

 1

GAME: Genomic API for Model Evaluation
Authors:

Ishika Luthra1, Satyam Priyadarshi1, Rui Guo2, Lukas Mahieu3, Niklas Kempynck3, Damion
Dooley4, Dmitry Penzar6, Ilya Vorontsov6, Yilun Sheng7, Xinming Tu7, Adam Klie8, Shiron
Drusinsky10,11, Alexander Floren11, Ethan Armand25, Kaur Alasoo24, Georg Seelig7,23, Ryan
Tewhey22, Peter Koo21, Vikram Agarwal20, Sager Gosai19, Luca Pinello16,17,18, Michael A.
White15, Avantika Lal14, Julia Zeitlinger13, Katherine S. Pollard10,11,12, Maxwell Libbrecht9,
Hannah Carter8, Sara Mostafavi7, Ivan Kulakovskiy6, Will Hsiao4,5, Stein Aerts3, Jian Zhou2,
Carl G. de Boer1

Correspondence should be addressed to CGD (carl.deboer@ubc.ca).

Affiliations

1School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
2Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center,
Dallas, TX, USA

3VIB Center for AI & Computational Biology, VIB-KU Leuven Center for Brain and Disease
Research & KU Leuven Department of Human Genetics, Leuven, Belgium

4Centre for Infectious Disease Genomics and One Health, Simon Fraser University,
Burnaby, BC, Canada

5Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada

6Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow,
Russia

7Paul G. Allen School of Computer Science and Engineering, University of Washington,
Seattle, WA

8Department of Medicine, Division of Genomics and Precision Medicine, University of
California San Diego, La Jolla, CA, USA

9School of Computing Science, Simon Fraser University, Burnaby, British Columbia V51
1S6, Canada

10University of California, San Francisco, San Francisco, CA 94143, USA

11Gladstone Institute of Data Science & Biotechnology, San Francisco, CA, USA

12Chan Zuckerberg Biohub SF, San Francisco, CA, USA

13Stowers Institute for Medical Research, Kansas City, MO 64110, USA

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 2

14Biology Research | AI Development, gRED Computational Sciences, Genentech, South
San Francisco, CA, USA

15Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA

16Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts
General Hospital, Boston, MA, USA.

17Gene Regulation Observatory, The Broad Institute of Harvard and MIT, Cambridge, MA,
USA.

18Department of Pathology, Harvard Medical School, Boston, MA, USA.

19Broad Institute of MIT and Harvard, Cambridge, MA, USA

20mRNA Center of Excellence, Sanofi, Waltham, MA 02451, USA

21Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA

22The Jackson Laboratory, Bar Harbor, ME, USA

23Department of Electrical & Computer Engineering, University as Washington

24Institute of Computer Science, University of Tartu, Tartu, Estonia

25Integrative Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines
Road, La Jolla, CA 92037, USA

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 3

Abstract

The rapid expansion of genomics datasets and the application of machine learning has
produced sequence-to-activity genomics models with ever-expanding capabilities. However,
benchmarking these models on practical applications has been challenging because
individual projects evaluate their models in ad hoc ways, and there is substantial
heterogeneity of both model architectures and benchmarking tasks. To address this
challenge, we have created GAME, a system for large-scale, community-led standardized
model benchmarking on user-defined evaluation tasks. We borrow concepts from the
Application Programming Interface (API) paradigm to allow for seamless communication
between pre-trained models and benchmarking tasks, ensuring consistent evaluation
protocols. Because all models and benchmarks are inherently compatible in this framework,
the continual addition of new models and new benchmarks is easy. We also developed a
Matcher module powered by a large language model (LLM) to automate ambiguous task
alignment between benchmarks and models. Containerization of these modules enhances
reproducibility and facilitates the deployment of models and benchmarks across computing
platforms. By focusing on predicting underlying biochemical phenomena (e.g. gene
expression, open chromatin, DNA binding), we ensure that tasks remain technology-
independent. We provide examples of benchmarks and models implementing this
framework, and anticipate that the community will contribute their own, leading to an ever-
expanding and evolving set of models and evaluation tasks. This resource will accelerate
genomics research by illuminating the best models for a given task, motivating novel
functional genomic benchmarks, and providing a more nuanced understanding of model
abilities.

