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Abstract 
 

The secreted protein Cystatin C (CyC) is a cysteine protease inhibitor of incompletely 

characterized biomedical function, used clinically for estimation of glomerular filtration rate. 

Plasma CyC is elevated in many patients, especially when they receive glucocorticoid (GC) 

treatment. Here we empirically connect GCs with systemic regulation of CyC. First, we leveraged 

genome-wide association and structural equation modeling to determine the genetics of the 

latent trait CyC production in UK Biobank. Using multi-modal genomic, transcriptional, and 

experimental approaches, we demonstrated that CyC is a direct target of GC receptor, with GC-

responsive CyC secretion exhibited by macrophages and cancer cells in vitro. Elevated serum CyC 

levels were positively correlated with GC levels in a murine model of cancer progression. 

Consistent with the coupling of CyC levels to GC signaling in a disease relevant manner, CyC 

predicted elevated all-cause and cancer-specific mortality in humans. These associations were 

orthogonally confirmed by a polygenic score (PGS) capturing germline predisposition to CyC 

production. This PGS predicted checkpoint immunotherapy failure in a combined clinical trial 

cohort of 685 metastatic cancer patients, with available germline exome sequencing. Taken 

together, our results demonstrate that CyC captures biomedically-relevant variations in 

endogenous GC activity, raising the possibility that CyC may be a direct effector of GC-induced 

immunosuppression and therefore a target for combination cancer immunotherapy. 
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Introduction 
 

Large prospective patient cohorts with comprehensive genetic, physical and health data, often 

termed biobanks, allow for the re-evaluation of human disease, health and health care1. Due to 

substantial genetic variation between humans2, genome-wide association studies (GWAS) are 

analogous to forward genetic screens, and can direct discovery of the molecular determinants of 

complex biomedically relevant phenotypes such as organ function3. Previously, we have 

developed a model for the accurate estimation of kidney filtration function, defined as the 

estimated glomerular filtration rate (eGFR), in patients with cancer4,5. Like others before, we used 

creatinine6, a breakdown product of muscle creatine metabolism that is renally excreted7, as a 

prediction variable. In non-cancer patients, this approach has been compared to the use of 

cystatin C (CyC)8, a small secreted protein. Serum levels of both molecules depend on latent 

(unmeasured) components: most notably their production (reflecting both synthesis and 

externalization) from the producing cells and the GFR. While the determinants of creatinine 

production are relatively well-characterized and relate to muscle mass and diet9, the factors that 

regulate CyC production are in contrast poorly understood10. Unlike the metabolic end-product 

creatinine, but like many other secreted proteins, cystatin C has biological functions: in its 

monomeric form it is a highly potent paracrine inhibitor of intracellular cysteine proteases11,12.  

 

Given the known function of CyC and its extracellular localization, it is likely that CyC production 

is systemically regulated. A first indication of this regulation may by the following set of 

observations. Organ transplant patients tend to have a higher serum CyC for a given measured 

GFR13. The vast majority of transplant patients are prescribed exogenous glucocorticoids (GCs), 

such as prednisolone or dexamethasone, as part of their immunosuppressive regimen14. Paired 

analyses accounting for patient-specific factors and renal function have demonstrated that 

exogenous GCs increase CyC production15, an effect that has also been observed in patients with 

excess endogenous GC production (Cushing’s syndrome)16. Moreover, CyC production is 

increased in a range of disease states that induce GC elevations, including viral infection17, 

inflammatory disease10 and cancer18. This positive association between GC exposure and CyC 

production has been recapitulated experimentally in vitro19 and in vivo20.  

  

Cortisol, the endogenous GC in humans, is produced by the adrenal gland21 in a circadian rhythm 

peaking in the early morning22. Through action on the cytosolic glucocorticoid receptor (GR), 

glucocorticoids profoundly modulate the cellular transcriptional landscape23, affecting up to 20% 

of all genes24 and driving systemic reprogramming of metabolism and immunity that is essential 

for life25. While our understanding of the mechanisms by which GCs are immune-modulatory 

remains limited26, their immunosuppressive function is firmly established and therapeutically 

employed across a wide range of auto-immune and inflammatory diseases, such as rheumatoid 
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arthritis27. They are also used to mitigate immune-mediated damage to normal organ systems, a 

common and potentially severe side effect of T cell activation by checkpoint immunotherapy 

(CPI) in cancer28.  This latter indication has emphasized the importance of determining whether, 

and in what circumstances, exogenous GCs could impair the efficacy of CPI29,30. Evidence from in 
vivo models of cancer suggest that even low doses of GCs can suppress anti-tumor immunity30, 

leading to enhanced metastasis and reduced survival31. This has remained difficult to empirically 

investigate in cancer patients due to confounding by performance status and comorbidities32, 

inconsistent CPI trial inclusion criteria29 and the difficulties in performing  well-controlled trials in 

this context.  

 

While diurnal variation makes plasma cortisol an imprecise metric, there is clear evidence of 

inter-individual variation in cortisol production. Psychosocial stress33, metabolic stress (for 

example, calorific restriction)30, shift work34 and chronic diseases, such HIV35 and cancer30, are 

associated with marked increases in endogenous GC production. This is not without consequence 

– alterations in cortisol production (and chronic GC treatment36) are associated with the onset of 

metabolic syndrome37,38, a cluster of interrelated conditions including hypertension, insulin 

resistance, dyslipidemia and obesity, which is in turn associated with increased risk of 

cardiovascular disease and type 2 diabetes39. Twin studies have demonstrated relatively high 

heritability in plasma cortisol40, suggesting that inter-individual variability in endogenous cortisol 

production may have a significant genetic component, which has remained largely unexplained 

by GWAS to date41.  

 

We hypothesized that, rather than being a passive marker of renal function, cystatin C is directly 

associated with disease states and that this association might be mediated by GC signaling. Here, 

to empirically investigate this question, we leverage UK Biobank (UKB), a prospective population-

based cohort comprising approximately 480,000 subjects who provided germline genetics, serum 

CyC and serum creatinine. Using conventional GWAS for eGFR-CyC/eGFR-Creatinine followed by 

structural equation modeling (SEM), we estimate single nucleotide polymorphism (SNP)-level 

associations with the latent trait of CyC-production. We characterize patient-level predisposition 

to CyC-production via construction of a polygenic score (PGS), which is validated in a held-out 

cohort. Through colocalization analysis and gene set enrichment, coupled with validation through 

functional genomics and in vitro assays we demonstrate that CyC is a direct target of GR. We 

apply the CyC-production PGS to identify myeloid cells as the predominant source of CyC, which 

we confirm in vitro. Finally, using multi-omic analysis in several independent patient cohorts, we 

show that CyC-production is associated with metabolic syndrome, reduced cancer-specific 

survival and reduced efficacy of CPI. 
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Results 
 

Genomic architecture of CyC production 
 
To investigate the genomic architecture of CyC production, we first performed a discovery GWAS 

for eGFR-CyC and eGFR-Creatinine (eGFR-Cr) in 381,764 European subjects in UKB, using linear 

mixed models to account for population stratification and cryptic relatedness. We randomly 

selected 50,000 unrelated subjects from the overall UKB European population and excluded their 

data from the GWAS to enable later validation analyses (Figure 1b). Using linkage disequilibrium 

(LD) score regression, we identified strong genetic correlation (r2=0.61) between eGFR-CyC and 

eGFR-Cr, consistent with both traits sharing a common factor that reflects renal filtration 

function. We reasoned that the genetic variance in eGFR-CyC that was not explained by this 

common factor represented the latent trait of CyC-production, given that the CyC plasma level is 

a function of both CyC excretion in the kidney and its cellular production. Thus, we estimated the 

single-nucleotide polymorphism (SNP)-level effects on CyC-production and renal function, by 

constructing a genomic structural equation model (SEM, Figure 1c, Figure S1a-b) implemented in 

Genomic-SEM42, assuming no covariance between CyC-production and renal function. Providing 

confidence in our approach, loci known to directly regulate renal function such as SHROOM343 

and UMOD44 were predominantly associated with the renal function latent trait, while the locus 

coding for CyC (CST3) was predominantly associated with the CyC-production latent trait. Other 

loci associated with CyC-production, such as SH2B345 and FLT346, identify components of immune 

cell signaling cascades and are strongly associated with autoimmune disease. The index SNP at 

the SH2B3 locus is a missense variant (R262W) and exhibits a markedly larger effect size than 

would be expected for its allele frequency (minor allele fraction = 0.48, Figure S1c), consistent 

with evidence that this variant is under active positive selection47.  The CPS1 locus, coding for 

carbamoyl-phosphate synthase 1, stood out as having divergent effects on renal function and 

CyC-production, probably reflecting its independent roles in creatine metabolism48 and immune 

signaling49. We next performed tissue specific partitioned heritability analysis using gene 

expression and chromatin accessibility datasets and this confirmed enrichment of heritability of 

the renal function component in kidney tissues, in comparison to CyC-production (Figure S1d-e). 

