-mean-squared error between sub-
mitted § and true parameter values 6:

This interpretable metric allowed comparison across
parameters of different scales and penalized both
over- and under-estimation equally. For each chal-
lenge, the leaderboard was ranked based on RRMSE
scores, with lower scores indicating better perfor-
mance. To allow methodological refinement, com-
petitors were allowed five submissions for each chal-
lenge. In addition to their inferences, competitors
were asked to submit a brief write-up of their ap-
proach, including software tools used and the logical
flow of their analyses. The scripts for generating the
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Figure 1: Timeline of the first GHIST competition,
including notable promotion events.

data and scoring submissions are available at https:
//github.com/tjstruck/GHIST-2024-paper.

The competition was hosted on the Synapse plat-
form developed by Sage Bionetworks, a not-for-profit
organization that promotes open science and col-
laborative research. Synapse provided automated
handling of competitor submissions, including times-
tamps, versioning, validation, and real-time leader-
boards. The integrated wiki functionality was used
for competition documentation and tutorials, and
discussion boards enabled competitors to ask ques-
tions of the organizers. The Synapse site for the
first GHIST competition is available at https://
synapse.org/Synapse:syn51614781, and the main
GHIST website is at https://ghi.st.

The inaugural GHIST competition ran from July
to November 2024, to span the summer confer-
ence season and the beginning of the academic
term (Fig. 1). It began with a kickoff workshop at the
Society for Molecular Biology and Evolution (SMBE)
conference in Puerto Vallarta, Mexico, where partic-
ipants were introduced to the competition, analyzed
data from the Bottleneck challenge using dadi-cli
(Huang et al. 2023), and submitted their inferences.
The competition extended into the academic term to
enable new students to participate as a training op-
portunity. The competition was promoted in-person
at the SMBE and Evolution conferences, through
posts to the Evoldir, dadi user, and fastsimcoal user
mailing lists, and through targeted emails to specific
investigators known to the organizers. It was also
promoted through posts on X and Bluesky by the
organizers and SMBE.

Results

The inaugural GHIST competition attracted approx-
imately 60 participants spanning career stages from
graduate students to senior faculty. Participation
varied across challenges, with more entries for the
simpler challenges. Competitors employed a variety
of approaches, with top competitors mostly relying
on the site frequency spectrum (SFS). A variety of
software was employed, including custom pipelines.

Bottleneck challenge

The first challenge involved a simple bottleneck
(Fig. 2A), with competitors inferring the timing and
magnitude of the population decline. Competitors
were given 100 megabases (Mb) of data from 20
diploid individuals, yielding 219 thousand biallelic
variants.

Submissions for the bottleneck challenge showed
a range of strategies and accuracy. The RRMSE
values of submissions spanned orders of magnitude
(Fig. 2B). Almost all submissions successfully identi-
fied the presence of a bottleneck (Fig. 2C), but only
a few were highly accurate.

The most accurate submissions for the Bottleneck
challenge used site frequency spectrum (SFS) ap-
proaches (Fig. 2D). Competitor Vaughn developed a
custom approach using an analytic result for piece-
wise constant demographic histories to calculate the
expected model SFS (DeWitt et al. 2021) and the
Kullback-Leibler (KL) divergence to measure differ-
ences between model and data spectra. Competitors
McMaster and Kovacs used the SFS-based methods
dadi-cli (Huang et al. 2023) and fastsimcoal2 (Ex-
coffier et al. 2021) and the Markovian coalescent tool
SMC++ (Terhorst et al. 2017) for their submissions.
Competitor Noskova led a team using her GADMA
(Noskova et al. 2020, 2023) framework, using the dadi
(Gutenkunst et al. 2009), moments (Jouganous et al.
2017), and momi2 (Kamm et al. 2020) engines for
calculating model spectra.

