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Abstract  

 

Trigger finger (TF) and carpal tunnel syndrome (CTS) are two common non-traumatic hand 

disorders that frequently co-occur. By identifying TF and CTS cases in UK Biobank (UKB), we 

confirmed a highly significant phenotypic association between the diseases. To investigate 

the genetic basis for this association we performed a genome-wide association study 

(GWAS) including 2,908 TF cases and 436,579 European controls in UKB, identifying five 

independent loci. Colocalization with CTS summary statistics identified a co-localized locus 

at DIRC3 (lncRNA), which was replicated in FinnGen and fine-mapped to rs62175241. Single-

cell and bulk eQTL analysis in fibroblasts from healthy donors (n=79) and tenosynovium 

samples from CTS patients (n=77) showed that the disease-protective rs62175241 allele was 

associated with increased DIRC3 and IGFBP5 expression. IGFBP5 is a secreted antagonist of 

IGF-1 signaling, and elevated IGF-1 levels were associated with CTS and TF in UKB, thereby 

implicating IGF-1 as a driver of both diseases. 
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Introduction 

  

Trigger finger (TF), also known as stenosing flexor tenosynovitis, and carpal tunnel 

syndrome (CTS) are the two most common non-traumatic hand disorders, with lifetime 

prevalence of 2-10%1,2 and 3-10%3,4, respectively. TF causes impaired gliding of the flexor 

tendons through the first annular (A1) pulley and manifests as painful clicking of the digit 

during flexion and extension, with progressive stiffness, locking and loss of function. In 

contrast, CTS is a compression neuropathy of the median nerve that manifests as 

paresthesia, pain, numbness and weakness of the hand. Both conditions are associated with 

marked functional impairment and reduced quality of life5. CTS is associated with an 

estimated loss of 78,375 disease adjusted life years annually in the United States, a total 

disease burden of $2.7-4.8 billion per year6 and loss of earnings estimated at $89,000 per 

patient over 6 years7. The mainstay of treatment for both conditions is surgical 

decompression: release of the A1 pulley in TF; release of the transverse carpal ligament in 

CTS. 

  

Observational studies have previously suggested a link between CTS and TF: a prospective 

study found that 43% of patients diagnosed with TF had clinical signs or symptoms of CTS8; a 

study of patients with CTS or TF found that on clinical examination 61% had both CTS and 

TF9. Furthermore, 63% of patients with TF had neurophysiological evidence of CTS 

compared to 8% of controls10. In addition, CTS and TF share risk factors, such as repetitive 

movements11, diabetes2 and obesity12. 
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While the genetic architecture of CTS has been investigated recently, through a genome-

wide association study (GWAS) in UK Biobank (UKB)14, much less is known about the genetic 

basis of TF. The only published GWAS for TF included only 942 cases and 24,472 controls 

and identified a single non-replicated locus on chromosome 1313. Here, by identifying high-

confidence TF cases in the prospectively recruited UKB cohort, we confirm a markedly 

significant phenotypic association between TF and CTS, and recapitulate known associations 

between TF and metabolic syndrome. In light of this TF-CTS overlap we hypothesized that 

there might be a common genetic basis for TF and CTS. To investigate this possibility, we 

performed GWAS for TF, identifying five independent loci, of which one (DIRC3), directly 

overlapped with the CTS GWAS. Through co-localization analysis and functionally informed 

fine-mapping, we identify a single putative causal variant at the DIRC3 locus for both TF and 

CTS. Finally, using expression quantitative loci (eQTL) analysis in bulk- and single-cell-RNA 

sequencing datasets, we confirm that this variant modulates expression of the long non-

coding RNA (lncRNA) DIRC3, and its transcriptional target, insulin-like growth factor-binding 

protein-5 (IGFBP5), directly implementing this pathway in the pathophysiology of TF and 

CTS. 
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Results 

 

Phenotypic association between CTS and TF 

 

Our phenome-wide analysis re-capitulated a highly significant association between TF and 

CTS (p<1×10-300, odds ratio = 11.97, Figure 1a). To explore the phenotypic association 

between TF and CTS, we quantified the overlap between TF and CTS (Figure 1b) and 

explored the clinical characteristics of patients with TF, CTS and TF-CTS overlap (Table 1). 