This analysis also demonstrated enriched heritability for the renal function trait in liver tissues, 

which may reflect the coupling of hepatic and kidney function, observed clinically as hepatorenal 

syndrome50.  

 

Using the discovery data set, we captured the polygenic architecture of CyC-production by 

deriving a polygenic score (PGS), implemented in LDpred251 using HapMap3 variants, that could 

be reliably imputed in all of UKB, The Cancer Genome Atlas (TCGA) and Genotype-Tissue 

Expression (GTEx) cohorts (Figure S1f, Supplemental Data). We sought to maximize portability to 
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clinical sequencing cohorts where only exome sequencing is available, and thus derived a second 

PGS from HapMap3 variants that could be reliably imputed from exome sequencing data 

(Methods, Figure S1g). In order to validate both PGSs with the data from the validation set 

comprised of the 50,000 unrelated European patients (Figure 1b), it was necessary to define an 

independent patient-level estimate for CyC-production. This is possible, because the discordance 

between eGFR-CyC and eGFR-Cr can be viewed as an approximation for CyC-production. 

Therefore, we modelled eGFR-CyC as a function of eGFR-Cr and sex, and computed the residual 

(termed CyC-residual, Figure 1e). Using this CyC-residual as a surrogate for CyC-production, we 

confirmed that the genome-wide CyC-production PGS had significant predictive power in the 

validation cohort (r2=0.08, p<1e-300, Figure 1f). As expected, predictive performance was 

reduced for the exome-wide PGS in the validation cohort (r2=0.04, p<1e-300). 

 

To investigate the trans-ancestral portability of the genome-wide CyC-production PGS, we 

measured performance versus CyC-residual in African (AFR, n=8152) and Central and South Asian 

(CSA, n=9845) genetic ancestry groups in UKB. We observed poor trans-ancestral portability of 

this PGS in these ancestry groups, with a low proportion of CyC-residual variance explained in 

CSA and AFR populations (Figure S2a-b). In order to derive a PGS in each non-EUR population, we 

performed GWAS and SEM as described above (Figure 1b) in these two ancestry groups but these 

analyses were under-powered to detect any signals reaching genome-wide significance (Figure 

S2c-d). While the genetic correlation between eGFR-CyC and eGFR-Cr in CSA subjects (r2=0.65) 

was comparable to EUR subjects (r2=0.61), genetic correlation was substantially diminished in 

AFR subjects (r2=0.18). This indicates that eGFR-Cr and/or eGFR-Cy correlate weakly with true 

GFR in the AFR population, thus providing empirical genetic evidence to the observation that 

eGFR models have reduced performance in individuals self-identifying as Black or African 

American52. 

 

CyC is a glucocorticoid response gene 
 
The SERPINA1/6 locus on chromosome 14 had one of the largest effect sizes for CyC-production 

(Figure 1d, Figure 2a) and is known to be associated with plasma cortisol41, suggesting a link 

between cortisol and CyC. In a recent cortisol Genome Wide Meta-Analysis (GWAMA), this signal 

was shown to be an expression qualitative trait locus (eQTL) for hepatic expression of 

SERPINA641, which encodes cortisol-binding globulin (CBG). To determine if there was a shared 

common variant, we performed co-localization analysis53. We did not detect a shared causal 

variant (posterior probability = 1.45e-15), but trans-eQTL analysis in the Stockholm Tartu 

Atherosclerosis Reverse Networks Engineering Task (STARNET)54 cohort identified a single SNP 

(rs2749527) at the SERPINA1/6 locus that was associated with significantly reduced plasma 

cortisol (p=1.75e-13) and significantly reduced CST3 gene expression in a visceral adipose tissue 
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(p = 0.002448 in additive model, p=9.21e-6 in recessive model, Bonferroni-adjusted alpha level 

of 0.0025, Figure 2b). This variant is independently associated with significantly reduced liver 

SERPINA6 expression in STARNET (p=4.73e-9, Figure 2c) and GTEx (p=0.004, Figure S3c) cohorts. 

As such, a single genetic instrument connects CBG, plasma cortisol and CyC (Figure S3a), thus 

providing genetic evidence for a direct link between GCs and CyC. 

 

To further examine the link between GCs and CyC, we mapped each SNP meeting genome-wide 

significance to overlapping genes (defined by transcriptional start and end sites) and performed 

gene set enrichment analysis (GSEA) for gene sets relating to GC signaling. This analysis identified 

significant enrichment of 7/15 GC signaling gene sets from the Gene Ontology Resource (Figure 

2d). In light of this, we hypothesized that CST3 might be a direct transcriptional target of 

glucocorticoid receptor (GR, gene name NR3C1). Using functional genomics data derived from 

the ENCODE project, including chromatin immunoprecipitation sequencing (ChIP-seq) for GR and 

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) data in the A549 cell 

line treated with dexamethasone, we identified dexamethasone-induced recruitment of GR to 

an accessible downstream enhancer element at the CST3 locus (Figure 2e-f). In the same 

experiment, dexamethasone significantly increased CST3 gene expression over time (p<0.0001, 

Figure 2g). We sought to investigate whether, and on what timescale, the transcriptional 

induction of CST3 by dexamethasone results in increased cellular secretion of CyC, which would 

cause increased tissue and circulating CyC levels. We first repeated the ENCODE experimental 

protocol using A549 cells and found that extracellular CyC concentration was significantly 

increased after 18 hours of treatment compared to 0 hours (Figure S3d). We next compared 

extracellular CyC concentration 18 hours after treatment with either dexamethasone or vehicle 

control in A549 cells (Figure 2h) and HeLa cells (Figure S3e) and found significant elevations of 

CyC in both cases. Consistent with this, subjects in UKB whose medical history included non-

topical GC treatments had a significantly higher CyC-residual than GC-naïve subjects (p<1e-272, 

Figure 2i). We considered that there might be a direct or an indirect explanation for this clinical 

finding – either GC treatment increases CyC-production or an increased germline predisposition 

to CyC-production increases the risk for disorders that necessitate GC treatment (Figure S3f).  To 

assess the dominant contribution, we compared CyC-production PGS between GC-treated and 

GC-naïve patients in the UKB validation set, and found only a marginal effect compared to the 

effect on CyC-production in the same cohort (t-statisticPGS = -2.93, t-statisticCyC-residual = -10.8, 

Figure S3g). This suggests that the effect of GC treatment on CyC-production is dominant. 

 

In light of our finding that extracellular CyC concentrations do not significantly increase until 18 

hours after dexamethasone treatment in vitro (Figure S3d), we hypothesized that CyC would not 

show a circadian rhythm entrained by plasma cortisol levels. Despite the fact that plasma cortisol 

was not directly measured in UKB, we were able to assess this, because previous studies have 
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demonstrated that plasma bilirubin is strongly correlated to plasma cortisol over time55. Using 

cosinor regression56 for CyC-residual and bilirubin in UKB subjects with available blood sampling, 

we determined that the diurnal variation of CyC-residual is diminished compared to bilirubin 

(amplitude coefficient = 0.038 versus 0.23, Figure S3h). Moreover, the peak in CyC-residual 

appears to be delayed by approximately 18 hours compared to the expected peak in plasma 

cortisol, consistent with our in vitro experiments. Taken together, these findings demonstrate 

that CyC production is directly induced by GCs, and that CyC has a reduced diurnal amplitude and 

offset periodicity compared to plasma cortisol.  

