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Abstract 

Variant annotation is a crucial objective in mammalian functional genomics. Deep mutational scanning (DMS) using saturation libraries of com- 
plementary DNAs (cDNAs) is a well-established method for annotating human gene variants, but CRISPR base editing (BE) is emerging as 
an alternativ e. Ho w e v er, questions remain about ho w w ell high-throughput BE measurements can annotate v ariant function and the e xtent of 
do wnstream e xperimental v alidation required. T his study is the first direct comparison of cDNA DMS and BE in the same lab and cell line. We 
focus on how well short guide RNA (sgRNA) depletion or enrichment is explained by the predicted edits within the editing “window” defined by 
the sgRNA. The most likely predicted edits enhance the agreement between a “gold standard” DMS dataset and a BE screen. A simple filter 
for sgRNAs making single edits in their window could sufficiently annotate a large proportion of variants directly from sgRNA sequencing of 
large pools. When multi-edit guides are una v oidable, directly measuring edits in medium-sized validation pools can recover high-quality variant 
annot ation dat a. Our dat a show a surprisingly high degree of correlation between base editor data and gold standard DMS. We suggest that the 
main variable measured in base editor screens is the desired base edits. 
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 major goal of mammalian functional genomics is to un-
erstand the genotype-phenotype relationship [ 1 ]. However,
chieving this lofty goal requires large-scale experiments that
an, in parallel, examine both genotypes and phenotypes in
ooled assays. While gene-level loss-of-function screens in
ammalian cells rose to prominence with the invention of
NAi-based screening tools [ 2–4 ] in the early 2000s, and
ventually CRISPR / CRISPRi [ 5–8 ] in 2012–2013, the high
hroughput annotation of individual coding variants in mam-
alian cell lines is a more recent innovation [ 9 , 10 ]. 
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lines and are easy to synthesize externally, but the artificial
expression context is a source of concern. BE is becoming a
remarkably efficient way to edit variants in the endogenous ge-
nomic context [ 19 , 20 ], libraries of sgRNAs are easy to clone
[ 21 ], and moving between cell lines is well demonstrated [ 22 ],
but it suffers from a limited mutational repertoire and the ex-
perimental complexity of potentially making multiple muta-
tions in a single editing window. Prime editing is becoming
much more efficient [ 23 ], but it still requires MLH1 deficiency
[ 24 , 25 ] and requires pre-identification of strong epegRNA se-
quences for highest efficiency [ 23 , 26 ]. Thus, at present, the
two methods that are demonstrated to be the most usable
across many wild type (WT) mammalian cell lines are cDNA
libraries and base editor libraries. As mammalian geneticists
and cell biologists work in over 1000 different cell lines, we
focused this paper on the most portable technologies that have
been shown by others to allow for the measurement of vari-
ant function in many different cell lines with little cell-type-
specific modifications. Because of this, we have chosen to com-
pare BE to cDNA-based deep mutational scanning (DMS). 

DMS is a leading technology in the field of high-throughput
variant annotation [ 9 , 10 ]. DMS libraries can involve heterol-
ogous expression of large cDNA libraries of single amino acid
mutations that encompass all 20 possible amino acids at ev-
ery position. When performed in mammalian cell lines, these
libraries are introduced via a transduction [ 27–29 ] or into a
safe harbor “landing pad” [ 16–18 ]. While DMS is capable of
providing comprehensive measurements of variant effects [ 10 ,
30 , 31 ], DMS has nonetheless been difficult to scale to large
genes or to multi-gene families, and the measurements may
not reflect the effects of the same mutations at the endogenous
genomic locus. Moreover, the technical challenges involved in
DMS can lead to variable dataset quality [ 32 ]. 

As a functional genomic technology, BE is at development
stage. BE screens use nCas9 to target a deaminase to a spe-
cific site in the genome and generate transition mutations (C
> T for cytosine base editors—(CBEs) or A > G for ade-
nine base editors—(ABEs) [ 19 , 20 ]. BE screens use a surro-
gate measure of genotype by sequencing the short guide RNA
(sgRNA) sequence, which allows BE screens to measure phe-
notypes across the genome [ 33–35 ]. Moreover, base editor
screens have other major advantages that can include the abil-
ity to edit at the endogenous genomic locus and the ability
to identify splicing defects [ 33 , 36–39 ]. However, base editor
screens also present certain challenges. The primary challenges
are (i) BE efficiency (only a portion of individual cells harbor-
ing an sgRNA are likely to be edited, and some cell lines do not
edit well [ 40 ]); (ii) off-target editing (while editing is largely
constrained to a small window within the sgRNA non-target
sequence, some off-target editing is likely occurring [ 41 , 42 ]);
(iii) bystander editing (when more than one possible edit oc-
curs in an on-target editing window, the amino acid variant(s)
made are more challenging to infer [ 43 , 44 ]); and (iv) proto-
spacer adjacent motif (PAM) requirements (PAMs limit where
sgRNAs target [ 45 ], and current PAM-less Cas9 variants ap-
pear to have decreased efficiency [ 46–48 ]). These issues have
led the field to view BE screens as a method for initial iden-
tification of interesting variants and regions but with limited
capability to directly annotate loss-of-function phenotypes. 

When competing high-throughput measurement method-
ologies can generate similar data, it can be extremely useful
to directly benchmark these methods against each other. For
instance, the direct comparison of CRISPR Cas9 LOF screens 
and RNAi screens suggested that CRISPR is a more sensitive 
and specific technique for identifying essential LOF pheno- 
types, but that RNAi screens can help understand the dosage 
sensitivities of essential genes and can sometimes rescue false 
negatives in CRISPR screens for a subset of biological func- 
tions [ 49–51 ]. Additionally, the direct comparisons of high 

throughput drug sensitivity measurements found that the pre- 
cise metrics and methods that are used in comparing datasets 
can create different conclusions on dataset reliability and us- 
ability. Together, these high-profile efforts highlight the impor- 
tance of a careful comparison of high throughput datasets us- 
ing multiple metrics and the public dissemination of the resul- 
tant data [ 52 , 53 ]. 

Here we perform the first direct comparison between BE 

and DMS in the same cell line in the same lab. To accomplish 

this, we use the Ba / F3 cell system. This allows for a direct 
comparison and eliminates differences in genetic context as a 
confounding variable driving the differences in measurements 
between the approaches. Using this system, we identify specific 
data filters that generate largely matching conclusions about 
the phenotypes of loss-of-function variants. Furthermore, we 
demonstrate that applying these data filters enhances the cor- 
relation within the endogenous genomic context, indicating 
their robustness across different cell models. We also identify 
a two-step high throughput workflow for base editor screens 
that can streamline the validation of variant interpretation in 

pools by directly sequencing the edited variant fraction with 

error corrected sequencing [ 54 , 55 ]. 