We identified evidence for significantly increased prevalence of type 1 and type 2 diabetes 

mellitus as well as significantly increased HbA1c levels, a routinely-used biomarker for 

glycemic control, in TF-CTS overlap patients compared to CTS patients (p<1x10
-4

) and TF 

patients (p<0.01). 

 

Genome-wide association analysis for TF 

 

To investigate the genomic architecture of TF, we performed a GWAS in European ancestry 

UKB participants (n=456,606), incorporating 2,908 TF patients, as previously defined (Figure 

1b), and 436,579 controls (Figure S1), using a mixed-model approach, accounting for 

unbalanced case-control ratios, population structure and cryptic relatedness. There were 

insufficient TF cases in non-European ancestry groups to perform a sufficiently-powered 

analysis. There was no evidence of significant confounding with genomic inflation factor 

(λGC) = 1.058, and we estimated the SNP-based heritability for TF to be 0.8% (SE 0.1%).  We 

identified five independent risk loci comprising 419 variants meeting genome-wide 
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significance (Figure 2a). Conditional analysis revealed no evidence of secondary signals at 

each locus.  

 

Using a multi-modal approach to gene-mapping, we identified 20 candidate genes at the 

five loci (Figure 2b, summarized in Table 2). In support of our stringent approach to TF 

phenotype definition, we found that including cases with either ICD-10 or OPCS coding 

support (extended cohort), or additionally including self-reported TF cases (mixed cohort) 

markedly reduced the power to detect significance associations across these 5 loci (Table 

S1).  

 

Co-localization, replication and fine-mapping at DIRC3 locus 

 

At the DIRC3 locus, index SNP rs10203066 (p=6.73×10-13, OR 0.75, 95% CI 0.69-0.82), was 

shared with our recently published CTS GWAS (p=2.20×10-12, OR 0.88, 95% CI 0.85-0.91). To 

confirm that this signal was not driven solely by the CTS cases in our TF cohort, we repeated 

the analysis excluding any TF-CTS overlap cases and confirmed that this signal retains 

genome-wide significance (p=1.53×10-10, Table S1). Consistent with the independent 

association of this locus with CTS and TF, we confirmed an increase in statistical association 

having merged TF and CTS cases (p=1.28×10-24, Table S1). 

 

To investigate whether this shared signal reflects linkage or a common causal variant, we 

performed co-localization analysis with a multiple causal variant assumption (SuSiE coloc). 

This analysis identified a high posterior probability (87%) that TF and CTS share a single 

causal variant at this locus. To replicate the association between the DIRC3 locus and both 
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TF and CTS, we extracted summary statistics for TF and CTS from the FinnGen cohort 

(release 4). The association with both TF (1,485 cases and 137,185 controls; p=0.0055) and 

CTS (576 cases and 158,705 controls; p=1.90×10-5) was confirmed.  

 

We leveraged the co-localization analysis between CTS and TF traits to fine-map this locus 

by extracting the 95% credible set (n=20) of co-localized variants. Next, using Ensembl 

Variant Effector Predictor
14

, we functionally annotated the SNPs with their immediate 

regulatory environment. One SNP, rs62175241, had significant regulatory consequences by 

disrupting an enhancer site active in fibroblasts as well as the binding motifs for a range of 

transcription factors including KLF16 and KLF18 (Figure S2). 

 

eQTL analysis at DIRC3-IGFBP5 locus 

 

To investigate how rs62175241 might modulate the expression of the long non-coding RNA 

(lncRNA), DIRC3, we performed expression quantitative trait locus (eQTL) analysis using data 

from 53 tissues examined as part of the GTEX project15. This analysis demonstrated that the 

effect of rs62175241 (T allele, protective for CTS and TF) on DIRC3 expression is highly 

tissue-specific, with positive regulation in stomach and spleen, and negative regulation in 

testis and amygdala (Figure 4a). In light of evidence that DIRC3 is able to directly activate 

expression of IGFBP5
16, with both genes found in the same topologically associating domain 

(TAD), we examined the effect of rs62175241 on IGFBP5 expression in GTEx. This again 

demonstrated tissue-specific eQTL associations and revealed a discordant effect of 

rs62175241 on DIRC3 and IGFBP5 expression in the spleen (Figure 4b). Considering that 

fibroblast proliferation is a histological feature of both TF and CTS17, we further investigated 
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the effect of rs62175241 on IGFBP5 expression in fibroblasts.  We re-analyzed fibroblast 

single-cell eQTL data from 79 donors18. Four of six fibroblast cell sub-types demonstrated a 

significant positive association between the protective T allele of rs62175241 and IGFBP5 

expression (Table S3), with the strongest association seen in HOXC6+ cluster (Figure 4c). 

