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Abstract 

The rapid expansion of genomics datasets and the application of machine learning has 
produced sequence-to-activity genomics models with ever-expanding capabilities. However, 
benchmarking these models on practical applications has been challenging because 
individual projects evaluate their models in ad hoc ways, and there is substantial 
heterogeneity of both model architectures and benchmarking tasks. To address this 
challenge, we have created GAME, a system for large-scale, community-led standardized 
model benchmarking on user-defined evaluation tasks. We borrow concepts from the 
Application Programming Interface (API) paradigm to allow for seamless communication 
between pre-trained models and benchmarking tasks, ensuring consistent evaluation 
protocols. Because all models and benchmarks are inherently compatible in this framework, 
the continual addition of new models and new benchmarks is easy. We also developed a 
Matcher module powered by a large language model (LLM) to automate ambiguous task 
alignment between benchmarks and models. Containerization of these modules enhances 
reproducibility and facilitates the deployment of models and benchmarks across computing 
platforms. By focusing on predicting underlying biochemical phenomena (e.g. gene 
expression, open chromatin, DNA binding), we ensure that tasks remain technology-
independent. We provide examples of benchmarks and models implementing this 
framework, and anticipate that the community will contribute their own, leading to an ever-
expanding and evolving set of models and evaluation tasks. This resource will accelerate 
genomics research by illuminating the best models for a given task, motivating novel 
functional genomic benchmarks, and providing a more nuanced understanding of model 
abilities. 

Main 
 

While sequence-based genomics models are widely used in the field, their progress has 
proven difficult to benchmark due to substantial heterogeneity in model architectures, 
training datasets, and ad hoc model evaluations. Presently, model evaluations are siloed 
within publications, resulting in duplicated efforts; simultaneous differences in model 
architectures, training data, and evaluation tasks often obscure where any innovation lies. In 
general, functional genomics assays measure the genome’s biochemical activity indirectly. 
Consequently, some performance gains are likely attributable to the models capturing assay-
specific biases better, rather than capturing the underlying biological phenomenon. Further, 
it is commonplace to use genomics models to predict activities that are related to but distinct 
from the tasks they were designed to predict (e.g. using CAGE predictions for mRNA 
expression even though they capture different RNA subsets)1. Finally, even if a benchmark 
is superficially the same, there are often many choices (degrees of freedom) in 
implementation that may impact the performance measure. Consequently, the overall 
performance of a new genomics model compared to its predecessors and contemporaries 
often remains opaque. Recent work showed that proper and consistent benchmarking can 
reveal model limitations2–6. For instance, Sasse et al (2023) showed that, while models are 
able to predict the magnitude of variant effects, they struggle with predicting the direction of 
the change in expression3. As the number of potential benchmarking datasets continues to 
grow, facilitating their uniform application across models becomes increasingly important. 
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In other fields, there are well-established, high-quality datasets that can be used to 
benchmark progress because it is generally agreed that they capture the task well. For 
instance, Critical Assessment of Structure Prediction (CASP)7 is used to benchmark protein 
folding models, while the CIFAR datasets are standard benchmarks for image classification8. 
Similarly, there have been efforts to curate diverse sequence datasets into a standard format 
to facilitate model training and evaluation5,9. While challenges and competitions like 
DREAM10,11 and Kaggle12 are excellent at determining the optimal model design choices for 
specific datasets, they are, by their nature, restricted to specific tasks. However, there are 
many distinct but intertwined activities encoded by the genome (e.g. RNA expression, open 
chromatin, transcription factor binding, histone marks, 3D conformation) that differ across 
species, cell types, and conditions, making it necessary for sequence-based genomics 
models to be benchmarked on tasks that match the model’s scope and purpose. Further, 
users may want to identify the best model for their specific task of interest.    