A surprise was that top competitor Vaughn
metagamed the challenge by using the leaderboard
to optimize his submissions. He made an excellent
first submission (Fig. 2D) based on the provided data,
but this would not have been enough to win the chal-
lenge. To improve his result, he correctly deduced
that the challenge simulation used round parameter
values, and he used his remaining four submissions to
search through the parameter space using the leader-
board RRMSE score to converge on nearly the exact
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Figure 2: GHIST 2024 Bottleneck challenge. A)
True simulated demographic history. B) Relative
root mean square error scores of submissions. C) Pa-
rameter inferences of majority of submissions. True
values are indicated by solid lines. D) Parameter in-
ferences zoomed close to true values to indicate top
competitors. Arrows indicate competitor Vaughn’s
leaderboard optimization procedure.
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Figure 3: True demographic history for the Split
with Isolation challenge, represented using demes-
draw (Gower et al. 2022).

values.

Split with Isolation challenge

The second challenge involved two populations that
diverged without subsequent gene flow, representing
geographic isolation (Fig. 3), with competitors infer-
ring the contemporary population sizes and the tim-
ing of the split. They were given 100 Mb of data
from 22 and 18 individuals from the two populations,
yielding 1.2 million biallelic variants.

Performance on this challenge was generally strong,
with several competitors achieving high accuracy for
all three parameters (Table 1). SFS-based meth-
ods performed well in this challenge, with competi-
tor Vaughn using tskit (Kelleher et al. 2016; Wong
et al. 2024) to calculate expected spectra and KL di-
vergence to fit the model and McMaster and Kovacs
using dadi-cli for inference. The Team of Daigle and
Ray used a machine learning approach. They first
used dadi to identify the relevant ranges of param-
eter values, then simulated data over those ranges
with msprime, and then used scikit-allel (Miles et al.
2024) and pylibseq (Thornton 2003) to calculate sum-
mary statistics, including statistics based on the SFS,
haplotypes, and LD decay. These summary statistics
were then passed to a multi-layer perceptron for in-
ference. However, their best-scoring submission for
this challenge simply employed dadi. As in the first
Challenge, competitor Vaughn achieved the top score
by strategically rounding his inferences.
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RRMSE  Ngast Nyost T Competitor Approach
truth 130000 20000 13333
0.005 130000 20100 13300 Vaughn metagaming
0.027 126686 19973 13233 McMaster, Kovacs dadi-cli
0.029 126941 19867 13119 Daigle, Ray dadi
0.031 125992 20109 13301 Vaughn tskit SF'S

Table 1: Top submissions for the Split with Isolation challenge.

Secondary Contact challenge

The third challenge involved secondary contact be-
tween isolated populations, with complexity in popu-
lation size histories that no parametric model was A
expected to capture (Fig. 4A). Competitors were 30000 -
tasked with inferring the contemporary population
sizes, timing of the split and recontact, and the rate % 25000
of migration after recontact. Competitors were again
given 100 Mb of data, from 22 diploid mainland in-
dividuals and 8 island individuals, for a total of 842
thousand biallelic sites.

As expected, this challenge was more difficult than
the previous two, with no submission accurately esti-
mating all parameters (Table 2). The team of Daigle

20000 -

Generations a
=
u
o
o
o
1

10000 -

and Ray did well with their machine learning ap- 5000
proach based on summary statistics. Competitor o
Vaughn’s top submissions were all based on leader- 0- mainland island
board optimization after his initial inference. All B
these submissions assumed simple constant popula- 30000 A [
tion size histories, like the truth in the Split with Iso- Ancestral
lation challenge. The best performance came from 25000 - a (] >
the GADMA team, using the moments engine (Ta- o
ble 2). GADMA automatically builds and refines g 20000
models of increasing complexity, and their best model l
allowed for growth in both populations (Fig. 4B), per- © 15000 -
haps enabling their model to account for some of the 4@ >
effects of the true complex population size changes. )
S 10000 -
O
Archaic Admixture challenge 5000 -
To probe a distinct but related form of inference, .

the final challenge involved archaic admixture. Com- 0 Population_1 Population 2
petitors were tasked with inferring the timing and - -
magnitude of admixture into two modern populations Figure 4: GHIST 2024 Secondary Contact chal-
(Fig. 5). They were given 250 Mb of data from 20 and lenge. A: True demographic history, represented us-

16 samples for the modern populations, along with 1 jng demesdraw (Gower et al. 2022). B: Top-scoring
to 3 samples from each of the potential archaic con- model, from the GADMA team.

tributors, sampled 17,500 to 100,000 simulated years
ago, for a total of 1.7 million biallelic sites.