LncRNAs inherently have markedly lower abundance than mRNAs19, and consistent with this 

and the shallow depth of sequencing in single cell RNA sequencing data, DIRC3 was 

detected in less than 1% of cells, precluding further analysis. 

 

Next, we analyzed the association of rs62175241 on DIRC3 and IGFBP5 expression in 

diseased tenosynovium samples from patients with CTS (n=77). We confirmed that the 

protective T allele was associated with significantly increased IGFBP5 expression (p=0.033, 

Figure 4d). DIRC3 expression levels were again low and did not show allele-specific 

differential expression (p=0.086, Figure 4e). Because IGFBP5 is a secreted protein, we 

investigate whether this variant might alter plasma concentration. We analyzed an available 

plasma proteomic GWAS dataset based on the SomaLogic platform
20

, and found that this 

variant (tagged by rs10203066, A allele, r2=0.99) was associated with a non-significant 

increased plasma IGFBP5 (beta=0.017; p=0.11). 

 

IGF-1 is associated with increased risk of both TF and CTS 

 

As IGFBP5 is known to directly antagonize IGF-1 signalling21–23, with evidence that 

exogenous growth hormone treatment can cause CTS21, we hypothesized that higher IGF-1 

plasma levels would be associated with significantly increased risk of both TF and CTS in UK 

Biobank. We identified significant associations between IGF-1 and TF (hazard ratio (HR) per 
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1 SD = 1.04, 95% CI 1.01-1.07, p=0.02) and CTS (HR per 1 SD = 1.04, 95% CI 1.02-1.05, 

p=4.23×10-6), which is concordant with a recent CTS-specific analysis in UKB24. If the 

protective effect of rs62175241 was mediated via antagonism of IGF-1 signaling, we 

hypothesized that this variant would be associated with attenuation of growth hormone-

regulated phenotypes such as height and lean body mass. To investigate this, we extracted 

growth phenotype summary statistics from UK Biobank, and selected traits meeting 

phenome-wide significance (1×10
-5

). This identified 22 growth-related traits that were 

significantly associated with rs62175241 (Table S4), all of which had a negative beta, 

including standing height (p=3.57×10-18), weight (p=8.24×10-6), forced vital capacity 

(p=1.13×10-6) and appendicular lean mass (p=4.90×10-33). Altogether, the available data 

suggest that IGF-1 is associated with increased risk of TF and CTS, and that the T allele of 

rs62175241 may act to directly attenuate IGF-1 signaling, thus explaining its protective 

effect for TF and CTS. 

 

Discussion 

 

This study confirmed a highly significant phenotypic association between TF and CTS. GWAS 

identified five risk loci that were significantly associated with TF, one of which was shared 

with our previous GWAS of CTS patients. Hypothesizing that a single genetic variant might 

contribute to the pathogenesis of both diseases, we fine-mapped this locus to a single 

putative causal SNP, rs62175241. Single-cell eQTL analysis demonstrated that this variant 

was associated with tissue-specific modulation of the expression of DIRC3 and its known 

downstream effector, IGFBP5. Bulk RNA-seq analysis of surgically resected tenosynovium 

samples from patients with CTS revealed that the protective variant was associated with 
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enhanced expression of IGFBP5.  Considering that IGFBP5 is an antagonist of IGF-1, we 

found that both TF and CTS were associated with higher levels of IGF-1. These findings are 

important because they provide direct biological insight into the shared pathophysiological 

mechanisms contributing to TF and CTS. Furthermore, they provide a starting point for 

investigating non-surgical interventions for these two common conditions.  