Materials and methods 

DMS library preparation and screen 

BCR-ABL cDNA was cloned downstream of EGFP in the pUl- 
tra (Addgene #24129) lentiviral vector by GenScript to make 
pUltra BCR-ABL WT (Addgene #210432). Twist Bioscience 
generated a saturating mutagenesis library of single amino 

acid changes in the N-lobe of the ABL kinase domain. NEB 

Stable chemically competent (NEB #C3040I) cells were trans- 
formed with the SM library, with a coverage of > 1000 ×, onto 

15-cm LB agar plates with ampicillin. After 48 h at 30 

◦C,
colonies were scrapped off the agar and plasmid DNA was 
extracted using Omega Bio-Tek E.Z.N.A. Plasmid DNA Midi 
kit (#D6904). HEK293Ts were transfected with 35 μg of sat- 
urating mutagenesis ABL library and 10 μg of helper plasmids 
(1:1:1:1) in 10-cm dishes using Thermo Fisher Lipofectamine 
3000 (5 Lipo : 1 DNA). The next day, the media was changed 

to fresh RPMI (Cytivia SH30027.02). After 36 h, viral RPMI 
media was used to infect Ba / F3s, in the presence of 1 μg / ml
mouse IL-3 (peprotech 213-13) and 6 μg / ml polybrene, at a 
low multiplicity of infection. After another 36 h, Ba / F3s were 
maintained in RMPI with 1 ng / ml IL-3. Infected cells were en- 
riched by fluorescence-activated cell sorting (FACS) on EGFP 

at the Penn State Flow Cytometry Core facility. 
At the start of the DMS screen, IL-3 was removed, and 

30 million cells were saved to establish a baseline mutation 

frequency. Approximately 5 million cells were treated with 

DMSO for 6 days. Media was refreshed on day 3. Cell count 
was tracked by a BD Accuri C6 Plus flow cytometer. Cells were 
maintained in exponential phase. If cell viability was < 90%,
then viable cells were enriched by Ficol-Paque (Cytiva). 
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MS library preparation and single-strand 

onsensus sequencing 

igh-quality genomic DNA was extracted by Monarch Ge-
omic DNA Purification Kit (NEB #T3010S). Then, a mod-

fied and scaled-up CRISPR-DS workflow was used to deter-
ine accurate variant distributions [ 56 ]. Equimolar crRNAs

IDT, 5 

′ -caagtgggagatggaacgca-3 

′ , 5 

′ -catgacctacgggaacctcc-3 

′ )
ere pooled and combined with tracrRNA (IDT) (final con-

entration: 10 μM each). Guide RNA (gRNA) duplexes were
ormed by heating to 95 

◦C for 5 min, followed by cooling to
oom temperature for 5 min. RNPs were assembled by incu-
ating 10 μl of gRNA duplexes with 1.6 μl HiFi Cas9 (IDT), 3
l 1 × CutSmart buffer (NEB), and 15.4 μl nuclease-free wa-

er for 20 min at room temperature. Genomic DNA (20 μg,
esuspended in 1 × CutSmart buffer) was digested by adding
0 μl of pre-assembled RNPs and incubating at 37 

◦C for 1
. Proteinase K (10 μl, 20 mg / ml, NEB) was then added, and
he sample incubated at 56 

◦C for 10 min. Undigested high-
olecular-weight DNA was removed using 0.5 × AMPure XP
eads. A second purification with 1.8 × AMPure XP beads was
erformed to remove short fragments, and DNA was eluted in
0 μl TE. DNA was quantified using a Qubit fluorometer. A-
ailing, unimolecular identifier (UMI) ligation, hybridization
apture with custom probes, and PCR amplification were per-
ormed as described previously [ 57 , 58 ]. 

One-hundred-fifty-nucleotide paired-end sequencing of the
MIs and mutagenized region was done on an Illumina No-
aSeq 6000. For each sample, Du Novo [ 59 ] was used to gen-
rate error-corrected single-strand consensus from the UMI
arcodes. Then bwa-mem2 was used to align the census to
uman ABL cDNA. After filtering out for mouse ABL reads,
ligned reads with less than five mismatches would undergo
ariant calling and annotation using a custom R script. Briefly,
or each alignment, variants were converted from the MDZ
ead tag. Mutant growth rates were calculated using exponen-
ial growth equation and the mutant allele frequency (MAF): 

growth rate = ln 
(

MA F 1 × Coun t 1 
MA F 0 × Coun t 0 

)
÷ ( Tim e 1 − Tim e 0 ) (1)

here the subscripts 0 and 1 denote the initial and final time
oint, respectively. Cell counts and the splitting ratio were
sed to account for dilution due to cell splitting during the
MS screen. Time is measured in units of hours. Skewed
aussian mixture models were fit over the bimodal distribu-

ion of mutant growth rates using the Curve_fit function from
he Scipy Python package [ 60 ]. Z-score cutoff for DMS data
as determined by fit mean and standard deviation of the WT

ike component of the mixture distribution. 

ase editor library preparation, screen, and 

equencing 

CR-ABL tiling gRNA sequences were generated by CHOP-
HOP [ 61 ] with “NGN” PAM setting. Guides were cloned

nto lenti-sgRNA hygro vector (Addgene #104991) by Gen-
cript to make the BCR-ABL sgRNA library. ABE8e SpG
lasmid was made by deleting the U6 sgRNA cassette from
RDA_479 (Addgene #179099) [ 62 ] using NEB KLD (NEB
M0554S). For the CBEd SpG plasmid, a highly efficient and
pecific CBE from TadCBEd (Addgene #193835) [ 63 ] was
ubcloned to replace the ABE. The nickase (nSpG) plasmid
as created by deleting the editor by NEB KLD. 
Ba / F3s infected with pUltra BCR-ABL WT (Addgene
#210432) were allowed to grow in the absence of IL-3. Af-
ter 5 days > 95% of the Ba / F3s were EGFP+ . Then they were
infected with either ABE8e SpG (Addgene #235044), CBEd
SpG (Addgene #235045), or nSpG (Addgene #235046) and
selected with 1 μg / ml puromycin for 5 days. K562 ABE8e
SpG were created similarly. In a 15-cm dish HEK293Ts were
transfected with 60 μg of the BCR-ABL and control sgRNA
libraries and 40 μg of helper plasmids (1:1:1:1) using cal-
cium phosphate. The next day DMEM media was changed
to RPMI. Three independent infections of Ba / F3 pUltra BCR-
ABL WT ABE8e cells were performed at low multiplicity of
infection and > 500 × coverage. CBEd SpG and nSpG carry-
ing cells were infected similarly. Transfected HEK23Ts were
saved to establish a baseline sgRNA frequency. Three days
after sgRNA library infection, the cells were selected with 1
mg / ml hygromycin for 6 days and pelleted. 

