
Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Inter-
national License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified 
the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The 
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a 
credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of 
this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

RESEARCH

Tang et al. Genome Biology          (2025) 26:203  
https://doi.org/10.1186/s13059-025-03674-8

Genome Biology

Evaluating the representational power 
of pre‑trained DNA language models 
for regulatory genomics
Ziqi Tang1, Nirali Somia1, Yiyang Yu2 and Peter K. Koo1* 

Abstract 

Background:  The emergence of genomic language models (gLMs) offers an unsu-
pervised approach to learning a wide diversity of cis-regulatory patterns in the non-
coding genome without requiring labels of functional activity generated by wet-lab 
experiments. Previous evaluations have shown that pre-trained gLMs can be leveraged 
to improve predictive performance across a broad range of regulatory genomics tasks, 
albeit using relatively simple benchmark datasets and baseline models. Since the gLMs 
in these studies were tested upon fine-tuning their weights for each downstream task, 
determining whether gLM representations embody a foundational understanding 
of cis-regulatory biology remains an open question.

Results:  Here, we evaluate the representational power of pre-trained gLMs to predict 
and interpret cell-type-specific functional genomics data that span DNA and RNA 
regulation for six major functional genomics prediction tasks. Our findings sug-
gest that probing the representations of current pre-trained gLMs do not offer 
substantial advantages over conventional machine learning approaches that use 
one-hot encoded sequences. Nevertheless, highly tuned supervised models trained 
from scratch using one-hot encoded sequences can achieve performance competitive 
with or better than pre-trained models across the datasets explored in this study.

Discussion:  This work highlights a major gap with current gLMs, raising potential 
issues in conventional pre-training strategies for the non-coding genome.

Keywords:  Deep learning, DNA language model, Regulatory genomics

Background
Large language models (LLMs) have demonstrated remarkable capabilities in natu-
ral language processing [1–4] and protein sequence analysis [5–8]. These LLMs, often 
termed “foundation models,” are trained through self-supervised learning to encode 
input data as contextual embeddings (also known as representations). The strength of 
pre-trained LLMs lies in the versatility of their embeddings, which can be leveraged for a 
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broad spectrum of downstream predictive tasks. For instance, representations from pre-
trained protein language models have been used to predict protein structures [9–11], 
predict non-synonymous variant effects [12, 13], design novel protein sequences [14–
16], and study protein evolution [17, 18].

LLMs pre-trained on genomic DNA sequences offer a promising paradigm to acceler-
ate our understanding of functional elements in the non-coding genome [19]. Genomic 
language models (gLMs) could, in principle, aid in deciphering the complex coordina-
tion of transcription factors (TFs) that control the activity of cis-regulatory elements 
(CREs). They may also enable more accurate predictions of the functional consequences 
of non-coding mutations, which can help to prioritize disease-associated variants. Fur-
thermore, gLMs that are capable of learning cis-regulatory rules could play a key role in 
the design of novel regulatory sequences with desirable functional properties. In addi-
tion, such models may support functional comparisons of non-coding sequences across 
species, a task that remains challenging due to substantial evolutionary drift in non-cod-
ing regions.

Recently, there has been a surge of pre-trained gLMs [20–49]. gLMs take as input 
DNA sequences that have undergone tokenization, an encoding scheme applied to 
either a single nucleotide or k-mer of nucleotides. Through self-supervised pre-training, 
the gLM learns a vector representation for each token in the DNA sequence via masked 
language modeling (MLM) [1] or causal language modeling (CLM) [50]. In masked lan-
guage modeling (MLM), a subset of input tokens undergo masking: most are replaced by 
a special [MASK] token, some by random tokens, and others left unchanged. The model 
learns to predict the original [MASK] tokens leveraging context from other unmasked 
positions. Various masking strategies explore different granularities (words, phrases, 
entities) and approaches (permutation sampling, importance-based selection, random 
replacements) to enhance the self-supervised pre-training task’s effectiveness [51–55]. 
On the other hand, CLM is an autoregressive pre-training task with the goal of predict-
ing the next token in a sequence given the previous tokens. Both language modeling 
objectives result in learning self-supervised representations of input sequences that cap-
ture information about individual tokens and the complex interrelationships with other 
tokens.

The burden of learning biologically meaningful features is paid upfront during the pre-
training. Afterward, the gLM’s representations can be leveraged for a broad spectrum of 
downstream prediction tasks as inputs to simpler models, bypassing the need to learn 
essential features for each task from scratch. In contrast, the conventional one-hot rep-
resentation of DNA sequences treats each element independently, assigning an identi-
cal representation for the same nucleotide character irrespective of their position in the 
sequence or what context is nearby. Consequently, the responsibility of learning impor-
tant patterns and their dependencies falls solely on the machine learning model being 
employed.

Current gLMs are composed of different choices for the tokenization, base architec-
ture, language modeling objective, and pre-training data (Additional file  1: Table  S1). 
Tokenization of DNA sequences is employed for either single nucleotide [20–22] or k-
mer of fixed size [23–25] or a k-mer of variable sizes via byte-pair tokenization [26, 27, 
33, 56], which aims to aggregate DNA in a manner that reduces the k-mer bias in the 
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genome, a problem known as rare token imbalance. The base architecture is typically a 
stack of transformer layers [57], with a vanilla multi-head self-attention [23–25, 27–31] 
or an efficient variant (e.g., flash attention [26, 58]) or an exotic attention variant (e.g., 
sparse attention [32, 33]). Alternatively, the base architecture has also been constructed 
with a stack of residual-connected dilated convolutional layers [20] or selective state-
space models, such as a Hyena [21, 22, 59] or Mamba [43, 46]. The pre-training data can 
vary significantly, encompassing the whole genome of a single species [20, 24, 32] or the 
whole genomes across multiple species [23, 25, 26, 28, 33] or focused only within specific 
regions of the genomes, such as the untranslated regions (UTRs) [29], pre-mRNA [30], 
non-coding RNA [60], promoters [22], coding regions [35, 36, 45], non-coding RNA [39, 
60], or conserved sites [34].

Notably, Nucleotide Transformer [23] is a collection of BERT-style models [1] that 
consider non-overlapping k-mer tokenization and is pre-trained via MLM on either a 
single human genome, a collection of 3202 human genomes from the 1000 Genomes 
Project [61] alone or in combination with 850 genomes across diverse species. DNA-
BERT2 [26] is also a BERT-style architecture but uses flash attention, considers byte-pair 
tokenization, and is trained via MLM on the genomes of 850 species. Genomic Pre-
trained Network (GPN) is a convolution-based model with a stack of residual-connected 
dilated convolutions, uses single-nucleotide tokenization, and is trained via MLM on 
Arabidopsis thaliana genome and seven related species within the Brassicales order [20]. 
Similarly, HyenaDNA [21] is a selective state-space model using Hyena layers and single-
nucleotide tokenization and is trained via CLM on the human reference genome.

The utility of gLMs pre-trained on whole genomes for studying the non-coding 
genome has been limited. Previous benchmarks have largely considered gLMs that have 
been fine-tuned on each downstream task [23, 24, 26, 30, 39]. gLM fine-tuning involves 
adjusting the weights of all layers or through parameter efficient fine-tuning methods, 
such as LoRA (Low-Rank Adaptation) [26, 62, 63], (hard or soft) prompt tuning [21, 64], 
and (IA)3 [23, 65]. In each benchmark, a fine-tuned gLM has demonstrated improved 
predictions on a host of downstream prediction tasks, often based on the classifica-
tion of functional elements, such as histone marks or promoter annotations. However, 
the chosen benchmarks do not reflect the complexity of cis-regulatory mechanisms 
observed in gene regulation, and the baseline models used in the comparisons often do 
not represent the state-of-the-art. Hence, the capabilities of gLMs in understanding the 
regulatory genome have yet to be demonstrated in a fair assessment.

However, fine-tuning makes it challenging to assess the contribution of the prior 
knowledge gained via pre-training on each downstream task. Moreover, benchmarks 
that do not fine-tune gLMs are limited in their downstream tasks [66–68], relying on 
either binary classification of functional activity, which does not reflect the complex-
ity of cis-regulatory biology [69, 70] or lack a more comprehensive set of benchmark-
ing tasks. Thus, the extent to which existing gLMs pre-trained on whole genomes can 
genuinely serve as foundation models that can transfer their knowledge to predict and 
interpret functional genomics data without necessitating additional fine-tuning of the 
gLM weights.