 

The co-localized locus that mapped to the DIRC3 gene has not been previously described in 

association with TF. One previous GWAS13 has been conducted to identify risk loci 

associated with TF, finding a single non-replicated locus within KLHL1 that met significance. 

KLHL1 is an actin-binding protein and the authors of this paper speculated that this variant 

might lead to fibrocartilaginous metaplasia in tenocytes.  

 

In the present TF GWAS, the putative causal SNP, rs62175241, is located 3,731 base pairs 

from the canonical transcription start site (TSS) of the DIRC3 gene. The DIRC3 locus spans 

450kb between the IGFBP5 and TNS1 genes. By mapping the chromatin structure of the 

IGFBP5-DIRC3-TNS1 gene territory, Coe et al16 have previously identified that DIRC3 and 

IGFBP5 are located within the same topologically-associated domain (TAD) and found two 

DNA looping interactions between the DIRC3 locus and IGFBP5 promoter. DIRC3 levels 

positively correlated with IGFBP5 in melanoma RNA-seq samples and the authors 

discovered that DIRC3 acts in cis to control expression of IGFBP5.  

 

IGFBP5 expression appears to be altered in a number of fibrotic disease states. In lung tissue 

from patients with idiopathic pulmonary fibrosis (IPF), IGFBP5 was upregulated, and 

exogenous IGFBP5 appeared to stimulate ECM secretion by IPF pulmonary fibroblasts25,26. 
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Furthermore, IGFBP5 was upregulated in skin fibroblasts from patients with systemic 

sclerosis27. In the present study, the protective T allele at our putative causal SNP appeared 

to have tissue-specific effects on expression of DIRC3 and IGFBP5 (Figure 4). In both skin 

fibroblasts and operative tenosynovium samples from patients with CTS, the protective 

allele was associated with enhanced expression of IGFBP5.  IGFBP5 is a highly conserved, 

multifunctional secreted protein that binds to IGF and can have complex and varying effects 

on IGF signaling depending on the tissue type and context
28

. In bone, IGFBP5 appears to 

inhibit IGF-1 signalling29 by modulating binding to the IGF-1 receptor22. Similarly, in 

mammary tissue, IGFBP5 appears to regulate involution by inhibiting IGF-1 signalling23.   

 

Consistent with the hypothesis that overactive IGF-1 signaling is important in TF and CTS, we 

discovered that higher circulating IGF-1 plasma levels were significantly associated with 

increased risk of both conditions. Furthermore, despite CTS generally being associated with 

decreased height, the protective allele at our putative causal locus was associated with 

decreased height, potentially suggesting a distinct pathophysiological mechanism. Several 

other lines of evidence support the role of IGF-1 signaling in TF and CTS. The prevalence of 

CTS30 and TF31 is increased in patients with acromegaly, for whom raised IGF-1 levels are 

characteristic. Furthermore, by normalizing levels of IGF-1, either through pituitary 

resection or somatostatin analogues, increased tendon thickness at the A1 pulley can be 

reversed, and symptoms of TF ameliorated31. In healthy patients who do not suffer from 

acromegaly, giving exogenous growth hormone stimulates a rise in IGF-1 and patients 

subsequently develop CTS21. Exogenous growth hormone is also known to increase the risk 

of type 2 diabetes mellitus, which is significantly enriched in patients with both CTS and TF32 

(Table 1). Finally, somatostatin analogues work not only by reducing pituitary growth 
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hormone secretion but also by stimulating IGFBP5 secretion33, which in turn inhibits IGF-1 

signaling.  

 

We recognize several limitations of the present study. Firstly, our GWAS of TF patients was 

limited to patients of European ancestry. It would be helpful to further characterize the 

genomic architecture of TF in non-European groups, who are under-represented in GWAS. 

While our GWAS has greater power to detect a locus with MAF 50% and OR 1.2 than a 

previous TF GWAS13 (81% versus 3% power), our study was still relatively unpowered, 

especially for low-frequency variants, meaning that other relevant risk loci may not have 

met our pre-defined significance threshold. While we were able to replicate our colocalized 

DIRC3 locus in both TF and CTS patients in the FinnGen cohort, we were unable to replicate 

all 5 TF loci. This may be partly explained by the size of the replication cohort (1,485 TF 

cases), and different case definitions in FinnGen, but may also be consistent with the 

‘Winner’s Curse’34 phenomenon in GWAS. Regardless, the validation data strongly supports 

a role for the DIRC3 locus in both TF and CTS. 