Main

While sequence-based genomics models are widely used in the field, their progress has
proven difficult to benchmark due to substantial heterogeneity in model architectures,
training datasets, and ad hoc model evaluations. Presently, model evaluations are siloed
within publications, resulting in duplicated efforts; simultaneous differences in model
architectures, training data, and evaluation tasks often obscure where any innovation lies. In
general, functional genomics assays measure the genome’s biochemical activity indirectly.
Consequently, some performance gains are likely attributable to the models capturing assay-
specific biases better, rather than capturing the underlying biological phenomenon. Further,
it is commonplace to use genomics models to predict activities that are related to but distinct
from the tasks they were designed to predict (e.g. using CAGE predictions for mRNA
expression even though they capture different RNA subsets)1. Finally, even if a benchmark
is superficially the same, there are often many choices (degrees of freedom) in
implementation that may impact the performance measure. Consequently, the overall
performance of a new genomics model compared to its predecessors and contemporaries
often remains opaque. Recent work showed that proper and consistent benchmarking can
reveal model limitations2–6. For instance, Sasse et al (2023) showed that, while models are
able to predict the magnitude of variant effects, they struggle with predicting the direction of
the change in expression3. As the number of potential benchmarking datasets continues to
grow, facilitating their uniform application across models becomes increasingly important.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 4

In other fields, there are well-established, high-quality datasets that can be used to
benchmark progress because it is generally agreed that they capture the task well. For
instance, Critical Assessment of Structure Prediction (CASP)7 is used to benchmark protein
folding models, while the CIFAR datasets are standard benchmarks for image classification8.
Similarly, there have been efforts to curate diverse sequence datasets into a standard format
to facilitate model training and evaluation5,9. While challenges and competitions like
DREAM10,11 and Kaggle12 are excellent at determining the optimal model design choices for
specific datasets, they are, by their nature, restricted to specific tasks. However, there are
many distinct but intertwined activities encoded by the genome (e.g. RNA expression, open
chromatin, transcription factor binding, histone marks, 3D conformation) that differ across
species, cell types, and conditions, making it necessary for sequence-based genomics
models to be benchmarked on tasks that match the model’s scope and purpose. Further,
users may want to identify the best model for their specific task of interest.

To enable systematic benchmarks of various models by various evaluation tasks, we created
GAME (Genomics API for Model Evaluation), a framework for large-scale community-led
standardized model benchmarking. GAME is designed to be flexible and user-friendly, where
new and existing models can be systematically and uniformly queried with an ever-
expanding variety of tasks. To facilitate this uniform benchmarking of models across tasks,
we leveraged the standardized communication protocols used by APIs13,14. APIs enable
diverse client programs to interact with server programs, each without knowing any of the
details of the other’s implementation, facilitated by the common language defined by the API
protocol. While Avsec et al. (2019) created a repository, Kipoi, for genomics-based ML
models and also used APIs to access them, it did not include benchmark modules, and it
required the user to have intimate knowledge about exactly what each model was predicting,
making scalable, uniform model benchmarking a substantial challenge15. GAME allows for
seamless communication between pre-trained models and functional genomics datasets on
which those models can be benchmarked. GAME was designed with extensive community
feedback throughout its development, resulting in API specifications that meet the needs of
model and dataset experts.

To maximize GAME’s utility and adaptability, we established several forward-looking design
principles that emphasize creating benchmarks that are as objective and biology-focused as
possible. Firstly, we focused on the biological signals of interest, not the assay used to
quantify them. Accordingly, assay types are not provided to the models, which could use this
information to improve performance but in biologically meaningless ways (e.g. adding assay-
specific biases). For example, DNase I-seq and ATAC-seq both measure chromatin
accessibility in different ways and have different biases. While predicting the assay-specific
biases would increase performance, it provides no insight into the underlying biology. This
has the secondary benefit of being robust to the development of new assays, which are
likely to measure the same underlying biological phenomena in different ways. For instance,
the recently-developed Fiber-seq also measures chromatin accessibility, but the nature of
the data and biases differ substantially from DNase I-seq and ATAC-seq16. Accordingly, we
restrict the predictions to DNA binding (which can be for TFs, methylation, or histone marks),
chromatin accessibility, 3D-chromatin conformation, and expression (mRNA, Pol I, Pol II, Pol
III). Secondly, we aimed to provide the utmost separation between the prediction and
evaluation of these models by providing models only as much information as needed to
perform their tasks and no more to prevent overfitting to the benchmarks. For instance,

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 5

predicting a specific biological replicate could increase performance (e.g. if the model saw
the replicate during training), but would be misleading because it would not generalize to the
samples we actually care about. Thirdly, we aimed to make this framework sustainable in the
long term by distributing responsibilities to those making models and benchmark datasets,
and having minimal centralized maintenance. New models/datasets need only to implement
the API to seamlessly communicate with all others that already exist in the framework. While
this adds some initial overhead, the existing models and benchmarks in GAME will mean
that implementing the GAME API will become the most efficient way to complete
evaluations.