Here we perform a focused evaluation to assess the informativeness of learned rep-
resentations of various gLMs pre-trained on whole genomes (without fine-tuning any 



Page 4 of 30Tang et al. Genome Biology          (2025) 26:203 

existing layers) for six major functional genomics prediction tasks, which encompass 
different levels of cell type-specific cis-regulation complexity at DNA and RNA levels 
(see Fig. 1). In particular, we compared the predictive power via probing representations 
from pre-trained gLMs—namely Nucleotide Transformer, DNABERT2, HyenaDNA, 
and a custom GPN pre-trained on the human reference genome—versus one-hot 
encoded DNA and representations acquired from a supervised “foundation model” pre-
trained on a large corpus of functional genomics data.

Our results suggest that current gLMs pre-trained on whole genomes do not provide 
noticeable advantages over conventional approaches for analyzing human functional 
genomics data, namely deep neural networks that consider one-hot sequences. By con-
trast, supervised foundation models pre-trained on functional genomics data appear to 
encapsulate more relevant information and their representations transfer better to other 
functional genomics data, albeit when the source pre-training tasks and the target tasks 
are closely aligned. Nevertheless, highly tuned supervised models trained from scratch 
using one-hot encoded sequences can achieve performance competitive with or better 
than pre-trained models across the datasets explored in this study. Our results suggest 
that current gLMs struggle to understand cell-type specific functional elements during 
pre-training and, therefore, fall short of recognition as a foundation model for the regu-
latory regions of the non-coding human genome.

Results and discussion
Task 1: predicting cell‑type specific regulatory activity from lentiMPRA data

Understanding the mechanisms that drive CRE activity is a major goal in functional 
genomics; it is challenging due to complex rules of cell-type-specific TF binding [71, 72]. 
In the first task, we compared the performance of various machine learning models that 
consider different input representations of DNA sequences at predicting experimentally 
measured enhancer activity via lentiMPRA (lentiviral Massively Parallel Reporter Assay) 
[73]. Specifically, this task involves taking a 230 nucleotide (nt) DNA sequence as input, 
represented either as a gLM embedding or one-hot sequence, and predicting a scalar 
value that represents the CRE’s functional activity measured in a given cellular context 
via lentiMPRA (see Methods section). This task enables a direct comparison in perfor-
mance across matched downstream models for each sequence encoding scheme. By 
considering two cell types, namely HepG2 and K562, we can assess whether pre-trained 

Fig. 1  Experimental overview. Comparison of gLM embeddings versus one-hot representations for various 
functional genomics prediction tasks
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gLM representations capture cell-type-specific CRE activity. While the original lentiM-
PRA study included the WCT11 cell type, we excluded it from our analysis due to the 
lack of correspondence with the cell types used in Task 3’s zero-shot single-nucleotide 
variant effect generalization.

For each gLM, we probed the embeddings from the penultimate layer using a linear 
model or multi-layer perceptron (MLP) based on the classification token (CLS) or the 
mean embedding, which is standard practice for harnessing sequence summarization of 
LLM embeddings. We also employed a baseline convolutional neural network (CNN) 
that analyzed the full embeddings of the penultimate layer as well as one-hot sequences 
for comparison (see Methods section). We also considered embeddings from the penul-
timate layer of Sei [74], a supervised foundation model pre-trained on 21,907 chromatin 
profiling datasets across over 1300 cell lines and tissues. As a supervised baseline, we 
included MPRAnn, which was presented in the original study [73]. To assess the perfor-
mance against a more sophisticated supervised model, we trained a ResidualBind-like 
model (ResNet) using one-hot sequences [75]. These choices provide a fair benchmark 
to assess whether embeddings from foundation models, acquired via unsupervised 
gLMs or supervised CNNs, are more informative for downstream models than naive 
one-hot sequences.

We found that a CNN trained on the whole sequence embedding led to improved 
performance over the linear or MLP models that analyzed CLS or mean embeddings 
(Fig.  2a). This suggests that summarized gLM representations lack sufficient informa-
tion to predict cell-type-specific regulatory activity. In contrast, CNNs can build upon 

Fig. 2  Performance comparison on cell-type-specific regulatory activity prediction tasks from lentiMPRA 
data. a Comparison of predictive performance across various downstream machine learning models, 
including ridge regression and MLP using either the gLM’s CLS token or mean embedding, and a CNN trained 
using the full embedding of the penultimate layer of gLMs. b Predictive performance using a baseline CNN 
trained using different gLM embedding inputs, one-hot sequences, or supervised embeddings from Sei. 
MPRAnn and ResNet represent the performance of more sophisticated models that are trained using one-hot 
sequences
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the full embeddings to better discriminate cell-type specific features. Moreover, the 
performance gap between MLPs and linear models suggests that the mapping between 
the pre-trained representations and the functional readouts of lentiMPRA data is highly 
non-linear. While a small-scale hyperparameter grid search showed comparable per-
formance across different model capacity sizes (Additional file 1: Fig. S1), a more com-
prehensive architecture and hyperparameter search could potentially identify model 
settings that lead to further performance gains. However, for the scope of this study, we 
focused on simpler models—as is standard practice—in order to primarily assess the 
out-of-the-box utility of the learned gLM representations.

In a broader comparison, we also observed that CNNs trained using sequence embed-
dings from gLMs generally under-performed standard one-hot sequences, except our 
custom-trained GPN (Fig.  2b). Notably, the performance of all gLM-based represen-
tations was significantly lower than the supervised representations given by Sei and a 
LASSO regression baseline using features based on Enformer’s [76] predictions, simi-
lar to Ref. [73] (Additional file  1: Table  S2). Due to differences in the data splits for 
Sei and Enformer, it is unclear to what extent data leakage might lead to performance 
inflation. Nevertheless, the ResNet model, which was trained from scratch using one-
hot sequences from the LentiMPRA dataset, achieved the best performance (Fig.  2b). 
Fine-tuning the weights of the gLMs to directly predict the lentiMPRA data consider-
ably improved their predictive performance, achieving comparable performance as 
ResNet (Additional file 1: Table S2). Together, these results suggest that pre-trained gLM 
embeddings may not provide beneficial context for CREs that cannot already be learned 
from one-hot sequences for the lentiMPRA dataset.

To control for the possibility that gLM embeddings from the penultimate layer may 
not be optimal, we performed the same analysis using embeddings from other layers of 
Nucleotide Transformer. While some layers yielded modest improvements, particularly 
layer 10, the overall trends held and thus did not change the conclusions (Additional 
file 1: Fig. S2).

Task 2: predicting TF binding sites from ChIP‑seq data

Since TF binding is a cell-type-specific phenomenon, but standard language modeling 
objectives are not cell-type aware, we surmised that the low performance of gLMs on the 
lentiMPRA prediction task may be due to losing information about key motifs during 
the pre-training. To test this hypothesis, we evaluated whether the gLM embeddings can 
predict cell-type-specific TF binding sites measured via ChIP-seq (Chromatin Immuno-
Precipitation sequencing [77]). Briefly, this task is framed as a binary classification where 
a model takes a 200 nt DNA sequence, represented either as a gLM embedding or a one-
hot sequence, as input and predicts whether the sequence corresponds to a ChIP-seq 
peak. We consider ten ChIP-seq datasets spanning different TFs in GM12878 cells; a 
separate single-task model was trained for each TF (see Methods section).

Evidently, CNNs trained using one-hot sequences modestly outperformed the 
whole embeddings from DNABERT2, HyenaDNA, and Nucleotide Transformer. On 
the other hand, the custom GPN occasionally led to improved performance (Fig. 3). 
Since the TF binding tasks were included in the original pre-training of Sei, data leak-
age might lead to Sei’s inflated performance. Nevertheless, the modest performance 
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differences across sequence encoding schemes, including the similar or better per-
formance of one-hot encoding compared to gLM embeddings, suggest that the gLM 
embeddings are likely not actively encoding explicit information about TF motifs. 
Rather, the embeddings appear to retain the essential sequence information neces-
sary for downstream models like CNNs to learn TF binding patterns, akin to how 
CNNs can learn from one-hot encoded sequences that do not contain any inherent 
TF-related information.