To enable systematic benchmarks of various models by various evaluation tasks, we created 
GAME (Genomics API for Model Evaluation), a framework for large-scale community-led 
standardized model benchmarking. GAME is designed to be flexible and user-friendly, where 
new and existing models can be systematically and uniformly queried with an ever-
expanding variety of tasks. To facilitate this uniform benchmarking of models across tasks, 
we leveraged the standardized communication protocols used by APIs13,14. APIs enable 
diverse client programs to interact with server programs, each without knowing any of the 
details of the other’s implementation, facilitated by the common language defined by the API 
protocol. While Avsec et al. (2019) created a repository, Kipoi, for genomics-based ML 
models and also used APIs to access them, it did not include benchmark modules, and it 
required the user to have intimate knowledge about exactly what each model was predicting, 
making scalable, uniform model benchmarking a substantial challenge15. GAME allows for 
seamless communication between pre-trained models and functional genomics datasets on 
which those models can be benchmarked. GAME was designed with extensive community 
feedback throughout its development, resulting in API specifications that meet the needs of 
model and dataset experts. 

To maximize GAME’s utility and adaptability, we established several forward-looking design 
principles that emphasize creating benchmarks that are as objective and biology-focused as 
possible. Firstly, we focused on the biological signals of interest, not the assay used to 
quantify them. Accordingly, assay types are not provided to the models, which could use this 
information to improve performance but in biologically meaningless ways (e.g. adding assay-
specific biases). For example, DNase I-seq and ATAC-seq both measure chromatin 
accessibility in different ways and have different biases. While predicting the assay-specific 
biases would increase performance, it provides no insight into the underlying biology. This 
has the secondary benefit of being robust to the development of new assays, which are 
likely to measure the same underlying biological phenomena in different ways. For instance, 
the recently-developed Fiber-seq also measures chromatin accessibility, but the nature of 
the data and biases differ substantially from DNase I-seq and ATAC-seq16. Accordingly, we 
restrict the predictions to DNA binding (which can be for TFs, methylation, or histone marks), 
chromatin accessibility, 3D-chromatin conformation, and expression (mRNA, Pol I, Pol II, Pol 
III). Secondly, we aimed to provide the utmost separation between the prediction and 
evaluation of these models by providing models only as much information as needed to 
perform their tasks and no more to prevent overfitting to the benchmarks. For instance, 
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predicting a specific biological replicate could increase performance (e.g. if the model saw 
the replicate during training), but would be misleading because it would not generalize to the 
samples we actually care about. Thirdly, we aimed to make this framework sustainable in the 
long term by distributing responsibilities to those making models and benchmark datasets, 
and having minimal centralized maintenance. New models/datasets need only to implement 
the API to seamlessly communicate with all others that already exist in the framework. While 
this adds some initial overhead, the existing models and benchmarks in GAME will mean 
that implementing the GAME API will become the most efficient way to complete 
evaluations.   

In GAME, models are encapsulated in Predictors and benchmarks are encapsulated in 
Evaluators, which communicate via the API protocol. The Evaluator module is a software 
client that is responsible for evaluating models on a specific benchmark, while the Predictor 
module is a server that listens for incoming requests and responds with the model’s 
predictions for the requested tasks. We also have included a Matcher module which uses 
standardized queries to a local LLM17. Matcher is responsible for mapping requested tasks 
with tasks the model knows how to do (e.g. species, cell types, and molecules). For 
example, the Matcher must map the cell types requested by the Evaluator to the closest 
matched cell types that the Predictor is able to predict. The Matcher is implemented as 
another server for which the Predictor serves as the client. A GAME evaluation occurs in 7 
steps (Fig. 1). (1) The Evaluator requests predictions from a Predictor. (2) The Predictor 
parses the request and, if needed, consults the Matcher to determine how it can best serve 
up the tasks requested. (3) The Matcher finds the mapping between the requested tasks and 
tasks the predictor can do. (4) The Matcher sends this information back to the Predictor. (5) 
The Predictor processes the request, by sending it to the model and reformatting the model’s 
predictions in the required standard format. (6) The predictions are returned to the Evaluator. 
(7) Finally, the Evaluator calculates the model’s performance. The Evaluator builders are 
responsible for determining what information the Predictors require for their predictions and 
what the best evaluation metrics are for their benchmarks. The Predictor builders are 
responsible for taking a request for predictions on a set of DNA sequences and determining 
how it can best fulfill the request, given what the model can predict (or decline to predict if it 
cannot do so). The Evaluators, Predictors, and Matcher are containerized using Apptainer to 
facilitate sustainable model evaluation across computing environments, improving our ability 
to compare models18. Inside the containers, the modules can be written in any language. 
However, to facilitate the adoption of this approach, we provide examples and templates for 
functions implemented in Python with seamless GPU support that users can modify to fit 
their needs.  