In GAME, models are encapsulated in Predictors and benchmarks are encapsulated in
Evaluators, which communicate via the API protocol. The Evaluator module is a software
client that is responsible for evaluating models on a specific benchmark, while the Predictor
module is a server that listens for incoming requests and responds with the model’s
predictions for the requested tasks. We also have included a Matcher module which uses
standardized queries to a local LLM17. Matcher is responsible for mapping requested tasks
with tasks the model knows how to do (e.g. species, cell types, and molecules). For
example, the Matcher must map the cell types requested by the Evaluator to the closest
matched cell types that the Predictor is able to predict. The Matcher is implemented as
another server for which the Predictor serves as the client. A GAME evaluation occurs in 7
steps (Fig. 1). (1) The Evaluator requests predictions from a Predictor. (2) The Predictor
parses the request and, if needed, consults the Matcher to determine how it can best serve
up the tasks requested. (3) The Matcher finds the mapping between the requested tasks and
tasks the predictor can do. (4) The Matcher sends this information back to the Predictor. (5)
The Predictor processes the request, by sending it to the model and reformatting the model’s
predictions in the required standard format. (6) The predictions are returned to the Evaluator.
(7) Finally, the Evaluator calculates the model’s performance. The Evaluator builders are
responsible for determining what information the Predictors require for their predictions and
what the best evaluation metrics are for their benchmarks. The Predictor builders are
responsible for taking a request for predictions on a set of DNA sequences and determining
how it can best fulfill the request, given what the model can predict (or decline to predict if it
cannot do so). The Evaluators, Predictors, and Matcher are containerized using Apptainer to
facilitate sustainable model evaluation across computing environments, improving our ability
to compare models18. Inside the containers, the modules can be written in any language.
However, to facilitate the adoption of this approach, we provide examples and templates for
functions implemented in Python with seamless GPU support that users can modify to fit
their needs.

Including a separate Matcher module provides several advantages. The cell types requested
by the Evaluator are likely imperfect matches to the cell types the Predictor can predict (e.g.
cardiomyocyte vs. heart or HEK293FT vs. HEK293). Similarly, the Predictor may not include
the requested species and so would need to know which of the species it includes is closest.
The Matcher resolves such discrepancies by automating the alignment of tasks. This
ensures that performance measures are not influenced by the Predictor builder’s
understanding of cellular, molecular, or species relationships. Further, as our understanding
of species and cell types evolves, the Matcher module can be upgraded while remaining
compatible with existing GAME modules.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 6

Figure 1: GAME framework. GAME includes three modules: The Evaluator, containing a benchmark
dataset; the Predictor, encompassing a sequence-to-activity model; and the Matcher, capturing
relationships between tasks. All GAME modules are inherently interoperable by communicating in the
GAME API protocol over TCP. For each benchmark, the Evaluator requests a prediction from the
Predictor, which consults the Matcher to determine the closest task the Predictor can complete. Once
the Matcher returns the best match, the Predictor will complete its prediction and return it to the
Evaluator, which will evaluate performance. Members of the genomics community will contribute
modules to enable continual evaluation of more models across more benchmarks.

We applied GAME to several models and two representative benchmarking tasks – gene
expression and chromatin confirmation (Fig. 2). For gene expression, we implemented three
Evaluators, two using MPRA datasets (both genomic and synthetic)19,20, and one of
measured effects of synthetic variants21, each of which can output distinct evaluation
metrics. For example, the Agarwal et al. MPRA Evaluator evaluates models on their ability to
predict gene expression separately for each cell type, and also on how well models predict
cell type-specific differences in expression (Fig. 2a)19. The Gosai et al. MPRA Evaluator data
includes synthetic (non-genomics) MPRA probes, and so is an ideal benchmark for genome-
trained models. Similarly, the Martyn data represents the expression effects of synthetic
genetic variation introduced by genome editing, and so is a good task benchmarking models
on variant effects with minimal risk of train-test leakage. We created Predictors for Borzoi,
Enformer, and DREAM-RNN, and evaluated each on each expression Evaluator (Fig. 2a).
Borzoi and Enformer are both large sequence window genome-trained state-of-the-art
sequence-to-function models and have been used in numerous benchmarking papers22,23.
The DREAM-RNN Predictor is a state-of-the-art short-sequence sequence-to-function
model24, in this case trained on Agarwal K562 MPRA data19. As a more complex example
we also created a 3D chromatin confirmation (Fig. 2b) Evaluator and Predictor based on