The top competitors accurately estimated admix-
ture proportions but were less accurate when estimat-
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RRMSE  Npain  Nisland  Tsptit Tmig ™ Competitor Approach
truth 240000 36000 23000 1277 5.0
0.92 284284 15567 24397 950 8.2 GADMA team GADMA w/ moments

0.97 150000 35000 30000 200 5.0 Vaughn metagaming
1.05 200000 12000 18000 310 5.0 Vaughn metagaming
1.05 220000 60000 17000 300 5.0 Vaughn metagaming

1.30 211999 10945 15818 215 1.8 Daigle, Ray summary stats perceptron

Table 2: Top submissions for Secondary Contact challenge.
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Figure 5: True demographic history for Archaic Admixture challenge, represented using demesdraw (Gower
et al. 2022).

RRMSE %admix; Tadmix; %admixy, Tadmixs Competitor Approach

truth 1.10 1566 0.20 883

0.10 1.00 1500 0.20 900 Vaughn metagaming
0.78 1.01 1096 0.19 252 GADMA team momi2

0.81 1.02 1066 0.16 250 GADMA team momi2

1.05 0.59 1000 0.37 1000 GADMA team momi2

1.93 1.06 2500 0.22 2500 Vaughn tskit SF'S

Table 3: Top submissions for Archaic Admixture challenge.
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ing timings (Table 3). For each modern population,
competitor Vaughn used tskit simulations to simulate
a two-population model with archaic admixture from
a ghost population and fit that to the SFS from the
modern population. He then optimized the leader-
board to refine his estimates. The GADMA software
does not support ancient samples, so it could not be
applied to this challenge. But the GADMA team
used momi2 (Kamm et al. 2020) directly to fit mod-
els involving all five sample groups, achieving superior
accuracy before metagaming.

Discussion

The inaugural GHIST competition demonstrated the
feasibility and value of a community-driven eval-
uation framework for population genetic inference
methods. The Synapse platform proved robust and
capable, and the range of challenges enabled acces-
sibility while pushing the limits of existing inference
methods. The conference-based launch and extended
timeframe facilitated participation from diverse re-
searchers, including students.

The GHIST competition provided several insights
into the relative performance of inference approaches.
Approaches based on the site frequency spectrum
were most common and successful, because they are
both accessible from established software tools and
powerful for demographic inference. For the Bot-
tleneck, Split with Isolation, and Secondary Con-
tact challenges, the GADMA team directly compared
SFS-based engines with the moments.LD engine that
uses multi-population linkage disequilibrium statis-
tics (Ragsdale & Gravel 2019, 2020), achieving bet-
ter scores with SFS-based engines. Approaches based
on machine learning showed promise but were not
widely used by competitors. As those approaches be-
come more accessible, we expect their representation
and success to increase. Almost all approaches ap-
plied assumed prespecified parametric models, which
may not capture the complexity of real demographic
histories (Loog 2021). The exception was GADMA,
and its success in the Secondary Contact challenge
(Fig. 4A), which was designed to violate typical pre-
specification, highlights the importance of model flex-
ibility when dealing with complex histories.

There were notable gaps in the methods employed
by participants. Approaches based on ancestral re-
combination graphs show great promise for popula-
tion genetics (Rasmussen et al. 2014; Kelleher et al.
2019; Speidel et al. 2019; Deng et al. 2024), but they

were not applied to this competition, perhaps because
of their high computational cost or complexity. The
Archaic Admixture challenge (Fig. 5) was designed
to encourage the use of specialized methods based
on lengths of admixture tracts (Pool & Nielsen 2009;
Gravel 2012), but no competitors used them, perhaps
due to insufficient outreach to the relevant subset of
researchers. Methods for demographic history infer-
ence based on the Markovian coalescent (Li & Durbin
2011; Schiffels & Durbin 2014) that don’t depend on
a user-specified parametric model were also underrep-
resented relative to their popularity in the literature.