Including a separate Matcher module provides several advantages. The cell types requested 
by the Evaluator are likely imperfect matches to the cell types the Predictor can predict (e.g. 
cardiomyocyte vs. heart or HEK293FT vs. HEK293). Similarly, the Predictor may not include 
the requested species and so would need to know which of the species it includes is closest. 
The Matcher resolves such discrepancies by automating the alignment of tasks. This 
ensures that performance measures are not influenced by the Predictor builder’s 
understanding of cellular, molecular, or species relationships. Further, as our understanding 
of species and cell types evolves, the Matcher module can be upgraded while remaining 
compatible with existing GAME modules. 
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Figure 1: GAME framework. GAME includes three modules: The Evaluator, containing a benchmark 
dataset; the Predictor, encompassing a sequence-to-activity model; and the Matcher, capturing 
relationships between tasks. All GAME modules are inherently interoperable by communicating in the 
GAME API protocol over TCP. For each benchmark, the Evaluator requests a prediction from the 
Predictor, which consults the Matcher to determine the closest task the Predictor can complete. Once 
the Matcher returns the best match, the Predictor will complete its prediction and return it to the 
Evaluator, which will evaluate performance. Members of the genomics community will contribute 
modules to enable continual evaluation of more models across more benchmarks. 

We applied GAME to several models and two representative benchmarking tasks – gene 
expression and chromatin confirmation (Fig. 2). For gene expression, we implemented three 
Evaluators, two using MPRA datasets (both genomic and synthetic)19,20, and one of 
measured effects of synthetic variants21, each of which can output distinct evaluation 
metrics. For example, the Agarwal et al. MPRA Evaluator evaluates models on their ability to 
predict gene expression separately for each cell type, and also on how well models predict 
cell type-specific differences in expression (Fig. 2a)19. The Gosai et al. MPRA Evaluator data 
includes synthetic (non-genomics) MPRA probes, and so is an ideal benchmark for genome-
trained models. Similarly, the Martyn data represents the expression effects of synthetic 
genetic variation introduced by genome editing, and so is a good task benchmarking models 
on variant effects with minimal risk of train-test leakage. We created Predictors for Borzoi, 
Enformer, and DREAM-RNN, and evaluated each on each expression Evaluator (Fig. 2a). 
Borzoi and Enformer are both large sequence window genome-trained state-of-the-art 
sequence-to-function models and have been used in numerous benchmarking papers22,23. 
The DREAM-RNN Predictor is a state-of-the-art short-sequence sequence-to-function 
model24, in this case trained on Agarwal K562 MPRA data19. As a more complex example 
we also created a 3D chromatin confirmation (Fig. 2b) Evaluator and Predictor based on 
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Orca25. Finally, we developed Consistency Evaluators that can be used to assess models 
that predict DNA accessibility, confirming correlated predictions between forward and 
reverse complement sequences (Fig 3b) for Borzoi, Enformer, and the recently-described 
ATAC-seq model DeepBICCN226  

Figure 2: Sample benchmarking done with GAME. a, Expression evaluation tasks. Models (x axis) 
were evaluated for their correlation to measured expression levels (colours) across a variety of tasks 
(y axis). b, Chromatin conformation tasks. Correlation of Orca predictions vs measured chromatin 
contact frequencies (colours) for two Orca test-set chromosomes and one validation-set chromosome 
(y axis). c, Consistency evaluation for accessibility. Point and track based accessibility consistency 
evaluators (y axis) were used to evaluate the correlation between predictions for forward and reverse 
complement sequences (colours) in models of DNA accessibility (x axis). *Correlation values from 
down sampled datasets. Grey cells mark values that were not calculated due models that could not 
complete the Evaluator’s requested task. 