The K562 screen largely mirrored the Ba / F3 BCR-ABL
screen, with both screens lasting 9 days. K562 cells were ini-
tially infected with ABE8e SpG and selected with 1 μg / ml
puromycin for 5 days, consistent with the Ba / F3 protocol.
Subsequently, these K562 ABE8e SpG cells were infected with
the BCR-ABL library, also as described previously, but se-
lected with 200 μg / ml hygromycin for 6 days instead. For the
comparison between the K562 and Ba / F3 screens, we used
a frequency cutoff of 1:10 000 to identify high-confidence
sgRNAs. 

Genomic DNA was extracted using phenol-chloroform
[ 64 ] and quantified by Qubit. Staggered PCR was used to
extract sgRNA sequences from 10 μg of genomic DNA, as
described previously [ 21 ], with two modifications: custom
forward staggered primers were used, and PCR amplicons
were gel extracted using Omega Bio-Tek Gel Extraction kit
(#D6294). 

sgRNA analysis 

gRNA amplicons were trimmed with CutAdapt [ 65 ] to re-
move the U6 promoter and gRNA scaffold. The remaining se-
quences were aligned to a reference list of guides using Bowtie
[ 66 ]. Guide counts were established by Counter from the col-
lections Python package. pyDESeq2 [ 67 ] was used to deter-
mine the fold change in guides between time points. The fold
change was converted to growth rates using Equation 1 above
assuming WT growth rate. Z-score cutoff for ABE data was
based on the human targeting (AAVS1, CCR5, and ROSA26)
negative control sgRNA. 

Verification screen, sequencing, and analysis 

After making three independent Ba / F3 BCR-ABL WT ABE8e
cell lines as above, IL-3 was returned to the RPMI media.
We then cloned 14 pools of sgRNAs into a lenti-sgRNA hy-
gro vector using Golden Gate sites or Gibson assembly [ 21 ,
68 ]. These sgRNAs targeted the ABL kinase domain (amino
acids 242–320), aligning with the DMS region. To prevent
overlapping edits and ensure individual sgRNA assignment
within each pool, we staggered each sgRNA. In total, 71
ABL sgRNAs were evaluated, with five negative control sgR-
NAs (targeting mROSA26) spiked into each pool at ∼12%.
The lentivirus library of sgRNAs was made by lipofection of
HEK293T in 10-cm dishes as above. We performed three in-
dependent infections using 1.5 million Ba / F3 BCR-ABL WT
ABE8e cells. Cells were cultured for 3 days before initiating
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Table 1. Polymerase chain reaction protocol for edit amplification 

Temperature ( ◦C) Time Cycles 

95 2 min 1 
95 10 s 
58 10 s 25 
70 5 s 
65 5 min 1 
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1 mg / ml hygromycin selection. After 6 days, hygromycin and
IL-3 were withdrawn, and a cell pellet was collected. This ini-
tial pellet was used for both sgRNA and edit sequencing. Nine
days post-IL-3 withdrawal, further cell pellets were harvested
for both sgRNA and edit sequencing. Guide sequencing was
performed as described above [ 21 ]. Paired end 300 × 300 edit
sequencing was carried out using combinatorial dual-index
next-generation sequencing primers ( Supplementary data S1 )
on NextSeq 2000 using P1 XLEAP-SBS reagents. To mitigate
the risk of index hopping, we incorporated a randomized stag-
ger, ranging from 0 to 7 nucleotides, upstream of the primer
binding site. This design ensures that each unique index com-
bination corresponds to a distinct read start and end location.
One microgram of genomic DNA was used for both sgRNA
and edit sequencing. To prepare the sample for edit sequenc-
ing, the target region was amplified with high-fidelity UltraII
Q5 polymerase (NEB M0544L) according to the following
PCR protocol (Table 1 ). 

A custom Python script was used to determine the fre-
quency of in-phase or cis mutations made by ABE. Briefly,
reads were trimmed and aligned to ABL cDNA using Bowtie
2 [ 69 ]. A mismatch was classified as a bona fide edit only
if it possessed a quality score exceeding 20 in both the for-
ward and reverse sequencing reads. Background mutation fre-
quency was set based on the triplicate mean of the 95th per-
centile of mutant frequency in lentivirus-integrated BCR-ABL
from a negative control library containing only mROSA26-
targeting sgRNAs. We used an sgRNA frequency cutoff of 1%
to identify high-confidence sgRNAs. Fold change of sgRNAs
and edits was determined by pyDESeq2 [ 67 ]. Guide and edit
growth rates were calculated by normalizing them against the
known WT BCR-ABL Ba / F3 growth rate of 0.055 h 

−1 . Specif-
ically, the WT growth rate for guide analysis was derived from
mROS26 spike-in data, while for edit analysis, it was based on
reads containing no mismatches. All A > G mutations within
the editing window of an sgRNA were linked to that sgRNA.

BE-HIVE weighted model 

In order to determine how well the on-target editing sgRNA
phenotype can be recapitulated, sgRNA and editing efficiency
was predicted by BE-HIVE [ 70 ]. Only edits with a frequency
> 0.05 and sgRNAs with completely matched DMS measure-
ment were allowed. We model the growth rate of an sgRNA as
the weighted sum of the growth rates of edited and unedited
cells: 

sgRNA growth rate = 

(
edit proportion × edit growth rate 

)
+ 

(
unedited proportion × 0 . 055 

)
(2)

In the case of simultaneous edits in cis across ( n ) multiple
amino acids, a null model of mutant interactions predicts the
growth rate of the multi-amino acid mutant as the product of
individual mutant phenotypes [phenotype is growth rates ( r n )
divided by the WT growth rate (0.055 h 

−1 )] multiplied by the
WT growth rate [ 71 ]: 

WT 

n ∏ 

i =1 

r n 
WT 

(3) 

In other words, under our null model if Mutant A confers 
a growth rate that is 0.7 × the WT growth rate and Mutant B 

confers the same disadvantage of 0.7 × the WT growth rate,
then the compound AB mutant is expected to reduce the 0.7- 
fold growth rate by another 0.7-fold for an expected com- 
pound mutant growth rate of 0.49 × the WT growth rate. If 
there were an epistatic interaction, the growth rates of the 
double mutant would differ from this expectation. 