The second GHIST competition launched at the
Evolution conference in June 2025 in Athens, Geor-
gia and runs through November 2025, with expanded
challenge types and refinements based on lessons from
the inaugural tournament. To discourage metagam-
ing while preserving the benefits of iterative submis-
sion, for each challenge multiple submissions are al-
lowed on a testing data set, but only a single sub-
mission is allowed on the final data set. To in-
crease the realism and difficulty of demographic his-
tory inference, two of the challenges include back-
ground selection, leveraging the stdpopsim frame-
work for simulation (Gower et al. 2025). To ex-
pand the range of tasks, four challenges involve infer-
ring single or multiple hard selective sweeps (Stephan
2019), under simple and complex demographic sce-
narios and with and without background selection.
The Synapse site for this second competition is at
https://synapse.org/Synapse:syn65877330.

Ultimately, the success of GHIST depends on com-
munity participation. The more methods developers,
users, educators, and students engage with the com-
petitions, the more the community will learn. The
space of potential challenges is vast, including infer-
ences such as distributions of fitness effects (Eyre-
Walker & Keightley 2007), spatial models (Brad-
burd & Ralph 2019), and polygenic selection (Barghi
et al. 2020), and including complications such as low-
pass data (Crawford & Lazzaro 2012), polyploidy
(Dufresne et al. 2014), and biased gene conversion
(Pouyet et al. 2018). Within Synapse, submissions
are scored using custom code executed on a cloud in-
stance, so more complex evaluation metrics are pos-
sible. This initial competition has demonstrated the
feasibility and utility of competitions for this com-
munity. Future competitions will enable deep insight
into best practices for population genetics inference.


https://synapse.org/Synapse:syn65877330
https://doi.org/10.1101/2025.08.05.668560
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.05.668560; this version posted August 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Acknowledgments

This work was supported by the National Institute
of General Medical Sciences of the National Insti-
tutes of Health (R35GM149235 to R.N.G.). A.D.
received support from NIGMS predoctoral training
grant 5T32 GM067553. We thank Pablo Meyer Ro-
jas for introducing us to the Synapse platform and
the Society for Molecular Biology and Evolution for
hosting the kickoff workshop and promoting the com-
petition on their social media channels. We thank all
competitors for their participation.

This paper was written with the assistance of
generative artificial intelligence (AI). MacWhisper
was used to transcribe the audio from author
Gutenkunst’s talk about GHIST at the 2024 Prob-
abilistic Modeling in Genomics conference. An-
thropic’s Claude 4 Sonnet model was then given that
transcript and asked to generate a detailed outline for
the paper, including leveraging its existing knowledge
base, within a Project containing previous papers by
author Gutenkunst. Author Gutenkunst also used
Claude’s research mode to generate a report on pub-
lished papers that independently compared popula-
tion genetics inference approaches, which yielded a
few studies he was previously unaware of. Author
Gutenkunst edited or generated all text in the final
manuscript and verified all references.

References

Adrion JR, Cole CB, Dukler N, Galloway JG, Glad-
stein AL, Gower G, Kyriazis CC, Ragsdale AP,
Tsambos G, Baumdicker F, Carlson J, Cartwright
RA, Durvasula A, Gronau I, Kim BY, McKenzie
P, Messer PW, Noskova E, Ortega-Del Vecchyo
D, Racimo F, Struck TJ, Gravel S, Gutenkunst
RN, Lohmueller KE, Ralph PL, Schrider DR, Sie-
pel A, Kelleher J, Kern AD (2020) A community-
maintained standard library of population genetic
models. eLife 9:e54967.

Barghi N, Hermisson J, Schlétterer C (2020) Poly-
genic adaptation: a unifying framework to under-
stand positive selection. Nature Reviews Genetics
21:769.

Baumdicker F, Bisschop G, Goldstein D, Gower G,
Ragsdale AP, Tsambos G, Zhu S, Eldon B, Eller-
man EC, Galloway JG, Gladstein AL, Gorjanc
G, Guo B, Jeffery B, Kretzschumar WW, Lohse

K, Matschiner M, Nelson D, Pope NS, Quinto-
Cortés CD, Rodrigues MF, Saunack K, Sellinger T,
Thornton K, Van Kemenade H, Wohns AW, Wong
Y, Gravel S, Kern AD, Koskela J, Ralph PL, Kelle-
her J (2022) Efficient ancestry and mutation simu-
lation with msprime 1.0. Genetics 220:iyab229.