GAME offers many advantages that will streamline benchmarking and model use more 
generally. The common protocol enables any model to communicate with any benchmark 
(although not all combinations may make sense), ensuring that when one creates a new 
GAME module, it is immediately compatible with all the existing modules. Existing Predictors 
and Evaluators remain frozen so that future benchmarks done with them are identical; future 
evaluations of models on these benchmarks will be directly comparable to the results shown 
in Fig. 2. The anonymity of API requests means that all models will be evaluated equally. 
The modules communicate via TCP/IP sockets and so can be run locally or remotely, 
potentially preserving privacy, for example, in cases where models have proprietary weights. 
Because GAME is decentralized and community-driven, it will be much more scalable and 
easily maintained. Contributors can easily add their own benchmarks and models, and can 
maintain them as long as they remain relevant. We have already implemented 5 models and 
6 benchmarks in GAME.  

As GAME gains momentum, the fastest and easiest way of performing a new benchmark will 
be to implement GAME, further incentivizing this community effort. We anticipate that GAME 
will drive genomics progress in several ways. GAME allows one to easily compare all 
models across all benchmarks, which will reveal model limitations and low-quality 
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benchmarks. For instance, a model that was overfitted to a current benchmark would be 
revealed as it fails to generalize to the benchmarks that arise after its release. Such a 
framework also facilitates continual evaluation of state-of-the-art models on a diverse set of 
tasks, enabling researchers to quickly identify the models that are most well-suited to their 
specific tasks. For instance, if one is interested in predicting the effects of genetic variants in 
heart, one can find the closest benchmark to determine which model is best for the task. To 
showcase GAME in a reasonable time frame with reduced computational costs, we down-
sampled certain Evaluator datasets (Fig. 2). However, Evaluators and Predictors can split up 
the dataset, enabling parallelization and better utilization of available resources. While we 
anticipate that Matcher will be useful outside of GAME, determining the best way to match 
tasks turned out to be a substantial challenge. Nevertheless, the Matcher can be continually 
improved due to its modular nature. Finally, having all models share a common language 
means that other software can use GAME to facilitate model reuse and swapping between 
models more easily. Its modular design will keep GAME in play, evolving alongside the ever-
changing field of genomics. 

Methods 

Information passing 
The client and server code of an API can be written in any programming language27. 
However, due to the prevalence of Python programming in genomics and model 
development28,29, the GAME API and corresponding error-checking functions are written in 
Python. Python sockets can connect servers to clients to communicate with each other over 
local or remote networks30. Python sockets use Transmission Control Protocol (TCP), which 
provides benefits such as detecting lost information when sending information over a 
network and controlling the order of data when transmitted31.  

The Predictor server will bind to a user-specified “HOST,” an IP address or hostname, and 
“PORT,” a TCP port. Once the server binds, it will wait and listen for incoming connections. 
The Evaluator client must connect to the same HOST and PORT pair to send a request to 
the server. The data that is transmitted via the TCP socket must be converted to bytes 
before it is sent. The Evaluator and Predictor can both be on a local computer, HPC 
platform, or even in remote configurations, ensuring flexibility in how they communicate. This 
capability is also beneficial for Predictor developers working with proprietary or closed-
source models, allowing them to integrate their work into the GAME framework. Those 
models can be embedded into the Predictor codebase and hosted as a server on their own 
network, maintaining full control and privacy over their model weights. 