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 7

Orca25. Finally, we developed Consistency Evaluators that can be used to assess models
that predict DNA accessibility, confirming correlated predictions between forward and
reverse complement sequences (Fig 3b) for Borzoi, Enformer, and the recently-described
ATAC-seq model DeepBICCN226

Figure 2: Sample benchmarking done with GAME. a, Expression evaluation tasks. Models (x axis)
were evaluated for their correlation to measured expression levels (colours) across a variety of tasks
(y axis). b, Chromatin conformation tasks. Correlation of Orca predictions vs measured chromatin
contact frequencies (colours) for two Orca test-set chromosomes and one validation-set chromosome
(y axis). c, Consistency evaluation for accessibility. Point and track based accessibility consistency
evaluators (y axis) were used to evaluate the correlation between predictions for forward and reverse
complement sequences (colours) in models of DNA accessibility (x axis). *Correlation values from
down sampled datasets. Grey cells mark values that were not calculated due models that could not
complete the Evaluator’s requested task.

GAME offers many advantages that will streamline benchmarking and model use more
generally. The common protocol enables any model to communicate with any benchmark
(although not all combinations may make sense), ensuring that when one creates a new
GAME module, it is immediately compatible with all the existing modules. Existing Predictors
and Evaluators remain frozen so that future benchmarks done with them are identical; future
evaluations of models on these benchmarks will be directly comparable to the results shown
in Fig. 2. The anonymity of API requests means that all models will be evaluated equally.
The modules communicate via TCP/IP sockets and so can be run locally or remotely,
potentially preserving privacy, for example, in cases where models have proprietary weights.
Because GAME is decentralized and community-driven, it will be much more scalable and
easily maintained. Contributors can easily add their own benchmarks and models, and can
maintain them as long as they remain relevant. We have already implemented 5 models and
6 benchmarks in GAME.

As GAME gains momentum, the fastest and easiest way of performing a new benchmark will
be to implement GAME, further incentivizing this community effort. We anticipate that GAME
will drive genomics progress in several ways. GAME allows one to easily compare all
models across all benchmarks, which will reveal model limitations and low-quality

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 8

benchmarks. For instance, a model that was overfitted to a current benchmark would be
revealed as it fails to generalize to the benchmarks that arise after its release. Such a
framework also facilitates continual evaluation of state-of-the-art models on a diverse set of
tasks, enabling researchers to quickly identify the models that are most well-suited to their
specific tasks. For instance, if one is interested in predicting the effects of genetic variants in
heart, one can find the closest benchmark to determine which model is best for the task. To
showcase GAME in a reasonable time frame with reduced computational costs, we down-
sampled certain Evaluator datasets (Fig. 2). However, Evaluators and Predictors can split up
the dataset, enabling parallelization and better utilization of available resources. While we
anticipate that Matcher will be useful outside of GAME, determining the best way to match
tasks turned out to be a substantial challenge. Nevertheless, the Matcher can be continually
improved due to its modular nature. Finally, having all models share a common language
means that other software can use GAME to facilitate model reuse and swapping between
models more easily. Its modular design will keep GAME in play, evolving alongside the ever-
changing field of genomics.

Methods

Information passing
The client and server code of an API can be written in any programming language27.
However, due to the prevalence of Python programming in genomics and model
development28,29, the GAME API and corresponding error-checking functions are written in
Python. Python sockets can connect servers to clients to communicate with each other over
local or remote networks30. Python sockets use Transmission Control Protocol (TCP), which
provides benefits such as detecting lost information when sending information over a
network and controlling the order of data when transmitted31.

The Predictor server will bind to a user-specified “HOST,” an IP address or hostname, and
“PORT,” a TCP port. Once the server binds, it will wait and listen for incoming connections.
The Evaluator client must connect to the same HOST and PORT pair to send a request to
the server. The data that is transmitted via the TCP socket must be converted to bytes
before it is sent. The Evaluator and Predictor can both be on a local computer, HPC
platform, or even in remote configurations, ensuring flexibility in how they communicate. This
capability is also beneficial for Predictor developers working with proprietary or closed-
source models, allowing them to integrate their work into the GAME framework. Those
models can be embedded into the Predictor codebase and hosted as a server on their own
network, maintaining full control and privacy over their model weights.