Beichman AC, Phung TN, Lohmueller KE (2017)
Comparison of single genome and allele frequency
data reveals discordant demographic histories. G3
7:3605.

Boulesteix AL (2015) Ten Simple Rules for Reducing
Overoptimistic Reporting in Methodological Com-
putational Research. PLOS Computational Biol-
ogy 11:¢1004191.

Boulesteix AL, Lauer S, Eugster MJA (2013) A Plea
for Neutral Comparison Studies in Computational
Sciences. PLoS ONE 8:e61562.

Bradburd GS, Ralph PL (2019) Spatial Population
Genetics: It’s About Time. Annual Review of Ecol-
ogy, Evolution, and Systematics 50:427.

Brandt DYC, Wei X, Deng Y, Vaughn AH, Nielsen R
(2022) Evaluation of methods for estimating coales-
cence times using ancestral recombination graphs.
Genetics 221:iyac044.

Browning SR, Browning BL (2015) Accurate non-
parametric estimation of recent effective popula-
tion size from segments of identity by descent.
American Journal of Human Genetics 97:404.

Crawford JE, Lazzaro BP (2012) Assessing the Ac-
curacy and Power of Population Genetic Inference
from Low-Pass Next-Generation Sequencing Data.
Frontiers in Genetics 3:66.

Critical Assessment of Genome Interpretation Con-
sortium (2024) CAGI, the critical assessment of
genome interpretation, establishes progress and
prospects for computational genetic variant inter-
pretation methods. Genome Biology 25:53.

Danecek P, Auton A, Abecasis G, Albers CA, Banks
E, DePristo MA, Handsaker RE, Lunter G, Marth
GT, Sherry ST, McVean G, Durbin R, 1000
Genomes Project Analysis Group (2011) The vari-

ant call format and VCFtools. Bioinformatics
27:2156.
Deng Y, Nielsen R, Song YS (2024) Ro-

bust and Accurate Bayesian Inference of


https://doi.org/10.1101/2025.08.05.668560
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.05.668560; this version posted August 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Genome-Wide Genealogies for Large Samples.

Gutenkunst RN, Hernandez RD, Williamson SH,

{https://www.biorxiv.org/content,/10.1101/2024.03.16.B3351jante CD (2009) Inferring the Joint Demo-

DeWitt WS, Harris KD, Ragsdale AP, Harris K
(2021) Nonparametric coalescent inference of mu-
tation spectrum history and demography. Pro-
ceedings of the National Academy of Sciences
118:€2013798118.

Dufresne F, Stift M, Vergilino R, Mable BK (2014)
Recent progress and challenges in population ge-
netics of polyploid organisms: an overview of cur-
rent state-of-the-art molecular and statistical tools.
Molecular Ecology 23:40.

Excoffier L, Dupanloup I, Huerta-Sanchez E, Sousa
VC, Foll M (2013) Robust demographic infer-
ence from genomic and SNP data. PLoS genetics
9:€1003905.

Excoffier L, Marchi N, Marques DA, Matthey-Doret
R, Gouy A, Sousa VC (2021) fastsimcoal2: demo-
graphic inference under complex evolutionary sce-
narios. Bioinformatics 37:4882.

Eyre-Walker A, Keightley PD (2007) The distribu-
tion of fitness effects of new mutations. Nature
Reviews Genetics 8:610.

Flagel L, Brandvain Y, Schrider DR (2019) The
unreasonable effectiveness of convolutional neural
networks in population genetic inference. Molecu-
lar Biology and Evolution 36:220.

Gower G, Pope NS, Rodrigues MF, Tittes S, Tran
LN, Alam O, Cavassim MIA, Fields PD, Haller BC,
Huang X, Jeffrey B, Korfmann K, Kyriazis CC,
Min J, Rebollo I, Rehmann CT, Small ST, Smith
CCR, Tsambos G, Wong Y, Zhang Y, Huber CD,
Gorjanc G, Ragsdale AP, Gronau I, Gutenkunst
RN, Kelleher J, Lohmueller KE, Schrider DR,
Ralph PL, Kern AD (2025) Accessible, realistic
genome simulation with selection using stdpopsim.

graphic History of Multiple Populations from Mul-
tidimensional SNP Frequency Data. PLoS Genetics
5:€1000695.