Communication protocol 
In GAME, the communication protocol distinguishes between the initial format of user-
provided data and the standardized formats used for data streaming between GAME 
modules. While users can store benchmark data in various initial file formats (e.g. .json, 
.npy, .txt, .xlsx), these inputs must first be converted to the correct format before 
transmission. Most typically, this is implemented as a helper function that converts the input 
file into JavaScript Object Notation (JSON)-like dictionary structure. It is essential that this 
structure adheres to the predefined JSON schema of GAME to ensure data compatibility and 
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proper interpretation by subsequent modules. Data in the JSON object is stored as key: 
value pairs32. 

Once the data is in this standardized dictionary representation, it is ready for transmission. 
By default, GAME utilizes JSON for this inter-module data exchange, due to its popularity, 
speed in generation and parsing, and support via Python’s standard library33. We also allow 
information to be transmitted using MessagePack (MsgPack), a binary serialization format, 
which helps increase speed when returning large arrays of predictions34,35, provided both the 
Evaluator and Predictor modules are configured to handle it. The Evaluator, therefore, 
serializes the prepared dictionary structure into either a JSON or a MsgPack stream before 
sending the required information to the Predictor. If the task requested is not an exact match 
to one of the Predictor’s model outputs, the Matcher module can be utilized to align the 
requested cell types, species, and molecules with those supported by the Predictor. Once 
the prediction is complete, the predictions are reformatted to the negotiated return format 
and returned to the Evaluator. JSON and MSGPACK files are easily loaded into Python and 
accessed as dictionaries, making them straightforward to work with36. For implementation 
guidance, sample files and code can be found on GitHub.  

Module responsibilities 
The Evaluator and Predictor modules are designed to have specific responsibilities that 
follow the core principles of the API, such as minimizing information sent to a Predictor, 
allowing dataset creators the power to evaluate the tasks they are interested in, and allowing 
model builders the freedom to parse sequences to comply with model specifications as they 
see fit. The main responsibilities of Evaluators are to choose what predictions they would like 
to obtain from the Predictor and what information the Predictor needs to fulfil that request, 
including: whether the Predictor should return points (a single value) or tracks (values across 
a sequence), whether there are constant flanking sequences that could provide relevant 
context (e.g. the vector backbone of an MPRA vector), where in the sequence window the 
predictions should be provided (e.g. the location of a promoter), how to use the expression 
predictions based on sense or antisense strand. This information is encoded in the request 
that is sent to the Predictor. Predictors, conversely, are responsible for parsing the 
sequences to meet model input size requirements (pad, trim, or add other flanks to the 
sequences), aggregate across tracks (e.g. replicates of an experiment) or bins (e.g. if the 
prediction window overlaps multiple bins), deciding which cell type/species/molecule to use 
(with help from the Matcher, if desired), and returning the predictions in the standard format. 
Once the predictions are returned, it is the Evaluator’s responsibility to calculate the 
appropriate metrics for each benchmarking task and output these results to a file, using a 
standard reporting format. Additional details of the API specification and examples are 
available on GitHub. 

Containerization  
Containers provide a secure and robust way to run code across any platform, removing 
troublesome dependency issues. Since most ML models are trained and evaluated on high-
performance computing (HPC) platforms, we used Apptainer for GAME module containers. 
Unlike Docker, Apptainer is specifically designed for HPC environments and does not 
require root access, a critical advantage since most HPC systems restrict root privileges for 
security reasons18. By containerizing each Evaluator and Predictor, the code within each 
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container is isolated, enabling each to use its own version of any language without issue. 
Additionally, in contrast to Docker, Apptainer containers have no network isolation, meaning 
that they can communicate with each other using IP addresses and ports without having to 
create a network for them to communicate over.  

Maintenance and Community Contributions 
The long-term maintenance of this framework is designed to be simple and scalable. We 
have made community-maintainable lists of GAME modules available on GitHub, which then 
needs only to be updated with the locations of new modules. For instance, someone could 
create a new model, package it into a Predictor, and then issue a pull request to update the 
list of Predictors with their own. Subsequently, users can pull the latest lists of Predictors and 
test them on the latest list of Evaluators. The module list includes their names, a description 
of their function, and links to the locations where containers are stored. Zenodo provides an 
ideal location for housing Evaluator and Predictor containers because it is durable and has 
the additional benefit of scanning uploads for viruses to ensure the safety of containers for 
users to pull37,38.  