Communication protocol
In GAME, the communication protocol distinguishes between the initial format of user-
provided data and the standardized formats used for data streaming between GAME
modules. While users can store benchmark data in various initial file formats (e.g. .json,
.npy, .txt, .xlsx), these inputs must first be converted to the correct format before
transmission. Most typically, this is implemented as a helper function that converts the input
file into JavaScript Object Notation (JSON)-like dictionary structure. It is essential that this
structure adheres to the predefined JSON schema of GAME to ensure data compatibility and

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 9

proper interpretation by subsequent modules. Data in the JSON object is stored as key:
value pairs32.

Once the data is in this standardized dictionary representation, it is ready for transmission.
By default, GAME utilizes JSON for this inter-module data exchange, due to its popularity,
speed in generation and parsing, and support via Python’s standard library33. We also allow
information to be transmitted using MessagePack (MsgPack), a binary serialization format,
which helps increase speed when returning large arrays of predictions34,35, provided both the
Evaluator and Predictor modules are configured to handle it. The Evaluator, therefore,
serializes the prepared dictionary structure into either a JSON or a MsgPack stream before
sending the required information to the Predictor. If the task requested is not an exact match
to one of the Predictor’s model outputs, the Matcher module can be utilized to align the
requested cell types, species, and molecules with those supported by the Predictor. Once
the prediction is complete, the predictions are reformatted to the negotiated return format
and returned to the Evaluator. JSON and MSGPACK files are easily loaded into Python and
accessed as dictionaries, making them straightforward to work with36. For implementation
guidance, sample files and code can be found on GitHub.

Module responsibilities
The Evaluator and Predictor modules are designed to have specific responsibilities that
follow the core principles of the API, such as minimizing information sent to a Predictor,
allowing dataset creators the power to evaluate the tasks they are interested in, and allowing
model builders the freedom to parse sequences to comply with model specifications as they
see fit. The main responsibilities of Evaluators are to choose what predictions they would like
to obtain from the Predictor and what information the Predictor needs to fulfil that request,
including: whether the Predictor should return points (a single value) or tracks (values across
a sequence), whether there are constant flanking sequences that could provide relevant
context (e.g. the vector backbone of an MPRA vector), where in the sequence window the
predictions should be provided (e.g. the location of a promoter), how to use the expression
predictions based on sense or antisense strand. This information is encoded in the request
that is sent to the Predictor. Predictors, conversely, are responsible for parsing the
sequences to meet model input size requirements (pad, trim, or add other flanks to the
sequences), aggregate across tracks (e.g. replicates of an experiment) or bins (e.g. if the
prediction window overlaps multiple bins), deciding which cell type/species/molecule to use
(with help from the Matcher, if desired), and returning the predictions in the standard format.
Once the predictions are returned, it is the Evaluator’s responsibility to calculate the
appropriate metrics for each benchmarking task and output these results to a file, using a
standard reporting format. Additional details of the API specification and examples are
available on GitHub.

Containerization
Containers provide a secure and robust way to run code across any platform, removing
troublesome dependency issues. Since most ML models are trained and evaluated on high-
performance computing (HPC) platforms, we used Apptainer for GAME module containers.
Unlike Docker, Apptainer is specifically designed for HPC environments and does not
require root access, a critical advantage since most HPC systems restrict root privileges for
security reasons18. By containerizing each Evaluator and Predictor, the code within each

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 10

container is isolated, enabling each to use its own version of any language without issue.
Additionally, in contrast to Docker, Apptainer containers have no network isolation, meaning
that they can communicate with each other using IP addresses and ports without having to
create a network for them to communicate over.

Maintenance and Community Contributions
The long-term maintenance of this framework is designed to be simple and scalable. We
have made community-maintainable lists of GAME modules available on GitHub, which then
needs only to be updated with the locations of new modules. For instance, someone could
create a new model, package it into a Predictor, and then issue a pull request to update the
list of Predictors with their own. Subsequently, users can pull the latest lists of Predictors and
test them on the latest list of Evaluators. The module list includes their names, a description
of their function, and links to the locations where containers are stored. Zenodo provides an
ideal location for housing Evaluator and Predictor containers because it is durable and has
the additional benefit of scanning uploads for viruses to ensure the safety of containers for
users to pull37,38.