Results and discussion 

DMS data are high quality and correlates with 

evolutionary conservation, secondary structure, 
and function 

For our comparison experiments, we chose to use a fit-for- 
purpose cellular system, where the growth of the cell line,
Ba / F3, depends upon the presence of IL-3 in the media until 
an activated tyrosine kinase is added. This system allows us to 

introduce the DMS library in the same genomic context as the 
target of the base editor screen. Heterologous expression of a 
tyrosine kinase cDNA integrated into the genome is advan- 
tageous with respect to our study design because all variants 
(DMS or BE) are evaluated using the same promoter. We use 
the BCR-ABL oncogene as the activated tyrosine kinase for 
several reasons: (i) It is an important oncogene that is of in- 
terest to applied and basic research groups. (ii) Its structure 
has been solved many times in many conformations [ 72–74 ].
(iii) There are years of experiments that can be drawn from to 

gain confidence in the resultant data [ 73 , 75 , 76 ]. 
To perform the DMS in BCR-ABL, we designed a saturation 

mutagenesis library spanning amino acid residues 242–320 in 

the N-lobe of the ABL1 kinase domain. This region was cho- 
sen for its reasonable size and the presence of known struc- 
tural features that include the p-loop, the gatekeeper, and the 
alpha-C helix. This library was transduced into Ba / F3s in the 
presence of IL-3. After infection, FACS was used to enrich for 
infected cells. Following recovery from sorting, the Ba / F3 cells 
were screened for 6 days without IL3. In this negative selec- 
tion screen, variants expressing non-functional copies of the 
BCR-ABL fusion protein deplete from the population. After 
the screen, we perform a sensitive barcoded sequencing pro- 
tocol where the heterologous copy is specifically excised from 

the genome using Cas9-sgRNA complexes that are specific to 

the cDNA [ 56 ]. These genomic fragments are then ligated with 

unique molecular identifiers to allow for the deconvolution of 
library variants and the elimination of PCR and sequencing 
noise (Fig. 1 A) [ 57 , 58 ]. Genomic sequencing confirmed that 
the cell population contained a library representing 97% of all 
possible single amino acid variants spanning ABL1 residues 
242–320. 

When a mutant in BCR-ABL impairs kinase function, then 

the host cell will exhibit a reduced growth rate. After sequenc- 
ing, we found that mutant growth rates form a bimodal dis- 
tribution of counts (Fig. 1 B), consistent with measured distri- 
butions of fitness effects in other DMS screens [ 17 , 18 , 28 ].
One of the peaks in this bimodal distribution of growth rates 
centered at ∼0.02 h 

−1 and constituted the set of deleterious 
mutations, while the other distribution mode was centered at 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
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A B

C

D E

Figure 1. Functional landscape of ABL N-Lobe. ( A ) Schematic of DMS. After lentiviral integration of EGFP-P2A-BCR-ABL, Ba / F3s were sorted to enrich 
EGFP + infected cells. Cells were pelleted before and 6 days after IL-3 withdrawal. After targeted genomic DNA digest by Cas9, single molecules of DNA 

were labeled by UMI ligation. Then biotinylated oligo baits were used to enrich the mutagenized region. ( B ) The distribution of mutant growth rates in 
the ABL1 N-lobe is bimodal. Two skewed Gaussians are fit to determine the variation in deleterious (blue) and “WT-like” (orange) mutations. The dotted 
line represents a −2 Z-score threshold with respect to the “WT-like” distribution. ( C ) Heatmap of the growth rate of mutations at each position in ABL1 
N-lobe. Black dot represents WT positions. Missing data are in white. Second to the last row of the heatmap provides surface exposure information 
because solvent exposed residues (red, “e”) tend to be more tolerant of mutations than buried residues (blue, “b”). The bottom row of the heatmap 
indicates the e v olutionar y conser v ation f or each residue on a scale of 1 (low conservation) to 9 (high conservation). Tolerance / sensitivity to mutagenesis 
is projected onto two key str uct ural feat ures of the ABL1 N-lobe (PDB 6XR6): the ( D ) anti-parallel beta-sheet, and the ( E ) αC-Helix. If mean growth rate 
of alternative alleles at a residue is less than the −2 Z-score cutoff, then the residue is colored blue. In contrast, if the mean growth rate of alternative 
alleles is greater than the –2 Z-score cutoff, then it is colored in red. ( N = 2). 
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Table 2. Hit rate among across different editors in Ba / F3 BCR-ABL 
screen 

Depleting guides 

Editor Library False True 

ABE BCR-ABL 3488 47 
Control 1489 0 

CBE BCR-ABL 3531 4 
Control 1489 0 

nSpG BCR-ABL 3535 0 
Control 1489 0 

Depleting guides are defined as guides with a log 2 fold change of less than 
zero and an adjusted P -value of < .05. 
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the known WT growth rate of 0.055 h 

−1 and harbored AAs
that are “WT-like fitness” (Fig. 1 B). To call the “hits” of spe-
cific amino acid variants that are required for growth, we use a
Z-score cutoff of −2 for the “WT-like” distribution. This spe-
cific cutoff was selected to be consistent with prior literature
in the sgRNA community [ 34 , 35 , 62 , 77 ] and to draw a line
that can be approximated in both studies using approximately
analogous statistical and experimental criteria (Fig. 1 B). Using
this cutoff, we estimate that 56% of measured variants in the
N-lobe of the ABL kinase impair kinase function. 

Initial observations of the deleterious residues in the DMS
dataset are consistent with prior knowledge. For instance, the
catalytic lysine K271 is required for kinase activity and muta-
tions at that position strongly deplete (measured growth rate
averaged 0.019 h 

−1 ) (Fig. 1 C) [ 74 ]. Moreover, the systematic
insertion of prolines during DMS studies causes a discernible
“proline band” in high quality studies [ 28 , 78 ]. We clearly ob-
serve a proline band in our data (Fig. 1 C). Beyond these criti-
cal depletion signals, a known flexible and non-conserved re-
gion in ABL1 (i.e. residues 262–267 between the β2 and β3
strands) did not deplete. 