As a control experiment, we trained MLP or linear models using the CLS token of 
Nucleotide Transformer. CLS tokens should fully encode a summary of the sequence 
semantics, which in the gLM case means it should contain information about TF motifs. 
We observed that CNNs trained on the whole embedding yielded substantially higher 
performance than an MLP trained using the CLS token (Additional file  1: Fig. S3a). 
However, the MLP still demonstrated proficiency in predicting TF binding overall. To 
further validate our findings and rule out the possibility of dataset biases creating a triv-
ial prediction task, we also trained an MLP model on bag-of-dinucleotide frequencies. 
Indeed, the MLP based on dinucleotide frequencies yielded comparable performance to 
the gLM-derived CLS token (Additional file 1: Fig. S3a), except for CTCF, a broadly act-
ing protein involved in chromatin organization across cell types. These results suggest 
that gLMs may not encode strong TF-related information in their embeddings. While 
not definitive, the CLS token appears to be only marginally more informative than low-
level dinucleotide statistics. Importantly, CNNs are capable of learning motif features 
directly from sequence without relying on pretrained gLM representations, consistently 
achieving higher performance. Similarly, CNNs can extract relevant motif patterns when 
trained on the full gLM embeddings—something they could not achieve when restricted 
to the CLS token alone.

Fig. 3  Performance comparison on TF binding prediction tasks from ChIP-seq data. Comparisons of CNNs 
trained using different gLM embeddings versus CNNs trained using one-hot sequences for 10 TF ChIP-seq 
datasets. Performance is measured by the average area-under the receiver-operating characteristic curve 
(AUROC) and error bars represent the standard deviation of the mean across 5 different random initializations. 
Average AUROC represents the average performance across all ChIP-seq datasets
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Task 3: zero‑shot variant effect prediction with MPRA data

A major use case of highly accurate sequence-function models is their ability to predict 
the functional consequences of non-coding mutations [76]. In previous studies, Nucle-
otide Transformer and GPN have demonstrated an ability to predict single-nucleotide 
variant effects, albeit as part of a binary classification task [20, 23]. However, it is not 
intuitive how gLMs pre-trained on whole genomes could yield good zero-shot predic-
tions of cell-type-specific variant effects in the non-coding region of human genomes 
since they are trained without any cell-type information. Thus, we assessed the ability 
of gLMs, specifically Nucleotide Transformer, GPN, and HyenaDNA, to quantitatively 
predict single-nucleotide variant effects within CREs using saturation mutagenesis data 
measured via MPRAs (Massively Parallel Reporter Assay) [78]. This task involves cal-
culating the zero-shot variant effect predictions of gLMs either by the cosine similar-
ity of embedding vectors for the input sequence with mutant or wild-type allele (e.g., 
Nucleotide Transformer and Hyena) or the log2-ratio of predicted variant and wild-type 
nucleotide via single-nucleotide masking (e.g., GPN). These variant effect scores are 
compared with experimentally measured variant effects according to the Pearson cor-
relation coefficient (see Methods section). This analysis includes MPRA measurements 
for three CREs in HepG2 cells and one CRE in K562 cells as part of the CAGI5 challenge 
[78, 79].

We found that all tested gLMs (without fine-tuning) exhibited poor variant effect pre-
dictions in this quantitative zero-shot single-nucleotide generalization task (Table  1). 
These results extended to all Nucleotide Transformer models [23], including a 2.5 billion 
parameter BERT-based gLM trained on 3202 diverse human genomes and 850 genomes 
from various species. On the other hand, CNNs trained using lentiMPRA data based on 
gLM embeddings yielded substantially better performance relative to their pre-trained 
counterparts (Table  1). Moreover, gLMs that were fine-tuned on the lentiMPRA data 

Table 1  Zero-shot variant effect generalization on CAGI5 dataset

The values represent the Pearson correlation between the variant effect predictions and experimental saturation 
mutagenesis values of a given CRE measured via MPRAs. Values are reported for a single CRE experiment for K562 and the 
average of three CRE experiments for HepG2

Training task Model HepG2 K562

Self-supervised pre-training NT (2B51000G) 0.125 0.007

NT (2B5Species) 0.112 0.135

NT (500MHuman) 0.020 0.088

NT (500M1000G) 0.041 0.068

GPN (human) 0.002 0.037

HyenaDNA 0.064 0.021

LentiMPRA-embedding CNN-GPN 0.332 0.437

CNN-NT 0.185 0.198

CNN-SEI 0.579 0.701

LentiMPRA-one-hot CNN 0.324 0.365

Residualbind 0.485 0.601

MPRAnn 0.381 0.437

Supervised one-hot SEI 0.545 0.641

Enformer (DNase) 0.510 0.685
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also yielded improved performance (Additional file  1: Table  S3). In contrast, sophisti-
cated supervised models trained using one-hot sequences, such as Enformer [76], which 
is a state-of-the-art model trained with supervised learning on a wide variety of func-
tional genomics data using one-hot sequences, and Sei yielded better performance than 
all CNNs trained using gLM representations. However, a CNN trained using Sei embed-
dings on the lentiMPRA dataset yielded the best overall performance. Together, these 
results highlight a major gap in the zero-shot variant effect performance of gLMs with 
the state-of-the-art.

Task 4: predicting alternative splicing from RNA‑seq data

Previous studies demonstrated that Nucleotide Transformer and GPN have learned 
properties related to gene definition and splice sites [20, 23]. Thus, we surmised that 
gLMs pre-trained on whole genomes might be more beneficial for RNA regulation tasks. 
To investigate this, we tested the informativeness of gLM embeddings to predict mRNA 
alternative splicing quantified using RNA-seq (RNA-sequencing) from the ASCOT 
dataset [80]. Specifically, the prediction task takes as input two sequences—a sequence 
with 300 nt upstream of the splice acceptor and 100 nt downstream of the acceptor 
and a sequence with 100 nt upstream of the splice donor and 300 nt downstream of the 
donor—with the goal of predicting the percentage-spliced-in (PSI) across 56 tissues as 
a multi-task regression; a task introduced by MTSplice [81]. Similar to the DNA analy-
sis, a baseline CNN was trained to take as input the full embeddings from gLMs or the 
embeddings of a pre-trained supervised model (see Methods section).

Our results mirrored those seen for regulatory DNA, with embedding-based models 
largely under-performing compared to one-hot-based models (Fig. 4a). In contrast, Sei’s 
embeddings led to substantially lower performance than most gLM embeddings for this 
task. This is likely due to Sei’s pre-training focus on DNA-based functional genomics 

Fig. 4  Performance comparison on RNA regulation tasks. a Box-plots of the average Pearson correlation 
across tissues on test data for various models trained with different encoding schemes on an alternative 
splicing prediction task using MTSplice data. b Box-plot of the Pearson correlation for various models trained 
with different encoding schemes on a RNA poll II elongation potential prediction task using INSERT-seq data. 
Box-plots show the first and third quartiles, central line is the median, and the whiskers show the range of 
data. Box-plots represent 5 different random initializations for a and 50 different random initializations for b. 
Statistical significance represents the Mann-Whitney U test with a p value < 0.05 ( ∗ ), < 0.01 ( ∗∗ ), and < 0.001 
( ∗∗∗)
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data, which leads to learning a set of DNA regulatory features that do not transfer well 
to RNA regulation. To test whether a more relevant set of features acquired through 
supervised learning could transfer better for RNA regulation, we trained a multi-task 
ResidualBind-like model to classify RNA-protein binding (RBP) sites from a large trove 
of eCLIP-seq data (see Methods section). The task is to take 1000 nt sequences as input 
and predict binding for 120 RBPs in K562 cells as a multi-task classification. Indeed, the 
embeddings from this RBP-trained supervised model led to substantially better per-
formance than the gLM embeddings, except GPN, which yielded comparable results 
(Fig. 4a).

Task 5: predicting RNA pol II elongation potential from INSERT‑seq data

Next, we performed a similar analysis for a prediction task that takes 173 nt RNA 
sequences as input and predicts RNA pol II elongation potential measured via INSERT-
seq (INtegrated Sequences on Expression of RNA and Translation using high-through-
put sequencing) [82]. The INSERT-seq dataset is modest in size, containing only 10,774 
sequences. This small data regime may not provide sufficient examples to learn all rel-
evant patterns using one-hot sequences. Training a large deep learning model on this 
dataset can easily lead to over-fitting. Thus, this task can help evaluate a scenario (i.e., 
the low data regime) where a baseline CNN that uses gLM embeddings might have an 
advantage over one-hot sequences.