Automated and externalized cell type, molecule, and species matching
GAME includes a module called “Matcher” that automatically maps the Evaluator’s
requested species, measured molecule, and cell type with what a Predictor can provide. The
Matcher is designed to perform this task by interpreting the relationship between terms
through lexical, syntactic, and sematic matching. Lexical matching handles cases of direct
string correspondence, such as finding the exact token ‘A549’ within a more descriptive
choice like ‘lung adenocarcinoma cell line: A549’. Syntactic matching addresses structural
variations and common abbreviations, such as ‘hek-293’ or ‘SKNSH’ to ‘HEK293’ or ‘SK-N-
SH', respectively. Semantic matching uses biological knowledge to connect different terms
that refer to the same entity, such as mapping the description ‘chronic myelogenous
leukemia cell line’ to a canonical cell line name, ‘K562’.

The matcher uses a local large language model – Gemma 3, which is a collection of very
lightweight and efficient models that can run effectively on a single GPU or TPU17. Running
Gemma 3 locally means that the model operates directly on the hardware of the system it is
deployed in, ensuring data privacy, reducing reliance on external cloud APIs, and lowering
operational costs, which are crucial for sensitive or high-throughput workflows.

The Matcher module utilizes Ollama to run and manage Gemma 3 locally39. Ollama is an
open-source platform that simplifies hosting large-language models (LLMs) on local
hardware by packaging models and providing tools for their management. Ollama helps
abstract away many underlying complexities of model backends using inference engines and
can automatically leverage available GPU resources for accelerated performance. This ease
of setup and serving is key to the containerized and reproducible design of the Matcher
module40,41. Additionally, the availability of an official Docker image for Ollama further
streamlines the creation of portable and reproducible runtime environments. When a model
is run, Ollama exposes a local API endpoint (on port 11434). This allows applications, like
the Predictors in GAME, to send requests to the LLM and receive responses.

To enable the Matcher module Python environment to interact with the Gemma 3 model, the
LangChain framework is utilized42. LangChain is an open-source library designed for

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 11

developing applications that incorporate LLMs42,43. It provides a collection of tools that assist
in managing prompts, interacting with LLM APIs (including local instances like those served
by Ollama), and constructing more extensive LLM driven pipelines. Within the Matcher
module, the langchain-ollama package provides specific client classes, like
OllamaLLM, which facilitate communications with the local Ollama API. This integration
enables the Matcher to send structured input queries – comprising the fuzzy input term
(Evaluator request) and the list of choices (what the Predictor can provide predictions on) –
to the Gemma 3 model through the Ollama server and then to receive the best identified
match. To create structured queries consistently, the ChatPrompTemplate class is
employed from LangChain, which supports the goal of reproducible matching. By automating
this process, we reduce potential biases due to memorization of cell-type relationships. This
also circumvents the process of manual selection or literature review to select closest cell
types. Matcher can also be used to align species or tasks (e.g. ‘NF-kB’ to ‘NFKB1’).

A key challenge in this process is that a Predictor may have hundreds of available choices, a
list too long to fit within the context window of the LLM44,45. To overcome this, the Matcher
implements a chunking strategy. The complete list of choices is first divided into smaller,
manageable chunks. The LLM then performs a ‘tournament-style’ elimination, finding the
best possible match, the ‘champion’, within each individual chunk. Finally, a championship
round is held where the LLM evaluates only the list of champions to determine the single
best overall match. This method makes the matching process scalable to arbitrarily long lists
of choices.

Data and Code availability
API specifications, code and additional documentation can be found on GitHub
(https://github.com/de-Boer-Lab/Genomic-API-for-Model-Evaluation/tree/main). List of
current Modules can be found here: https://github.com/de-Boer-Lab/GAME_modules

Acknowledgements
We would like to thank J. Gagneur, T. Mauermeier, J. Shendure, C. Qiu, D. Calderon, A.
Gao, P. Fradkin, B.J Frey, G. Eraslan, L. Gunsalus, S. Nair, D. Kelley, R. Das, S. Kundu, I.
Raine, V. Hecht, A. Kundaje, Z. Avsec, J. Engreitz, A. Gschwind, M. Montgomery, M.
Weilert, C. McAnany for helpful feedback and discussion during the API design and
implementation process. We would also like to thank M. Krzywinski for design help with
Figure 1. M.A.W was supported by National Institutes of Health (USA) R01GM121755. J.Z,
S.D and A.F were supported by Additional Ventures, Keck Foundation, Biswas Family
Foundation, Gladstone Institutes. J.Z was supported by Cancer Prevention and Research
Institute of Texas grant RR190071 and National Institutes of Health (NIH) grants
DP2GM146336.