 

CyC is produced by myeloid cells 

 

The GC inducible component of CyC production indicates a potential biological relevance of CyC 

modulation, which would presumably operate in non-cancer cells. To assess this, we first 

determined whether CyC is secreted in a cell type-specific manner.  On first glance, CST3 gene 

expression was relatively consistent across all tissues examined as part of the GTEX project (GTEX 

Portal), but we reasoned that tissues that predominantly secrete CyC would exhibit a significant 

positive correlation between CyC-production PGS and CST3 gene expression. Using expression 

qualitative trait score (eQTS) analysis, we detected a significant positive correlation in spleen 

tissues (n=171, Figure 3a). In support of this, we identified circadian rhythmicity from cosinor 

regression of spleen CST3 gene expression against time of death, which was attenuated 

compared to the canonical GC target FKBP5 (amplitude = 0.060 versus 0.24, Figure S4a).  To 

understand which cell types might be driving this signal, we examined available single-cell RNA 

sequencing (scRNA-seq) data from human spleen57. This showed that only myeloid-derived cell 

populations (dendritic cells, macrophages and monocytes) expressed CST3 (Figure 3b). We 

confirmed myeloid-specific CST3 expression in peripheral blood mononuclear cells (PBMCs) 

scRNA-seq58 (Figure 3c) and across multiple scRNA-seq datasets harmonized as part of the Human 

Protein Atlas59 (Figure 3d). As additional validation, we found significant positive correlation 

between blood monocyte counts and CyC-residual in the UKB cohort (Figure S4b), while two-

sample Mendelian randomization using blood-derived CST3 eQTLs (eQTLGen60) as exposure 

identified a highly significant positive association with CyC-production (p=6.13e-77, Figure 3e). In 

light of evidence that GR is expressed at a substantially higher level in macrophages than 

monocytes61, we hypothesized that monocytes might secrete CyC constitutively while 

macrophages would secrete CyC in response to GC signaling. To investigate this question, we 

used the monocyte-like THP-1 cell line which acquires macrophage-like differentiation upon 

treatment with the protein kinase C activator PMA. Dexamethasone treatment of macrophage-

like THP-1 cells significantly increased CST3 gene expression at 12 hours (Figure 3f) and 

extracellular CyC protein concentration at 18 hours (Figure 3g), mirroring the results found in 

A549 and HeLa cells. In contrast, there was no significant change in CST3 expression (Figure S4c) 
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or extracellular CyC (Figure S4d) following dexamethasone treatment in monocyte-like THP-1 

cells.  

 

The findings that CyC is primarily expressed by myeloid cells and that GC-responsive CyC 

secretion is predominantly mediated by macrophages have the potential to explain our finding 

that rs2749527 is a trans-eQTL for CST3 measured in visceral adipose tissue (VAT) in STARNET but 

not GTEX (p=0.77, Figure S3b). The STARNET study recruited patients with established coronary 

artery disease54, while GTEX is a relatively unselected cohort of deceased donors62. As metabolic 

syndrome is associated with significant macrophage accumulation in adipose tissue63, we 

hypothesized that STARNET patients would have significantly increased macrophage gene 

signatures in VAT, compared to GTEX donors. Using CIBERSORTx64 (absolute mode) analysis of 

RNA-seq data in each cohort, we identified highly significant enrichment of M2 macrophages in 

STARNET versus GTEX (p=3.03e-289, Figure S5a). M2 macrophages were by far the most 

abundant myeloid component in the STARNET VAT samples, suggesting that they are the cell type 

underlying the trans-eQTL signal.  This finding both provides orthogonal validation for the role of 

macrophages in GC-responsive CyC secretion and illustrates the limitations of eQTL analysis using 

bulk RNA-seq data, as has been described previously65. 

 

CyC is associated with diverse disease states 
 
As increased endogenous GC production is a hallmark of disease progression and cortisol levels 

are known to be substantially elevated in post-mortem plasma samples66, we hypothesized that 

CyC production would be associated with all-cause mortality in UKB. To investigate this, we first 

used multivariate Cox regression to estimate the effect of CyC-residual on all-cause mortality, 

adjusted for relevant patient covariates known to predict mortality67–69. We found that CyC-

residual was associated with significantly increased all-cause mortality (HR=1.56, p<1e-16, Figure 

4a). We considered that CyC-residual has the potential to be confounded by environmental 

factors, including exogenous GC treatment and, to mitigate this, we investigated whether the 

germline predisposition to CyC production, estimated as CyC-production PGS, could predict 

lifespan in our UKB European validation set (Figure 1b). Using multivariate Cox regression 

adjusted for sex, year of birth and genetic ancestry, we found that CyC-production PGS was 

associated with significantly reduced lifespan of UKB subjects (p=0.00013), as well as their two 

parents (p<1e-16, Figure 4b).  Considering that the association between GC production and 

mortality is thought to be at least partly mediated via metabolic syndrome and resulting 

cardiovascular mortality38, we hypothesized that CyC-production would be associated with 

accelerated onset of metabolic syndrome. To investigate this, we performed a phenome-wide 

association analysis (PheWAS) in the UKB validation set to identify time-to-event phenotypes 

(n=694) that were significantly associated with CyC-production using multivariate Cox regression 
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(Figure 4c). We identified positive associations meeting phenome-wide significance (p<1e-5) 

between CyC-production PGS and multiple diseases linked to metabolic syndrome, including type 

2 diabetes, obesity, hypertension and ischemic heart disease, the latter finding consistent with a 

recent plasma cortisol Mendelian randomization analysis41. While we cannot exclude a GC-

independent mechanism, the fact that CyC-production PGS recapitulates known GC-disease 

associations suggests that CyC-production captures sufficient inter-individual variation in 

endogenous GC production. 

 

To extend these findings to specific disease states, we examined whether CyC-residual and CyC-

production PGS were independent predictors of adverse outcomes in patients with cancer. Using 

UKB patients diagnosed with cancer since 2000 and with cancer-specific mortality defined by 

manual review of death certificates, we found that CyC-residual is an independent predictor of 

increased cancer-specific mortality (HR = 1.22, p<1e-16, Figure 4a). To validate this finding, we 

performed multivariate Cox regression of cancer-specific mortality against CyC-production across 

13 tumor groups in 2 independent cohorts (UKB validation set, TCGA European subjects). Both 

fixed and random effect meta-analyses in each independent cohort confirmed a significant 

positive association between CyC-production PGS and cancer-specific mortality (Figure 4d-e). To 

reverse-translate these findings into an in vivo setting, we measured serum CyC concentrations 

in the murine colorectal-26 (C26) model of cancer progression. We identified significantly 

increased serum CyC during this cancer progression (Figure 4f). In the same in vivo model, we 

detected strong positive correlation between the murine endogenous GC, corticosterone, and 

CyC (Figure 4g). Considering that in vitro exogenous GC treatment of tumor cell lines A549 and 

HeLa (Figure 2h, Figure S3a) significantly increases CyC secretion, we hypothesized that CST3 

might be ectopically expressed in tumor cells. We re-analyzed scRNA-seq data from melanoma 

specimens from 12 patients70, confirming high CST3 expression in the myeloid compartment and 

identifying comparable ectopic CST3 expression in the tumor compartment (Figure 4h). To 

confirm that this is a true emergent phenotype of tumor cells, rather than a reflection of 

increased intratumoral GC levels26, we examined single-cell expression of the canonical GC target 

FKBP5, which was highly expressed in most intratumoral cell types (Figure S5b). Altogether, our 

findings suggest that the association of CyC with both cancer progression and cancer-specific 

survival may be mediated by GC-responsive ectopic expression of CST3 in tumor cells, which co-

opt a pathway normally specific to macrophages. 

 
CyC is associated with failure of cancer immunotherapy 

 

As chronic exogenous GC treatment can suppress anti-tumor immunity30 and CyC is induced by 

GC signaling, we hypothesized that CyC might directly alter the immune landscape of tumors. To 

investigate this question, we first explored the association between intratumoral CST3 expression 
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and a set of pre-defined transcriptional immune markers71 in the pan-cancer TCGA cohort. Using 

Spearman correlation analysis adjusted for multiple hypotheses, we found that CST3 expression 

was significantly associated with reduced T- and B-cell clonality and IFNγ response, as well as 

increased M2 macrophage abundance (Figure 5a). Consistent with this, CST3 gene expression 

was significantly elevated in the C5 TCGA immune subtype (p<1e-10, Tukey’s test against all other 

subtypes), which is characterized by the highest macrophage and lowest lymphocyte abundance. 

This raises the question of whether increased CST3 gene expression would be associated with 

resistance to CPI, a question that can best be answered from analysis of cell type-specific CST3 

expression. Therefore, we reviewed paired pre- and post-treatment tumor biopsy scRNA-seq 

from patients (n=8) with metastatic basal cell carcinoma (BCC), treated with anti-PD-172. Patients 

were split into responders (n=3) and non-responders (n=5, Figure S6b) according to radiological 

response. From our data so far, it is clear that CyC is dynamically regulated and, consistent with 

this, pre-treatment CST3 expression in macrophages, dendritic cells (DCs), cancer-associated 

fibroblasts (CAF) and tumor clusters did not predict CPI responsiveness (p>0.5, paired t-test). 

However, we observed evidence for significant dynamic CST3 upregulation in CAFs and DCs in 

non-responder patients (p<0.05, paired t-test, Figure S3c-f). 