Similar to the other tasks, we found that the baseline CNNs trained using gLM embed-
dings yielded lower performance than one-hot RNA sequences, except for the custom 
GPN, which performed slightly better (Fig. 4b). Again, the CNN performance based on 
Sei’s supervised embeddings was worse, and the best-performing model was achieved 
using embeddings from the supervised multi-task model pre-trained to classify RBPs. 
These results highlight that generic pre-training strategies are not always beneficial; 
when carefully selecting pre-training tasks, one should consider which relevant features 
are needed to ensure more positive outcomes on downstream applications.

While the custom GPN was the only embedding that demonstrated improved per-
formance over one-hot sequences, we hypothesized that further down-sampling of the 
training data could lead to situations where gLM embeddings become more beneficial 
than one-hot sequences. We systematically down-sampled both the alternative splicing 
and INSERT-seq datasets and retrained the same baseline CNNs using different input 
encoding schemes. Interestingly, the GPN embeddings consistently outperformed other 
embeddings (Additional file 1: Fig. S4). The improved performance by GPN suggests that 
gLMs may specialize more effectively in specific genomic regions. Specifically in this 
dataset, capturing 5′ splice sites is a critical feature [82]. Thus, understanding what fea-
tures gLMs learn well can help to identify suitable downstream tasks for which they can 
thrive.

Task 6: predicting RNA‑binding protein binding with eCLIP‑seq data

RBPs are essential for various RNA processing stages, so next, we examined the abil-
ity of gLMs to predict RBP binding sites using eCLIP-seq (enhanced chromatin immu-
noprecipitation sequencing) datasets [83]. Briefly, the task involves taking 200 nt DNA 
sequences as input and predicting binary labels of whether the sequence corresponds to 
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an eCLIP-seq peak or not (see Methods section). Ten eCLIP-seq datasets spanning dif-
ferent RBPs were used in the evaluation. We trained a baseline CNN model using differ-
ent sequence encoding schemes similar to previous tasks.

We found that CNNs trained using the full gLM embeddings performed slightly worse 
on average compared to the one-hot sequences (Fig. 5a), in agreement with the ChIP-
seq results of Task 2. The narrow performance difference between models using gLM 
embeddings and one-hot sequences also indicates that RBP motif information is not lost 
in the gLM embeddings. In a similar control, we found that an MLP based on Nucleotide 
Transformer’s CLS token led to slightly better performance than an MLP based on dinu-
cleotide frequencies (Additional file  1: Fig. S3b). This supports that gLM embeddings 
encode information that is slightly more informative than low-level sequence statistics 
in regulatory regions of RNA. Again, we found that Sei embeddings lead to a substan-
tial decline in performance, further highlighting the importance of selecting appropriate 
pre-training tasks.

Uncovering cell‑type‑specific motifs learned by gLMs is challenging

As a follow-up, we performed an attribution analysis to identify motifs captured by 
gLMs. Attribution maps were generated for a given sequence by systematically masking 
one input token (i.e., a single nucleotide position for GPN and a non-overlapping k-mer 
for Nucleotide Transformer) at a time and calculating the entropy over the predicted 
distribution of the masked token; �Entropy, which is the difference between the maxi-
mum entropy value across the whole sequence and the entropy values at each position, 
was used to identify positions that yielded informative nucleotides (see Methods  sec-
tion). For comparison, we generated gradient-corrected Saliency Maps [84] for a CNN 

Fig. 5  Performance comparison on RBP binding prediction tasks from eCLIP-seq data. Comparisons of CNNs 
trained using different gLM embeddings versus CNNs trained using one-hot sequences for 10 RBP eCLIP-seq 
datasets. Performance is measured by the average area-under the receiver-operating characteristic curve 
(AUROC) and error bars represent the standard deviation of the mean across 5 different random initializations. 
Average AUROC represents the average performance across all eCLIP-seq datasets
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trained using one-hot sequences. The analysis focused on lentiMPRA and CTCF ChIP-
seq data to cover tasks from different systems with varying levels of complexity.

As expected, the attribution maps for pre-trained gLMs alone (i.e., not considering 
the downstream task) were difficult to interpret for both lentiMPRA (Fig. 6a) and ChIP-
seq data (Additional file  1: Fig. S5a). The attribution maps did not reflect any known 
motifs, nor did they match any of the patterns captured in the CNN’s Saliency Maps. 
This disparity can arise if the probed locus is used across different cell types for mul-
tiple purposes. If cell-type-specific cis-regulatory patterns are projected onto a single 
DNA sequence, the overlapping set of motifs can lead to complex attribution maps that 
may not resemble distinct cell-type-specific motifs. Alternatively, the complex patterns 
that seem to span the length of the sequence could also reflect low-level sequence statis-
tics that are memorized. Without ground truth, interpreting attribution maps remains 
challenging.

Fig. 6  Attribution analysis comparison for sequences from the lentiMPRA dataset. a Representative 
example of attribution maps for a regulatory sequence. Attribution maps include (top to bottom): 
the gradient-times-input of a one-hot-trained CNN; the delta entropy of predicted nucleotides via 
single-nucleotide masking from a pre-trained GPN; the delta entropy of predicted nucleotides via 
single-nucleotide masking from a pre-trained Nucleotide Transformer; the gradient of a CNN-trained 
using GPN embeddings multiplied by the delta entropy of predicted nucleotides via single-nucleotide 
masking from a pre-trained GPN; and the gradient of a CNN-trained using Nucleotide Transformer 
embeddings multiplied by the delta entropy of predicted nucleotides via single-nucleotide masking from 
a pre-trained Nucleotide Transformer. b Box-plot of the one-hot-trained CNN’s predicted activity for 300 
dinucleotide-shuffled sequences from a, dinuc-shuffled sequences with the annotated patterns from the 
Saliency Map of the one-hot-trained CNN, and dinuc-shuffled sequences with the annotated patterns from 
the CNN trained using GPN embeddings (GPN-CNN). Green triangle represents the global importance 
analysis value. Red dashed line represents the prediction of the wild type sequence according to the 
one-hot-trained CNN. Box-plots show the first and third quartiles, central line is the median, and the whiskers 
show the range of data. c Scatter plot comparison of the attribution map correlations for different pre-trained 
gLMs (left) and CNNs trained using gLM embeddings (right). Attribution map correlations reflect the Pearson 
correlation coefficient between the attribution map generated by the gLM-based attribution method with 
the Saliency Map generated by a one-hot-trained CNN. Each dot represents a different sequence in the 
lentiMPRA dataset (N = 500)
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Next, we evaluated attribution maps generated by the downstream CNN that used 
gLM embeddings as input. Specifically, we scaled the gLM’s entropy-based attribution 
map with the maximum gradients at each position based on the downstream CNN 
(see Methods section). Through a qualitative comparison, we noticed that the attribu-
tion maps generated by GPN appear to be visually aligned with Saliency Maps generated 
by the one-hot-trained CNN compared to Nucleotide Transformer (Fig. 6a), even after 
accounting for the block-like structure which arises due to the k-mer tokenization. This 
trend was also observed for other loci (Additional file 1: Fig. S6).

To validate the importance of the putative binding sites identified via Saliency Maps 
for the baseline one-hot-trained CNN, we employed global importance analysis (GIA) 
[75]. Specifically, we embedded the three annotated patterns into different dinucleotide-
shuffled sequences, which serve as background sequences with low CRE activities, and 
measured the effect of introducing these patterns on model predictions. GIA revealed 
that the motif patterns identified by Saliency Maps from the one-hot-trained CNN drove 
predictions closer to wild-type activity levels than those identified by the GPN-CNN 
(Fig. 6b). This suggests that the one-hot-trained CNN learned motifs with higher efficacy 
in terms of sufficiency—i.e., the ability of these patterns to recapitulate wild-type activity 
when placed in otherwise inactive sequence contexts.