Haller BC, Messer PW (2023) SLiM 4: Multispecies
Eco-Evolutionary Modeling. The American Natu-
ralist 201:E127.

Harris K, Nielsen R (2013) Inferring Demographic
History from a Spectrum of Shared Haplotype
Lengths. PLoS Genetics 9:e1003521.

Huang X, Struck TJ, Davey SW, Gutenkunst RN
(2023) dadi-cli: Automated and distributed popu-
lation genetic model inference from allele frequency
spectra.

Johri P, Riall K, Becher H, Excoffier L., Charlesworth
B, Jensen JD (2021) The Impact of Purifying and
Background Selection on the Inference of Popula-
tion History: Problems and Prospects. Molecular
Biology and Evolution 38:2986.

Jouganous J, Long W, Ragsdale AP, Gravel S (2017)
Inferring the joint demographic history of multiple
populations: beyond the diffusion approximation.
Genetics 206:1549.

Jumper J, Evans R, Pritzel A, Green T, Figurnov
M, Ronneberger O, Tunyasuvunakool K, Bates R,
Zidek A, Potapenko A, Bridgland A, Meyer C,
Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes
B, Nikolov S, Jain R, Adler J, Back T, Petersen S,
Reiman D, Clancy E, Zielinski M, Steinegger M,
Pacholska M, Berghammer T, Bodenstein S, Silver
D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P,
Hassabis D (2021) Highly accurate protein struc-
ture prediction with AlphaFold. Nature 596:583.

Kamm J, Terhorst J, Durbin R, Song YS (2020) Effi-
ciently Inferring the Demographic History of Many
Populations With Allele Count Data. Journal
of the American Statistical Association 115:1472.

{https://www.biorxiv.org/content /10.1101,/2025.03.23 §¥igher: Informa UK Limited.

Gower G, Ragsdale AP, Bisschop G, Gutenkunst RN,
Hartfield M, Noskova E, Schiffels S, Struck TJ,
Kelleher J, Thornton KR (2022) Demes: a stan-
dard format for demographic models. Genetics
222:iyacl31.

Gravel S (2012) Population Genetics Models of Local
Ancestry. Genetics 191:607.

Kelleher J, Etheridge AM, McVean G (2016) Efficient
Coalescent Simulation and Genealogical Analysis
for Large Sample Sizes. PLOS Computational Bi-
ology 12:1004842.

Kelleher J, Wong Y, Wohns AW, Fadil C, Albers PK,
McVean G (2019) Inferring whole-genome histo-
ries in large population datasets. Nature Genetics
51:1330.


https://doi.org/10.1101/2025.08.05.668560
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.05.668560; this version posted August 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

Kryshtafovych A, Schwede T, Topf M, Fidelis K,
Moult J (2021) Critical assessment of methods of
protein structure prediction (CASP)—Round XIV.
Proteins: Structure, Function, and Bioinformatics

89:1607.

Lapierre M, Lambert A, Achaz G (2017) Accuracy of
Demographic Inferences from the Site Frequency
Spectrum: The Case of the Yoruba Population.
Genetics 206:439.

Lawson DJ, Van Dorp L, Falush D (2018) A tutorial
on how not to over-interpret STRUCTURE and
ADMIXTURE bar plots. Nature Communications
9:3258.

Li H, Durbin R (2011) Inference of human population
history from individual whole-genome sequences.
Nature 475:493.

Loog L (2021) Sometimes hidden but always there:
the assumptions underlying genetic inference of de-
mographic histories. Philosophical Transactions of
the Royal Society B 376:20190719.

Lotterhos KE, Fitzpatrick MC, Blackmon H (2022)
Simulation Tests of Methods in Evolution, Ecology,
and Systematics: Pitfalls, Progress, and Principles.
Annual Review of Ecology, Evolution, and System-
atics 53:113.

Lotterhos KE, Francois O, Blum MG (2016)
Not just methods:  User expertise explains
the wvariability of outcomes of genome-wide
studies. bioRxiv :

Hoeng J, Ivanov NV, Koeppl H, Linding R, Mar-
bach D, Norel R, Peitsch MC, Rice JJ, Royyuru
A, Schacherer F, Sprengel J, Stolle K, Vitkup D,
Stolovitzky G (2011) Verification of systems biol-
ogy research in the age of collaborative competi-
tion. Nature Biotechnology 29:811.