 

We considered that the CyC-production PGS could reasonably capture the capacity to 

dynamically regulate secretion of CyC in response to GCs, and so predict failure of CPI. To 

estimate CyC-production PGS in patients treated with CPI, we collated 8 published cohorts of 

cancer patients treated with anti-PD-1, anti-PD-L1 or anti-CTLA-4 therapies with available 

germline exome sequencing (termed panIO cohort, Figure S6b, Table S1). 685 patients with 

European ancestry passed quality control for inclusion (cohort characteristics summarized in 

Table 1). Following imputation of common variants, the exome-wide CyC-production PGS was 

scored in each patient. Using multivariate Cox regression adjusted for sex, genetic ancestry and 

tumor type, we demonstrated that CyC-production PGS was associated with significantly worse 

progression-free survival (HR=1.29, p=0.00051) and worse overall survival (HR=1.09, p=0.10, 

Figure 5b). Using logistic regression with the same covariates, we further demonstrated that the 

PGS was associated with significantly reduced odds of durable clinical benefit (OR=0.78, 

p=0.0029, Figure 5b). This latter effect was broadly consistent in each tumor type. Altogether, 

these findings suggest that increased intratumoral CyC production, which in turn may be 

secondary to GC elevations, could make a significant contribution to failure of cancer 

immunotherapy. 
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Discussion 

 

This work firmly establishes a direct link between GC signaling and CyC and we demonstrated its 

biological and clinical relevance using a combination of genetic analyses, in vitro and in vivo 
experiments, and clinically relevant prognostic and predictive studies. While the focus on human 

datasets allowed us to investigate clinically-relevant questions, we acknowledge that many of 

the analyses presented are limited by their associative nature. Although associations between 

measured CyC and clinical outcomes have the potential to be confounded in multiple directions, 

we agree with others that associations between patient-level polygenic scores and outcomes are 

substantially more robust, with the potential to capture causal associations73. In addition, we 

performed all PGS analyses in either a held-out validation cohort (for UKB) or an independent 

non-overlapping cohort (TCGA, panIO), to mitigate against the risk of overfitting. Thus, we argue 

that our findings make a material contribution to two gaps in our knowledge.  

 

Firstly, studies of extreme GC biology have established causal associations with metabolic 

syndrome38 and failure of cancer immunotherapy31. This causal link has remained elusive for 

intermediate GC perturbations, as circadian amplitude encompasses the inter-individual and 

disease-induced variation in cortisol for the majority of individuals. By demonstrating that CyC is 

a direct GC target with substantially reduced diurnal variability, we propose that CyC production 

can be used as a surrogate for GC signaling. With regard to immediate clinical application, our 

findings show that serum CyC does not merely have clinical utility as a marker of renal function, 

but should be considered as an exploratory biomarker to capture GC-associated disease. We 

recognize that while GR may not be the only transcription factor regulating CyC production and 

that we cannot be certain what proportion of variance in CyC-production we can explain on the 

basis of variation in cortisol. However, GC signaling it is likely to be a highly relevant regulator of 

CyC-production in the context of disease states. Through genome-wide association analysis for 

eGFR metrics derived from CyC and creatinine, coupled with structural equation modelling, we 

estimated the genetic contribution to the latent trait of CyC-production. Using a validated PGS 

derived from this trait, we demonstrate that CyC-production recapitulates known associations of 

GC signaling with all-cause mortality and onset of metabolic syndrome. The idea that germline-

encoded GC tone could predispose to a cluster of ‘preventable’ diseases, including obesity, has 

significant implications to human medicine, and suggests the morbidity of subclinical 

hypercortisolism is underappreciated. 

 

Secondly, despite widespread adoption of exogenous GCs as treatment for inflammatory 

conditions, the exact upstream mechanisms by which GCs cause immunosuppression remains 

elusive26. Our findings suggest that CyC should be viewed as a candidate effector of GC-induced 

immunosuppression. On GC stimulation, CyC is secreted in a cell-type specific manner by 
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macrophages, which would normally be recruited to tissues in the context of inflammation. 

Tumor-associated macrophages can directly synthesize endogenous GCs26, suggesting that CyC 

secretion might be induced in an autocrine manner. Furthermore, CyC has the potential to 

directly suppress antigen presentation, a key upstream pathway in immune activation at the 

crossroads between innate and adaptive immunity. In its monomeric form, CyC is a potent 

inhibitor of cysteine proteases from the cathepsin (such as cathepsin B) and peptidase C13 (such 

as legumain) families, which are both directly involved in processing of lysosomal antigens for 

MHC class II presentation12,74,75. As extracellular CyC can be internalized by some epithelial cells 

at physiological concentrations11, CyC can function as a paracrine regulator of lysosomal cysteine 

proteases. CyC levels are highest in cerebrospinal and seminal fluid12, which may even suggest a 

role in immune privilege. Consistent with a direct immunosuppressive function of CyC, we 

demonstrate that germline predisposition to CyC production is significantly associated with 

substantial remodeling of the intertumoral immune landscape and failure of cancer 

immunotherapy. The evidence that CyC-production PGS predicts failure of immunotherapy 

requires experimental confirmation that is beyond the scope of this present study, but is 

supported by evidence that germline CST3 knockout abrogates metastasis in vivo76, a phenotype 

known to be immune-regulated31. If confirmed, it would suggest that combination PD-1/PD-L1 

blockade and CyC inhibition should be explored as a putative therapeutic approach in patients 

who do not respond to CPI. 
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Methods 
 
Cohort genomic data quality control (QC) 
 
UK Biobank (UKB) 
 

UKB-provided measured genotype, imputed genotype (GRCh37, imputed data release 3) and 

phenotype data76 was accessed as part of application 58510. We selected subjects with available 

imputed genomic data (field 22028) and at least one paired creatinine (field 30700) and CyC 

measurement (field 30720), and excluded subjects with sex chromosome aneuploidy (field 

22019), discordant genetic sex (fields 31 and 22001), excess heterozygosity and missing rate (field 

22027). To classify genetic ancestry, we lifted over directly genotyped and linkage disequilibrium 

(LD)-pruned high-quality variants (bi-allelic SNPs, MAF > 0.1%, call rate > 99%) to GRCh38 and 

merged with variants available from an integrated callset (call rate > 95%) derived from 1000 

Genomes and Human Genome Diversity Project (HGDP, gnomAD). LD pruning was implemented 

using PLINK1.9 with parameters ‘--indep-pairwise 50 5 0.2’. Principal components (1-10) were 

computed using the unrelated reference subjects (PC-relate kinship coefficient < 0.05) then 

projected onto all reference and UKB subjects. Next, a random forest classifier was trained using 

ancestry data from the reference cohort, implemented in the gnomAD package for Hail. This 

classifier was applied to the UKB subjects, and genetic ancestry was assigned with a minimum 

probability of 70% (Table S1). Relatedness data was extracted from the UKB-provided kinship 

matrix, generated using KING software. For the EUR ancestry group, subjects were split into a 

discovery cohort (n=381,764 subjects) and validation cohort (n=50,000 subjects), with the 

validation cohort comprising a random selection from unrelated UKB subjects (KING kinship 

coefficient < 0.0442). For all other ancestry groups, all subjects were used as discovery cohort. 

For all analyses using imputed data, we filtered to variants with INFO score > 0.8 and MAF > 1% 

across whole cohort. 

 

Genotype-Tissue Expression (GTEx) project 
 
Whole-genome sequencing data (GRCh38) and controlled-access metadata (including time of 

death) was accessed through dbGaP (phs000424.v8.p2) as part of application 26811. The 

provided imputed data had already undergone extensive quality control, however, we removed 

an additional 9 subjects with a PC-relate kinship coefficient > 0.05. We identified EUR ancestry 

subjects (n=678) as above using 1000G/HGDP reference data to train a random forest classifier 

that was applied to GTEX subjects, using high-quality LD-pruned common variants (bi-allelic SNPs, 

MAF > 0.1%, call rate > 99%, r2<0.1), LD pruning was implemented using the ‘ld_prune’ function 
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in Hail, subsequent to removal of high-LD regions31. In this smaller cohort, ancestry was defined 

using a minimum probability of 50% followed by removal of PCA outliers with a PCA Z-score > 5. 

 

The Cancer Genome Atlas (TCGA) 
 

Germline array data (Birdseed format, GRCh37) was downloaded from the GDC Legacy archive 

as part of dbGaP application 26811, before conversion to VCF format. For sample QC, we started 

with a sample list defined by Sayaman et al1, which selected one germline sample per subject, 

prioritizing blood-derived or high call-rate samples, while removing samples with excess 

heterozygosity or hematological malignancies. For additional sample QC, we removed samples 

with discordant sex (using the impute_sex function in Hail), excess hetero- or homo-zygosity (Z-

score > 3, using agg.inbreeding function in Hail), related subjects (PC-relate kinship coefficient > 

0.05) and called genetic ancestry as described for the GTEX cohort (n=7260 EUR patients). For 

imputation in the unrelated EUR population, we selected variants with call rate > 95% and MAF 

> 0.1%. Imputation was performed using the TOPMED server, which automatically lifts over 

variants to GRCh38. For the final cleaned dataset, we selected autosomal variants imputed with 

r2 > 0.6 and MAF > 0.1%.  