We then quantified the correlation between the attribution maps generated by the 
one-hot-trained CNN and the gLM-based attribution maps. We found that attribution 
maps generated by pre-trained gLM are not well-aligned with each other, nor are the 
attribution maps generated by the one-hot-trained CNN (Fig. 6c, Additional file 1: Fig. 
S5b). By contrast, attribution maps generated by CNNs trained with gLM embeddings 
led to improved alignment between their attribution maps and with one-hot-trained 
CNNs. These results suggest that the gLMs learn a different distribution of features dur-
ing pre-training, but a downstream model can still use them to build cell-type-specific 
motifs (that are better aligned with motifs learned by one-hot-trained CNNs).

Together, the attribution maps given by pre-trained gLMs seem to visually capture a 
more diffuse set of patterns, which speculatively reflect low-level statistics of genomic 
sequences. Downstream models, like CNNs, use these seemingly uninformative gLM 
embeddings (especially from GPN) to build cell-type-specific regulatory features rele-
vant for downstream prediction tasks.

Conclusion
Genomic language models are growing rapidly in numbers and architectural diver-
sity, yet the scope and rigor of their evaluation have not kept pace. Many current gLMs 
trained on whole genomes are primarily evaluated on genic regions or tasks involving 
broad genomic annotations that are not cell type–specific. However, a central challenge 
in regulatory genomics is that the genome encodes cell type–specific usage of cis-regu-
latory elements, and it remains unclear whether current gLMs capture information rel-
evant to this context.

To assess the transferability of knowledge acquired during pre-training, we evaluated 
the predictive utility of representations from four gLMs—each pre-trained on whole 
genomes without fine-tuning—across six functional genomics tasks that emphasize bio-
logically meaningful, cell type–specific regulatory activity. Our benchmarks included 
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appropriate supervised baselines for comparison. Within cis-regulatory elements, we 
found that gLM representations provided little to no advantage over standard one-hot 
encoded sequences when used by downstream models to predict regulatory activity.

As part of a control experiment, we compared different ways of utilizing gLM embed-
dings. While the CLS token is commonly used as a compact summary of sequence-level 
information, CNNs trained directly on the full gLM embeddings consistently outper-
formed models using the CLS token across all tasks. The CLS token appeared to encode 
information only marginally more informative than bag-of-dinucleotide statistics, sug-
gesting that it captures low-level sequence properties rather than biologically meaning-
ful regulatory features. We also note that our evaluation used random train/test splits, 
some of which were predetermined by the original datasets. Although this practice is 
standard and enables comparability across models, it may favor CNNs operating directly 
on raw sequences by enabling them to more readily learn from homologous patterns 
shared across splits [85]. This could partially explain the performance gap between 
models trained using the full sequence embeddings versus the CLS token. However, 
we do not believe this significantly alters the main conclusions and include it here for 
completeness.

We chose not to fine-tune gLM weights on each downstream task, in contrast to prior 
benchmarks where fine-tuning was standard practice [23, 24, 26, 30, 39]. While fine-tun-
ing reliably improves gLM performance, the goal of our study was to probe what biologi-
cal knowledge is encoded in gLMs during pre-training. Our findings indicate that cell 
type–specific cis-regulatory features are largely learned during fine-tuning, and that the 
value of pre-training may lie mostly in initializing models with low-level sequence statis-
tics. Further studies are needed to understand how biological knowledge is refined from 
pre-training to fine-tuning.

On a relative basis, GPN (a convolution-based gLM) yielded slightly more informative 
representations in the non-coding genome compared to more parameter-heavy BERT-
style models. This suggests that incorporating stronger architectural inductive biases 
can modestly improve performance. Interestingly, HyenaDNA (a lightweight state space 
model) performed comparably to GPN and consistently outperformed larger founda-
tion models across our benchmarks. Notably, both GPN and HyenaDNA operate at the 
nucleotide level. While their improved performance may appear to stem from tokeniza-
tion strategies, models such as Evo2 [86], which builds on HyenaDNA but uses byte-
pair encoding, suggest that tokenization alone does not fully explain the performance 
differences. Instead, these results emphasize the importance of architectural inductive 
biases for efficient learning in the non-coding genome. Convolutions in GPN likely aid 
in local pattern detection, which may be particularly useful for non-coding sequences, 
where regulatory signals are sparse and often embedded within variable sequence con-
texts. Notably, GPN and HyenaDNA are also significantly smaller in parameter size than 
other gLMs, suggesting that simply scaling model size may only incrementally improve 
performance in regulatory genomics.

Previous studies have shown that pre-training on focused genomic regions (e.g., cod-
ing regions, UTRs, or promoters) or simpler organisms with compact genomes can yield 
more promising results [28, 34, 87]. For example, codon-level gLMs trained on coding 
regions offer advantages over amino acid–level protein LMs by preserving synonymous 
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signals such as codon usage bias [35, 36, 45]. However, our evaluation shows that extend-
ing the pre-training task across the whole genome struggles to capture meaningful rep-
resentations in the non-coding genome, a greatly understudied region for gLMs.

The performance gap may be due to differences in the structure of the coding regions 
versus the non-coding regions. To elaborate, protein sequences have a clear start and 
end with low-level grammars (i.e., secondary structures) and high-level grammars 
(i.e., protein domains) shared throughout most globular proteins, with structures con-
served across species. On the other hand, the non-coding genome contains a variety of 
short sequence motifs that vary broadly in binding affinities and are sparsely located in 
seemingly random DNA, with usage and rules that vary across loci and cell types. Few 
non-coding elements exhibit deep conservation that is typical in proteins. The differ-
ing selection pressures in the non-coding regions lead to loss of synteny, which makes it 
difficult to study sequence and functional conservation. Thus, treating each nucleotide 
position equally, whether informative or uninformative, makes this a challenging lan-
guage modeling task. In the non-coding genome, this is tantamount to expecting the 
LLM to predict predominantly random nucleotides, which, by definition, can only be 
achieved via memorization. Hence, this may explain why gLMs have also found greater 
utility in learning cis-regulatory features in simpler organisms with compact genomes, 
such as bacteria [40, 87, 88], arabidopsis [20], or yeast [28], which have substantially 
reduced junk DNA [89–91].

Recent supervised foundation models like Enformer [92] and Borzoi [93] may better 
reflect the potential of foundation models in genomics. However, their input require-
ments, often hundreds of kilobases, limit their use on short-sequence tasks like those 
in this study. These models require either heavy zero-padding (which may introduce a 
covariate shift) or context marginalization strategies [69, 75], which are computation-
ally intensive. Furthermore, non-uniform data splits in many of these studies raise the 
possibility of data leakage and inflated performance estimates. In future evaluations, we 
plan to include more foundation models, including Enformer, Borzoi, and new gLMs 
that emerge, focusing on a broader set of chromatin-based functional genomics predic-
tion tasks.

One core appeal of gLMs is that they do not require labeled data during pre-training, 
enabling them to capture general patterns that may be missed by supervised models 
trained on limited annotations. However, our findings suggest that current gLMs do not 
yet learn a foundational set of cis-regulatory features that have a competitive advantage 
over standard bespoke modeling in cell-type specific gene regulation tasks. In contrast, 
supervised deep learning models trained on large-scale functional genomics data are 
capable of learning discriminative cis-regulatory features. Yet these models are biased 
toward the specific experiments they are trained on and often fail to generalize across 
cell types.

However, our results suggest that gLMs have yet to learn a foundational set of cis-
regulatory features in the non-coding genome of humans that can be harnessed via 
probing in prediction tasks across cell types. By contrast, supervised deep learning 
models trained on large troves of functional genomics data in a multitask setting can 
learn discriminative features related to cis-regulatory mechanisms in the non-coding 
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genome [70, 92–97]. Yet these models are biased toward the specific experiments they 
are trained on and often fail to generalize across cell types.

Although gLMs must currently be fine-tuned to match the performance of super-
vised models trained on one-hot inputs, the flexibility of fine-tuning remains a prac-
tical advantage. gLMs can be quickly adapted to diverse downstream tasks without 
extensive architectural tuning or hyperparameter optimization, making them appeal-
ing for broad applications once meaningful representations are learned during 
pre-training.