Automated and externalized cell type, molecule, and species matching  
GAME includes a module called “Matcher” that automatically maps the Evaluator’s 
requested species, measured molecule, and cell type with what a Predictor can provide. The 
Matcher is designed to perform this task by interpreting the relationship between terms 
through lexical, syntactic, and sematic matching. Lexical matching handles cases of direct 
string correspondence, such as finding the exact token ‘A549’ within a more descriptive 
choice like ‘lung adenocarcinoma cell line: A549’. Syntactic matching addresses structural 
variations and common abbreviations, such as ‘hek-293’ or ‘SKNSH’ to ‘HEK293’ or ‘SK-N-
SH', respectively. Semantic matching uses biological knowledge to connect different terms 
that refer to the same entity, such as mapping the description ‘chronic myelogenous 
leukemia cell line’ to a canonical cell line name, ‘K562’. 

The matcher uses a local large language model – Gemma 3, which is a collection of very 
lightweight and efficient models that can run effectively on a single GPU or TPU17. Running 
Gemma 3 locally means that the model operates directly on the hardware of the system it is 
deployed in, ensuring data privacy, reducing reliance on external cloud APIs, and lowering 
operational costs, which are crucial for sensitive or high-throughput workflows. 

The Matcher module utilizes Ollama to run and manage Gemma 3 locally39. Ollama is an 
open-source platform that simplifies hosting large-language models (LLMs) on local 
hardware by packaging models and providing tools for their management. Ollama helps 
abstract away many underlying complexities of model backends using inference engines and 
can automatically leverage available GPU resources for accelerated performance. This ease 
of setup and serving is key to the containerized and reproducible design of the Matcher 
module40,41. Additionally, the availability of an official Docker image for Ollama further 
streamlines the creation of portable and reproducible runtime environments. When a model 
is run, Ollama exposes a local API endpoint (on port 11434). This allows applications, like 
the Predictors in GAME, to send requests to the LLM and receive responses. 

To enable the Matcher module Python environment to interact with the Gemma 3 model, the 
LangChain framework is utilized42. LangChain is an open-source library designed for 
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developing applications that incorporate LLMs42,43. It provides a collection of tools that assist 
in managing prompts, interacting with LLM APIs (including local instances like those served 
by Ollama), and constructing more extensive LLM driven pipelines. Within the Matcher 
module, the langchain-ollama package provides specific client classes, like 
OllamaLLM, which facilitate communications with the local Ollama API. This integration 
enables the Matcher to send structured input queries – comprising the fuzzy input term 
(Evaluator request) and the list of choices (what the Predictor can provide predictions on) – 
to the Gemma 3 model through the Ollama server and then to receive the best identified 
match. To create structured queries consistently, the ChatPrompTemplate class is 
employed from LangChain, which supports the goal of reproducible matching. By automating 
this process, we reduce potential biases due to memorization of cell-type relationships. This 
also circumvents the process of manual selection or literature review to select closest cell 
types. Matcher can also be used to align species or tasks (e.g. ‘NF-kB’ to ‘NFKB1’). 

A key challenge in this process is that a Predictor may have hundreds of available choices, a 
list too long to fit within the context window of the LLM44,45. To overcome this, the Matcher 
implements a chunking strategy. The complete list of choices is first divided into smaller, 
manageable chunks. The LLM then performs a ‘tournament-style’ elimination, finding the 
best possible match, the ‘champion’, within each individual chunk. Finally, a championship 
round is held where the LLM evaluates only the list of champions to determine the single 
best overall match. This method makes the matching process scalable to arbitrarily long lists 
of choices. 

Data and Code availability  
API specifications, code and additional documentation can be found on GitHub 
(https://github.com/de-Boer-Lab/Genomic-API-for-Model-Evaluation/tree/main). List of 
current Modules can be found here: https://github.com/de-Boer-Lab/GAME_modules 
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