 

Stockholm Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) 
 

STARNET is a cohort of 600 Caucasian patents of Eastern European origin, with a confirmed 

diagnosis of coronary artery disease. Genomic data quality control has been described 

previously77. Briefly, array-based genotyping was performed on germline DNA from blood, 

followed by imputation against the 1000 Genomes phase 1 SNPs. Comparison of population 

structure with 1000 Genomes cohort confirmed that all STARNET subjects had European genetic 

ancestry. 

 

Immunotherapy meta-cohort (panIO) 
 

We requested access to 8 cohorts of patients treated with CPI (anti-PD-1, anti-PD-L1 and/or anti-

CTLA4) with available germline exome sequencing and clinical outcome (Table 1, Table S2). 

Clinical annotations were downloaded from the supplemental data from associated manuscripts 

or requested directly from principal investigators. Samples were excluded if there was insufficient 

data to report at least one outcome measure (overall survival, progression-free survival, durable 

clinical benefit). Durable clinical benefit (binary) was defined by patients with no radiological 

progression > 6 months or overall survival > 1 year. Harmonized germline short variant calling 

was implemented using nf-core/sarek pipeline, with Strelka mutation caller78 and GRCh38 

reference genome. gVCFs were merged using Illumina gvcfgenotyper tool and imported into Hail 
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for processing. Samples with discordant sex (n=13) were identified by comparison of sex reported 

in clinical metadata and genetic sex determined from integration of X chromosome 

heterozygosity and Y chromosome genotype counts (via PLINK 1.9 impute-sex function). For the 

small minority of patients without supplied sex (n=4), sex was genetically imputed. For variant 

QC, calls filtered by Strelka were removed, SNPs calls required a minimum depth of 7 while indel 

calls required a minimum depth of 10. Each variant required a call rate >90% and at least one 

‘high-quality’ call defined as one homozygous ALT call or one heterozygous ALT call (with allele 

balance >15% for SNP or >20% for indel). Samples with a call rate <90% or excess hetero- or 

homozygosity (Z score > 3) were removed. No subjects had >3rd degree relatedness, which also 

excludes the possibility of duplicates samples in the cohort. EUR ancestry subjects were identified 

as for GTEX cohort. Imputation of EUR population was performed using the TOPMED server. For 

the final cleaned dataset, we selected autosomal variants imputed with r2 > 0.6 and MAF > 0.1%.  

 
Computation of principal components 
 
For GWAS in UKB, we computed 20 principal components (PCs) on all subjects (including related) 

and all genotyped variants, as per the BOLT-LMM manual, implemented in PLINK2 (--pca 

function). Due to computational complexity, the PLINK2 PCA approximation (--approx) was used 

for the EUR population. To account for genetic ancestry in downstream analyses, PCs (1-4) were 

computed on high-quality linkage disequilibrium (LD)-pruned variants (bi-allelic SNPs, MAF > 

0.1%, call rate > 99%, r2<0.1), with SNPs in known high-LD regions removed54. For UKB, high-

quality SNPs were derived from the ‘in_PCA’ field from the UKB-provided SNP QC file. In the UKB 

cohort, PCs were computed with related subjects removed (approach described above), and then 

projected onto all remaining samples, using the ‘run_pca_with_relateds’ function in the gnomAD 

package for Hail. In other cohorts (where related subjects were removed), PCs were computed 

using the ‘hwe_normalized_pca’ function in Hail. 

 
Genome-wide association analysis (GWAS) 
 
eGFR-CyC and eGFR-Cr were calculated using CKD-EPI equations implemented in the nephro 

package for R, with race term set to 0 for all subjects. For subjects we more than 1 paired 

creatinine and CyC measurement, we selected the earliest complete datapoint. Genome-wide 

association analyses (GWAS) in the discovery cohorts (for eGFR-CyC and eGFR-Cr were performed 

in each ancestry group, including related subjects, using BOLT-LMM79 with covariates including 

age (field 21003), age2, sex (field 31), genotyping array (binarized from field 22000), recruitment 

centre (field 54), and genetic PCs 1-20 (described above).  LD score matrices for each ancestry 

group were downloaded from the Pan-UK Biobank project 

(https://pan.ukbb.broadinstitute.org/). To assess for confounding we determined the 
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attenuation ratio of each trait via LD score regression, which was within the expected range for 

polygenic traits (Table S3)77. 

 
Structural equation modelling 
 
Structural equation modelling of eGFR-Cr and eGFR-Cy summary statistics was implemented in 

the Genomic-SEM package for R80 and performed as per the GWAS-by-subtraction tutorial 

(https://rpubs.com/MichelNivard/565885). Briefly, for EUR, AFR and CSA populations, we 

performed LD score regression using LD matrices from the Pan-UK Biobank Project 

(https://pan.ukbb.broadinstitute.org/). We designed a structural equation model (summarized 

in Figure 1c), with latent traits estimated using the userGWAS function parallelized across each 

chromosome. Summary statistics for each latent trait (renal function, CyC-production) were 

extracted and effective sample sizes were estimated using the script provided by the Genomic-

SEM authors (https://github.com/GenomicSEM/GenomicSEM/wiki/5.-User-Specified-Models-

with-SNP-Effects).  CyC-production summary statistics were standardized by setting A1 as the 

GRCh37 ALT allele and A2 as the GRCh37 REF allele, and multiplying the effect size of CyC-

production by -1 so a higher effect size reflects increased CyC production. 

 

Processing of summary statistics 

 

Clumping was performed in the EUR eGFR-CyC summary statistics, implemented in PLINK 1.9 with 

parameters clump-r2 0.001, clump-p1 5e-8, clump-p2 5e-8 and clump-kb 10000 using 1000 

Genomes reference data (derived from European subjects). For each clump, the index SNP (SNP 

with lowest p value) was annotated using the OpenTargets Genetics 

(https://genetics.opentargets.org/) variant-to-gene pipeline80, which integrates both proximity 

and functional genomics data. For the small minority of variants (n=2) not represented in the 

OpenTargets database, the index SNP was annotated to the nearest coding gene. Partitioned 

heritability analysis was performed using the LDSC package for R42 using the provided datasets, 

as per the tutorial by the package authors (https://github.com/bulik/ldsc/wiki/Cell-type-specific-

analyses). For each trait and tissue-sample pair, we extracted the t-statistic as the ratio of the 

coefficient and standard error. To compare cell type-specific enrichment between renal function 

and CyC-production latent traits, we computed the absolute difference in t-statistic between 

eGFR-CyC and each latent trait, for each tissue sample. Colocalization analysis was performed 

using the coloc package for R81, using the single-variant assumption. Gene set enrichment 

analysis of CyC-production latent trait was performed using MAGMA82, implemented in the 

FUMA web server (https://fuma.ctglab.nl/) with a 0kb gene window. Mendelian randomization 

analysis, using cis-eQTLs probes for CST3, was implemented in GCTA-SMR53 using SMR-formatted 

eQTL data from the eQTLGen Consortium83.  
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Derivation and application of polygenic scores 
 
CyC-production polygenic scores (PGS) were derived using LDpred284 (automatic model) 

according to the package vignette (https://privefl.github.io/bigsnpr/articles/LDpred2.html), 

using an initial estimated h2 of 0.4. For the genome-wide score, HapMap3 variants were 

intersected with high-quality genomic variants available for all of UKB (array), TCGA (array) and 

GTEX (WGS) cohorts (n=1,031,527). For the exome-wide score, HapMap3 variants were 

intersected with high-quality exonic variants from the panIO cohort (n=352,549). The provided 

UKB LD reference was used for PGS derivation. Model fitting was confirmed by visual inspection 

of chain convergence for each PGS. The PLINK2 linear scoring function (--score) was used to apply 

the PGS to each cohort and to avoid exclusion of duplicate dbSNP IDs, the source data was filtered 

to the PGS variants according to position and alleles. The sample-level PGS was normalized by Z-

scoring in each cohort. To generate a patient-level surrogate for CyC production, we modelled 

eGFR-CyC as a function of eGFR-Cr and sex, with intercept set as 0. We computed the residual of 

this model, termed CyC-residual, which is multiplied by -1 so that increasing CyC-residual reflects 

increased serum CyC relative to creatinine. 

 

Functional genomics 
 
ChIP-seq (for GR/NR3C1, timeseries accession: ENCSR210PYP) and ATAC-seq (timeseries 

accession: ENCSR385LRX) data for A549 cells treated with dexamethasone was downloaded from 

the ENCODE data portal (https://www.encodeproject.org/). Data was processed using the 

ENCODE data analysis pipeline, generating a p-value for each signal peak that reflects enrichment 

of DNA sequences. Data at the CST3 locus was plotted using the karyoploteR package60 for R. 