Determining what gLMs learn during pre-training remains a fundamental chal-
lenge. Predictive modeling only provides indirect evidence. Interpretability methods 
offer a more direct view into the representations learned by gLMs, but our attribu-
tion analysis was inconclusive. Attribution maps from pre-trained gLMs did not align 
well with known regulatory features, suggesting that the learned representations 
may reflect diffuse, low-level sequence statistics rather than biologically meaningful 
motifs. Further development can build upon the initial progress [98–100] towards 
more meaningful domain-inspired model interpretation tools to bridge this gap. 
Future work should develop more principled, domain-inspired interpretability tools 
and evalautaion benchmarks to clarify what features gLMs encode. Benchmark efforts 
such as DART-eval are beginning to move in this direction [101], but more compre-
hensive task suites will continue to be needed. Moreover, as longer sequence contexts 
are considered, evaluating whether gLMs learn meaningful long-range interactions, 
such as chromatin structure or enhancer-promoter interactions, should be included 
in future benchmarks.

Looking forward, it remains unclear whether LLMs will drive a similar paradigm 
shift in genomics as seen in NLP and protein science. Current efforts to scale gLMs 
via increased model size and longer sequence contexts have yielded only modest 
improvements and may become increasingly inefficient given the limited diversity 
and informativeness of available genomic data [21, 32]. As with neural scaling laws 
[102], whether continued scaling with MLM or CLM objectives will eventually ena-
ble emergent biological reasoning, such as capturing cell-type-specific cis-regulation, 
remains an open question. The human genome alone may not provide enough vari-
ation to enable pre-training to learn these complex regulatory grammars, especially 
given the vast spatiotemporal diversity of regulatory activity encoded in each indi-
vidual. It is also unclear how much evolution-sampled genomes will bridge this gap 
as the conservation in human regulatory elements is not as strong as coding regions.

While gLMs are still in early stages, one conclusion is already clear: directly porting 
natural language processing-based pre-training objectives to genomics is unlikely to 
yield models with deep biological understanding of the non-coding genome. Incor-
porating functional genomics data during pre-training may be necessary for learn-
ing cell-type-specific regulatory logic. Even in protein modeling, where sequences 
are more structured with strong evolutionary constraints, both at the sequence and 
covariation levels, LLMs trained solely on amino acid sequences fall short in generali-
zation to functional tasks [103]. For genomics, region-specific pre-training objectives 
may be needed to accommodate the high entropy and sparsity of functional signals 
in the non-coding genome. Given the high cost of training gLMs and the modest 
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downstream benefits observed thus far, we argue that future progress will require 
domain-informed innovations in pre-training strategies—beyond generic language 
modeling—in order for gLMs to truly earn their status as “foundation” models for the 
non-coding genome.

Methods
Pre‑trained language models

Nucleotide transformer

Nucleotide Transformer consists of multiple BERT-based language models with 2 dif-
ferent model sizes (i.e., 500 million and 2.5 billion parameters) and trained on various 
sets of genome sequences: human reference genome, 1000 genomes project, and 850 
genomes from several species. Details of the tokenizer, model structure, and training 
procedure can be found in the original paper [23]. We acquired weights for each Nucleo-
tide Transformer model from the official GitHub repository. In this analysis, we mostly 
used representations from NT2.5B-1000G, except for the zero-shot variant effect gener-
alization analysis, which considered all Nucleotide Transformer models. Since Nucleo-
tide Transformer models allow flexible input sizes, no padding was necessary for any 
evaluation tasks.

Custom GPN

The GPN model is a convolutional neural network that was originally trained on Arabi-
dopsis genome sequences via masked language modeling with an input size of 512 
nucleotides [20]. It consists of 25 convolutional blocks, where each convolutional block 
includes a dilated convolutional layer followed by a feed-forward layer, connected by 
intermediate residual connections and layer normalization. The dilation rate for each 
convolutional layer cycles with increasing exponentially by factors of 2, from 1 to 32. 
The embedding dimension was kept fixed at 512 throughout the layers. For our custom 
GPN (human) model, we created training datasets using the human reference genome 
(hg38 [104]). The genome was split into contigs and filtered for a minimum length of 512 
nucleotides, with chromosome 8 held out as test set. During training, 15% of the nucleo-
tide positions were masked and the model is tasked to predict the nucleotide probabili-
ties for each masked location. The model was trained for 2 million steps with a constant 
learning rate of 0.001 using ADAM [105].

HyenaDNA

The HyenaDNA model is a gLM pre-trained on the human reference genome, with 
context lengths up to 1 million tokens at the single nucleotide-resolution [21]. Archi-
tecturally, it adopts a decoder-only, sequence-to-sequence configuration, organized into 
a succession of blocks each encompassing a Hyena operator [59], followed by a feed-
forward neural network. The model weights and representation extraction code was 
acquired through the Hugging Face repository [106]. For all experiments in this study, 
we used the “hyenadna-tiny-1k-seqlen-d256” model due to the sequence length limita-
tion of the functional genomics datasets.
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DNABERT2

DNABERT2, a second generation version of the original DNABERT model [24], is con-
structed on the BERT architecture, comprising 12 Transformer blocks. In this new itera-
tion, the authors improved the model by replacing learned positional embeddings with 
Attention with Linear Biases (ALiBi) and utilizing Flash Attention to increase computa-
tion and memory efficiency [26]. In the context of this study, analyses were done with 
the representations generated by the last Transformer block. The model was acquired 
through the Hugging Face repository, using the “DNABERT-2-117M” model.

Pre‑trained supervised models

Sei

The Sei model is composed of three sequential modules: (1) a convolutional network with 
dual linear and nonlinear paths; (2) residual dilated convolution layers; (3) spatial basis 
function transformation and output layers. Sei was trained to take as input 4 kb length 
sequences and predict 21,907 TF binding, histone marks and DNA accessibility from 
peak data of cis-regulatory profiles. For this study, we extracted our representations after 
the spline basis function transformation, before inputting into fully connected layers. The 
pre-trained Sei model was acquired through zenodo from the original study [74].

RBP

Our custom RBP model was trained using eCLIP-seq [83] data of 120 RBPs in K562 
from ENCODE [107]. The dataset was organized into a multi-task binary classification 
format. The model has a ResidualBind-like structure: 

1.	 1D convolution (96 filters, size 19, batch-norm, exponential)
	 dropout (0.1)
2.	 Dilated residual block [108]
	 convolution (96 filters, size 3, batch-norm, ReLU)
	 dropout (0.1)
	 convolution (96 filters, size 3, batch-norm, dilation rate 2)
	 dropout (0.1)
	 convolution (196 filters, size 3, batch-norm, dilation rate 4)
	 dropout (0.1)
	 skip connection to input
	 ReLU activation
	 max-pooling (size 10)
	 dropout(0.1)
3.	 1D convolution (192 filters, size 7, batch-norm, ReLU)
	 dropout (0.1)
	 global average-pooling
4.	 flatten
5.	 fully-connected (512 units, batch-norm, ReLU)
	 dropout (0.5)
6.	 output layer (120 units, sigmoid)
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Enformer

A LASSO regression was fit to the lentiMPRA data based on predictions from Enformer 
[76]. Each sequence was padded to a target length of 196,608 base pairs using zero-
padding on both ends. The padded sequences were then passed through Enformer to 
generate predictions. We extracted the predictions corresponding to the central bin (bin 
= 448, 1-based index). Lasso regression was employed using scikit-learn. The training 
data was split into training (80%) and validation (20%) sets. LassoCV with 5-fold cross-
validation was employed to select the optimal regularization parameter (alpha) from 200 
candidates. The model was trained with a maximum of 20,000 iterations and a tolerance 
of 1e−2. Performance was evaluated using the Pearson correlation coefficient on the test 
set. Unlike previously [73], the predictions were based on a single model trained on one 
fold and only considering the forward strand.

Data

lentiMPRA

The lentiMPRA dataset for K562 and HepG2 cell lines was acquired from the Supple-
mentary Tables in Ref. [73]. The HepG2 library consists of 139,984 sequences, each 230 
nucleotides long, and the K562 library contains 226,253 sequences. Each sequence is 
paired with a target scalar value that represents the transcriptional activity. Each cell line 
was treated independently as a single-task regression. For each dataset, we randomly 
split the training, validation, and test sets according to the fractions 0.7, 0.1, and 0.2, 
respectively. Unlike the original study, we treated reverse-complement sequences sepa-
rately; they were not aggregated or augmented during test time. The results represent 
the performance over a single fold.