More systematically, functionally important residues are
typically evolutionarily conserved and their mutagenesis tends
to be deleterious in DMS studies [ 10 , 18 ]. Consistent with this,
there is a −0.74 correlation ( P < .001) between the mean
mutant growth rate at a residue and the evolutionary con-
servation scores of that residue from ConSurf [ 72 , 79–81 ]
(Fig. 1 C, bottom row of heatmap, Supplementary Fig. S1 ).
Moreover, from a biophysical perspective, solvent accessible
residues tend to be more tolerant of mutagenesis and are less
conserved [ 82 ]. We observe this trend in Fig. 1 C and D, and
Supplementary Fig. S1 . 

The ABL1 N-lobe is composed of conserved structural el-
ements that include the alpha-helix called the αC-helix, the
five-stranded antiparallel β-sheet, the GxGxxG motif of the P-
loop, as well as several catalytically important residues. Inves-
tigation of these key structural features reveals patterns that
are consistent with known structure-function relationships.
The GxGxxG of the P-loop spans residues 249–254 and all
three conserved glycines show strong depletion phenotypes.
Additionally, the alternating banding pattern in anti-parallel
β -strands 1 and 2 (residues 242–262, Fig. 1 D) is explained
by essential residues facing toward the substrate pocket (blue
residues, Fig. 1 D). Moreover, the αC-helix, dynamically tran-
sitions from its “in” to its “out” state during kinase activa-
tion. This highly conserved regulatory dynamic requires sup-
port from the underlying hydrophobic core. Thus, the residues
that interact with the core of the protein show the expected
pattern of intolerance (blue, Fig. 1 E), while the outward-facing
residues show tolerance to mutations (red, Fig. 1 E). It is the
connection to known structure, function, and conservation
data that gives us high confidence in the validity of the DMS
data as a gold standard for comparison with sgRNA data. 

An adenosine BE screen isolates functionally 

important domains and residues 

One of the major benefits of base editor (BE) screens is the
ability to rapidly screen across a protein’s entire length. To
demonstrate this breadth and speed, we rapidly cloned a tiled
library of 3535 sgRNAs across the entire BCR-ABL cDNA,
including regions beyond the original DMS library. The BE
phenotype was determined by the change in sgRNA abun-
dance following exponential growth in cell culture (Fig. 2 A).
We initially screened three different editors: ABE, CBE, and 

an nickase (nSpG) version of Cas9. While ABE had a high 

hit rate, CBE and nSpG had substantially lower hit rates (Ta- 
ble 2 ). Importantly, the CBE hits occur with sgRNAs that are 
expected to make edits in key residues, but both CBE and 

nSpG appeared limited in the breadth of phenotypes discov- 
ered. Based on this result, we focused our variant compar- 
isons on our ABE data. Looking across the entire length of 
the protein (Fig. 2 B), we performed a sliding window esti- 
mate of the proportion of strongly negative Z-scores across 
the protein with the ABE data (see “Materials and methods”
section). This sliding window estimate highlights the regions 
of the protein that are unusually enriched for the presence 
of highly essential residues. Colored regions corresponding to 

the coiled-coil (CC) domain, double homology (DH) domain,
plekstrin homology (PH) domain, Src-homology 3 (SH3), Src- 
homology 2 (SH2), the kinase domain, and F-actin binding do- 
main (FAB) are highlighted. Highly significant domains that 
have been previously implicated in transformation, such as 
the CC [ 83 , 84 ], SH2 [ 84–86 ], Kinase [ 87 ], and FAB do-
mains [ 88 , 89 ] show significant depletion. While the role of the 
DH domain is not understood, our base editor data suggests 
that it is important for growth factor independence (Fig. 2 B) 
[ 90 , 91 ]. 

While the matching genomic context of Ba / F3 (i.e. heterol- 
ogous expression of BCR-ABL) for BE is useful for the com- 
parison of BE and DMS, it is possible that editing variants 
in a Ba / F3 cell will yield a different result than editing vari- 
ants in a K562 cell, which harbors true endogenous expression 

of BCR-ABL. To test for endogenous versus exogenous phe- 
notypic differences, we also performed the same ABE screen 

in K562 cells, a human leukemia cell line, and we observed 

strongly correlated results with our Ba / F3 ABE screen (Pear- 
son r = 0.76, Fig. 2 C). Most of the spread in the points was 
due to sgRNAs that did not score in either screen, suggest- 
ing that noise in variants with no measured effects drove the 
correlation value. 

Finally, to call depletion “hits” in our Ba / F3 screen we used 

a –2 Z-score based on the distribution of negative-control 
guides to be consistent with Hannah et al. [ 34 ] (Fig. 2 C). Ap- 
plying this criteria yields 387 hits, or ∼12.4% of all BCR-ABL 

sgRNAs (Fig. 2 D), consistent with others [ 34 , 62 ]. Most no- 
tably, there is a strong over-representation of depletion phe- 
notypes for guides that target the ABL1 kinase domain, with 

38% of kinase domain guides depleting below a –2 Z-score. In 

concordance with the DMS screen above, the guides that can 

target the conserved regions of the P-loop, Lys 271, and the 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
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C D

E

A

sgRNA growth rate (hour⁻¹)

Control  2.9%

Z = -2

Figure 2. Adenosine base editor screen of full length of BCR-ABL. ( A ) Schematic of adenosine base editor screen. Three days after infection with 
BCR-ABL sgRNA library, Ba / F3 EGFP-P2A-BCR-ABL ABE8e cells were selected with 1 mg / ml hygromycin for 6 days and pelleted. Guides were 
PCR-amplified and sequenced. ( B ) A sliding window analysis using a window size of 40 sgRNAs. In a window we quantified the proportion of BCR-ABL 
sgRNAs that drop out more extreme than a Z-score of −4 of the negative control sgRNA growth rate ( N = 3). ( C ) Correlation of the same ABE BCR-ABL 
screens performed in K562s ( N = 2) and Ba / F3 expressing BCR-ABL ( N = 3). ( D ) Kernel density estimate of growth rate distributions of non-targeting 
control, and BCR-ABL sgRNA libraries. Dashed gray line represents a –2 Z-score of the targeting control. ( E ) Lollipop plot displays dropout of each 
sgRNA across the ABL1 kinase domain. Dashed gray line represents a –2 Z-score of the targeting control ( N = 3). 
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buried region of the αC-helix produce deleterious phenotypes
(Fig. 2 E). 