Enhancer activity scores (‘ABC scores’) derived from the validated activity-by-contact model85, 

applied to 131 biosamples, was downloaded from 

ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/Nasser2021-Full-ABC-Output/. Scores for 

the distal enhancer element at the CST3 locus reflecting analysis of data derived THP-1 cells were 

extracted, and data from THP-1 cells treated with PMA was compared to data from naïve THP-1 

cells. 

 

Gene expression profiling 
 
For GTEX and ENCODE gene expression profiling, gene-level counts derived from STAR-aligned 

RNA sequencing (RNA-seq) reads were downloaded from the GTEX 

(https://GTExportal.org/home/datasets) and ENCODE (timeseries accession: ENCSR897XFT) data 

portals respectively. TMM and library size normalization were applied using the edgeR package51 

for R, generating TMM-normalized log-counts per million (CPM) expression values that can be 
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compared between samples. For TCGA gene expression profiling, batch- and expression quantile-

normalized data (RNA-seq) was downloaded from the PanCancer Atlas repository 

(https://gdc.cancer.gov/about-data/publications/pancanatlas). For STARNET gene expression 

profiling was performed as previously described86 – briefly, gene counts were adjusted for GC 

content, library size and quantile-normalized implemented in EDAseq87, prior to log-

transformation. For digital cytometry analysis implemented in CIBERSORTx54 (for STARNET and 

GTEX cohorts), gene expression was normalized to gene length to generate transcripts per million 

(TPM) expression values. CIBERSORTx was run in absolute mode with LM22 reference set, 100 

permutations and B-mode batch correction. 
 

Expression quantitative loci (eQTL) analysis 
 
eQTLs were identified in the STARNET88 cohort using the Kruskal Wallis test statistic (additive 

model), as implemented by the tool kruX64, using individual-level genotype and gene expression 

data (data processing described above). To identify associations between CST3 and SNPs present 

at the SERPINA6/ SERPINA1 loci, we carried out this association analysis using 72 SNPs previously 

shown to be significantly associated with plasma cortisol54. This approach was applied to all non-

vascular tissues (n=5) in the STARNET cohort (subcutaneous fat, visceral abdominal tissue, 

skeletal muscle, liver, blood). As the 72 SNPs reflecting 4 independent LD blocks, we modelled 

this analysis as 20 (4 LD blocks, 5 tissues) independent hypotheses and so the Bonferroni-

corrected significance threshold was 0.0025. For independent validation of the significant eQTL 

associations in GTEX, we performed Kruskal Wallis tests in two tissues (visceral adipose tissue, 

liver) using the ‘kruskal.test’ function for R, using individual-level genotype and gene expression 

data (data processing described above). For further characterization of significant eQTLs, we 

constructed a recessive linear model of CST3 gene expression as a function of genotype (binarized 

to 0/1 versus 2), using the ‘lm’ function for R. 

 

Single-cell RNA sequencing (scRNA-seq) analysis 
 
scRNA-seq expression matrices and metadata for Jerby-Anon et al.70 and Yost et al.72 were 

downloaded from Single Cell Portal (accession SCP109) and GEO (accession GSE123813) 

respectively. For Yost et al. the peritumoral T cell-specific samples were excluded from the 

analysis. Count or normalized expression data was imported into Seurat89 (version 4.0), filtered 

(according to number of features, <10,000, and mitochondrial content, <7.5%, per cell), log-

normalized (if applicable) and scaled. Highly variable features (n=2000) were used for principal 

component analysis followed by clustering (Louvain algorithm). Immune clusters were annotated 

by comparison to reference PBMC data, implemented in clustifyR package for R70. Unannotated 

clusters (presumed to reflect one of tumor, cancer-associated fibroblast or endothelial cells) 
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were manually annotated via established marker gene expression72 and clonal copy number 

variation profiles, examined using the inferCNV90 package for R. Patient-level pseudobulk cluster-

specific expression data was extracted using the ‘AverageExpression’ function in Seurat. 

 
Cosinor regression 
 
Cosinor regression for blood markers (bilirubin, CyC-residual) and gene expression (FKBP5, CST3) 

as a function of time was performed using the cosinor package for R. A cosinor model has 4 

parameters – MESOR (intercept), period (assumed as 24 hours), amplitude and acrophase (timing 

of activity peak). Bilirubin was extracted from UKB field 30840 and CyC-residual was derived as 

above; both metrics were standardized with Z-scoring stratified by age (decade) and sex. Gene 

expression was derived from TMM-normalized TPM data (implemented in edgeR) to facilitate 

intra- and inter-sample comparisons. For UKB, time referred to time of sampling and for GTEX, 

time referred to time of death; both rounded to the nearest hour in 24-hour clock. Amplitude 

coefficients were extracted from the transformed coefficients table. 

 
UK Biobank cancer cohort 
 
To identify patients who were treated with non-topical exogenous GCs, we reviewed field 20003 

for coded medications bio-equivalent to dexamethasone or prednisolone. Subject lifespan was 

extracted from analysis of fields 40007 and 34.  Parental lifespan was extracted from analysis of 

fields 2946, 1845, 1797, 1835, 1807 and 3526. Using cancer registry data (fields 40005, 40012, 

40008, 40011), ICD10-coded cancer diagnoses were extracted and mapped to Phecodes 

(https://phewascatalog.org/). Using a curated list of operation codes (OPCS-4) reflecting curative 

procedures for 13 main tumor groups (Table S4), we mapped each cancer diagnosis to matched 

surgeries that occurred no more than 90 days prior to the coding entry. To account for variation 

in operation data availability prior to 2000, we filtered the data to cancers that were diagnosed 

after the year 2000. In cases where a patient was coded with a cancer of the same primary type 

more than once, the entries were merged. Patients with more than one discrete cancer diagnosis 

were excluded (n=2435 subjects) due to the difficulty in defining the time since diagnosis. For 

recruited patients who had died, we manually reviewed details from the death certificate (field 

40010) to identify descriptions that were consistent with cancer-specific mortality. 

 
Survival analyses 

 
For Cox regression of overall and cancer-specific survival against CyC-residual, the time variable 

used was time from blood sampling to death or last follow-up date (nominally June 2020). For 

subjects with multiple CyC-residual datapoints over time, each datapoint was annotated with 
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survival time relative to blood sampling and treated independently. Model covariates included 

age (at blood sampling), sex, body mass index (BMI), hemoglobin, eGFR-Cr, C-reactive protein. 

For Cox regression of lifespan (for subject and parents) against CyC-production PGS in the UKB 

validation cohort, we used age at death or age at most recent follow-up as the time variable. 

Model covariates included year of birth (of subject, as parental birth years are not recorded) to 

account for historical increases in mean lifespan. 

 

For Cox regression of cancer-specific survival against CyC-production PGS, it was necessary to 

consider bias from left truncation, where patients who died between diagnosis and the 

recruitment period would not be recruited. To account for this, the time interval used for Cox 

regression of overall and cancer-specific survival against CyC-production PGS in UKB referred to 

time from recruitment to death or data cut-off (June 2020). In contrast, TCGA patients were 

generally recruited close to the time of cancer diagnosis, prior to surgical resection of tumor and 

so time from diagnosis to death or last-follow-up date was used. Cancer-specific survival was 

extracted from the ‘DSS’ and ‘DSS.time’ fields in the TCGA clinical data resource available as part 

of the PanCancer Atlas (https://gdc.cancer.gov/about-data/publications/pancanatlas). Cancer-

specific survival analyses with respect to CyC-production PGS were adjusted for age of diagnosis, 

genetic ancestry (PC1-4), sex (except sex-specific cancers), and a term reflecting whether curative 

surgery was performed. For UKB this term was derived from matching with curative operation 

codes as described above, for TCGA this term was derived from the field ‘residual_tumor’ in the 

clinical data resource. UKB-specific PGS-cancer survival analyses were additionally adjusted for 

recruitment center (to account for regional heterogeneity in cancer outcomes) and genotyping 

array. Pan-cancer inverse variance-weighted meta-analysis in each cohort (UKB, TCGA) was 

implemented in the meta package for R91 using both fixed and random effects models. 

 

For phenome-wide time-to-event analysis in UKB, all UKB ‘first occurrence’ fields and cancer 

registry data (fields 40005 and 40006) were extracted, with ICD10 codes mapped to Phecodes. If 

multiple ICD10 codes mapped to a single Phecode, the earliest date of diagnosis was selected. 

For each time-to-event Phecode, the time variable was defined as time from birth to first 

occurrence of diagnosis or most recent follow-up date. To account for region-specific variability 

in health record linkage, this date was determined by either the most recent coded diagnosis or 

most recent UKB center visit. Each phenotype-specific Cox regression was adjusted for sex, 

genetic ancestry (PC1-4) and year of birth (to account for historical variation in disease risk).  