CAGI dataset

The CAGI5 challenge dataset [78] was used to evaluate the performance of the models 
on zero-shot single-nucleotide variant effect generalization as following the same proce-
dure as Ref. [69]. We only considered MPRA experiments in HepG2 (LDLT, SORT1, F9) 
and K562 (PKLR). We extracted 230 nucleotide sequences from the reference genome 
centered on each regulatory region of interest. Alternative alleles are then substituted 
correspondingly to construct the CAGI test sequences. Pearson correlation was calcu-
lated between the varient effect scores by the model and experimentally measured effect 
size per experiment. For HepG2 performances, we report the average Pearson’s r across 
the three experiments.

ChIP‑seq

Ten transcription factor (TF) chromatin immunoprecipitation sequencing (ChIP-seq) 
datasets were acquired from the zenodo repository of Ref. [84]. The prediction task is 
a binary classification of whether 200 nt input DNA sequences are associated with a 
ChIP-seq peak (positive label) versus sequences from DNase I hypersensitive sites from 
the same cell type (i.e., GM12878) that do not overlap with any ChIP-seq peaks (nega-
tive label). The number of negative sequences were randomly down-sampled to exactly 
match the number of positive sequences to ensure balanced classes. The dataset was 
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split randomly into training, validation, and test set according to the fractions 0.7, 0.1, 
and 0.2, respectively.

Alternative splicing data

Data was acquired from direct correspondence with the authors of Ref. [81] Briefly, 
61,823 cassette exons from ASCOT was split into a training, validation, and test set. The 
training set consisted of 38,028 exons from chromosomes 4, 6, 8, 10–23, and the sex 
chromosomes. The 11,955 exons from chromosomes 1, 7, and 9 were used as the valida-
tion set, and the remaining 11,840 exons were used as the test set (chromosomes 2, 3, 
and 5). Models are evaluated based on their performance on the test set. The prediction 
task takes as input two sequences—a sequence with 300 nt upstream of the acceptor and 
100 nt downstream of the acceptor and a sequence with 100 nt upstream of the donor 
and 300 nt downstream of the donor—and the goal is to predict PSI across 56 tissues as 
a multi-task regression.

INSERT‑seq

INSERT-seq data was obtained from Ref. [82]. INSERT-seq measures the impact of tran-
scribed sequences on the RNA polymerase II elongation potential and expression in 
mouse embryonic stem cells. 11,417 insert sequences of length 173 nt long were used as 
inputs and the goal is to predict the totalRNA output, which measures the relative abun-
dance in RNA relative to genomic DNA, as a regression task. Training, validation, and 
test sets were split according to the fractions 0.8, 0.1, and 0.1, resulting in 9131, 1149, 
and 1137 sequences, respectively.

eCLIP datasets

The in  vivo eCLIP-based datasets were downloaded from the ENCODE. For each 
RBP experiment, the bed narrowPeaks (two replicates) and the bam file for the corre-
sponding mock inputs experiment were downloaded. For each replicate, we removed 
peaks with a signal value less than 1 and a log-p  value greater than 3. Using bed-
tools, the remaining peaks that share at least one nucleotide across the two replicates 
were selected as positive peaks. A correlation filter across the replicates was applied: 
(2(s1i − s2i )/(s

1
i + s2i ))

2 < 1.0 , where sji represent the signal value for the ith peak in repli-
cate j. The median peak size was about 50 nt with a positive tail that exceeded 200 nt in 
some cases. Positive sequences were generated by extracting 200 nucleotide sequences 
about the center position of the peak coordinates. Sequences with undefined nucleotides 
were filtered out. Negative peaks were generated by employing Piranha peak caller on 
the bam file of the mock inputs with a bin size of 20 and a p value threshold of 0.01. We 
then removed negative peaks which overlap with any unfiltered peaks from each rep-
licate. Negative peaks were generated by extracting 200 nt sequences about the center 
position of the remaining negative peak coordinates. Because the negative peaks usually 
had more entries compared to the positive peaks, we randomly selected a similar num-
ber of negative peaks as positive peaks. All sequences were given a corresponding label 
1 for sequences which contain a positive peak and 0 for sequences which contain a nega-
tive peak. All sequences were then randomly split into a training set, validation set, and 
test set according to the fractions 0.7, 0.1, and 0.2, respectively.
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Models for downstream tasks

Linear models

Linear models with L2 regularization (i.e., Ridge) serve as the baseline, representing a 
simple downstream model. The inputs of the model were based on the embeddings of 
the CLS token or the average embedding across sequences for Nucleotide Transformer 
models. For regression and classification tasks, the linear model was a linear regression 
or logistic regression, respectively. The strength of the L2 regularization was set to 1e−3.

MLP

A multi-layer perceptron model was used to train on CLS token embeddings or the aver-
age embedding across sequences for Nucleotide Transformer models. The model is con-
structed by two fully connected blocks. The first block includes a fully connected layer 
with 512 units and ReLU ativation, followed by batch-normalization and a dropout rate 
of 0.5. The second block consists of a fully connected layer with 256 units and the same 
activation, batch-normalization, and dropout layers. The model was trained on lent-
iMPRA dataset with Adam optimizer, learning rate of 0.0001, mean-squared error loss 
function, learning rate decay with a patience of 5 epochs and a decay factor of 0.2, and 
early stopping patience of 10 epochs.

MPRAnn for lentiMPRA

MPRAnn is a convolutional based model with a total of 4 convolutional and 3 dense lay-
ers trained on the lentiMPRA dataset. It takes 230 nt one-hot encoded sequences includ-
ing the adapters as input to predict the mean log2(RNA/DNA) values from forward and 
reverse strands. We augmented the batches using the reverse-complement of the 200 nt 
target sequence, while keeping the two 15 bp adapters fixed. To fit the model, we used a 
learning rate of 0.001, an early stopping criterion with patience of 10 on 100 epochs, and 
the Adam optimizer with a mean square error loss function. Model structure and train-
ing parameters obtained from Github directory of original publication [73].

Baseline CNN for lentiMPRA

We designed a baseline CNN model with the following structure: 

1.	 batch-norm (optional)
2.	 1D convolution (196 filters, size 1) (optional)
3.	 1D convolution (196 filters, size 7, batch-norm, exponential)
	 dropout (0.2)
	 max-pooling (size 5)
4.	 1D convolution (256 filters, size 7, batch-norm, ReLU)
	 dropout (0.2)
	 max-pooling (size 4)
5.	 flatten
6.	 fully-connected (512 units, batch-norm, ReLU)
	 dropout (0.5)
7.	 fully-connected (256 units, batch-norm, ReLU)
	 dropout (0.5)
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8.	 output layer (1 unit, linear)

CNN models were trained with Adam optimizer, mean-squared error loss function, 
learning rate of 0.0001 with a learning rate decay patience of 5 epochs with a decay 
rate of 0.2, and early stopping with patience of 10 epochs for both one-hot sequence 
and language model embedding-based training on the lentiMPRA dataset. For one-hot 
sequences, batch-norm and the convolution with kernel 1 were not employed.