Side-by-side comparison of ABE predicted edits 

and DMS screens 

To assess the correlation between our ABE screen and our
DMS, we compared growth rates of each individual sgRNA
(from the ABE screen) to the growth rates of the variants that
sgRNA was predicted to create (from the DMS). We focused
on 80 / 118 sgRNAs for which all predicted edits have variant
information in the DMS screen. (Figs 1 C and 2 E). 

The predicted edits of the sgRNAs predominantly occur
within an editing window [ 43 , 92 ]. While the editing win-
dow is in the non-targeting strand, we (and others) refer to
the window relative to the guide sequence position. Most ed-
its occur between positions 2 and 12 [ 92 , 93 ]. Plotting sgRNA
data against DMS data (Fig. 3 A), each dot represents an indi-
vidual variant, with each sgRNA appearing as a row of dots
for all of its possible edits. An explanation of each quadrant
is available in Supplementary Fig. S2 . Notably, the dynamic
range of the Y -axis is reduced for BE compared to DMS (there
is an ∼0.045–0.06 h 

−1 Y -axis measurement range for BE ver-
sus ∼0.01 –0.06 h 

−1 for DMS on the X -axis). This is likely
because counting an sgRNA read can count either edited or
unedited cells. 

This initial analysis yields a modest but significant Pear-
son correlation of 0.35 (Fig. 3 A). This indicates a relationship
but suggests caution in directly annotating individual variants
from a raw sgRNA experiment without further validation of
the variants with individual sgRNAs. This view is in line with
the current practice in the field. 

Considering the modest correlation with all putative vari-
ants, we hypothesized that the 2–12 bp editing window was
too broad. By focusing on a narrower, more efficient 4–8
nucleotide editing window [ 34 , 93 , 94 ], the Pearson cor-
relation improved from 0.35 to 0.51, and the odds ratio
(OR) of hits versus non-hits increased to 6.9 (Fig. 3 B). This
improved agreement came at the cost of removing 25 po-
tentially correctly annotated variants (Fig. 3 A and B, and
Supplementary Fig. S3 ). 

After applying the “likely” edits filter to generate Fig. 3 B,
we still identify 13 false negative and 24 false positive vari-
ants in our plots. In terms of these remaining false negatives,
an sgRNA could fail to deplete when sgRNA sequences are
of low efficiency [ 21 ]. Thus, we examined the consequences
of adding an additional filter requiring an sgRNA efficiency
score > 50 (Fig. 3 C and Supplementary Fig. S4 ) [ 21 ]. This sim-
ple additional cutoff further improves the Pearson correlation
between sgRNA predicted edit growth rates and DMS data
to 0.56, and eliminates 9 of the 13 remaining false negative
variants ( Supplementary Fig. S3 ). 

Next, focusing on the false positive variants in Fig. 3 B (blue
dots), we identified 15 sgRNAs that are predicted to make 24
false positive variants. Interestingly, 10 of the 15 sgRNAs are
multi-edit sgRNAs that are predicted to also make true posi-
tives edits (dark orange variant dots). One simple way to re-
duce the effect of multi-edit ambiguity is to only examine the
sgRNAs that are predicted to make a single edit in the 4–8
nucleotide editing region. The addition of this “single likely
edit” filter enhances the Pearson correlation to 0.64 ( P -value
< .001) and the OR for hits to 44 ( P -value < .001) (Fig. 3 D).
For single-likely-edit sgRNAs there is a true positive rate of
0.88 and an accuracy of 0.87 with respect to gold standard 

DMS data. However, this filter removed 15 out of 40 origi- 
nal sgRNA hits, i.e. the vastly increased specificity comes at a 
38% loss in sensitivity. For detailed information on filters and 

filtered sgRNAs / variants, see Supplementary Figs S3 and S4 . 
In order to expand the comparison to another cell line that 

expresses BCR-ABL from an endogenous genomic context, we 
performed the same comparison as in Fig. 3 B and D, but we 
compared our DMS data in Ba / F3 to our ABE BE data in 

K562 cells. Interestingly, applying the same editing window 

filters from Fig. 3 to the K562 data yielded similar increases in 

Pearson correlation ( Supplementary Fig. S5 ). This finding sug- 
gests that changing the genomic context and cell line does not 
dramatically change the results of this loss-of-function screen.
It also suggests that the difference in the technique is a larger 
source of variation than the difference in genomic context. 

Given that filtering sgRNAs by efficiency, edit probability,
and the number of edits improves annotation confidence at the 
expense of total hits, we sought to utilize data more effectively 
from multi-edit sgRNAs (Fig. 3 D). At a first pass, it seems 
like one might create variant-level interpretations for multi- 
edit sgRNA hits just by predicting the ensemble of sgRNA 

edits and their abundance in the population using machine 
learning algorithms like BE-HIVE [ 70 ]. However, while BE- 
HIVE can predict the ensemble of mutations (Fig. 3 E), it can 

not predict the proportion of the measured phenotype that 
is attributable to those mutations. Therefore, we investigated 

whether multi-edit sgRNA dynamics could be predicted from 

the combined dynamics of their polyclonal edits. We used the 
BE-HIVE predicted allele frequencies vector (to approximate 
the structure of the polyclonal population), and simply as- 
sumed that all of the predicted variants grow according to the 
gold standard DMS growth rates. This approach estimated the 
expected multi-edit sgRNA growth rate as a function of the in- 
dividual edits (Equation 3 ). This also provides insights into the 
contribution of in-window editing versus off-target effects to 

sgRNA dynamics. We observed a moderate Pearson correla- 
tion of 0.57 ( P -value < .001) between the predicted and actual 
sgRNA growth rates (Fig. 3 F). This suggests on-target editing 
is a major contributor to sgRNA growth rates. It also supports 
the feasibility of variant validation experiments with pooled 

sgRNAs by directly sequencing edited variants from genomic 
DNA. We will test this hypothesis in the next section. 