 

We have identified a biologically relevant mechanism that may underpin the association 

between our co-localized risk locus and TF and CTS. However, we recognize that the 

association between protective allele, DIRC3, IGFBP5 and IGF-1 are all correlative and 

further studies are required to dissect these mechanisms and demonstrate a causative 

effect.  

 

In conclusion, we have identified a shared variant, associated with both TF and CTS, that 

partially explains the phenotypic association between these two conditions. Furthermore, 
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we have analyzed a plausible biological model by which this risk is conveyed. Altogether, our 

findings indicate that the protective variant at rs62175241 acts by enhancing expression of 

IGFBP5, via DIRC3, which in turn inhibits IGF-1 signaling. Further studies are required to fully 

characterize this pathway and delineate whether it might be a valid target for 

pharmacological management of TF and CTS.  

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 11, 2021. ; https://doi.org/10.1101/2021.10.07.21264697doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.07.21264697
http://creativecommons.org/licenses/by-nd/4.0/


 14

Methods 

 

Ethics approval 

 

UK Biobank has approval from the North West Multi-Centre Research Ethics Committee 

(11/NW/0382), and this study (Genetics and Epidemiology of Common Hand 

Conditions/GECHCo) has UK Biobank study ID 22572. The Oxford-CTS cohort is derived from 

two clinical studies approved by the National Research Ethics Service, United Kingdom - Pain 

in Neuropathy Study (PiNS, 10/H07056/35) and Molecular Genetics of Carpal Tunnel 

Syndrome (MGCTS, 16/LO/1920). 

 

UKB genomic data quality control 

 

We selected participants with available imputed genomic data (field 22028), and excluded 

participants with sex chromosome aneuploidy (field 22019), discordant genetic sex (fields 

31 and 22001), excess heterozygosity and missing rate (field 22027). Classification of genetic 

ancestry was performed as described previously35, identifying 456,606 participants with 

>70% probability of European ancestry. Principal components (PC1-10), accounting for 

population structure, were computed from high-quality SNPs derived from the ‘in_PCA’ field 

in the UKB SNP quality control resource (‘ukb_snp_qc.txt’). PCs were computed on the 

unrelated samples (UKB-provided KING kinship coefficient <0.0442), before being projected 

onto all European ancestry participants, implemented in the ‘run_pca_with_relateds’ 

function in the gnomAD package for Hail. For all analyses using genotyped data, we filtered 

to variants with MAF>1%, call rate>95% and minor allele count>100. For all analyses using 
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imputed data, we filtered to variants with INFO score>0.8 and MAF>1% across the whole 

cohort. 

 

Phenotype definition 

 

CTS cases (n=16,294) were defined as previously described36 – briefly, we selected 

individuals with either ICD-10 coding for CTS (G560), OPCS coding for carpal tunnel release 

(A652), self-reported CTS diagnosis (1541) or self-reported carpal tunnel surgery (1501). To 

maximize specificity, TF cases were defined by the intersection of patients with ICD-10 

coding for TF (M65.3, M65.30-39), and patients with OPCS coding for tendon release (A651, 

A652). For sensitivity analyses, we explored including patients with either ICD-10 or OPCS 

coding alone (termed extended cohort) and additionally including patients with self-

reported TF symptoms (1619, termed mixed cohort). To explore the common genetic basis 

of TF and CTS, we defined two additional case groups: 1) TF cases excluding CTS cases and 2) 

participants diagnosed with either TF or CTS. To define a control group for all subsequent 

genome-wide analyses, we excluded participants with any of the above diagnosis codes, 

leaving 482,360 participants, of which 436,576 passed genomic data QC. 