Author Contributions
I.L and C.G.D conceived and designed GAME. I.L and S.P set up GAME code base and
documentation. R.G set up codebase for Orca Evaluator and Predictor. L.M and N.K
contributed DeepBICCN2 Predictor. M.M provided data for variant effects Evaluator. I.L, S.P,
and C.G.D wrote the paper. K.P, H.C, A.K, J.Z, L.P, M.A.W, A.L, I.K, I.K, D.P, and K.P
provided feedback on the manuscript. D.D and W.H provided feedback for Matcher and

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 12

helped create early implementations of the Matcher module. All other authors were involved
in either the design process for the API specifications, feedback and/or testing API tutorials
and setup.

Competing Interests
V.A. is an employee of Sanofi. A.L. is an employee of Genentech, inc. The remaining
authors declare no competing interests.

References
1. Guerrini, M. M., Oguchi, A., Suzuki, A. & Murakawa, Y. Cap analysis of gene expression

(CAGE) and noncoding regulatory elements. Semin Immunopathol 44, 127–136 (2022).
2. Tang, Z., Toneyan, S. & Koo, P. K. Current approaches to genomic deep learning

struggle to fully capture human genetic variation. Nat Genet 55, 2021–2022 (2023).
3. Sasse, A. et al. Benchmarking of deep neural networks for predicting personal gene

expression from DNA sequence highlights shortcomings. Nat Genet 55, 2060–2064
(2023).

4. Huang, C. et al. Personal transcriptome variation is poorly explained by current genomic
deep learning models. Nat Genet 55, 2056–2059 (2023).

5. robson, eyes s. & Ioannidis, N. M. GUANinE v1.0: Benchmark Datasets for Genomic AI
Sequence-to-Function Models. bioRxiv 2023.10.12.562113 (2024)
doi:10.1101/2023.10.12.562113.

6. Karollus, A., Mauermeier, T. & Gagneur, J. Current sequence-based models capture
gene expression determinants in promoters but mostly ignore distal enhancers. Genome
Biology 24, 56 (2023).

7. Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. & Moult, J. Critical Assessment of
Methods of Protein Structure Prediction (CASP) – Round XIII. Proteins 87, 1011–1020
(2019).

8. Krizhevsky, A. & Hinton, Geoffrey. Learning Multiple Layers of Features from Tiny
Images. (2009).

9. Grešová, K., Martinek, V., Čechák, D., Šimeček, P. & Alexiou, P. Genomic benchmarks:
a collection of datasets for genomic sequence classification. BMC Genom Data 24, 25
(2023).

10. Stolovitzky, G., Prill, R. J. & Califano, A. Lessons from the DREAM2 Challenges. Annals
of the New York Academy of Sciences 1158, 159–195 (2009).

11. Stolovitzky, G., Monroe, D. & Califano, A. Dialogue on Reverse-Engineering Assessment
and Methods. Annals of the New York Academy of Sciences 1115, 1–22 (2007).

12. Kaggle Competitions. https://www.kaggle.com/competitions.
13. Bloch, J. How to design a good API and why it matters. in Companion to the 21st ACM

SIGPLAN symposium on Object-oriented programming systems, languages, and
applications 506–507 (Association for Computing Machinery, New York, NY, USA,
2006). doi:10.1145/1176617.1176622.

14. Lamothe, M., Guéhéneuc, Y.-G. & Shang, W. A Systematic Review of API Evolution
Literature. ACM Comput. Surv. 54, 171:1-171:36 (2021).

15. Avsec, Ž. et al. The Kipoi repository accelerates community exchange and reuse of
predictive models for genomics. Nat Biotechnol 37, 592–600 (2019).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 13

16. Stergachis, A. B., Debo, B. M., Haugen, E., Churchman, L. S. & Stamatoyannopoulos, J.
A. Single-molecule regulatory architectures captured by chromatin fiber sequencing.
Science 368, 1449–1454 (2020).

17. Team, G. et al. Gemma 3 Technical Report. Preprint at
https://doi.org/10.48550/arXiv.2503.19786 (2025).

18. Pasupuleti, R., Vadapalli, R., Mader, C. & Milenkovic, V. J. Apptainer-Based Containers
for Legacy and Platform Dependent Machine Learning Applications on HPC Systems. in
2024 IEEE International Conference on Big Data (BigData) 6083–6091 (2024).
doi:10.1109/BigData62323.2024.10825376.