Pools of multi-edit sgRNAs create a pool of edited 

variants that can be measured by er ror-cor rected 

deep sequencing of genomic DNA 

Our BE-HIVE analysis suggested that in-window editing 
drives multi-edit sgRNA growth rates (Fig. 3 F). Therefore, we 
hypothesized that variant validation could be accelerated by 
directly sequencing variants in genomic DNA during pooled 

experiments. While doing this in a larger pool with thousands 
of sgRNAs is challenging because of the error rates involved 

in variant detection, sequencing the genomic DNA in pools 
with ∼100 sgRNAs is approachable with simple error correc- 
tion schemes like TileSeq [ 54 , 55 ]. This can be compared to 

the standard validation approach where sgRNA-variant rela- 
tionships are tested in a one-by-one manner. The proposed ap- 
proach involves medium-throughput validation pools of sgR- 
NAs, and measuring the resultant variants directly in gDNA 

via error-corrected sequencing of the editing target. To test 
this, we selected 71 sgRNAs with varying predicted fitness 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
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Figure 3. Comparison of adenosine base editor sgRNA growth rate and their respective mutation growth rates from DMS. Each dot represents a 
mutation an sgRNA is predicted to make. Dashed lines represent –2 Z-score of the non-deleterious distribution, and negative control sgRNA for the 
DMS and ABE screens, respectively. These cutoffs are used to define if an sgRNA or mutation is deleterious. If an sgRNA and its mutation do not 
deplete in their respective screen, in other words, both are non-deleterious, then they are colored yellow. If they both are deleterious, or true positive, 
then they are colored orange. If an sgRNA depletes, but the predicted edit does not deplete, a false positive, then the dot is colored in the blue. If a 
sgRNA fails to deplete, and the predicted mutation(s) are deleterious, a false negative, then that point is colored in green. ( A ) Shows all possible edits 
between nucleotides 2 and 12. ( B ) Shows only the most likely edits, those between nucleotides 4 and 8. ( C ) Shows only sgRNA predicted to be 
efficient, and edits between nucleotides 4 and 8. ( D ) Shows sgRNAs that are predicted to make only a single edit between nucleotides 4 and 8. ( E ) The 
distribution of edits can be estimated by machine learning model called BE-HIVE. ( F ) Correlation between predicted sgRNA growth rate and observed 
sgRNA gro wth rate. T he x -axis sho ws the predicted gro wth rate of each sgRNA based on a w eighted sum of the probability edit(s), and the effect of that 
edit(s) from DMS data. The y -axis shows the measured growth rate of the efficiently editing sgRNAs from the ABE screen. 
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B C D

E F G

A

D276G
T277A
M278V

V270A

Figure 4. Medium-throughput pooled adenosine base editor screen. ( A ) Schematic of medium-scale validations screen of 71 sgRNAs targeting ABL1 
kinase, where the edits and sgRNA are sequenced after IL-3 withdra w al. (B, C) Gro wth rates of sgRNA-induced edits. Each dot represents a specific edit 
and its measured growth rate, while each “X” or filled circle indicates whether the corresponding mutation was deleterious or nondeleterious in a prior 
DMS experiment. ( B ) Growth rates for all detected edits within the 4–8 nucleotide editing window of their respective sgRNAs. Gray lines connect edits 
generated by the same sgRNA. ( C ) Highlights the most prevalent edits, defined as those occurring at a frequency of over 50% of all edits within the 
sgRNA’s editing window. ( D ) Weighted model for sgRNA growth rate. The sgRNA growth rate was predicted by a weighted sum of the growth rates of 
all edits within its 4–8 bp editing window, with weights corresponding to the frequency of each edit. The black line indicates a perfect correlation 
between the predicted and experimentally measured sgRNA growth rates. (E–G) Comparison of growth rates from the pooled ABE screen and DMS 
data. These panels directly compare the growth rates of specific amino acid mutants measured in the pooled ABE screen and the prior DMS 
e xperiment. T he amino acid (AA) count represents the number of amino acids simultaneously edited. ( E ) All edits detected within the 4–8 bp editing 
window. ( F ) Highlights high-confidence growth rate measurements by applying a stringent edit frequency cutoff of 0.01, and ( G ) focuses exclusively on 
single amino acid edits to enable a direct comparison between the ABE screen and DMS data ( N = 3). 
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measurements, aiming to determine if a variant is deleteri-
ous, and to explain sgRNA measurements through direct se-
quencing of the polyclonal pool (Fig. 4 A). Sixty-three of the
71 selected sgRNAs made edits that were observable above
the background mutation rate. 

The measured sgRNA growth rates strongly correlated
(Pearson r = 0.87, P < .001) with the sgRNA growth rates
measured in the high-throughput screen from Fig. 2 , con-
firming that the medium-throughput validation pool behaves
similarly to the larger pool ( Supplementary Fig. S6 A). Se- 
quencing the edits for each sgRNA revealed a wide range 
in the number of edits associated with individual sgRNAs 
( Supplemental Fig. S6 B and C). Further analysis revealed a 
high Pearson correlation ( r = 0.68) between sgRNA growth 

rates and the directly measured mutant growth rates (Fig. 4 B),
directly confirming that the fitness effects of sgRNAs are due 
to on-target editing. This correlation rose to 0.93 when con- 
sidering only the major edit (defined as an edit whose fre- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
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uency accounts for over 50% of an sgRNA’s total edits) (Fig.
 C). Even when incorporating all edits occurring within the
ikely editing window (nucleotides 4–8) using the weighted
odel from BE-HIVE (Fig. 3 F; Equation 3 ), the correlation

emained at 0.93 (Fig. 4 D). This strong correlation suggests
hat while an sgRNA can generate multiple edits, a large ma-
ority of its phenotype is explained by these major edits. 

If we directly compare edits made by ABE at a permissive
ariant frequency cutoff of 0.00015, based on the 95th per-
entile of mutant frequency detected in the absence of ABL1
argeting sgRNAs, and the mutations by DMS, we observe
 Pearson correlation of 0.75 (Fig. 4 E). This indicated that
he direct sequencing of edited variants in resequencing pools
an approach the quality of gold standard DMS data. How-
ver, some false negative edits appear to persist. This means
hat we directly observe edits that fail to drop out despite
MS data indicating they should. One explanation is that

hese edits are sequencing errors. Applying a more stringent
ackground mutation cutoff of 1% of the relevant reads can
liminate these low-confidence measurements, which in turn
mproves the Pearson correlation to 0.88. The sole remaining
trong outlier is a triple mutant (D276G T277A M278A) (Fig.
 F). While our compound mutation model (Equation 3 ) [ 71 ]
redicts this triple mutant should deplete because M278V is
trongly deleterious per DMS data, it’s possible that the addi-
ion of D276G and T277A rescue M278V’s deleterious effects
n kinase function. To avoid potential confounding epistatic
ffects of compound mutations we also directly compare sin-
le amino acids mutants only, which still maintains a strong
earson correlation of 0.82 (Fig. 4 G). 