 

Phenotypic association analysis 

 

To identify diagnoses associated with TF, all UKB ‘first occurrence’ fields and cancer registry 

data (fields 40005 and 40006) were extracted, with ICD10 codes mapped to Phecodes using 

established mappings37. Data entries were binarized to construct a matrix of 694 diagnosis 

codes (including TF and CTS, as defined above) versus 502,505 participants in UKB. To 
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determine the association between TF-diagnosis pairs, we constructed a 2x2 contingency 

table for each pair, and performed a Fisher’s one-way test. Significance level was set at 

p<1×10-5. 

 

Genome-wide association analysis (GWAS) 

 

Genome-wide association analyses were implemented in Regenie version 2.2.1
38

 in the 

European ancestry cohort using Firth approximation, with covariates including year of birth 

(field 34), genotyping array (binarized from field 22000), recruitment center (field 54) and 

principal components 1-10. For phenome-wide association analysis in UK Biobank, summary 

statistics were extracted from the OpenTargets Genetics Portal
39

, extracting data specific to 

the European ancestry group and with p<1×10-5. 

 

Processing of summary statistics 

 

To identify independent signals, we performed conditional and joint analysis, implemented 

in GCTA-COJO40 using a linkage disequilibrium (LD) reference derived from 1000 Genomes 

European ancestry participants. LD score regression (LDSC) was implemented in the ‘ldsc’ 

package for R using the UKB European ancestry LD reference derived from the PanUK 

Biobank project41. Lead SNPs were annotated using the OpenTargets Genetics portal42 

considering three annotations: the nearest coding gene, genes with a cis-eQTL variant in 

linkage disequilibrium (r2>0.8) with the lead SNP, and the Variant2Gene score. 
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Co-localization analysis 

 

CTS summary statistics from our previous GWAS were used. SNPs common between the CTS 

and TF analyses were merged using the ‘snp_match’ function in the ‘bigsnpr’ package for R. 

To extract data specific to the DIRC3 locus, we filtered the merged summary statistics to a 

1MB region centered at rs10203066. To extract a signed LD correlation matrix for the SNPs 

in these regions, we used the function ‘ld_matrix_local’ in the ‘ieugwasr’ package for R, 

using a LD reference derived from 5,000 randomly selected unrelated European participants 

in UKB. Co-localization analysis was implemented in the ‘coloc’ package for R using the 

function ‘coloc.susie’, with default parameters. The posterior probability for hypothesis 4 

(H4), reflecting existence of a shared causal variant, was extracted. To determine the 95% 

credible set of colocalized variants, we extracted the posterior probabilities of each SNP, 

conditioned on H4 being true. These SNPs were functionally annotated using Ensembl 

Variant Effect Predictor (VEP), release 75 (GRCh37). 

 

Replication in FinnGen cohort 

 

Summary statistics for TF (M13) and CTS (G6) were downloaded from 

https://console.cloud.google.com/storage/browser/finngen-public-data-

r4/summary_stats/. The FinnGen analysis pipeline has been described previously 

(https://finngen.gitbook.io/documentation/v/r4/) – briefly, association tests for each 

endpoint were implemented in SAIGE43 adjusted for age, sex, PC1-10 and genotyping batch. 

LocusZoom plots were generated using http://locuszoom.org/, using legacy mode and the 

1000 Genomes European LD reference, relative to the index SNP rs10203066.  
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Oxford-CTS cohort sample collection 

 

Sample collection for both the PiNS and MGCTS has been described previously36. Briefly, 

patients with clinically-diagnosed CTS underwent carpal tunnel decompression surgery, 

during which synovial specimens were collected. Samples were preserved in RNAlater 

(Thermo Fisher) before extraction using the High Pure RNA Isolation Kit (Roche). For paired 

whole-genome genotyping, DNA was extracted from whole blood samples using the 

PureLink Genomic DNA Kit (Invitrogen). 