19. Agarwal, V. et al. Massively parallel characterization of transcriptional regulatory
elements. Nature 639, 411–420 (2025).

20. Gosai, S. J. et al. Machine-guided design of cell-type-targeting cis-regulatory elements.
Nature 634, 1211–1220 (2024).

21. Martyn, G. E. et al. Rewriting regulatory DNA to dissect and reprogram gene expression.
Cell 188, 3349-3366.e23 (2025).

22. Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-
range interactions. Nat Methods 18, 1196–1203 (2021).

23. Linder, J., Srivastava, D., Yuan, H., Agarwal, V. & Kelley, D. R. Predicting RNA-seq
coverage from DNA sequence as a unifying model of gene regulation.
2023.08.30.555582 Preprint at https://doi.org/10.1101/2023.08.30.555582 (2023).

24. Rafi, A. M. et al. A community effort to optimize sequence-based deep learning models
of gene regulation. Nat Biotechnol 1–11 (2024) doi:10.1038/s41587-024-02414-w.

25. Zhou, J. Sequence-based modeling of three-dimensional genome architecture from
kilobase to chromosome scale. Nat Genet 54, 725–734 (2022).

26. Kempynck, N. et al. CREsted: modeling genomic and synthetic cell type-specific
enhancers across tissues and species. 2025.04.02.646812 Preprint at
https://doi.org/10.1101/2025.04.02.646812 (2025).

27. Sinha, A. Client-server computing. Commun. ACM 35, 77–98 (1992).
28. Zou, J. et al. A primer on deep learning in genomics. Nat Genet 51, 12–18 (2019).
29. Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular

biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).
30. Hassan, G. M., Hussien, N. M. & Mohialden, Y. M. Python TCP/IP libraries: A Review.

International Journal Papier Advance and Scientific Review 4, 10–15 (2023).
31. Xue, M. & Zhu, C. The Socket Programming and Software Design for Communication

Based on Client/Server. in 2009 Pacific-Asia Conference on Circuits, Communications
and Systems 775–777 (2009). doi:10.1109/PACCS.2009.89.

32. Lv, T., Yan, P. & He, W. On Massive JSON Data Model and Schema. J. Phys.: Conf.
Ser. 1302, 022031 (2019).

33. Pezoa, F., Reutter, J. L., Suarez, F., Ugarte, M. & Vrgoč, D. Foundations of JSON
Schema. in Proceedings of the 25th International Conference on World Wide Web 263–
273 (International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, CHE, 2016). doi:10.1145/2872427.2883029.

34. MessagePack: It’s like JSON. but fast and small. https://msgpack.org/.
35. Viotti, J. C. & Kinderkhedia, M. A Survey of JSON-compatible Binary Serialization

Specifications. Preprint at https://doi.org/10.48550/arXiv.2201.02089 (2022).
36. Python JSON: Read, Write, Parse JSON (With Examples).

https://www.programiz.com/python-programming/json.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

 14

37. Sicilia, M.-A., García-Barriocanal, E. & Sánchez-Alonso, S. Community Curation in Open
Dataset Repositories: Insights from Zenodo. Procedia Computer Science 106, 54–60
(2017).

38. Peters, I., Kraker, P., Lex, E., Gumpenberger, C. & Gorraiz, J. I. Zenodo in the Spotlight
of Traditional and New Metrics. Front. Res. Metr. Anal. 2, (2017).

39. Ollama. https://ollama.com.
40. ollama/ollama. Ollama (2025).
41. Marcondes, F. S. et al. Using Ollama. in Natural Language Analytics with Generative

Large-Language Models: A Practical Approach with Ollama and Open-Source LLMs
(eds. Marcondes, F. S. et al.) 23–35 (Springer Nature Switzerland, Cham, 2025).
doi:10.1007/978-3-031-76631-2_3.

42. Chase, H. LangChain. (2022).
43. Topsakal, O. & Akinci, T. C. Creating Large Language Model Applications Utilizing

LangChain: A Primer on Developing LLM Apps Fast. ICAENS 1, 1050–1056 (2023).
44. Liu, N. F. et al. Lost in the Middle: How Language Models Use Long Contexts. Preprint

at https://doi.org/10.48550/arXiv.2307.03172 (2023).
45. What is a context window? | IBM. https://www.ibm.com/think/topics/context-window

(2024).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 8, 2025. ; https://doi.org/10.1101/2025.07.04.663250doi: bioRxiv preprint

https://doi.org/10.1101/2025.07.04.663250
http://creativecommons.org/licenses/by/4.0/