Miles A, bot p, Rodrigues MF, Ralph P, Kelleher J,
Schelker M, Pisupati R, Rae S, Millar T (2024)
scikit-allel: v1.3.13.

Momigliano P, Florin AB, Merild J (2021) Biases in
demographic modelling affect our understanding of
recent divergence. Molecular Biology and Evolu-
tion 38:msab047.

Moult J, Pedersen JT, Judson R, Fidelis K (1995) A
large-scale experiment to assess protein structure
prediction methods. Proteins: Structure, Function,
and Bioinformatics 23:ii.

Myers S, Fefferman C, Patterson N (2008) Can one
learn history from the allelic spectrum? Theoreti-
cal Population Biology 73:342.

Norel R, Rice JJ, Stolovitzky G (2011) The self-
assessment trap: can we all be better than average?
Molecular Systems Biology 7:537.

Noskova, E, Abramov N, Iliutkin S, Sidorin A, Do-
brynin P, Ulyantsev VI (2023) GADMA2: more
efficient and flexible demographic inference from
genetic data. GigaScience 12:giad059.

the preprint server for biology Noskova E, Ulyantsev V, Koepfli KP, O’Brien SJ, Do-

Https://www.biorxiv.org/content/10.1101/055046v1.fublrynin P (2020) GADMA: Genetic algorithm for

Marbach D, Costello JC, Kiiffner R, Vega NM, Prill
RJ, Camacho DM, Allison KR, DREAMS5 Consor-
tium (2012) Wisdom of crowds for robust gene net-
work inference. Nature Methods 9:796.

Marsh JI, Johri P (2024) Biases in ARG-based in-
ference of historical population size in populations
experiencing selection. Molecular Biology and Evo-
lution 41:msael18.

Marth GT, Czabarka E, Murvai J, Sherry ST (2004)
The allele frequency spectrum in genome-wide hu-
man variation data reveals signals of differential
demographic history in three large world popula-
tions. Genetics 166:351.

Meyer P, Alexopoulos LG, Bonk T, Califano A, Cho
CR, De La Fuente A, De Graaf D, Hartemink AJ,

11

inferring demographic history of multiple popula-
tions from allele frequency spectrum data. Giga-
Science 9:giaa005.

Olson ND, Wagner J, McDaniel J, Stephens SH,
Westreich ST, Prasanna AG, Johanson E, Boja
E, Maier EJ, Serang O, Jaspez D, Lorenzo-Salazar
JM, Munoz-Barrera A, Rubio-Rodriguez LA, Flo-
res C, Kyriakidis K, Medina-Gémez C, Rivadeneira
F, Uitterlinden AG, Tkram MA, van Rooij JGJ,
Kanai M, Okada Y, Takahashi A, Momozawa Y,
Hirata M, Matsuda K, Murakami Y, Kubo M, Ka-
matani Y, Li Y, Tam V, Shrine N, Guyatt AL,
John C, Shrine N, Guyatt AL, John C, Packer R,
Wain LV, Tobin MD, Sayers I, Hall IP, Brightling
C, Singapuri A, Soler Artigas M, Obeidat M, Sin
DD, Bossé Y, Postma DS, Vonk JM, Boezen HM,
Shrine N, Guyatt AL, John C, Packer R, Brightling


https://doi.org/10.1101/2025.08.05.668560
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.05.668560; this version posted August 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

C, Singapuri A, Soler Artigas M, Hall IP, Wain LV,
Tobin MD, Sayers I, Obeidat M, Sin DD, Bossé
Y, Postma DS, Vonk JM, Boezen HM, Zeberg H
(2022) precisionFDA truth challenge V2: Calling
variants from short- and long-reads in difficult-to-
map regions. Cell Genomics 2:100129.