 

Oxford-CTS genomic data quality control 

 

For the Oxford-CTS cohort, genotyping was performed using the Infinium Global Screening 

Array-24 v2.0 (Illumina, San Diego, CA, USA), which includes approximately 700,000 

markers. SNPs with call rate <98% or Hardy-Weinberg p<0.0001 were removed, leaving 

n=691,354 SNPs. Samples with excess heterozygosity (>3 standard deviations from the 

mean) were removed (n=6), and we confirmed sample call rate >98% and absence of sex 

discrepancy (using the PLINK --check-sex function). Participants with closer than 3rd degree 

relatedness (PC-relate kinship coefficient>0.05) were excluded using the pc_relate function 

in Hail. For classification of genetic ancestry, we used our linkage disequilibrium (LD)-pruned 

high-quality variants, and merged with variants available from an integrated call-set (call 

rate>95%) derived from 1000 Genomes and Human Genome Diversity Project (HGDP, 

gnomAD). European ancestry participants were assigned with a minimum probability of 

70%, using a random forest classifier trained using reference data. Bi-allelic SNPs were 
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imputed using the Haplotype Reference Consortium (HRC) reference panel v1.1, with pre-

phasing and imputation implemented using EAGLE2 and PBWT respectively (Sanger 

Imputation Server). 

 

RNA sequencing (RNA-seq) 

 

RNA extraction and library preparation were performed as described previously
36

. Reads 

were aligned to GRCh37 reference with STAR44 using the Ensembl 87 gene annotation, with 

gene-level counts assigned using HTSeq45. Count-level batch correction between GECHCo 

and PiNS cohorts was performed using ComBat-seq. In order to facilitate inter-sample 

comparisons, count-level data was TMM-normalized and log-transformed to generate log-

transcripts per million (log-CPM) data.  

 

eQTL analysis 

 

Harmonized summary statistics from analysis of Genotype-Tissue Expression (GTEx) project 

data were downloaded from eQTL Catalogue15. eQTL analysis for IGFBP5 in the Neavin et al. 

cohort was performed as described previously18. Briefly, for each individual and fibroblast 

cluster, the quantile-normalized pseudobulk average expression was extracted, and cis-

eQTL association statistics were computed using a linear model implemented in 

MatrixEQTL46, with one PEER factor as covariate. eQTL analysis for DIRC3 and IGFBP5 in the 

Oxford-CTS cohort was implemented as a Kruskal-Wallis test for gene expression (log-CPM) 

against genotype.  
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IGF-1 in UK Biobank 

 

IGF-1 plasma levels from the first recruitment visit were extracted from field 30770, and 

were normalized by Z-scoring, stratified by age (decile) and sex. For Cox regression of TF- or 

CTS-free survival against Z-scored IGF-1, the time variable used was time from blood 

sampling to ICD-coded diagnosis of CTS or TF, or last follow-up date. Last follow-up date was 

determined through integration of death status, recruitment visits and ICD coding dates. 

The model was adjusted for age at first recruitment visit, sex and recruitment center. 
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Figure 1: Trigger finger is strongly associated with carpal tunnel syndrome in UK Biobank. (a) 
Phenome-wide association analysis, showing the association between trigger finger (TF) and 694 
phenotypes derived from ICD10 coding in UK Biobank. P-value refers to a Fisher’s exact test, and the 
direction of the triangle reflects the direction of the effect. (b) Overlap between TF and carpal tunnel 
syndrome (CTS) in UK Biobank, annotated with the case definition used for CTS and TF cases. 
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Figure 2: Genome-wide association results for TF and CTS. (a) Summary statistics from TF (upper 
panel) and CTS (lower panel, derived from Wiberg et al.) genome-wide association analyses in 
European subjects in UKB. Independent loci in TF summary statistics are annotated with the SNP 
identifier for the index SNP (lowest p-value) at each locus. Asterisk corresponds to signal at DIRC3 locus 
common to TF and CTS analyses. (b) Results of gene prioritization analysis for TF trait, using multiple 
annotations including nearest gene to SNP, cis-eQTL associations and the Variant2Gene score from 
OpenTargets Genetics. 
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Figure 3: Colocalisation and replication at DIRC3 locus. SNP-level associations with (a,b) TF and (c,d) 
CTS associations at DIRC3 locus, displayed as a LocusZoom plot, derived from (a,c) UKB and (b,d) 
FinnGen prospectively-recruited cohorts. Index SNP at DIRC3 locus (rs10203066) is annotated in 
purple, and each SNP is colored according to r2 with rs10203066, derived from 1000 Genomes linkage 
disequilibrium reference. 
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Figure 4: rs62175241 is associated with increased RNA expression the DIRC3-IGFBP5 axis. Cis-eQTL 
analysis for rs62175241 on (a) DIRC3 and (b) IGFBP5 gene expression in 49 tissues from the GTEx 
project. Tissue-specific eQTL associations with p-value < 0.01 are annotated, p-value refers to linear 
model adjusted for PC1-6. (c) Validation of rs62175241 as an eQTL for IGFPB5 expression in the 
HOXC6+ fibroblast cluster, using single-cell RNA sequencing of fibroblasts from 79 donors. P-value 
refers to linear model, adjusted for average expression and 1 PEER factor. Association between 
rs62175241 genotype and (d) DIRC3 and (e) IGFBP5 expression derived from paired whole-genome 
genotyping and RNA sequencing of surgical tenosynovium samples in Oxford-CTS cohort (n=77, n=18 
with CT genotype, n=1 with TT genotype). P-value refers to Kruskal-Wallis test. 
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Figure S1: CONSORT diagram summarizing the selection of case (n=2908) and control (n=436,579) 
cohorts for trigger finger (TF) genome-wide association analysis in European subjects from UKB cohort. 
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Figure S2: Genomic context of rs62175241 (marked with arrow), annotated with DIRC3 transcript 
location, functional genomics annotations including transcription factor and histone modification ChIP-
seq, DNase-accessible sites, predicted regulatory elements and Hi-C data indicating chromosome 
spatial organization. Credit UCSC Genome Browser (https://genome.ucsc.edu/index.html).  
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Table 1: Cohort characteristics, for TF and CTS cases in UKB. P-value refers to Kruskal-Wallis non-parametric test (continuous variable) or chi-squared test for independence 