ResidualBind for lentiMPRA

We designed the ResidualBind model by adding a dilated residual block after the first 
convolutional layer of the baseline CNN model, according to: 

1.	 1D convolution (196 filters, size 19, batch-norm, Silu)
	 dropout (0.2)
2.	 Dilated residual block
	 convolution (196 filters, size 3, batch-norm, Silu)
	 dropout (0.1)
	 convolution (196 filters, size 3, batch-norm, Silu, dilation rate 2)
	 dropout (0.1)
	 convolution (196 filters, size 3, batch-norm, Silu, dilation rate 4)
	 dropout (0.1)
	 convolution (196 filters, size 3, batch-norm, Silu, dilation rate 8)
	 dropout (0.1)
	 convolution (196 filters, size 3, batch-norm, Silu, dilation rate 16)
	 dropout (0.1)
	 convolution (196 filters, size 3, batch-norm, dilation rate 32)
	 skip connection to input
	 Silu activation
	 max-pooling (size 5)
	 dropout(0.2)
3.	 1D convolution (256 filters, size 7, batch-norm, Silu)
	 dropout (0.2)
	 max-pooling (size 5)
4.	 fully-connected (256 units, batch-norm, Silu)
	 dropout (0.5)
	 average-poolint (size 2)
5.	 flatten
6.	 fully-connected (256 units, batch-norm, Silu)
	 dropout (0.5)
7.	 output layer (1 unit, linear)

ResidualBind was trained with Adam optimizer, mean-squared error loss function, 
learning rate of 0.001 with a learning rate decay patience of 5 epochs with a decay rate of 
0.2, and early stopping with patience of 10 epochs.
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Baseline CNN for ChIP‑seq and CLIP‑seq

We designed a baseline CNN model with the following structure: 

1.	 batch-norm (optional)
2.	 1D convolution (512 filters, size 1) (optional)
3.	 1D convolution (64 filters, size 7, batch-norm, ReLU)
	 max-pooling (size 4)
	 dropout (0.2)
4.	 1D convolution (96 filters, size 5, batch-norm, ReLU)
	 max-pooling (size 4)
	 dropout (0.2)
5.	 1D convolution (128 filters, size 5, batch-norm, ReLU)
	 max-pooling (size 2)
	 dropout (0.2)
6.	 flatten
7.	 fully-connected (256 units, batch-norm, ReLU)
	 dropout (0.5)
8.	 output layer (1 unit, linear)

CNN models were trained with Adam optimizer, binary cross-entropy loss function, 
learning rate of 0.001 with a learning rate decay patience of 5 epochs with a decay 
rate of 0.2, and early stopping with patience of 10 epochs for both one-hot sequence 
and language model embedding-based training on the lentiMPRA dataset. For one-hot 
sequences, batch-norm and the convolution with kernel 1 were not employed.

Insert‑seq model

For the RNA pol II elongation potential dataset, we developed a residual convolutional 
network structure and used it for all embedding and one-hot-based models. The model 
was trained using mean square error loss function, Adam optimizer, learning rate of 
0.0001, learning rate decay patience of 5 epochs with a decay rate of 0.2, and early stop-
ping patience of 10 epochs. 

1.	 convolution(48 filters, size 1) (optional)
2.	 convolution (96 filters, size 19, batch-norm, exponential)
	 dropout (0.1)
3.	 dilated residual block
	 convolution (96 filters, size 3, batch-norm, ReLU)
	 dropout (0.1)
	 convolution (96 filters, size 3, batch-norm, dilation rate 2)
	 dropout (0.1)
	 convolution (96 filters, size 3, batch-norm, dilation rate 4)
	 skip connection to block input
	 ReLU activation
	 max-pooling (size 10)
	 dropout(0.1)
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4.	 convolution (128 filters, size 7, batch-norm, ReLU)
	 global average-pooling
	 dropout (0.1)
5.	 fully-connected layer (128 units, ReLU)
	 dropout (0.5)
6.	 output layer (1 unit, linear)

CNN models were trained with Adam optimizer, mean-squared error loss function, 
learning rate of 0.0001 with a learning rate decay patience of 5 epochs with a decay 
rate of 0.2, and early stopping with patience of 10 epochs for both one-hot sequence 
and language model embedding-based training on the lentiMPRA dataset. For one-hot 
sequences, the convolution with kernel 1 was not employed.

Zero‑shot variant effect prediction methods

For Nucleotide Transformer, we derived the zero-shot predictions using cosine similar-
ity as suggested in the original study [23]. For each variant, we passed the sequences 
with the centered reference allele and the alternative allele through the model to extract 
embeddings. The cosine similarity between the two complete sequence embeddings was 
calculated and used as the zero-shot score. A negative correlation is expected between 
the score and effect size. Since this distance-based zero-shot score only reflects the 
magnitude, not the direction, of function change, we calculated the Pearson correlation 
using the absolute value of the effect size.

For GPN, we followed a similar procedure as the original study [20]. First, we input 
sequences with the center variant loci masked and acquired the predicted allele prob-
abilities for the masked loci. Then, we calculate the zero-shot prediction score as the log-
likelihood ratio between the alternate and reference alleles. Again, since the likelihood 
ratio does not reflect the direction of function change associated with the variants, we 
calculated the correlation score using the absolute value of effect size.

Finally, for the embedding-based and one-hot based models, we used the difference 
in predictions between the alternative and reference allele sequence as the zero-shot 
prediction score. For Enformer, we use the cell-type agnostic approach of averaging 
the effect size across all DNase-seq tracks, as it was previously shown to have a similar 
performance as a cell type-matched approach [76]. To reduce predictions to scalars, we 
summed across the profile predictions.

Attribution methods

For CNN models, the attribution analysis was based on grad-times-input with saliency 
maps. The gradients of the prediction were calculated with respect to the input sequence 
to yield an L × A map, where L is the length of the sequence and A is 4 (one for each 
nucleotide). By subtracting the position-wise average saliency scores from this map and 
then multiplying by the one-hot encoded sequence, the method isolates the sensitivity 
of each observed nucleotide at every position, enhancing interpretability by pinpointing 
nucleotide-specific contributions to predictions.
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For gLMs, the analysis involved sequentially masking each token of the input sequence 
and predicting the probability of the masked token by the model. The entropy of the 
probability distribution for each position was computed to quantify the information 
content represented by the gLM. Given that lower entropy signifies a higher information 
level, the saliency score was derived as the difference between the maximum entropy 
value and the entropy at each position, ensuring that a higher saliency score reflects 
greater information retention.

Sequence logos were visualized using Logomaker [109].

Global importance analysis

Global importance analysis was carried out according to Ref. [75]. A example sequence 
was selected from the LentiMPRA (K562) dataset. We sampled 300 dinucletoide shuf-
fled versions of the sequence to be used as background sequences. The shuffling aims to 
preserve the dinucleotide frequency while destroying any coherent patterns. Predictions 
were given by the baseline CNN model trained on the LentiMPRA dataset using one-
hot sequences. Predictions for the shuffled sequences are considered to be the baseline 
for predicted CRE activity. The top three positive motif patterns identified separately in 
the One-hot-CNN and GPN-CNN saliency maps (Fig. 6c) were inserted into the corre-
sponding position of the shuffled sequences, creating two experiment sequence sets. The 
One-Hot-CNN model was used to make predictions for the motif embedded sequences. 
The difference in prediction for the three sets of sequences reflects the global impor-
tance of these motif patterns to the CNN model.

Model fine‑tuning on lentiMPRA data

We fine-tuned DNABERT2, HyenaDNA, and Nucleotide Transformer on lentiMPRA 
data derived from HepG2 and K562 cell lines. Each model was adapted for sequence 
regression, predicting a single continuous value corresponding to CRE activity.

Nucleotide Transformer

We used the 500M parameter version pre-trained on 1000 Genomes data. Fine-tuning 
employed the LoRA technique, applied to the query and value matrices of the self-atten-
tion mechanism. The LoRA rank was set to 1, with a scaling factor of 32 and dropout 
rate of 0.1. An AdamW optimizer with a learning rate of 5e−4 was used, training for 
1000 steps or 2 epochs (whichever came first) with a batch size of 64.

HyenaDNA

The pre-trained hyenadna-tiny-1k-seqlen model was used for fine-tuning. The 
model performed a mean pool of the penultimate representation across sequence length 
and then used a linear layer to transform the pooled representation to a single output. 
We employed a character-level tokenizer for DNA bases (A, C, G, T, N), with a maxi-
mum sequence length of 230 tokens and left-side padding. Training used PyTorch with 
an AdamW optimizer, learning rate of 6e−4, and weight decay of 0.1 for 100 epochs with 
a batch size of 256. The final model checkpoint after 100 epochs was used for evaluation.
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DNABERT2

We utilized the DNABERT-2-117M model, fine-tuning it using the Hugging Face Trans-
formers library. An AdamW optimizer with a learning rate of 3e − 5 was used, training 
for 5 epochs with batch sizes of 8 and 16 for training and evaluation, respectively.

For all models, mean squared error was used as the loss function. The lentiMPRA 
datasets for both cell lines were preprocessed and stored in HDF5 format. Model per-
formance was evaluated using mean squared error, Pearson correlation coefficient, and 
Spearman correlation coefficient. All experiments were conducted using CUDA-enabled 
GPUs, with the best-performing model for each combination selected based on the low-
est validation loss.
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