onclusion 

housands of human cell lines are routinely used to un-
erstand gene function in diverse tissue types, genetic back-
rounds, and disease states [ 95 , 96 ]. To plan how to perform
ariant annotation in these diverse contexts, the mammalian
ell biologist / molecular geneticist requires a comparison of
he variant editing tools that, at present, appear most suited to
ackling the experimental challenges presented by human cell
ine diversity . Briefly , while HDR is a tremendous method that
as made a huge impact, its use has largely been confined to
aploid cell lines. Prime editing, while historically inefficient,
as seen recent breakthroughs [ 23 , 25 ]. However, these break-
hroughs have required MLH1 KO [ 24 ] and the careful pres-
lection of epegRNA sequences, resulting in an experimental
ethod with uncertain transferability in WT cell lines [ 26 ].

upplementary Table S1 has a summary of current methods
longside their strengths and weaknesses, while acknowledg-
ng that the field is changing rapidly. To enable the use of vari-
nt annotation tools by a broader community of mammalian
ell biologists and geneticists, we sought to focus our bench-
arking on two sets of tools (cDNA–DMS and BE) that have
een already used in many different mammalian cell lines for
unctional genomic screens [ 22 , 28 , 31 , 32 , 34 , 35 , 40 , 41 , 62 ],
nd therefore represent the tools that are likely to be usable
y the broadest set of audiences and biological questions. 
In conclusion, our study provides a comprehensive com-

arison of DMS and CRISPR-based BE for variant anno-
ation. We demonstrate that while DMS offers unparalleled
epth and structural resolution, BE screening provides a rapid,
road, and efficient alternative at the cost of mutation diver-
sity. By analyzing both methods in the same cellular and ge-
nomic context, we achieved a surprisingly high degree of cor-
relation between the two, despite their inherent methodologi-
cal differences and the potential for off-target effects and ele-
vated mutation rates in BE. This robustness can clearly be seen
in Fig. 4 which shows that sgRNA enrichment or depletion is
largely interpretable as the composite sum of on-target edits
within an editing window ( r = 0.93). 

We show that incorporating filters for sgRNA editing effi-
ciency and reducing multi-edit ambiguity enhances the corre-
lation between BE and DMS data. Our findings further re-
veal that variant annotation can be achieved directly from
sequenced sgRNAs in BE screens when focusing on sgRNAs
with single predicted edits within a narrow and efficient edit-
ing window. This streamlines the annotation process, particu-
larly for variants exhibiting strong phenotypes. It also means
that these single-edit sgRNAs sequenced directly from a pool
can immediately classify a specific variant as deleterious and
would be expected to create a ∼13% false positive rate di-
rectly from high-throughput screens. We also present a rapid
way to deconvolute medium-throughput pools with error-
corrected deep sequencing. Because sgRNAs are challenging
to interpret when they are predicted to make multiple edits
in their core editing window, we propose a two-step valida-
tion workflow using error-corrected deep sequencing. Error
correction is necessary in medium-throughput pools because
even a 100 sgRNA pool with editing efficiencies between 10%
and 50% will create variant frequencies below the limit of
detection (0.1%–1%) of conventional pooled NGS [ 55 ]. Fig-
ure 4 suggests that sequencing the variants with error correc-
tion in medium-sized validation pools of sgRNAs improves
the quantitative correlation between base-edited variant an-
notation and cDNA-based DMS. We suggest the following
workflow for base editor dropout screens: (i) Do a large un-
biased screen (thousands of sgRNAs) where sequencing the
sgRNA is used to deconvolute the pool. (ii) For sgRNAs that
make single edits in the core editing window, annotate the
predicted variant function directly from the screen in step
i. (iii) Do a second validation screen of only the hits from
step i using pool sizes of ∼100 sgRNAs. Directly sequence
all the edits in these pools using error corrected TileSeq [ 54 ].
(iv) Use the direct sequencing data to validate all multi-edit
variants. 

One of the closest comparison results to the present study
is that of Hanna et al. [ 34 ], who compared saturating genome
editing [ 12 ] (akin to HDR-based DMS, performed at the Uni-
versity of Washington) with BE in BRCA1 in HAP1 cells per-
formed at the Broad Institute. They reported a modest Pearson
correlation ( r = 0.44) [ 34 ]. A second similar study performed
a comparison between cDNA-based DMS and prime editing
in TP53 in A549 cells treated with a small molecule that se-
lects for TP53 loss-of-function mutations [ 26 ]. However, the
Pearson correlation they observed in this TP53 study was ex-
traordinarily poor, with the authors arguing that supraphysio-
logical overexpression of the TP53 mutant in the cDNA-based
DMS screen was the cause. 

Our comparison and our findings are different from both
of these prior results in different systems. In our tightly con-
trolled dropout screens, we observe a higher correlation than
Hannah et al. [ 34 ] when limiting our comparisons to the core
editing window. When comparing our K562 and Ba / F3 BE re-
sults (in the absence of splicing altering mutations), we suggest

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf738#supplementary-data
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that the high correlation suggests that endogenous genomic
context plays a minor role in variant annotation in our sys-
tem. Thus, not all overexpression systems may have the same
downsides that were observed in the case of TP53 [ 26 ]. We
speculate that the dominant negative effects of TP53 are be-
hind the importance of genome context in the A549 system.
Our findings also extended to gain-of-function experiments,
where imatinib treatment of Ba / F3 BCR-ABL cells showed
comparable improvements ( Supplementary Fig. S7 ). This was
contingent on incorporating filters for likely edits and restrict-
ing analysis to single nucleotide edits within the 4–8 bp core
editing window. 

However, for complex cases involving multi-edit sgRNAs
and double mutations, direct sequencing of mutant pools of-
fers a robust validation strategy. By directly measuring the
variants generated by pooled sgRNAs, we confirmed that the
fitness effects observed in BE screens are primarily due to on-
target editing in the sgRNA editing window. This approach
allows for accurate variant annotation even in challenging sce-
narios, while maintaining a higher throughput. 

Overall, our study also suggests that because these tools
are measuring the same underlying phenomena, the comple-
mentary strengths versus weaknesses of cDNA DMS and BE
screening for variant annotation might be combined for max-
imum impact in human cell biology and genetics across large
regions of proteins, or entire protein networks. BE libraries
can be rapidly deployed in a range of cell lines for editing at
the endogenous locus. DMS in mammalian cells can then give
structural resolution and detail in proteins. By strategically
combining these two powerful tools, researchers can achieve
efficient variant characterization across the genome with BE
and structural detail with DMS. This will accelerate our un-
derstanding of gene function, structure-function, and disease
mechanisms in diverse human cell lines. 
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