Patton AH, Margres MJ, Stahlke AR, Hendricks S,
Lewallen K, Hamede RK, Ruiz-Aravena M, Ryder
O, McCallum HI, Jones ME, Hohenlohe PA, Stor-
fer A (2019) Contemporary Demographic Recon-
struction Methods Are Robust to Genome Assem-
bly Quality: A Case Study in Tasmanian Devils.
Molecular Biology and Evolution 36:2906.

Peng D, Mulder OJ, Edge MD (2025) Evaluating
ARG-estimation methods in the context of esti-
mating population-mean polygenic score histories.
Genetics 229:iyaf033.

Pool JE, Hellmann I, Jensen JD, Nielsen R (2010)
Population genetic inference from genomic se-
quence variation. Genome Research 20:291.

Pool JE, Nielsen R (2009) Inference of Historical
Changes in Migration Rate From the Lengths of
Migrant Tracts. Genetics 181:711.

Pouyet F, Aeschbacher S, Thiéry A, Excoffier L
(2018) Background selection and biased gene con-
version affect more than 95% of the human genome
and bias demographic inferences. eLife 7.

Ragsdale AP, Gravel S (2019) Models of archaic ad-
mixture and recent history from two-locus statis-
tics. PLOS Genetics 15:€1008204.

Ragsdale AP, Gravel S (2020) Unbiased Estimation
of Linkage Disequilibrium from Unphased Data.
Molecular Biology and Evolution 37:923.

Randall RN, Radford CE, Roof KA, Natarajan DK,
Gaucher EA (2016) An experimental phylogeny to
benchmark ancestral sequence reconstruction. Na-
ture Communications 7:12847.

Rasmussen MD, Hubisz MJ, Gronau I, Siepel A
(2014) Genome-Wide Inference of Ancestral Re-
combination Graphs. PLoS Genetics 10:€1004342.

Rosen Z, Bhaskar A, Roch S, Song YS (2018) Ge-
ometry of the sample frequency spectrum and the
perils of demographic inference. Genetics 210:665.

12

Saez-Rodriguez J, Costello JC, Friend SH, Kellen
MR, Mangravite L, Meyer P, Norman T,
Stolovitzky G (2016) Crowdsourcing biomedical re-
search: leveraging communities as innovation en-
gines. Nature Reviews Genetics 17:470.

Sanchez T, Cury J, Charpiat G, Jay F (2021) Deep
learning for population size history inference: de-
sign, comparison and combination with approxi-
mate Bayesian computation. Molecular Ecology
Resources 21:2645.

Schiffels S, Durbin R (2014) Inferring human pop-
ulation size and separation history from multiple
genome sequences. Nature Genetics 46:919.

Schrider DR, Kern AD (2018) Supervised machine
learning for population genetics: a new paradigm.
Trends in Genetics 34:301.

Speidel L, Forest M, Shi S, Myers SR (2019) A
method for genome-wide genealogy estimation for
thousands of samples. Nature Genetics 51:1321.

Stephan W (2019) Selective Sweeps. Genetics 211:5.

Stolovitzky G, Monroe D, Califano A (2007) Dia-
logue on reverse-engineering assessment and meth-
ods: the DREAM of high-throughput pathway in-
ference. Annals of the New York Academy of Sci-
ences 1115:1.

Terhorst J, Kamm JA, Song YS (2017) Robust and
scalable inference of population history from hun-
dreds of unphased whole genomes. Nature Genetics
49:303.

Thornton K (2003) libsequence: a C++ class library
for evolutionary genetic analysis. Bioinformatics
19:2325.

Tran LN, Sun CK, Struck TJ, Sajan M, Gutenkunst
RN (2024) Computationally efficient demographic
history inference from allele frequencies with su-
pervised machine learning. Molecular Biology and
Evolution 41:msae077.

Weber LM, Saelens W, Cannoodt R, Soneson C,
Hapfelmeier A, Gardner PP, Boulesteix AL, Saeys
Y, Robinson MD (2019) Essential guidelines for
computational method benchmarking. Genome Bi-
ology 20:125.

Wong Y, Ignatieva A, Koskela J, Gorjanc G, Wohns
AW, Kelleher J (2024) A general and efficient rep-
resentation of ancestral recombination graphs. Ge-
netics 228:iyael00.


https://doi.org/10.1101/2025.08.05.668560
http://creativecommons.org/licenses/by-nc/4.0/