(binary variable). 

 Overlap TF-CTS (N = 887) Carpal tunnel 

syndrome only 

(N = 15,407) 

Trigger finger 

only (N = 2,326) 

Age of diagnosis          

   min 32.72 28.74 31.66 

   max 77.92 78.06 77.43 

   mean (sd) 57.81 ± 8.11 57.15 ± 8.92 60.09 ± 7.62 

Sex          

   Male (%) 272 (31) 4,634 (30) 1,003 (43) 

   Female (%) 615 (69) 10,773 (70) 1,323 (57) 

BMI          

   mean (sd) 29.68 ± 5.59 29.48 ± 5.75 28.32 ± 4.83 

Height          

   mean (sd) 164.12 ± 9.06 164.43 ± 8.72 166.76 ± 9.14 

HbA1c (IFCC)          

   mean (sd) 40.04 ± 11.07 37.92 ± 8.44 38.75 ± 9.91 

Comorbidities (%)          

   Current smoker 94 (11) 1,728 (11) 230 (10) 

   Previous smoker 333 (38) 5,835 (38) 959 (41) 

   T1DM 80 (9) 524 (3) 123 (5) 

   T2DM 191 (22) 2,476 (16) 405 (17) 

   Hypertension 441 (50) 7,196 (47) 1,069 (46) 

   High cholesterol 321 (36) 5,077 (33) 888 (38) 

   Gout 43 (5) 744 (5) 118 (5) 

   Osteoarthritis 463 (52) 6,749 (44) 891 (38) 
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  Hypothyroidism 65 (7) 903 (7) 195 (8) 

   Rheumatoid arthritis 252 (28) 3,706 (24) 486 (21) 
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Table 2: Results of association analysis for TF. Lead SNP refers to SNP with the lowest p-value at each independent locus. 

Chromosome 

Position 

(GRCh37) Lead SNP 

Effect 

allele 

Non-effect 

allele 

Effect 

allele 

frequency 

Odds ratio 

(95% CI) Lower CI Upper CI p-value 

2 218144954 rs10203066 A G 0.14 0.75 0.69 0.82 6.73E-13 

5 64783767 rs2087927 A G 0.26 0.84 0.79 0.89 4.04E-09 

11 65320780 rs4244811 G A 0.33 1.17 1.11 1.23 3.37E-09 

16 53908657 rs10521304 T C 0.54 0.82 0.78 0.86 2.76E-14 

16 69887707 rs3790086 C G 0.54 0.87 0.83 0.92 3.61E-08 
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