 
In vitro experiments 
 
Human lung carcinoma cell line A549 was purchased from ATCC (CCL-185). Human cervical cancer 

cell line HeLa was obtained from Cold Spring Harbor Laboratory. Human acute monocytic 
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leukemic cell line THP-1 was purchased from ATCC (TIB-202). A549 and HeLa cell lines were 

cultured in DMEM supplemented with 10% FBS and 1% penicillin-streptomycin. THP-1 cells were 

cultured in RPMI supplemented with 10% FBS and 1% penicillin-streptomycin.  Cell viability was 

checked by trypan blue method and was consistently above 95% prior to seeding. For all 

experiments, cells were plated in 6 well plates, at a density of approximately 500,000 cells/ml. 

Cells reached confluence on day one or day two after being seeded. Macrophage-like 

differentiation in THP-1 cells was induced by treatment with 50nM PMA (Sigma) for 48 hours, 

before replacement with PMA-free media and recovery for 24 hours prior to treatment. For time 

course experiments, cells were seeded and harvested at the same time, with the only variable 

being the duration of treatment with 100nM dexamethasone (varied between 0 and 18 hours), 

with 0-hour treatment acting as the control. For single-timepoint experiments, cells were treated 

with either 100nM dexamethasone (Sigma) or 0.01% ethanol (vehicle) for 18 hours prior to 

harvesting. For each experiment all samples were harvested concurrently. 

 

For quantification of extracellular CyC, cell supernatant was collected at harvesting, spun at 

10000 x g for 5 minutes to remove debris, and analyzed by ELISA (Human Cystatin C ELISA Kit, 

R&D Systems), with each sample profiled in duplicate. For quantification of cellular protein 

content, cells were washed with DPBS and ice-cold RIPA buffer with protease and phosphatase 

inhibitors (Thermo Fisher) was added to each well. The cell lysate was passed through a 25G 

syringe for homogenization and spun for 10000 x g for 15 minutes, at 4°C. The supernatant from 

the spun-down lysate was then stored at -80 for later analysis. BCA assay was performed on the 

cell lysate, with each sample profiled in duplicate. Normalized extracellular CyC concentrations 

were determined by dividing the ELISA-derived CyC concentration by the BCA-derived cellular 

protein content. 

 

For quantitative real-time polymerase chain reaction (RT-PCR), RNA was extracted using the 

RNeasy Mini Kit (Qiagen) and reverse transcribed using SuperScript IV VILO Master Mix (Thermo 

Fisher) according to the manufacturer’s protocol. Four housekeeping genes (GUSB, PPIA, RPL15, 

RPL19) with minimal variation on GC treatment were selected on the basis of a literature review92 

and differential expression analysis in ENCODE RNA-seq data (accession ENCSR897XFT), 

implemented in edgeR. Primers were designed using NCBI Primer-BLAST, with exon-spanning 

primers designed where possible (primer sequences detailed in Table S5). PCR was performed 

using the PowerTrack SYBR Green Master Mix (Thermo Fisher) using the QuantStudio 6 Flex 

(Thermo Fisher) instrument, using a 10μl reaction volume in technical triplicate according to the 

manufacturer's protocol. The threshold cycle was determined by the Second Derivative 

Maximum method and the expression of each target was normalized relative to the geometric 

mean of four endogenous controls. 
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In vivo experiments 
 
Experiments with the C26 model were performed using 8-weeks old wild-type BALB/c male mice 

obtained from Charles River Laboratories. Mice were allowed to acclimatize for 7 days and then 

were inoculated subcutaneously in their right flank with the syngeneic C26 colorectal cancer cell 

line (2x106 viable cells in 100μl RPMI vehicle) that induces cachexia.  Mice were kept in pathogen-

free conditions on a 24 hour 12:12 light-dark cycle. C26-tumor bearing mice were termed pre-

cachectic from 18 days post-inoculation and were defined as cachectic when their weight loss 

exceeded 15% from peak body weight. All animal experiments and care were performed in 

accordance with the Cold Spring Harbor Laboratory (CSHL) Institutional Animal Care and Use 

Committee (IACUC) and the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals. Plasma samples were obtained from tail bleeds and terminal cardiac bleeds. 

Tail bleeds were performed using a scalpel via tail venesection without restraint, and terminal 

bleeds were obtained at endpoint (cachexia) through exsanguination via cardiac puncture under 

isoflurane anesthesia. Samples were kept on ice at all times. Plasma samples were collected into 

heparin-coated capillary tubes to avoid coagulation and were processed as follows: centrifuge 

spin at 14,000 rpm for 5 minutes at 4°C, snap frozen in liquid nitrogen, and stored at -80°C. Plasma 

levels of CyC were determined with Mouse Cystatin C ELISA Kit (ab119590), Abcam. 

Corticosterone levels were quantified using Corticosterone ELISA (RE52211) from IBL 

International (TECAN). Prior to subcutaneous injection, C26 cells were cultured in RPMI 1640 

Medium (+L-Glutamine) with 10% heat-inactivated FBS under sterile conditions. This was 

followed by Trypsin-enzymatic dissociation, resuspension in FBS-free RPMI, counting of viable 

cell concentration and injection of 2x106 viable cells subcutaneously into the right flank of each 

mouse, in 100μl RPMI vehicle. 

 
Statistical analysis 
 
Significance testing refers to two-tailed unpaired t-tests with the assumption of unequal variance 

unless stated otherwise. For statistical and computational analyses, we used R (version 4.0.2) and 

Python (version 3.7.4) implemented as a Jupyter Notebook. 
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Baseline characteristics
Age, years Median 61

Range 18-89
Gender, n (%) Female 214 (31)

Male 471 (69)
Tumor type, n (%) Melanoma 373 (54)

Urothelial 221 (32)
Renal cell carcinoma (RCC) 60 (9)
Non-small-cell lung cancer (NSCLC) 19 (3)
Head and neck squamous cell carcinoma
(HNSCC)

12 (2)

Treatment, n (%) Anti-PD-1 320 (47)
Anti-PD-L1 207 (30)
Anti-CTLA-4 145 (21)
Combined PD-1/PD-L1 and CTLA-4 13 (2)

Best overall response (RECIST), n
(%)

Complete response (CR) 47 (7)

Partial response (PR) 128 (19)
Stable disease (SD) 125 (18)
Progressive disease (PD) 301 (44)
Unavailable 84 (12)

Durable clinical benefit, n (%) Yes 285 (42)
No 385 (56)
Unavailable 15 (2)

Table 1. Summary of patient demographics in pan-immunotherapy (panIO) cohort. For details on the individual cancer
immunotherapy trial cohorts making up this data see Table S2.
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Figure 1. Genomic architecture of cystatin C (CyC) production. (a) Schematic of study plan. The analysis of CyC-production
latent trait in UK Biobank (UKB) is leveraged to determine the biological and clinical relevance of CyC. (b) CONSORT
diagram and summary of UKB genome-wide association analysis strategy in European population. The software packages
utilized for each step are displayed in red. (c) Structural equation model to estimate latent traits of CyC-production and renal
function. The model schematic, heritability (h2) of eGFR-creatinine and eGFR-CyC, and their genetic correlation derived from
LD score regression are shown. Circular arrows refer to variance of each component and dashed lines refer to covariance
between components. RF, Renal Function. (d) Latent trait effect sizes (CyC-production and renal function) for index single
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with CyC-production polygenic score (PGS). Only data from the independent validation set were used.
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Figure 2. Cystatin C (CyC) is a glucocorticoid response gene. (a) Colocalization of summary statistics for CyC-production
from UK Biobank (UKB) and plasma cortisol from CORNET Consortium at SERPINA1/6 locus. rs2749527 variant is
highlighted in red. (b) Trans-eQTL analysis examining association between genetic instrument rs2749527 and CST3 gene
expression in visceral adipose tissue (VAT) in STARNET cohort. (c) Cis-eQTL association between rs2749527 and SERPINA6
(encodes cortisol-binding globulin) in liver in STARNET cohort. See Figure S3 for replication analysis in GTEX. (d) Gene set
enrichment analysis (MAGMA) across CyC-production summary statistics for steroid signaling-related gene sets. Functional
genomics in A549 cell line (ENCODE project) treated with 100nM dexamethasone for 0 minutes to 12 hours. (e) ChIP-seq (for
glucocorticoid receptor/NR3C1) and ATAC-seq (at 0 hours) at CST3 locus identifies a glucocorticoid-responsive and accessible
distal enhancer element. Timecourse of (f) GR recruitment (at distal enhancer) and (g) CST3 gene expression (log-CPM)
following dexamethasone treatment in A549 cells (ENCODE project). Trendline and shaded 95% confidence interval
correspond to regression of gene expression as a function of log-time. (h) Extracellular cystatin C concentration in A549 cells
normalized to cellular protein content after 18-hour treatment with 100nM dexamethasone or vehicle control. Each condition
comprises 12 biological replicates. See Figure S3 for timecourse. (i) Z-scored CyC-residual in UKB cohort stratified by oral
steroid treatment. 3/12
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Figure 3. Cystatin C (CyC) is predominantly produced by myeloid cells in healthy individuals. (a) Tissue-specific expression
qualitative trait score (eQTS) analysis to identify tissues with significant correlation (Spearman coefficient) between
CyC-production polygenic score (PGS) and tissue-specific CST3 gene expression in GTEX cohort. P values are uncorrected as
each correlation test is performed in a non-overlapping set of tissue-specific samples. Distribution of normalized single-cell
CST3 expression (log-TPM) in cell clusters isolated from (b) spleen and (c) peripheral blood mononuclear cells (PBMCs).
Clusters defined by correlation to reference PBMC data. (d) Mean CST3 gene expression (log-TPM) in each cell cluster from
multiple tissue-specific single-cell RNA sequencing projects, harmonized by Human Protein Atlas. The top cell cluster by
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(100nM) or vehicle control. Each condition comprises 10 biological replicates.
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Figure 4. Cystatin C (CyC) is associated with multiple disease states and is prognostic in cancer patients. (a) Multivariate Cox
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in UKB validation cohort. Covariates included PC1-4, recruitment center, genotyping array, year of birth of subject and sex of
subject (if applicable). (c) Phenome-wide association (Cox regression) between CyC-production PGS and 694 time-to-event
phenotypes in UKB validation cohort. Covariates included PC1-4, year of birth and sex (if applicable). Multivariate Cox
regression to measure effect size for CyC-production PGS on disease-specific survival for specific cancers in (d) UKB
validation cohort (cancers diagnosed since 2000, n=3954) and (e) TCGA cohort (n=4368). Covariates included PC1-4, age, sex
(if applicable) and a term reflecting whether patient had curative surgery. (f) Plasma CyC concentration in BALBc mice after
inoculation with colon-26 (C26) tumor cells. Cachexia defined by >15% body weight loss, pre-cachexia refers to 18 days after
tumor inoculation. (g) Significant positive correlation between plasma corticosterone and plasma cystatin C during tumor
progression in C26 model. (h) Single-cell CST3 gene expression in each cell cluster in melanoma tumors (n=12) from
Jerby-Anon et al70. Clusters defined by correlation to reference PBMC data, with unclassified cells that exhibit detectable
clonal copy number variation classified as tumor.
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Figure 5. Cystatin C (CyC) is associated with failure of cancer immunotherapy. (a) Correlation (Spearman coefficient)
between intratumoral CST3 expression and transcriptional immune signatures in TCGA cohort. High species evenness refers to
reduced immune cell clonality. Significance defined by FDR < 0.05 and absolute coefficient > 0.05. (b) Multivariate (Cox and
logistic) regression of Z-scored CyC-production polygenic score (PGS) against immuno-oncology outcomes (progression-free
survival, overall survival, durable clinical benefit) in meta-analysis of European patients (n=685) treated with checkpoint
immunotherapy (anti-CTLA4 or anti-PD1/PD-L1). Sample sizes for each clinical end-point were n=342, n=685 and n=670
respectively. In each model, covariates included the first four principal components, sex and cancer primary. Higher hazard
ratios (survival) or lower odds ratios (durable clinical benefit) reflect worse therapeutic outcomes. (c) Sensitivity analysis
indicating odds ratio and confidence interval for durable clinical benefit in each cancer type.
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Figure S1. Summary statistics from (a) Cystatin C (CyC)-production and (b) Renal function latent traits in European UKB
subjects, displayed a Manhattan plot. Loci with a p-value less than 1e-30 are annotated with gene name from OpenTargets V2G
pipeline. (c) Relationship between effect size and minor allele frequency in CyC-production trait, annotated with outlier loci.
Partitioned heritability analysis across multiple tissue types derived from (d) gene expression and (e) chromatin accessibility
data. Delta t-statistic refers to change in enrichment t-statistic between measured eGFR-CyC summary statistics and latent
CyC-production or renal function statistics. Errors bars signify 95% confidence interval. Coefficients for each SNP included in
polygenic scores (PGS) generated using (f) HapMap SNPs (n=1,031,527) or (g) HapMap SNPs that can be reliably imputed
from exome (n=352,549) sequencing data. CST3 locus on chromosome 20 is annotated.
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Figure S2. Trans-ancestral portability of CyC-production polygenic score (PGS) derived in UK Biobank European training
set (n=381,764) applied to subjects of (a) African (AFR, n=8152) and (b) Central and South Asian (CSA, n=9845) genetic
ancestry. Summary statistics from CyC-production latent trait in (c) AFR and (d) CSA genetic ancestry cohorts, derived from
GWAS for eGFR-CyC and eGFR-creatinine followed by structural equation modeling. Results displayed as Manhattan plot; no
loci reached genome-wide significance in latent trait analysis.
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Figure S3. (a) Role of single genetic instrument, rs2749527, as a trans-eQTL for CST3 on chromosome 20 (in visceral
adipose tissue) and as a cis-eQTL for SERPINA6 on chromosome 14 (in liver), which codes for cortisol-binding globulin, that
is also significantly associated with morning plasma cortisol. Association analysis between rs2749527 and both (b) CST3 gene
expression in visceral adipose tissue (VAT, n=381) and (c) SERPINA6 gene expression in liver (n=175) in GTEX cohort (EUR
ancestry). (d) Ratio of extracellular cystatin C concentration in A549 cells normalized to cellular protein content after 0-, 6-, 12-
or 18-hour treatment with dexamethasone. Each timepoint comprises 4 biological replicates. (e) Extracellular cystatin C
concentration in HeLa cells normalized to cellular protein content after 18-hour treatment with dexamethasone or vehicle
control. Each condition comprises 5-6 biological replicates. (f) Hypothetical model for the relationship between steroid
treatment and CyC-production. In forward case, steroid treatment directly increases CyC-production. In reverse case,
CyC-production germline predisposition influences probability of steroid treatment. (g) Distribution of Z-scored
CyC-production polygenic score (PGS) in subjects in UK Biobank (UKB) validation set with/without a history of steroid
treatment. (h) Diurnal variation in CyC-residual and bilirubin (known to correlate with plasma cortisol) derived from cosinor
regression in UKB cohort. Adjusted Z-score refers to Z-scoring stratified by age and gender.
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Figure S4. (a) Diurnal variation in CST3 and FKBP5 (canonical glucocorticoid response gene) derived from cosinor
regression in GTEX spleen cohort, using time of death for each GTEX donor. (b) Significant positive correlation between
logarithm of monocyte count and Z-score cystatin C (CyC)-residual in UKB cohort. Significance refers to multivariate
regression including age, sex and body mass index (BMI). Change in (c) CST3 gene expression (RT-PCR) and (d) extracellular
CyC normalized to cellular protein content after treatment with 100nM dexamethasone or vehicle control in monocyte-like
THP-1 cell line. Each condition comprises 10 biological replicates. (e) Visualization of predicted enhancer elements at CST3
locus from activity-by-contact (ABC) model85, showing distal enhancer element acting on cystatin C. Each row corresponds to
a cell line-treatment pair and epithelial grouping includes cancer cell lines. (f) ABC model scores for distal enhancer in THP-1
cells - with (macrophage-like) or without (monocyte-like) PMA treatment.
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Figure S5. (a) Inferred absolute myeloid cell composition from CIBERSORTx analysis (absolute mode) applied to visceral
adipose tissue (VAT) from STARNET and GTEX cohorts. p values refer to t-tests with Bonferroni correction. While units are
comparable between cell types and samples, they do not refer to an absolute cell fraction. (b) Single-cell FKBP5 (canonical
glucocorticoid receptor target) gene expression in each cell cluster in melanoma tumors (n=12) from Jerby-Anon et al70

Clusters defined by correlation to reference PBMC data, with unclassified cells that exhibit detectable clonal copy number
variation classified as tumor.
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Figure S6. (a) CST3 gene expression (log-normalized) in each TCGA immune subtype derived by Thorssen et al70. Subtype
5 corresponds to ’immunological quiet’ subtype, characterized by reduced lymphocyte and increased M2 macrophage
responses. Significance level refers to one-way ANOVA with post-hoc Tukey’s test. (b) Summary of radiological response data
for patients with basal cell carcinoma (BCC, n=8) derived from Yost et al72. Response is nominally defined as tumor regression
>25%. Numbers refer to patient IDs. Ratio of cluster-specific pseudo-bulk CST3 gene expression (log-TPM) in paired biopsy
samples pre/post anti-PD-1 treatment, segregated according to clinical response, for (c) macrophage, (d) dendritic cell, (e)
cancer-associated fibroblast (CAF) and (f) tumor subsets. Uncorrected P values refer paired t-tests.
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